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Abstract: Intan and Mukaidono discussed that knowledge plays an important role in determining the 

membership function of a given fuzzy set by introducing a concept, called Knowledge-based Fuzzy Sets (KFS) 

in 2002. Here, the membership degree of an element given a fuzzy set is subjectively determined by the 

knowledge. Every knowledge may have each different membership degree of the element given the fuzzy set. 

In 1988, Wang et al. extended the concept of fuzzy set, called Dynamic Fuzzy Sets (DFS) by considering that 

the membership degree of an element given a fuzzy set might be dynamically changeable over the time. Both 

generalized concepts, KFS and DFS, were hybridized by Intan et al. to be a Knowledge-based Dynamic Fuzzy 

Set (KDFS). As usually happened in the real-world application, the KDFS showed that a membership function 

of a given fuzzy set subjectively determined by a certain knowledge may be dynamically changeable over time. 

Moreover, the concept of fuzzy granularity was discussed dealing with the KDFS. Related to the concept of 

fuzzy granularity in KDFS, this paper discusses the concept of approximate reasoning of KDFS in representing 

fuzzy production rules as generally applied in the fuzzy expert system. 
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1. Introduction 

The concept of fuzzy set was proposed by L.A. Zadeh in 1965 [1], [2]. The concept of fuzzy set is considered 

as a generalization of crisp sets dealing with the gradual membership degree of elements in a real number 

started from 0 (non-member) to 1 (member).  

In the concept of fuzzy sets, a membership function of a given fuzzy set is consistently unchangeable during 

the time variable. However, in the real-world application, the membership degree of an element given a fuzzy 

set may be changeable dealing with time. Therefore, Wang et al. (1988) [3], [4] proposed an extended concept 

of fuzzy sets, called Dynamic Fuzzy Sets (DFS) in which every membership degree of an element in DFS might 

be dynamically changeable dealing with time’s variable. In this case, the DFS may also be regarded as an 

example of multi-fuzzy sets by means that a given fuzzy label might be represented by many fuzzy sets dealing 

with time variable.  

In 2002, Intan and Mukaidono [5]-[7] discussed differences between probability and fuzziness. Probability 

is considered as a concept to present the situation of objective uncertainty. On the other hands, fuzziness is 

for the situation of subjective uncertainty. Through fuzziness, a certain knowledge may subjectively 

determine a membership function of a given fuzzy set. To express this reality, Intan and Mukaidono (2002) 

[5]-[7] proposed the concept of Knowledge-based Fuzzy Sets (KFS) as a generalization of fuzzy sets. Similar to 
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the DFS, the KFS is also an example of the multi-fuzzy sets by means that a given fuzzy label might be 

represented by many fuzzy sets dealing with the variable knowledges. In this case, fuzziness may be 

considered as a deterministic uncertainty by considering that a person through his/ her knowledge may be 

subjectively able to determine a given object even in an uncertain (unclear) situation or definition of the 

object. Therefore, in the KFS, a given fuzzy label may have 𝑛 different membership functions (fuzzy sets) 

related to 𝑛 different knowledge.  

Both DFS and KFS are two generalized concepts of fuzzy sets dealing with different interpretations or 

variables, time and knowledge, respectively. Therefore, both concepts are possibly combined to construct a 

more comprehensive concept of fuzzy sets. By considering that a membership function of a given fuzzy set 

given by a certain knowledge may possibly change over time, Intan et al [8] proposed a hybrid concept, called 

Knowledge-based Dynamic Fuzzy Set (KDFS) as a more generalized concept of fuzzy sets compared than both 

KFS and DFS. In the concept of KDFS, the membership function of a given fuzzy set determined by a certain 

knowledge may be dynamically changeable over time as usually shown in the real-world application. 

Moreover, the KDFS may be considered as an example concept of two-dimensional multi-fuzzy sets dealing 

with both time and knowledge. Related to KDFS, three summary fuzzy sets were discussed and constructed 

using the functions of aggregation. Some basic operations and properties such as equality, contentment, 

union, intersection and complement were also defined and examined. Also, the fuzzy granularity dealing with 

the crisp and fuzzy coverings of knowledge was discussed in terms of KDFS [9]. 

Related to the Approximate Reasoning, this paper continually extends the concept of KDFS by discussing 

how to generate fuzzy production rules in KDFS. The concept of approximate reasoning dealing with KDFS as 

proposed in this paper plays important role in constructing rule base in Fuzzy Expert System, since the fuzzy 

production rule store in the rule base of fuzzy expert system is generally given by the knowledge of experts. 

Four categories of the fuzzy production rules, namely Strong Implication, Weak Implication, Strong Bi-

implication and Weak Bi-implication, are proposed and discussed together with their properties. Several 

equations are proposed to measure validation’s degree of the fuzzy production rules. Finally, four rules of 

conditions are given to justify the construction of Strong Implication, Weak Implication, Strong Bi-implication 

and Weak Bi-implication.  

2. Knowledge-Based Dynamic Fuzzy Sets 

 Definition 

The Knowledge-based Fuzzy Sets (KDFS) is a hybrid concept of both dynamic fuzzy sets and knowledge-

based fuzzy sets. It can be verified that in the real-world application, even a certain knowledge 𝑘  has 

already determined a membership function of fuzzy set 𝐴, next time the same knowledge, he/she may 

provide a different membership function to the fuzzy set 𝐴. It can be said that any membership function of 

KFS may be dynamically changeable over the time variable. Formally, the definition of knowledge-based 

dynamic fuzzy sets is given as follows: 

 

Definition 1 Let 𝑈 be a universal set of elements, and 𝐾 = {𝑘1, 𝑘2,⋯ , 𝑘𝑚} be a set of knowledges, and 𝑇 

be a discrete set of time, where 𝑇 = {𝑡1, 𝑡2,⋯ , 𝑡𝑛}. Then a knowledge-based dynamic fuzzy set of 𝐴 on 𝑈 

denoted by 𝒟(𝐴) = {𝐴𝑘𝑖(𝑡𝑗)|∀𝑘𝑖 ∈ 𝐾, ∀𝑡𝑗 ∈ 𝑇}  is defined as a set of fuzzy sets dealing with the set of 

knowledges 𝐾 and the set of time 𝑇. 𝐴𝑘(𝑡) ∈ 𝒟(𝐴) is a knowledge-based dynamic fuzzy set dealing with 

knowledge 𝑘 at time 𝑡, and it is characterized by the following membership function. 

𝜇𝐴𝑘(𝑡): 𝑈 → [0,1]                  (1) 
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Related to (1), 𝜇𝐴𝑘(𝑡)(𝑢) ∈ [0,1] is a the membership degree of element 𝑢 ∈ 𝑈 on fuzzy set 𝐴 dealing 

with the knowledge 𝑘 ∈ 𝐾 at the time 𝑡 ∈ 𝑇. Similarly, 𝜇𝐴𝑘(𝑡)(𝑢) = 1 means u has full membership in 𝐴 

according to 𝑘 at the time 𝑡. On the other hand, 𝜇𝐴𝑘(𝑡)(𝑢) = 0 means 𝑢 is not a member of 𝐴𝑘(𝑡). Thus, 

the membership degree of u in 𝐴 could be changeable depending on both 𝑘 and 𝑡. Here, 𝐴𝑘(𝑡) ∈ ℱ(𝑈) is 

considered as a knowledge-based dynamic fuzzy set of 𝐴 dealing with knowledge 𝑘 at the time 𝑡. In this 

case, 𝐴𝑘(𝑡) is a fuzzy set that has a similar concept with the concept of fuzzy set proposed by Zadeh in 1965 

[1], [2], where ℱ(𝑈) is a fuzzy power set of 𝑈. Every 𝐴𝑘(𝑡) ∈ 𝒟(𝐴) has its membership function given by 

𝜇𝐴𝑘(𝑡) . Therefore, a knowledge-based fuzzy set of 𝐴 , 𝒟(𝐴) = {𝐴𝑘𝑖(𝑡𝑗)|∀𝑘𝑖 ∈ 𝐾, ∀𝑡𝑗 ∈ 𝑇}  has 𝑚× 𝑛 

membership functions as given by {𝜇𝐴𝑘𝑖(𝑡𝑗)
|∀𝑘𝑖 ∈ 𝐾,  ∀𝑡𝑗 ∈ 𝑇}. 

