
University of Padua

Department of Mathematics “Tullio Levi Civita”

Master Degree in Mathematics

Methods for community detection in multi-layer
networks

Surpervisor: Prof. Francesco Rinaldi
University of Padua

Co-surpervisor: Prof. Francesco Tudisco
Gran Sasso Science Institute

Student: Sara Venturini
N. 1206680

17 July 2020
Academic year 2019/2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Padua@thesis

https://core.ac.uk/display/328814437?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Introduction

Complex network theory is an evolution of graph theory, whose origin traces back to Euler’s
famous publication of 1736 on the “Seven Bridges of Königsberg” [1]. Since then a lot has been
learned about graphs and their mathematical properties. Networks have emerged as effective
tools for modelling and analysing complex systems of interacting entities. Graphs arise naturally
in many disciplines, such as social networks (which arise via offline and/or online interactions)
[2], information networks (i.e. hyperlinks between webpages on the World Wide Web) [3], in-
frastructure networks (i.e. transportation routes between cities) [4], and biological networks (i.e.
metabolic interactions between cells or proteins, food webs) [5].

One of the most relevant issue of graphs representing real systems is the identification of com-
munities, or clustering, i.e. the organization of vertices in clusters or modules, with more edges
connecting vertices of the same group and fewer edges joining vertices of different groups. Com-
munity detection in large networks is potentially very useful. Nodes belonging to the same
community might have other properties in common. Society offers a variety of possible group
organizations: families, working and friendship circles, villages, towns, nations. In recent years,
the spread of Internet has led to the development of virtual communities, which live on the Web.
Social communities have been studied for a long time [2], but they also occur in many networked
systems from biology, computer science, engineering, economics, etc. For example, biological
systems are organized hierarchically with networks of communities interacting at various levels,
from ecosystems to networks of synaptic connections between neurons, up to gene and metabolic
networks. In protein-protein interaction networks, communities correspond to group proteins
having the same specific function within the cell [5], in the graph of the World Wide Web they
may represent groups of pages dealing with the same topics [6], in metabolic networks they may
be related to functional modules [7]. Communities can have concrete applications. For example,
clustering Web clients who have similar interests and are geographically close could be served
by a dedicated server, improving the performance of services provided on the World Wide Web
[3]; or clusters of large graphs can be used to create data structures and handle navigational
queries, like path searches [8].

Community detection is important also to classify vertices, according to their structural position
in the modules. So, vertices with a central position in their clusters, i.e. sharing many edges
with the other nodes of the group, may have an important function of control and stability
within the group; vertices lying at the boundaries between clusters are important for leading

1

the relationships between communities.

Another important aspect related to community structure is the hierarchical organization. Real
networks are usually composed by communities including smaller communities, which in turn
include smaller communities, etc. For example, the human body is composed by organs, organs
by tissues, tissues by cells, and so on.

Community detection is a very hard problem and not yet satisfactorily solved, despite the exten-
sive studies in the literature. Many algorithms have been developed, however they are designed
for single-layer networks. This assumption is almost always a simplification, which can lead to
misleading results. Recent advances in the study of networked systems have shown that the
interconnected world is composed of networks that are coupled to one another through different
layers, where each layer represents one of many possible types of interactions. For example,
individuals have multiple relationships in social networks, such as economic, political, and fi-
nancial. In biology, protein interaction networks consist of seven distinct layers that account
for different genetic and physical interactions. Analysing multi-layer networks is of great impor-
tance because many interesting patterns cannot be obtained by analysing single-layer networks.
For example, in multi-layer cancer networks where each layer corresponds to a specific clinical
stage, a community represents a biological pathway that is critical for cancer diagnosis and ther-
apy. However, it is hard to extract communities in multi-layer networks because of two reasons.
First, multi-layer communities cannot be easily quantified because analyses on these multi-layer
networks remain lacking. Second, complexity of multiple networks poses a challenge on finding
algorithms for identifying communities in the multi-layer case. Despite these difficulties, great
efforts have been devoted to the extraction of multi-layer communities. Most of the current al-
gorithms either reduce multi-layer networks into a single-layer network or extend the algorithms
for single-layer networks by using consensus clustering. However, these algorithms are criticized
for their low accuracy because they either cannot preserve the community structure in com-
pressed networks or ignore the connection among various layers. To overcome these problems,
we must simultaneously take into account multiple layers.