 Summary Fuzzy Sets 

The relationship among DFS, KFS and KDFS as shown in Table 1. Let 𝐴 be a fuzzy set on 𝑈, 𝐾 be a set 

of knowledges and 𝑇 be a set of times, where 𝐾 = {𝑘1, 𝑘2, … , 𝑘𝑚} and 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛}. 

 

Table 1. Relation among KFS, DFS and KDFS 

 𝐴(𝑡1) ⋯ 𝐴(𝑡𝑛) 

𝐴𝑘1 𝐴𝑘1(𝑡1) ⋯ 𝐴𝑘1(𝑡𝑛) 

⋮ ⋮ ⋱ ⋮ 

𝐴𝑘𝑚  𝐴𝑘𝑚(𝑡1) ⋯ 𝐴𝑘𝑚(𝑡𝑛) 

 

Furthermore, both 𝐴𝑘𝑖 and 𝐴(𝑡𝑗) could be interpreted as results of aggregating 𝐴𝑘𝑖(𝑡𝑗) by taking two 

different aggregate functions, Υ and Θ, respectively over their membership degrees as follows. 

 ∀𝑢 ∈ 𝑈, 𝜇𝐴𝑘𝑖
(𝑢) = Υ(𝜇𝐴𝑘𝑖(𝑡1)

(𝑢),⋯ , 𝜇𝐴𝑘𝑖(𝑡𝑛)
(𝑢))      (2) 

where Υ: [0,1]𝑛 → [0,1]  

 ∀𝑢 ∈ 𝑈, 𝜇𝐴(𝑡𝑗)(𝑢) = Θ(𝜇𝐴𝑘1(𝑡𝑗)
(𝑢),⋯ , 𝜇𝐴𝑘𝑚(𝑡𝑗)

(𝑢))      (3) 

where Θ: [0,1]𝑚 → [0,1]  

According to the need and the context of applications, Υ  and Θ  may utilize any existed functions of 

aggregation such as maximum, minimum, average, etc. in order to summarize from KDFS to KFS and DFS, 

respectively. Here, (3) is the same as the knowledge-based summary fuzzy set which discussed by Intan and 

Mukaidono in 2002 [5]-[7]. In practical application, the knowledge-based summary fuzzy set of 𝐴 as defined 

in (3) could be understood as an agreement among a group of persons represented by a set of knowledge to 

describe fuzzy set 𝐴 at the time 𝑡𝑗 . Similarly, (2) might be considered to provide a time-based summary fuzzy 

set. For it is usually happened in the real-world application, subjective opinion of someone toward a given 

fuzzy set 𝐴 may be changeable according to the changing of times. Thus, the objective of the time-based 

summary fuzzy set as given in (2) is to summarize the multiple opinions of a certain knowledge 𝑘𝑖 to the 
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fuzzy set 𝐴 because of time variable. Depending on the reason behind calculating, to be more flexible and 

accurate, both summary fuzzy sets as given in (2) and (3) may use the weighted average as their aggregate 

function as shown in the following equations. 

Υ(𝜇𝐴𝑘𝑖(𝑡1)
(𝑢),⋯ , 𝜇𝐴𝑘𝑖(𝑡𝑛)

(𝑢)) =
∑ 𝑤𝑗∙𝜇𝐴𝑘𝑖

(𝑡𝑗)
(𝑢)𝑚

𝑗=1

∑ 𝑤𝑗
𝑚
𝑗=1

                       (4) 

where 𝑤𝑗 ∈ 𝑅
+, 𝑅+ = [0,∞)  

 Θ(𝜇𝐴𝑘1(𝑡𝑗)
(𝑢),⋯ , 𝜇𝐴𝑘𝑚(𝑡𝑗)

(𝑢)) =
∑ 𝑤𝑖∙𝜇𝐴𝑘𝑖

(𝑡𝑗)
(𝑢)𝑛

𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

       (5) 

where 𝑤𝑖 ∈ 𝑅
+, 𝑅+ = [0,∞)  

The usage of weighted average in calculating the summary fuzzy sets may have some benefits in which 𝑤𝑖 

and 𝑤𝑗  as are able to express the importance of an opinion. For instance, in the case to calculate the 

knowledge-based summary fuzzy sets, more prominent knowledge 𝑘𝑖  is considered to determine the 

summary fuzzy set, a larger 𝑤𝑖 is given to 𝑘𝑖. In the case to calculate the time-based summary fuzzy sets, a 

larger weight may usually be given to the more recent opinion, since a more recent opinion may represent a 

more real-time situation. Therefore, in the case of calculating the time-based summary fuzzy sets, the 

relationship between time and weight may satisfy 𝑡𝑗 > 𝑡𝑝 ⇒ 𝑤𝑗 ≥ 𝑤𝑝, ∀𝑡𝑗 , 𝑡𝑝 ∈ 𝑇, where 𝑡𝑗 is considered 

more recent than 𝑡𝑝.  

It is also necessary to propose a general summary fuzzy set in order to summarize all interpretation/ 

opinion based on the knowledge as well as the times into only one summary fuzzy set. In this case, the general 

summary fuzzy set may be interpreted as an agreement made to sum up all opinions given by multiple 

knowledge over several times. Formally, given 𝐴  be a fuzzy set on 𝑈 . Let 𝐾 = {𝑘1,⋯ , 𝑘𝑚}  and 𝑇 =

{𝑡1,⋯ , 𝑡𝑛}. Similar to the concept of weighted average as defined in (4) and (5), three different equations of 

general summary fuzzy set are introduced as follows. 

• General Summary Fuzzy Set (𝐴𝐺1) is constructed from the Knowledge-based Summary Fuzzy Sets: 

 𝜇𝐴𝐺1(𝑢) = Ψ(𝜇𝐴𝑘1
(𝑢), ⋯ , 𝜇𝐴𝑘𝑚

(𝑢)) =
∑ 𝑤𝑖∙𝜇𝐴𝑘𝑖

(𝑢)𝑚
𝑖=1

∑ 𝑤𝑖
𝑚
𝑖=1

      (6) 

where 𝑤𝑖 ∈ 𝑅
+, 𝑅+ = [0,∞) 

• General Summary Fuzzy Set (𝐴𝐺2) is constructed from the Time-based Summary Fuzzy Sets: 

𝜇𝐴𝐺2(𝑢) = Γ(𝜇𝐴(𝑡1)(𝑢),⋯ , 𝜇𝐴(𝑡𝑛)(𝑢)) =
∑ 𝑤𝑗∙𝜇𝐴(𝑡𝑗)

(𝑢)𝑛
𝑗=1

∑ 𝑤𝑗
𝑛
𝑗=1

          (7) 

where 𝑤𝑖 ∈ 𝑅
+, 𝑅+ = [0,∞) 

• General Summary Fuzzy Set (𝐴𝐺3) is constructed from the Knowledge-based Dynamic Fuzzy Sets: 

𝜇𝐴𝐺3(𝑢) = Ω(

𝜇𝐴𝑘1(𝑡1)(𝑢) ⋯ 𝜇𝐴𝑘𝑚(𝑡1)(𝑢)

⋮ ⋱ ⋮
𝜇𝐴𝑘1(𝑡𝑛)(𝑢) ⋯ 𝜇𝐴𝑘𝑚(𝑡𝑛)(𝑢)

) =
∑ ∑ 𝑤𝑖𝑗∙𝜇𝐴𝑘𝑖

(𝑡𝑗)
(𝑢)𝑚

𝑖=1
𝑛
𝑗=1

∑ ∑ 𝑤𝑖𝑗
𝑚
𝑖=1

𝑛
𝑗=1

    (8) 
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where 𝑤𝑖𝑗 ∈ 𝑅
+, 𝑅+ = [0,∞). 