In this thesis project, we propose multiple algorithms for community detection in multi-layer
networks. The algorithms are based on the popular Louvain heuristic method for single-layer
networks [9], which is a locally greedy modularity-increasing sampling process over the set of
partitions.
The work is organized as follows.

Chapter 1 presents a broad description of the community detection problem. Firstly, we intro-
duce some primary notions of graph theory and then we focus on the main problems that arise
from community detection.

Chapter 2 contains a summary of the most relevant methods related to the study of community
detection. In the first Section we focus on methods for single-layer graphs. In the second Section
we study algorithms proposed for the multi-layer case.

2

Chapter 3 is the main contribution of this thesis and it presents our algorithms in detail. The
first algorithm is called Louvain extension and the second one is named Louvain Multiobjective.
Both of them try to extend the Louvain heuristic method to the multi-layer case. We present
different variants of these two algorithms.

Chapter 4 shows some results obtained testing the methods. We did some tests on both artificial
and real world networks to better compare the performances of the algorithms.

Finally, Chapter 5 reports some conclusions taking into consideration both the formulation and
the experimentation of the methods.

3

4

Contents

1 Problem Statement 7

2 Related Work 11

2.1 Community Detection in Single-Layer Graphs . 11

2.1.1 Traditional clustering methods . 11

2.1.2 Modern clustering methods . 13

2.2 Community Detection in Multi-Layer Graphs . 17

2.2.1 Community detection in two-layer graphs 17

2.2.2 Community detection in multi-layer graphs 19

3 Presentation of the Methods 21

3.1 Louvain Expansion . 21

3.2 Louvain Multiobjective . 26

4 Experimentation 31

4.1 Evaluation . 31

4.2 Artificial Networks . 32

4.2.1 Informative case . 33

4.2.2 Noisy case . 34

4.3 Real World Networks . 55

4.3.1 Informative case . 66

4.3.2 Noisy case . 67

5 Conclusions 77

Appendix 78

A Matlab code of the community-average method (Section 3.1) 79

B Matlab code of the community-variance-minus method (Section 3.1) 85

C Matlab code of the community-variance-plus method (Section 3.1) 93

D Matlab code of the multi-average method (Section 3.2) 101

5

E Matlab code of the multi-variance-minus method (Section 3.2) 111

F Matlab code of the multi-variance-plus method (Section 3.2) 123

Bibliography 135

6

Chapter 1

Problem Statement

Graph theory is extremely useful as representation of a wide variety of systems in different areas,
such as biology [5], sociology [2], technology [3], and many others. All these networks can be
studied as graphs, thus graph analysis has become crucial to understand the features of these
systems.

A graph G is composed by a pair of sets (N,E) where N is the set of nodes and E is the set of
edges and it is a subset of all the possible pairs of nodes in V.
The adjacent matrix of a graph is a square |N| × |N| matrix A such that its element Aij is one
when there is an edge from vertex i to vertex j, and zero otherwise.
In this work we only consider undirected graphs and just a single edge between nodes is allowed.

Many complex systems are composed of coupled networks through different layers, rather than
just one, where each layer represents one of many possible types of interactions. They are called
multi-layer networks.
We represent a multi-layer graph with k layers through a sequence (N s ,E s)s=1,...,k where N s

and E s are respectively the set of nodes and the set of edges of layer s.
Connected to a multi-layer graph, we can consider a set of adjacent matrices (As)s=1,...,k where
k is the number of layers and As is the adjacent matrix of layer s.
We focus our attention on multi-layer graphs where just edges vary between layers, thus each
node is present in all layers, and there are not edges between nodes of different layers.

Community detection has attracted significant attention during the recent years. The goal of
community detection is to partition vertices of a graph into densely-connected components (i.e.
the so called communities).
The main problems of graph clustering are the concepts of community and partition, which are
not rigorously defined, although they are intuitive concepts.

Intuitively, we get the notion that a community must have more edges between the nodes of the
community than edges linking nodes of the community with the rest of the graph. However,
there are many alternative definitions of community.