The calculation of these three different equations of General Summary Fuzzy Set may provide different 

results in which it depends on the need and context of application to choose which one is better to use.  

 Basic Operations and Properties 

Related to the concept of KDFS, this paper proposes some basic operations of the KDFS, and verifies their 

properties. The basic operations of the KDFS are defined as the following definition. 

 

Definition 2 Let 𝑈 be a universe of elements and 𝐾 = {𝑘1, 𝑘2,⋯ , 𝑘𝑚} be a set of knowledges, and 𝑇 be 

a discrete set of time, where 𝑇 = {𝑡1, 𝑡2,⋯ , 𝑡𝑛}. 𝒟(𝐴) and 𝒟(𝐵) are two KDFS on  𝑈 dealing with 𝐾. Some 

basic operations and properties of Equality, Containment, Complementation, Intersection and Union are given 

by the following equations. 

 

Equality 

a) 𝐴𝑘(𝑡) = 𝐵𝑘(𝑡) ⇔ μ𝐴𝑘(𝑡)(𝑢) = μ𝐵𝑘(𝑡)(𝑢), ∀𝑢 ∈ 𝑈, 

b) 𝐴𝑘 = 𝐵𝑘 ⇔ μ𝐴𝑘(𝑡)(𝑢) = μ𝐵𝑘(𝑡)(𝑢), ∀𝑢 ∈ 𝑈, ∀𝑡 ∈ 𝑇, 

c) 𝐴𝑘 ≡ 𝐵𝑘 ⇔ μ𝐴𝑘(𝑡𝑖)(𝑢) = μ𝐵𝑘(𝑡𝑗)(𝑢), ∀𝑢 ∈ 𝑈, ∀𝑡𝑖 , 𝑡𝑗 ∈ 𝑇, 

d) 𝐴(𝑡) = 𝐵(𝑡) ⇔ μ𝐴𝑘(𝑡)(𝑢) = μ𝐵𝑘(𝑡)(𝑢), ∀𝑢 ∈ 𝑈, ∀𝑘 ∈ 𝐾, 

e) 𝐴(𝑡) ≡ 𝐵(𝑡) ⇔ μ𝐴𝑘𝑖(𝑡)
(𝑢) = μ𝐵𝑘𝑗(𝑡)

(𝑢), ∀𝑢 ∈ 𝑈, ∀𝑘𝑖 , 𝑘𝑗 ∈ 𝐾, 

f) 𝐴 = 𝐵 ⇔ μ𝐴𝑘(𝑡)(𝑢) = μ𝐵𝑘(𝑡)(𝑢), ∀𝑢 ∈ 𝑈, ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇, 

g) 𝐴 ≅ 𝐵 ⇔ μ𝐴𝑘(𝑡𝑖)(𝑢) = μ𝐵𝑘(𝑡𝑗)(𝑢), ∀𝑢 ∈ 𝑈, ∀𝑘 ∈ 𝐾, ∀𝑡𝑖 , 𝑡j ∈ 𝑇, 

h) 𝐴 ≜ 𝐵 ⇔ μ𝐴𝑘𝑖(𝑡)
(𝑢) = μ𝐵𝑘𝑗(𝑡)

(𝑢), ∀𝑢 ∈ 𝑈, ∀𝑘𝑖 , 𝑘j ∈ 𝐾, ∀𝑡 ∈ 𝑇, 

i) 𝐴 ≡ 𝐵 ⇔ μ𝐴𝑘𝑖(𝑡𝑖)
(𝑢) = μ𝐵𝑘𝑗(𝑡𝑗)

(𝑢), ∀𝑢 ∈ 𝑈, ∀𝑘i, 𝑘j ∈ 𝐾, ∀𝑡i, 𝑡j ∈ 𝑇, 

j) 𝑘𝑖 = 𝑘j ⇔ μ𝐴𝑘𝑖(𝑡)
(𝑢) = μ𝐴𝑘𝑗(𝑡)

(𝑢), ∀𝑢 ∈ 𝑈, ∀𝑡 ∈ 𝑇, ∀𝐴 ∈ ℱ(𝑈), where ℱ(𝑈) is fuzzy power set on 𝑈. 

k) 𝑡𝑖 = 𝑡j ⇔ μ𝐴𝑘(𝑡𝑖)(𝑢) = μ𝐴𝑘(𝑡𝑗)(𝑢), ∀𝑢 ∈ 𝑈, ∀𝑘 ∈ 𝐾, ∀𝐴 ∈ ℱ(𝑈), where ℱ(𝑈) is fuzzy power set on 𝑈. 

Containment  

a) 𝐴𝑘(𝑡) ⊆ 𝐵𝑘(𝑡) ⇔ μ𝐴𝑘(𝑡)(𝑢) ≤ μ𝐵𝑘(𝑡)(𝑢), ∀𝑢 ∈ 𝑈, 

b) 𝐴𝑘 ⊆ 𝐵𝑘 ⇔ μ𝐴𝑘(𝑡)(𝑢) ≤ μ𝐵𝑘(𝑡)(𝑢), ∀𝑢 ∈ 𝑈, ∀𝑡 ∈ 𝑇, 

c) 𝐴𝑘 ⋐ 𝐵𝑘 ⇔ μ𝐴𝑘(𝑡𝑖)(𝑢) ≤ μ𝐵𝑘(𝑡𝑗)(𝑢), ∀𝑢 ∈ 𝑈, ∀𝑡𝑖 , 𝑡𝑗 ∈ 𝑇, 

d) 𝐴(𝑡) ⊆ 𝐵(𝑡) ⇔ μ𝐴𝑘(𝑡)(𝑢) ≤ μ𝐵𝑘(𝑡)(𝑢), ∀𝑢 ∈ 𝑈, ∀𝑘 ∈ 𝐾, 

e) 𝐴(𝑡) ⋐ 𝐵(𝑡) ⇔ μ𝐴𝑘𝑖(𝑡)
(𝑢) ≤ μ𝐵𝑘𝑗(𝑡)

(𝑢), ∀𝑢 ∈ 𝑈, ∀𝑘𝑖 , 𝑘𝑗 ∈ 𝐾, 

f) 𝐴 ⊆ 𝐵 ⇔ μ𝐴𝑘(𝑡)(𝑢) ≤ μ𝐵𝑘(𝑡)(𝑢), ∀𝑢 ∈ 𝑈, ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇, 

g) 𝐴 ⊑ 𝐵 ⇔ μ𝐴𝑘(𝑡𝑖)(𝑢) ≤ μ𝐵𝑘(𝑡𝑗)(𝑢), ∀𝑢 ∈ 𝑈, ∀𝑘 ∈ 𝐾, ∀𝑡𝑖 , 𝑡j ∈ 𝑇, 

h) 𝐴 ≼ 𝐵 ⇔ μ𝐴𝑘𝑖(𝑡)
(𝑢) ≤ μ𝐵𝑘𝑗(𝑡)

(𝑢), ∀𝑢 ∈ 𝑈, ∀𝑘𝑖 , 𝑘j ∈ 𝐾, ∀𝑡 ∈ 𝑇, 

i) 𝐴 ⋐ 𝐵 ⇔ μ𝐴𝑘𝑖(𝑡𝑖)
(𝑢) ≤ μ𝐵𝑘𝑗(𝑡𝑗)

(𝑢), ∀𝑢 ∈ 𝑈, ∀𝑘i, 𝑘j ∈ 𝐾, ∀𝑡i, 𝑡j ∈ 𝑇, 

j) 𝑘𝑖 ⊴ 𝑘j ⇔ μ𝐴𝑘𝑖(𝑡)
(𝑢) ≤ μ𝐴𝑘𝑗(𝑡)

(𝑢), ∀𝑢 ∈ 𝑈, ∀𝑡 ∈ 𝑇, ∀𝐴 ∈ ℱ(𝑈), where ℱ(𝑈) is fuzzy power set on 𝑈. 

k) 𝑡𝑖 ⊴ 𝑡j ⇔ μ𝐴𝑘(𝑡𝑖)(𝑢) ≤ μ𝐴𝑘(𝑡𝑗)(𝑢), ∀𝑢 ∈ 𝑈, ∀𝑘 ∈ 𝐾, ∀𝐴 ∈ ℱ(𝑈), where ℱ(𝑈) is fuzzy power set on 𝑈. 
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Union  

a) 𝜇(𝐴∪𝐵)𝑘(𝑡)(𝑢) = max(𝜇𝐴𝑘(𝑡)(𝑢), 𝜇𝐵𝑘(𝑡)(𝑢)),  

b) 𝜇𝐴𝑘𝑖(𝑡𝑖)∪𝐵𝑘𝑗(𝑡𝑗)
(𝑢) = max(𝜇𝐴𝑘𝑖(𝑡𝑖)

(𝑢), 𝜇𝐵𝑘𝑗(𝑡𝑗)
(𝑢)),  

c) 𝜇𝐴𝑘𝑖∨𝑘𝑗(𝑡)
(𝑢) = max (𝜇𝐴𝑘𝑖(𝑡)

(𝑢), 𝜇𝐴𝑘𝑗(𝑡)
(𝑢)), 

d) 𝜇𝐴𝑘(𝑡𝑖∨𝑡𝑗)(𝑢) = max (𝜇𝐴𝑘(𝑡𝑖)(𝑢), 𝜇𝐴𝑘(𝑡𝑗)(𝑢)), 

e) 𝜇𝐴𝑘𝑖∨𝑘𝑗(𝑡𝑖∨𝑡𝑗)
(𝑢) = max(𝜇𝐴𝑘𝑖(𝑡𝑖)

(𝑢), 𝜇𝐴𝑘𝑖(𝑡𝑗)
(𝑢), 𝜇𝐴𝑘𝑗(𝑡𝑖)

(𝑢), 𝜇𝐴𝑘𝑗(𝑡𝑗)
(𝑢)), 

Intersection 

a) 𝜇(𝐴∩𝐵)𝑘(𝑡)(𝑢) = min(𝜇𝐴𝑘(𝑡)(𝑢), 𝜇𝐵𝑘(𝑡)(𝑢)),  

b) 𝜇𝐴𝑘𝑖(𝑡𝑖)∩𝐵𝑘𝑗(𝑡𝑗)
(𝑢) = min (𝜇𝐴𝑘𝑖(𝑡𝑖)

(𝑢), 𝜇𝐵𝑘𝑗(𝑡𝑗)
(𝑢)),  

c) 𝜇𝐴𝑘𝑖∧𝑘𝑗(𝑡)
(𝑢) = min (𝜇𝐴𝑘𝑖(𝑡)

(𝑢), 𝜇𝐴𝑘𝑗(𝑡)
(𝑢)), 

d) 𝜇𝐴𝑘(𝑡𝑖∧𝑡𝑗)(𝑢) = min (𝜇𝐴𝑘(𝑡𝑖)(𝑢), 𝜇𝐴𝑘(𝑡𝑗)(𝑢)), 

e) 𝜇𝐴𝑘𝑖∧𝑘𝑗(𝑡𝑖∧𝑡𝑗)
(𝑢) = min (𝜇𝐴𝑘𝑖(𝑡𝑖)

(𝑢), 𝜇𝐴𝑘𝑖(𝑡𝑗)
(𝑢), 𝜇𝐴𝑘𝑗(𝑡𝑖)

(𝑢), 𝜇𝐴𝑘𝑗(𝑡𝑗)
(𝑢)), 

Complementation 

a) 𝜇¬𝐴𝑘(𝑡)(𝑢) = 1 − 𝜇𝐴𝑘(𝑡)(𝑢),  

b) 𝜇𝐴¬𝑘𝑖(𝑡)
(𝑢) = {

𝜇𝐴𝑘𝑗(𝑡)
(𝑢), 𝑗 ≠ 𝑖, |𝐾| = 2,

Φ(𝛼𝑘1 ,⋯ , 𝛼𝑘𝑖−1 , 𝛼𝑘𝑖+1 ,⋯ , 𝛼𝑘𝑚), |𝐾| > 2,

𝛼𝑘𝑝 = 𝜇𝐴𝑘𝑝(𝑡)
(𝑢),

 where Φ is an aggregate function. 

c) 𝜇𝐴𝑘(¬𝑡𝑖)(𝑢) = {

𝜇𝐴𝑘(𝑡𝑗)(𝑢), 𝑗 ≠ 𝑖, |𝑇| = 2,

Φ(𝛼𝑡1 ,⋯ , 𝛼𝑡𝑖−1 , 𝛼𝑡𝑖+1 ,⋯ , 𝛼𝑡𝑛), |𝑇| > 2,

𝛼𝑡𝑝 = 𝜇𝐴𝑘(𝑡𝑝)(𝑢),

 where Φ is an aggregate function. 

 

The basic operations as defined in Definition 2 provide some properties as follows. 

• From Equality:  

(𝐴 ≡ 𝐵) ⇒ {(𝐴 ≅ 𝐵), (𝐴 ≜ 𝐵)} ⇒ (𝐴 = 𝐵). 

• From Containment: 

(𝐴 ⋐ 𝐵) ⇒ {(𝐴 ⊑ 𝐵), (𝐴 ≼ 𝐵)} ⇒ (𝐴 ⊆ 𝐵). 

3. Granularity of Knowledge 

As discussed by Intan and Mukaidono [5]-[7] in proposing the concept of knowledge-based fuzzy sets, the 

granularity of knowledge was constructed to obtain the similarity classes of knowledge. All knowledge in a 

specific similarity class will consider having a similar perception subjectively toward a given fuzzy set. 

Through the similarity classes of knowledge, Intan et al. (8) discussed and introduced three necessary 

measures, namely Objectivity Measures, Individuality Measures and Consistency Measure in the knowledge-

based dynamic fuzzy sets. Here, the similarity classes of knowledge are provided by a fuzzy conditional 

probability relation [5]-[7] which is an asymmetric relation as defined in Definition 3. 
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Definition 3 A fuzzy conditional probability relation is a mapping, 𝑅:ℱ(𝑈) × ℱ(𝑈) → [0,1] such that for 

𝑋, 𝑌 ∈ ℱ(𝑈),  

𝑅(𝑋, 𝑌) =
∑ min (𝜇𝑋(𝑢),𝜇𝑌(𝑢))𝑢∈𝑈

∑ 𝜇𝑌(𝑢)𝑢∈𝑈
         (9) 

where 𝑅(𝑋, 𝑌) means the degree 𝑌 supports 𝑋 or the degree 𝑌 is similar to 𝑋 or similarity degree of 𝑋 

given 𝑌. 

An interesting mathematical relation characterizes the concept of fuzzy conditional probability relation. 

This relation is called weak fuzzy similarity relationship and defined as follows. 

 

Definition 4 A weak fuzzy similarity relation is a mapping, 𝑆: ℱ(𝑈) × ℱ(𝑈) → [0,1], such that for 𝑋, 𝑌, 𝑍 ∈

ℱ(𝑈),  

1. Reflexivity: 𝑆(𝑋, 𝑋) = 1 

2. Conditional symmetry: if 𝑆(𝑋, 𝑌) > 0 then 𝑆(𝑌, 𝑋) > 0 

3. Conditional transitivity: 

If 𝑆(𝑋, 𝑌) ≥ 𝑆(𝑌, 𝑋) > 0 and 𝑆(𝑌, 𝑍) ≥ 𝑆(𝑍, 𝑌) > 0 then  

 𝑆(𝑋, 𝑍) ≥ 𝑆(𝑍, 𝑋) > 0 

where 𝑈 is an ordinary set of elements and ℱ(𝑈) is fuzzy power sets of 𝑈. 