7

Local definitions consider communities as separate entities and evaluate them independently of
the rest of the graph. Global definitions, despite the local ones, consider communities as an
integral part of the graph, which cannot be studied regardless of the rest. There are many
global criteria to find communities, some of them use some global properties just indirectly,
incorporating them in an algorithm that shows communities at the end. Some definitions are
based on vertex similarity. The main idea is that a community is a group of nodes similar to
each other, so they compute the similarity between each pair of nodes and put most similar
nodes in the same community.

Another problem of community detection is the concept of partition. A partition is a division
of a graph in clusters, such that each node belongs to just one of them. In real systems we
can have overlapping communities, where a node can belong to more communities. However,
we don’t consider this case in our work. The main problem is to distinguish a good partition
from a bad one. For this reason, we need a quantitative criterion to measure the goodness of a
graph clustering. A quality function is a function that assigns a number to each partition of a
graph, thus one can sort them by their value and identify the best one. Nevertheless, the answer
depends on the quality function and on the community concept that are used. This problem
of quantifying the value of partitions becomes even more complicated in the multi-layer case,
because a given partition can be very good for one layer but very bad for another.

In this work we rely on the idea that a graph has a community structure if it is different from
a random graph. In fact, a random graph should not have a community structure, since any
two nodes have the same probability to be adjacent or not. A null model is used as term of
comparison, to verify if whether a graph shows a community structure or not. For this reason,
it maintains some structural features of the original graph. This concept is the basis of the
definition of modularity, a quality function where a subgraph is a community if the number of
edges inside the subgraph exceeds the expected number of internal edges that the same subgraph
would have in the null model. Modularity can be written as follows

Q =
1

2m

∑
i,j

(Aij − Pij)δ(Ci,Cj) (1.1)

where the sum runs over all pairs of vertices, A is the adjacency matrix, m the total number of
edges of the graph, Pij represents the expected number of edges between vertices i and j in the
null model, and Ci is the community of node i. The function δ yields one if vertices i and j are
in the same community (Ci=Cj), zero otherwise.
In the literature have been suggested several versions of modularity and null model. The most
popular null model has been proposed by Newman and Girvan, where edges are linked at random,
under the constraint that the expected degree of each vertex of the null model stays the same
as the degree of the correspondent node in the original graph [10]. So, the final expression of
modularity reads

Q =
1

2m

∑
i,j

(
Aij −

kikj
2m

)
δ(Ci,Cj) (1.2)

8

where ki is the degree of node i (the sum of all the edges incident to i).
Large positive values of modularity indicate good partitions. The modularity of the whole graph,
taken as a single community, is zero, and it is always smaller than one, and can be negative as
well. For instance, the partition in which each vertex is a community is always negative. This
implies that, if there are no partitions with positive modularity, the graph has no community
structure. Another feature of modularity is that the gain due to the movement of a node from
one community to another can be easily calculated.

Unfortunately, modularity has got some limits. The main problem is the so-called resolution
limit [11], that may prevent to find community that are small with respect to the graph as a
whole, even if they are cliques. Thus, when the partition with maximum modularity includes
clusters with total degree of the order of

√
m or smaller, where m is the number of total edges of

the graph, one cannot distinguish if the clusters are single communities or if they are combined
together. The reason of the resolution limit is the definition of the null model, where we assume
that each node can interact with every other node, but more reasonably each node interacts just
with a part of the graph. This limit has a large impact in real applications.
To overcome this problem, one could recursively apply modularity optimization on each com-
munity of the obtained clustering [11] [12]. However, we don’t have a stopping criteria and each
cluster uses a different null model, since communities can be of different sizes.
Good et al. [13] discovered that modularity values are very close to the global maximum, never-
theless partitions with high modularity are not necessarily similar to each other and the global
maximum is impossible to reach.