Furthermore, in the relation to (9), similarity degree of 𝑘𝑖   given 𝑘𝑗   concerning fuzzy set 𝐴  in time 𝑡  is 

given by the following equation.  

𝑅(𝐴𝑘𝑖(𝑡), 𝐴𝑘𝑗(𝑡)) =
∑ min (𝜇𝐴𝑘𝑖(𝑡)

(𝑢),𝜇𝐴𝑘𝑗(𝑡)
(𝑢))𝑢∈𝑈

∑ 𝜇𝐴𝑘𝑗(𝑡)
(𝑢)𝑢∈𝑈

            (10) 

It can be followed clearly that the degree of similarity between two knowledge satisfy the following 

properties.  

 

r1. [𝑅(𝐴𝑘𝑖(𝑡), 𝐴𝑘𝑗(𝑡)) = 𝑅(𝐴𝑘𝑗(𝑡), 𝐴𝑘𝑖(𝑡)) = 1, ∀𝐴 ∈ ℱ(𝑈),∀𝑡 ∈ 𝑇] ⇔ 𝑘𝑖 = 𝑘𝑗 

r2. [𝑅(𝐴𝑘𝑗(𝑡), 𝐴𝑘𝑖(𝑡)) = 1, 𝑅(𝐴𝑘𝑖(𝑡), 𝐴𝑘𝑗(𝑡)) < 1, ∀𝐴 ∈ ℱ(𝑈),∀𝑡 ∈ 𝑇] ⇔ 𝑘𝑖 ⊴ 𝑘𝑗 

r3. [𝑅(𝐴𝑘𝑗(𝑡), 𝐴𝑘𝑖(𝑡)) = 𝑅(𝐴𝑘𝑖(𝑡), 𝐴𝑘𝑗(𝑡)) > 0, ∀𝐴 ∈ ℱ(𝑈), ∀𝑡 ∈ 𝑇] ⇔ 𝑘𝑖~𝑘𝑗 

r4. [𝑅 (𝐴𝑘𝑖(𝑡), 𝐴𝑘𝑗(𝑡)) < 𝑅 (𝐴𝑘𝑗(𝑡), 𝐴𝑘𝑖(𝑡)) , ∀𝐴 ∈ ℱ(𝑈), ∀𝑡 ∈ 𝑇] ⇔ 𝑘𝑖 ≼ 𝑘𝑗 

r5. 𝑅(𝐴𝑘(𝑡), 𝐴𝑘(𝑡)) = 1, ∀𝑡 ∈ 𝑇, ∀𝑘 ∈ 𝐾, ∀𝐴 ∈ ℱ(𝑈) 

r6. [𝑅 (𝐴𝑘𝑖(𝑡), 𝐴𝑘𝑗(𝑡)) > 0, ∀𝐴 ∈ ℱ(𝑈), ∀𝑡 ∈ 𝑇] ⇔ [𝑅 (𝐴𝑘𝑗(𝑡), 𝐴𝑘𝑖(𝑡)) > 0] 

r7. [𝑅 (𝐴𝑘𝑖(𝑡), 𝐴𝑘𝑗(𝑡)) ≥ 𝑅 (𝐴𝑘𝑗(𝑡), 𝐴𝑘𝑖(𝑡)) , 𝑅 (𝐴𝑘𝑗(𝑡), 𝐴𝑘𝑚(𝑡)) ≥ 𝑅 (𝐴𝑘𝑚(𝑡), 𝐴𝑘𝑗(𝑡)) , ∀𝐴 ∈ ℱ(𝑈), ∀𝑡 ∈ 𝑇] 

⇒ [𝑅(𝐴𝑘𝑖(𝑡), 𝐴𝑘𝑚(𝑡)) ≥ 𝑅(𝐴𝑘𝑚(𝑡), 𝐴𝑘𝑖(𝑡))] 

Property (r1) proves that both 𝑘𝑖 and 𝑘𝑗 are the same, and it is similar to Equality (j). (r2) shows that 𝑘𝑗 

covers 𝑘𝑖, or 𝑘𝑖 contains in 𝑘𝑗 . It means that in all the time, 𝑘𝑗 gives a higher degree of membership for all 

element of all fuzzy sets than 𝑘𝑖 , and it is the same as Containment (j). Property (r3) points to similar 

cardinality between  𝑘𝑖  and 𝑘𝑗  for all fuzzy sets in all the time. On the other hand, (r4) means the 

cardinality of all fuzzy sets and all the time is given by 𝑘𝑖 is always less or equal to 𝑘𝑗 . As related to the weak 

fuzzy similarity relation, (r5) is the property of reflexivity. (r6) is a conditional similarity, and (r7) is a 

conditional transitivity.  
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Using degree of similarity between two pieces of knowledge as calculated by (10), two asymmetric 

similarity classes of a given element of knowledge 𝑘. 

 

Definition 5 Let 𝐾 be a non-empty universal set of knowledge, and 𝐴  be a fuzzy set on 𝑈. For any 𝑘𝑖 ∈

𝐾, 𝑆𝛼
𝐴(𝑘𝑖 , 𝑡) and 𝑃𝛼

𝐴(𝑘𝑖, 𝑡) are defined as the set of knowledge that supports 𝑘𝑖 and the set supported by 

𝑘𝑖 at time 𝑡 ∈ 𝑇, respectively by: 

 
𝑆𝛼
𝐴(𝑘𝑖 , 𝑡) = {𝑘 ∈ 𝐾|𝑅(𝐴𝑘𝑖(𝑡), 𝐴𝑘(𝑡)) > 𝛼}                   (11) 

 

𝑃𝛼
𝐴(𝑘𝑖 , 𝑡) = {𝑘 ∈ 𝐾|𝑅(𝐴𝑘(𝑡), 𝐴𝑘𝑖(𝑡)) > 𝛼}                   (12) 

where 𝛼 ∈ [0,1].  

𝑆𝛼
𝐴(𝑘𝑖 , 𝑡) can also be interpreted as the set of knowledge that is similar to 𝑘𝑖 at time 𝑡 with respect to 

fuzzy set 𝐴. On the other hand, 𝑃𝛼
𝐴(𝑘𝑖, 𝑡) can be considered as the set of knowledge to which 𝑘𝑖 is similar 

at time 𝑡 . In this case, 𝑆𝛼
𝐴(𝑘𝑖 , 𝑡)   and 𝑃𝛼

𝐴(𝑘𝑖 , 𝑡)  are regarded as two different semantic interpretations of 

similarity classes in providing the crisp granularity of knowledge.  

For two asymmetric similarity classes of knowledge, 𝑆𝛼
𝐴(𝑘𝑖 , 𝑡)  and 𝑆𝛼

𝐴(𝑘𝑗 , 𝑡), the complement, intersection 

and union are defined by: 

¬𝑆𝛼
𝐴(𝑘𝑖 , 𝑡) = {𝑘 ∈ 𝐾|𝑘 ∉ 𝑆𝛼

𝐴(𝑘𝑖 , 𝑡)}                 (13) 

 

𝑆𝛼
𝐴(𝑘𝑖 , 𝑡) ∩ 𝑆𝛼

𝐴(𝑘𝑗 , 𝑡) = {𝑘 ∈ 𝐾|𝑘 ∈ 𝑆𝛼
𝐴(𝑘𝑖 , 𝑡) 𝑎𝑛𝑑 𝑘 ∈ 𝑆𝛼

𝐴(𝑘𝑗 , 𝑡)}            (14) 

 

𝑆𝛼
𝐴(𝑘𝑖 , 𝑡) ∪ 𝑆𝛼

𝐴(𝑘𝑗 , 𝑡) = {𝑘 ∈ 𝐾|𝑘 ∈ 𝑆𝛼
𝐴(𝑘𝑖 , 𝑡) 𝑜𝑟 𝑘 ∈ 𝑆𝛼

𝐴(𝑘𝑗 , 𝑡)}               (15) 

 

Similarly, the complement, intersection and union might be defined on 𝑃𝛼
𝐴(𝑘𝑖 , 𝑡) and 𝑃𝛼

𝐴(𝑘𝑗 , 𝑡). Since the 

similarity classes of knowledge are crisp sets, they satisfy the Boolean Lattice. Based on these two asymmetric 

similarity classes, we then construct two dynamic crisps covering of the universal knowledge regarding fuzzy 

set 𝐴 , Υ𝐴
𝛼(𝑡) = {𝑃𝛼

𝐴(𝑘, 𝑡)|𝑘 ∈ 𝐾}  and Ψ𝐴
𝛼(𝑡) = {𝑆𝛼

𝐴(𝑘, 𝑡)|𝑘 ∈ 𝐾} , where 𝛼 ∈ [0,1] . Here the crisp, dynamic 

covering means that the crisp covering will be dynamically changed depending on time 𝑡. 

By removing 𝛼, crisp similarity classes, 𝑆𝛼
𝐴(𝑘𝑖 , 𝑡) and 𝑃𝐴

𝛼(𝑘𝑖 , 𝑡) will be generalized to the fuzzy similarity 

classes, 𝑆𝑘𝑖
𝐴 (𝑡)  and 𝑃𝑘𝑖

𝐴(𝑡) , respectively. aaturally, the fuzzy similarity classes of a specific knowledge 𝑘𝑖 

with respect to fuzzy set 𝐴 at time 𝑡 is given by the following equations. 

 

𝑆𝑘𝑖
𝐴(𝑡, 𝑘) = 𝑅(𝐴𝑘𝑖(𝑡), 𝐴𝑘(𝑡)), ∀𝑘 ∈ 𝐾                   (16) 

 

𝑃𝑘𝑖
𝐴(𝑡, 𝑘) = 𝑅(𝐴𝑘(𝑡), 𝐴𝑘𝑖(𝑡)), ∀𝑘 ∈ 𝐾                  (17) 

 

Basic operations, such as the complement, intersection and union of the fuzzy similarity classes are defined 

by: 

 

¬𝑆𝑘𝑖
𝐴 (𝑡, 𝑘) = 1 − 𝑆𝑘𝑖

𝐴(𝑡, 𝑘), ∀𝑘 ∈ 𝐾                              (18) 

 

𝑆𝑘𝑖
𝐴(𝑡, 𝑘) ∧ 𝑆𝑘𝑗

𝐴 (𝑡, 𝑘) = min(𝑆𝑘𝑖
𝐴 (𝑡, 𝑘), 𝑆𝑘𝑗

𝐴 (𝑡, 𝑘)) , ∀𝑘 ∈ 𝐾             (19) 
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𝑆𝑘𝑖
𝐴(𝑡, 𝑘) ∨ 𝑆𝑘𝑗

𝐴 (𝑡, 𝑘) = max(𝑆𝑘𝑖
𝐴(𝑡, 𝑘), 𝑆𝑘𝑗

𝐴 (𝑡, 𝑘)) , ∀𝑘 ∈ 𝐾          (20) 

 

Furthermore, two dynamic fuzzy coverings of the universal set of knowledge are constructed dealing with 

a fuzzy set 𝐴 as defined by Θ𝐴(𝑡) = {𝑃𝑘
𝐴(𝑡)|𝑘 ∈ 𝐾} and Ω𝐴(𝑡) = {𝑆𝑘

𝐴(𝑡)|𝑘 ∈ 𝐾}. Here, the fuzzy coverings 

of the universal set of knowledge are also dynamically changed based on the time 𝑡. 

4. Approximate Reasoning 

Related to the granularity of knowledge as discussed in Section 3, this paper introduces the concept of 

approximate reasoning dealing with KDFS. Approximate reasoning provides approximate solution using 

fuzzy production rules. Let fuzzy label of 𝐴  be a given premise and fuzzy label of 𝐵  be the conclusion. 

Through fuzzy production rules [9], relation between 𝐴  and 𝐵  will connect problem with solution, 

antecedent with consequence, or premise with conclusion, as usually applied in representing knowledge in 

fuzzy expert system. In general, fuzzy production rules have the form of if-then rule as follows: 

If 𝐴, then 𝐵, 

where 𝐴 and 𝐵 are fuzzy sets. 

In constructing a fuzzy production rule, assume two persons represented by two knowledge, 𝑘𝑖 and 𝑘𝑗 

have different conclusions at the time 𝑡 given a certain premise. Related to the concept of knowledge-based 

dynamic fuzzy sets, conclusions of 𝑘𝑖  and 𝑘𝑗  are denoted by 𝐵𝑘𝑖(𝑡)  and 𝐵𝑘𝑗(𝑡) , respectively, in which 

𝐵𝑘𝑖(𝑡) ≠ 𝐵𝑘𝑗(𝑡). The problem is how to determine which one has the right conclusion, 𝑘𝑖 or 𝑘𝑗. Possibly, 

different views or understanding of premise perceived by 𝑘𝑖 and 𝑘𝑗 is the cause of different conclusions. 

Comparing perception of 𝑘𝑖  and 𝑘𝑗  regarding premise and conclusion may be summarized into four 

possibilities of relations: 

1. Premise: 𝐴𝑘𝑖(𝑡) = 𝐴𝑘𝑗(𝑡) , Conclusion: 𝐵𝑘𝑖(𝑡) = 𝐵𝑘𝑗(𝑡) : There is no problem because both 𝑘𝑖  and 𝑘𝑗 

have exactly the same perception of premise and conclusion.  

2. Premise: 𝐴𝑘𝑖(𝑡) = 𝐴𝑘𝑗(𝑡) , Conclusion: 𝐵𝑘𝑖(𝑡) ≠ 𝐵𝑘𝑗(𝑡) : Both 𝑘𝑖  and 𝑘𝑗  have the same perception of 

premise, but different perception of conclusions; That is the problem. 

3. Premise: 𝐴𝑘𝑖(𝑡) ≠ 𝐴𝑘𝑗(𝑡), Conclusion: 𝐵𝑘𝑖(𝑡) = 𝐵𝑘𝑗(𝑡): Since both 𝑘𝑖 and 𝑘𝑗 have different perception 

of the premise, even though they have the same conclusion, their conclusions should be treated 

independently.   

4. Premise: 𝐴𝑘𝑖(𝑡) ≠ 𝐴𝑘𝑗(𝑡) , Conclusion:  𝐵𝑘𝑖(𝑡) ≠ 𝐵𝑘𝑗(𝑡) : Similar to point 3, their conclusions are 

independent so that their different conclusions can be understood and tolerated. 

From all four possibilities, the problem is only in Point 2. Suppose there are only two knowledge, 𝑘𝑖 and 

𝑘𝑗, the situation as happened in Point 2 gives the same validation’s degree to 𝑘𝑖 and 𝑘𝑗. In probability measure, 

their validation’s degree will be 0.5 each. For there are more than two knowledge, intuitively, validation’s degree 

will depend on support of other knowledges. More supports should cause higher validation’s degree. Therefore, 

validation’s degree of a fuzzy production rule given by a certain knowledge can be approximately calculated 

using granularity of knowledge as proposed in the previous section, as follows.  