Another disadvantage of modularity is that can be applied just to single-layer graphs. In this
thesis project we hence propose some models that take advantage of this modularity function
and try to extend it to the multi-layer case. All the models are based on the Louvain heuristic
method for single-layer networks [9], which is a locally greedy modularity-increasing sampling
process over the set of partitions. The most intuitive idea, already studied in the literature,
is to use the modularity average on the layers. Thus, we propose two methods that take into
account variance of modularity on the layers, in addition to the average. We present also a more
sophisticated filter type algorithm. We focus on the multiobjective aspect of the problem and
maintain just the modularity vectors that are not dominated according to a suitably developed
Pareto search. We implemented these methods in Matlab and we performed some experiments
both on artificial and real world networks.

9

10

Chapter 2

Related Work

In this Chapter, we present a brief review of the literature related to the community detection
problem. In the first Section 2.1, we start by describing the classical approaches for single-layer
graphs, following Fortunato [14]. Traditional algorithms include graph partitioning, hierarchical,
partitional and spectral clustering; modern methods include divisive algorithms, modularity
based methods, spectral algorithms, dynamic algorithms, methods based on statistical inference,
non-negative matrix factorization, nonlinear spectral algorithms and total variation approaches.
In Section 2.2 we present some algorithms for multi-layer graphs: first we introduce community
detection algorithms in two-layer graphs, later detection algorithms that can support multi-layer
graphs containing more than or equal to two layers.

2.1 Community Detection in Single-Layer Graphs

Many community detection approaches have been proposed for single-layer graphs. Fortunato
conducted a survey on this topic [14]. He presents:

• traditional clustering methods divided into: graph partitioning, hierarchical, partitional
and spectral clustering;

• modern methods, divided into categories based on the type of approach: divisive algo-
rithms, modularity based methods, spectral algorithms, dynamic algorithms, methods
based on statistical inference. In this section we add some more recent methods:
non-negative matrix factorization, nonlinear spectral algorithms and total variation ap-
proaches.

We do not present algorithms to find overlapping communities, multiresolution and hierarchical
techniques because they are not connected to our work.

2.1.1 Traditional clustering methods

Traditional clustering methods include graph partitioning, hierarchical, partitional and spectral
clustering.

11

Graph partitioning

Graph partitioning aims to divide the vertices in an established number of groups of predefined
size, such that the cut size, i.e. the number of edges running between clusters, is minimal.
Specifying the number of clusters of the partition is necessary. The graph partitioning problem is
NP-hard, however several algorithms have good results, even if their solutions are not necessarily
optimal [15]. Many algorithms perform a bisection of the graph, and partitions into more than
two clusters are usually attained by iterative bisectioning [16]. The well-known max-flow min-
cut theorem by Ford and Fulkerson [17], that states that the minimum cut between any two
vertices s and t of a graph carries the maximum flow that can be transported from s to t across
the graph, has been used to determine minimal cuts from maximal flows in clustering algorithms
[18] [19]. We usually do not have information about the community structure of a graph, in
such cases this procedure is not useful, and one must make some unjustified assumptions about
the number and size of the clusters.

Hierarchical clustering

The vertices of a graph can be grouped at different levels, with small clusters included within
large clusters, which are in turn included in larger clusters, and so on. In order to reveal the
multilevel structure of the graph, one may use hierarchical clustering algorithms [20]. Hierar-
chical clustering is very common in social network analysis, biology, engineering, marketing.
As the base of hierarchical clustering methods there is the definition of a similarity measure
between vertices. After a measure is chosen, one computes the similarity for each pair of ver-
tices, obtaining the similarity matrix. Hierarchical clustering techniques can be classified in two
categories: agglomerative algorithms, in which clusters are iteratively merged if their similarity
is sufficiently large, and divisive algorithms, in which clusters are iteratively split by removing
edges connecting vertices with low similarity. Hierarchical clustering has the advantage that a
preliminary knowledge on the number and size of the clusters is not required. However, it does
not give us a way to discriminate between the many partitions obtained by the procedure.

Partitional clustering

Partitional clustering is another common class of methods to find communities in a graph. The
number of clusters is preassigned, say k. Each vertex is a point of a metric space and a distance
measure is defined between them. The distance is a measure of dissimilarity between vertices.
The purpose is to partition the points in k clusters so to maximize/minimize a given cost function
based on distances between points. The most popular partitional technique in the literature is
k-means clustering [21], where the cost function is the total intra-cluster distance, or squared
error function. The limitations of partitional clustering is both that the number of clusters must
be specified at the beginning, as for the graph partitioning algorithms, and that the embedding
in a metric space for some graphs can be not natural.