 

Definition 6 Let 𝐾 be a non-empty universe of knowledge, and 𝑆𝛼
𝐴(𝑘, 𝑡), 𝑆𝛼

𝐵(𝑘, 𝑡) be crisp granularity of 
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knowledge of 𝑘 ∈ 𝐾 at the time 𝑡 dealing with fuzzy label 𝐴 and fuzzy label 𝐵, respectively. 𝛿𝛼
𝑡 (𝐴

𝑘
→𝐵)  

is defined as the validation’s degree of a fuzzy production rule (if 𝐴 then 𝐵) given by 𝑘 at the time 𝑡 as 

follows. 

𝛿𝛼
𝑡 (𝐴

𝑘
→𝐵)=

|𝑆𝛼
𝐴(𝑘,𝑡)∩𝑆𝛼

𝐵(𝑘,𝑡)|

|𝑆𝛼
𝐴(𝑘,𝑡)|

                                   (21) 

where α ∈ [0,1] and | ∙ | be a cardinality of set.    

The set of knowledge, 𝐾 , provides a family of values {𝛿𝛼
𝑡 (𝐴

𝑘
→𝐵) |𝑘 ∈ 𝐾} . To summarize all degrees of 

correctness, three aggregate formulas will be defined as follows.  

 

a) Minimum: 𝛿𝛼
𝑡 (𝐴

𝐾
→𝐵)

𝑚

= min{𝛿𝛼
𝑡 (𝐴

𝑘
→𝐵) |𝑘 ∈ 𝐾}          (22) 

 

b) Maximum: 𝛿𝛼
𝑡 (𝐴

𝐾
→𝐵)

𝑀

= max{𝛿𝛼
𝑡 (𝐴

𝑘
→𝐵) |𝑘 ∈ 𝐾}          (23) 

 

c) Average: 𝛿𝛼
𝑡 (𝐴

𝐾
→𝐵)

∗

= avg{𝛿𝛼
𝑡 (𝐴

𝑘
→𝐵) |𝑘 ∈ 𝐾}           (24) 

 

Some properties and summaries can be verified from (21) to (24) such as:  

• if relation between premise 𝐴 and conclusion 𝐵 is totally valid at time 𝑡 then 𝑆𝛼
𝐴(𝑘, 𝑡) ⊆ 𝑆𝛼

𝐵(𝑘, 𝑡) 

for all 𝑘 ∈ 𝐾 ; if relation between premise 𝐴  and conclusion 𝐵  is totally valid all the time then 

𝑆𝛼
𝐴(𝑘, 𝑡) ⊆ 𝑆𝛼

𝐵(𝑘, 𝑡), ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇. Here, the similarity classes of knowledge dealing with fuzzy label 

𝐴 is finer than the similarity classes of knowledge dealing with fuzzy label 𝐵. 

• ∀𝑡 ∈ 𝑇, 𝛿𝛼
𝑡 (𝐴

𝐾
→𝐵)

𝑚

= 1 ⟺ 𝛿𝛼
𝑡 (𝐴

𝐾
→𝐵)

∗

= 1; 

• Similarly, ∀𝑡 ∈ 𝑇, 𝛿𝛼
𝑡 (𝐴

𝐾
→𝐵)

𝑚

< 1 ⟺ 𝛿𝛼
𝑡 (𝐴

𝐾
→𝐵)

∗

< 1; 

• If ∀𝑡 ∈ 𝑇, 𝛿𝛼
𝑡 (𝐴

𝐾
→𝐵)

∗

= 1 then 𝐵 is regarded as permanent absolute conclusion given premise 𝐴. 

• If ∀𝑡 ∈ 𝑊,𝑊 ⊂ 𝑇, 𝛿𝛼
𝑡 (𝐴

𝐾
→𝐵)

∗

= 1  then 𝐵  is regarded as temporary absolute conclusion given 

premise 𝐴 during 𝑊. 

• If 𝑃 ⊂ 𝐾, ∀𝑡 ∈ 𝑇, 𝛿𝛼
𝑡 (𝐴

𝑃
→𝐵)

∗

= 1 then 𝐵 is regarded as permanent relative conclusion given premise 

𝐴 according to some knowledge in 𝑃.  

• If 𝑃 ⊂ 𝐾, ∀𝑡 ∈ 𝑊,𝑊 ⊂ 𝑇, 𝛿𝛼
𝑡 (𝐴

𝑃
→𝐵)

∗

= 1 then 𝐵 is regarded as temporary relative conclusion given 

premise 𝐴 during 𝑊 according to some knowledge in 𝑃. 

• If ∀𝑡 ∈ 𝑇, 𝛿𝛼
𝑡 (𝐴

𝐾
→𝐵)

∗

< 1 then 𝐵 is regarded as permanent partial conclusion with the validation’s 

degree equals to 𝛿𝛼
𝑡 (𝐴

𝐾
→𝐵)

∗

 given premise 𝐴. 

Validation’s degree as define in Definition 6 may also be reformulated and generalized dealing with fuzzy 

granularity of knowledge as follows. 

 

𝛿𝑡(𝐴
𝑘𝑖
→𝐵)=

∑ min (𝑆𝑘𝑖
𝐴 (𝑡,𝑘),𝑘∈𝐾 𝑆𝑘𝑖

𝐵 (𝑡,𝑘))

∑ 𝑆𝑘𝑖
𝐴 (𝑡,𝑘)𝑘∈𝐾

                               (25) 
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where intersection is defined as minimum and cardinality is given by sum of membership degree.  

Similarly, the set of knowledge, 𝐾 , provides a family of values {𝛿𝑡(𝐴
𝑘
→𝐵) |𝑘 ∈ 𝐾} . Three aggregate 

formulas to summarize all validation’s degrees will be defined as follows.  

a) Minimum: 𝛿𝑡(𝐴
𝐾
→𝐵)

𝑚

= min{𝛿𝑡(𝐴
𝑘
→𝐵) |𝑘 ∈ 𝐾} 

b) Maximum: 𝛿𝑡(𝐴
𝐾
→𝐵)

𝑀

= max{𝛿𝑡(𝐴
𝑘
→𝐵) |𝑘 ∈ 𝐾}        

c) Average: 𝛿𝑡(𝐴
𝐾
→𝐵)

∗

= avg{𝛿𝑡(𝐴
𝑘
→𝐵) |𝑘 ∈ 𝐾}   

In the real-world application, it is well known that 𝐴 and 𝐵 have a causal relationship. However, it is still 

unclear to determine which one is the premise, and which one is the conclusion. For example, let 𝐾 =

{𝑘1, 𝑘2, 𝑘3} be set of knowledge. Interpretation or perception of fuzzy labels 𝐴 and 𝐵 according to 𝐾 at 

the time 𝑡 is arbitrarily given in several fuzzy sets as shown in Fig. 1.  

 

 
Fig. 1. Fuzzy sets 𝐴 and 𝐵 given by let 𝐾 = {𝑘1, 𝑘2, 𝑘3}.  