12

Spectral clustering

Supposed to have a pairwise similarity function S defined between a set of n objects, which
is symmetric and non-negative. Spectral clustering includes all methods and techniques that
partition the set into clusters by using the eigenvectors of matrices, like S itself or other matrices
derived from it. The objects could be points in some metric space, or the vertices of a graph.
Spectral clustering consists of a transformation of the initial set of objects into a set of points
in space, whose coordinates are elements of eigenvectors: the set of points is then clustered
via standard partitional techniques, like k-means clustering. The first contribution on spectral
clustering was a paper by Donath and Hoffmann [22], who used the eigenvectors of the adjacency
matrix for graph partitions. In the same year, Fiedler [23] used the eigenvectors of the Laplacian
matrix, by far the most used matrix in spectral clustering.

2.1.2 Modern clustering methods

Modern clustering methods include divisive algorithms, modularity based methods, spectral
algorithms, dynamic algorithms, methods based on statistical inference, non-negative matrix
factorization, nonlinear spectral algorithms and total variation approaches.

Divisive algorithms

The problem of divisive algorithms consists in detecting the edges that connect vertices of
different communities and remove them, so that the clusters get disconnected from each other.
The critical point is to find a property of intercommunity edges that could identify them. Divisive
methods just perform hierarchical clustering on the graph at study, so they do not introduce
new techniques.
The most popular algorithm is that proposed by Girvan and Newman [24] [10]. Edges are
selected according to the values of measures of edge centrality, estimating the importance of
edges according to some property or process running on the graph. Girvan and Newman study in
deep the concept of betweenness, which is a variable expressing the frequency of the participation
of edges to a process. Many modifications of this method have been proposed, like the algorithm
by Holme et al. where vertices, rather than edges, are removed [25]; the algorithm proposed by
Pinney and Westhead, that is able to find overlapping communities [26]; the method designed
by Estrada based on the concept of communicability between nodes [27].

Modularity based methods

Newman-Girvan modularity [28], originally introduced to define a stopping criterion for the al-
gorithm of Girvan and Newman, has rapidly become the most used quality function. Modularity
optimization is an NP-complete problem, however there are currently several algorithms able
to find good approximations of the modularity maximum in a reasonable time. We concentrate
on clustering methods that require modularity, directly and/or indirectly: greedy techniques,
simulated annealing, extremal optimization, spectral optimization.
The first greedy technique to maximize modularity was designed by Newman [29]. It is an ag-
glomerative hierarchical clustering method, where groups of vertices are successively joined to

13

form larger communities such that modularity increases after the merging. At the beginning,
all vertices of the graph are put in different communities. Edges are not initially present, they
are added one by one during the procedure. An edge is chosen such that this partition gives the
maximum increase of modularity with respect to the previous configuration. A lot of modifica-
tions of this method have been proposed [30], [31], [32].
A different greedy approach is the Louvain method, introduced by Blondel et al. [9]. Initially,
each vertices is a community. The first step consists of a sequential sweep over all vertices.
Given a vertex i, one computes the gain in weighted modularity coming from putting i in the
community of its neighbour j and picks the community of the neighbour that yields the largest
increase of modularity, as long as it is positive. At the end of the sweep, one obtains the first
level partition. In the second step communities are replaced by supervertices. Two supervertices
are connected if there is at least an edge between vertices of the corresponding communities and
the weight of the edge between the supervertices is the sum of the weights of the edges between
the represented communities at the lower level. The whole procedure is repeated iteratively. At
some point, the algorithm stops because modularity cannot increase anymore.
Simulated annealing [33] is a probabilistic procedure for global optimization used in different
fields and problems. It performs an exploration of the space of possible states, looking for the
global optimum of a function F, say its maximum. Transitions from one state to another oc-
cur with probability 1 if F increases after the change, otherwise they occur with a probability
exp(β∆F), where ∆F is the decrease of the function and β is an index of stochastic noise, which
increases after each iteration. Simulated annealing was first used for modularity optimization
by Guimerá et al. [34]. Its standard implementation [7] is composed by two types of moves:
local moves, where a single vertex is shifted from one cluster to another randomly; global moves,
consisting of mergers and splits of communities. The method can potentially come very close to
the true modularity maximum, but it is slow.
Extremal optimization (EO) is a heuristic search procedure proposed by Boettcher and Percus
[35], in order to achieve an accuracy comparable with simulated annealing, but with a gain in
computer time. It is based on the optimization of local variables, expressing the contribution
of each unit of the system to the global function at study. Duch and Arenas [36] used this
technique for modularity optimization. Modularity can be written as a sum over the vertices:
the local modularity of a vertex is the value of the corresponding term in this sum. Dividing
the local modularity of the vertex by its degree, we obtain a fitness measure for each vertex. In
this way the measure is normalized and does not depend on the degree of the vertex. At the
beginning, the vertices are divided randomly into two groups of the same size. At each iteration,
the vertex with the lowest fitness is shifted to the other cluster. The move changes the partition,
so the local fitnesses of many vertices need to be recalculated. The process stops when the global
modularity cannot be improved any more. After the bipartition, each cluster is considered as a
graph on its own and the procedure is repeated, as long as the global modularity increases for
the partitions found.
Spectral optimization aims to optimize modularity using the eigenvalues and eigenvectors of
the modularity matrix. One can maximize modularity via spectral clustering, by replacing the
Laplacian matrix with the modularity matrix [10] [29].
In the most recent literature on graph clustering, several modifications and extensions of modu-