   

It is clearly shown in Fig. 1 that all elements of 𝐾 have very similar interpretation of 𝐵, but they have 

enough different interpretation of 𝐴. If 𝐵 is considered as premise and 𝐴 as conclusion, problem in Point 

2 will happen. The very similar interpretations of 𝐵 as premise should also have similar interpretations of 

𝐴 as conclusion. However, the interpretations of 𝐴 are very different. The problem is which interpretation 

of 𝐴  should be used as conclusion. On the other hand, if 𝐴  is considered as premise, and 𝐵  is used as 

conclusion, no matter in the beginning 𝐴 as premise has different interpretations, finally it will have the 

same conclusion (in 𝛼 level set) of 𝐵. Therefore, related to the example in Figure 1, 𝐴 should be used as 

premise and, 𝐵 should be used as conclusion. Related to the concept of fuzzy granularity that have been 

discussed before, in the causal relationship between 𝐴  and 𝐵 , we can determine which one should be a 

premise, and which one should be the conclusion. Here, similarity classes of knowledge dealing with premise 

should be finer than similarity classes of knowledge dealing with conclusion. Several categories of fuzzy 

production rules, 𝑖𝑓 𝐴 𝑡ℎ𝑒𝑛 𝐵 , representing 𝐴  as premise and 𝐵  as conclusion in element of knowledge 

𝑘 ∈ 𝐾 at the time 𝑡 may be defined by: 

a) 𝐴
𝑘(𝑡)
→  𝐵 ⇔ 𝛿𝛼

𝑡 (𝐵
𝑘
→𝐴) < 𝛿𝛼

𝑡 (𝐴
𝑘
→𝐵)= 1, (strong implication) 

b) 𝐴 ∼
𝑘(𝑡)
→  𝐵 ⇔ 𝛿𝛼

𝑡 (𝐵
𝑘
→𝐴) < 𝛿𝛼

𝑡 (𝐴
𝑘
→𝐵)< 1, (weak implication) 

c) 𝐴
𝑘(𝑡)
↔ 𝐵 ⇔ 𝛿𝛼

𝑡 (𝐵
𝑘
→𝐴)= 𝛿𝛼

𝑡 (𝐴
𝑘
→𝐵)= 1, (strong bi-implication) 

d) 𝐴 ∼
𝑘(𝑡)
↔ 𝐵 ⇔ 𝛿𝛼

𝑡 (𝐵
𝑘
→𝐴)= 𝛿𝛼

𝑡 (𝐴
𝑘
→𝐵)< 1, (weak bi-implication) 

Here, 𝛿𝛼
𝑡 (𝐵

𝑘
→𝐴) and 𝛿𝛼

𝑡 (𝐴
𝑘
→𝐵)  can be generalized and changed to 𝛿𝑡(𝐵

𝑘
→𝐴) and 𝛿𝑡(𝐴

𝑘
→𝐵), 

respectively. it is also necessary to consider some subsets of 𝐾  that is related to the categories of fuzzy 

production rules as follows. 

a) 𝒦(𝐴
𝑘(𝑡)
→  𝐵) = {𝑘 ∈ 𝐾|𝐴

𝑘(𝑡)
→  𝐵}, (subset of 𝐾 which provide strong implication) 
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b) 𝒦(𝐴 ∼
𝑘(𝑡)
→  𝐵) = {𝑘 ∈ 𝐾|𝐴 ∼

𝑘(𝑡)
→  𝐵}, (subset of 𝐾 which provide weak implication) 

c) 𝒦(𝐴
𝑘(𝑡)
↔ 𝐵) = {𝑘 ∈ 𝐾|𝐴

𝑘(𝑡)
↔ 𝐵}, (subset of 𝐾 which provide strong bi-implication) 

d) 𝒦(𝐴 ∼
𝑘(𝑡)
↔ 𝐵) = {𝑘 ∈ 𝐾|𝐴 ∼

𝑘(𝑡)
↔ 𝐵}, (subset of 𝐾 which provide weak bi-implication) 

where they are satisfied the following equation: 

𝒦(𝐴
𝑘(𝑡)
→  𝐵)⋃𝒦(𝐴 ∼

𝑘(𝑡)
→  𝐵)⋃𝒦 (𝐴

𝑘(𝑡)
↔ 𝐵)⋃𝒦(𝐴 ∼

𝑘(𝑡)
↔ 𝐵)⋃𝒦 (𝐵

𝑘(𝑡)
→  𝐴)⋃𝒦(𝐵 ∼

𝑘(𝑡)
→  𝐴) = 𝐾, 

where 𝒦(𝐴
𝑘(𝑡)
→  𝐵) ,𝒦 (𝐴 ∼

𝑘(𝑡)
→  𝐵) , 𝒦 (𝐴

𝑘(𝑡)
↔ 𝐵) ,𝒦 (𝐴 ∼

𝑘(𝑡)
↔ 𝐵) ,𝒦 (𝐵

𝑘(𝑡)
→  𝐴) ,𝒦 (𝐵 ∼

𝑘(𝑡)
→  𝐴)  are disjoint 

subsets in 𝐾. In order to measure validation’s degree of a fuzzy production rules, 𝐴 implies 𝐵 (𝐴
𝑡
→𝐵), we 

propose the following equations.  

 

𝒞 (𝐴
𝑡
→𝐵) =

|𝒦(𝐴
𝑘(𝑡)
→  𝐵)|+0.75×|𝒦(𝐴∼

𝑘(𝑡)
→  𝐵)|+0.5×|𝒦(𝐴∼

𝑘(𝑡)
↔  𝐵)|+0.25×|𝒦(𝐵∼

𝑘(𝑡)
→  𝐴)|

|𝐾|
        (26) 

 

Similarly, 

 

𝒞 (𝐵
𝑡
→𝐴) =

|𝒦(𝐵
𝑘(𝑡)
→  𝐴)|+0.75×|𝒦(𝐵∼

𝑘(𝑡)
→  𝐴)|+0.5×|𝒦(𝐵∼

𝑘(𝑡)
↔  𝐴)|+0.25×|𝒦(𝐴∼

𝑘(𝑡)
→  𝐵)|

|𝐾|
          (27) 

 

where 𝒞 (𝐴
𝑡
→𝐵) ∈ [0,1]  and 𝒞 (𝐵

𝑡
→𝐴) ∈ [0,1]  are defined as validation’s degree of 𝐴

𝑡
→𝐵  and 𝐵

𝑡
→𝐴 , 

respectively. The cardinality of 𝒦(𝐴
𝑘(𝑡)
↔ 𝐵) is not included in Equation (26) and (27) in order to treat the 

strong bi-implication, 𝐴
𝑡
↔𝐵, as a special condition. Coefficients of cardinality of sets are simply given with 

intervals of 0.25 because there are four sets of fuzzy production rules that involve in the calculation. In general, 

the fuzzy production rules might be defined at the time 𝑡 if they satisfy the following rules of conditions.  

(Rule 1) 𝐴
𝑡
→𝐵 ⟺ 𝒞 (𝐴

𝑡
→𝐵) = 1,  

(Rule 2) 𝐴
𝑡
↔𝐵 ⟺ 𝒞(𝐴

𝑡
→𝐵) = 𝒞 (𝐵

𝑡
→𝐴) = 0,  

(Rule 3) 𝐴 ∼
𝑘(𝑡)
→  𝐵 ⟺ 𝒞 (𝐵

𝑡
→𝐴) < 𝒞 (𝐴

𝑡
→𝐵) < 1,  

(Rule 4) 𝐴 ∼
𝑡
↔𝐵 ⟺ 𝒞 (𝐴

𝑡
→𝐵) = 𝒞 (𝐵

𝑡
→𝐴) > 0. 

5. Conclusion 

Knowledge-based Dynamic Fuzzy Sets (KDFS) is a hybrid concept of the Knowledge-based Fuzzy Sets and the 

Dynamic Fuzzy Sets. The KDFS shows that a membership function of a given fuzzy set subjectively determined 

by a certain knowledge may be dynamically changeable over time. This paper discussed how the concept of 

KDFS applied in Approximate Reasoning. In this case, this paper proposed several concept and method how 

to generate fuzzy production rules dealing with the KDFS. The proposed concept played important role in 

constructing fuzzy rule base in Fuzzy Expert System, since the fuzzy production rule store in the fuzzy rule 

base of fuzzy expert system is generally provided by the knowledge of experts. Four categories of the fuzzy 

production rules, namely, Strong Implication, Weak Implication, Strong Bi-implication and Weak Bi-implication, 
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were introduced and discussed together with their properties. Several equations were proposed to measure 

validation’s degree of the fuzzy production rules. Finally, four rules of conditions were given to justify the 

construction of Strong Implication, Weak Implication, Strong Bi-implication and Weak Bi-implication. Our 

future work is to apply the proposed concept in the real-world application.  
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