14

larity can be found, motivated by specific classes of clustering problems or graphs that one may
want to analyse. For instance, due to the so-called resolution limit of the modularity function,
Traag at al. compared the network to a constant factor, instead of a random null model as usual
[37].

Spectral algorithms

Spectral properties are used to find partitions, as in the case of spectral clustering, which con-
siders the eigenvectors of Laplacian matrix, or in the optimization of modularity, which uses the
eigenvectors of the modularity matrix.
The algorithm proposed by Donetti and Muñoz uses the eigenvectors of the Laplacian matrix
[38]. It turns vertices into points of a metric space, using the eigenvectors components as coor-
dinates, because they are close for vertices in the same community.
Also the algorithm designed by Alves uses spectral properties of the Laplacian matrix [39]. Here
effective conductances for pairs of vertices is computed, looking at the graph as an electric net-
work with edges of unit resistance.
Capocci et al. used the eigenvectors of a right stochastic matrix, that should have similar prop-
erties as the Laplacian [40].
Yang and Liu proposed a recursive bisectioning procedure, which uses the spectral properties
of the adjacency matrix [41].
In recent times, Fasino and Tudisco studied in deep spectral properties of modularity matrices,
that are related to the community detection problem [42] [43].

Dynamic algorithms

Dynamic methods use processes running on the graph, focusing on spin-spin interactions, ran-
dom walks and synchronization.
One of most popular spin model in statistical mechanics, is the Potts model [44]. It describes
a system of spins that can be in q different states. If Potts spin variables are assigned to the
vertices of a graph with community structure, and the interactions are between neighbouring
spins, the modules could be likely recovered from like-valued spin clusters of the system, as there
are many more interactions inside communities than outside.
Random walks [45] can also be useful to find communities. If a graph has a strong community
structure, a random walker spends a long time inside a community due to the high density of
internal edges and consequent number of paths that could be followed.
Synchronization [46] is an emergent phenomenon occurring in systems of interacting units and
is present in nature, society and technology. In a synchronized state, the units of the system
are always in the same or similar state. Synchronization has also been applied to find commu-
nities in graphs. If oscillators are placed at the vertices, with initial random phases, and have
nearest-neighbour interactions, oscillators in the same community synchronize first, whereas a
full synchronization requires a longer time. So, if one follows the time evolution of the process,
states with synchronized clusters of vertices can be stable and durable, so they can be easily
individuated.

15

Methods based on statistical inference

Statistical inference [47] has the intent to deduce properties of data sets, starting from a set of
observations and model hypotheses. If the data set is a graph, the model, based on hypotheses
about connections between nodes, has to fit the actual graph topology. These methods try to
find the best fit of a model to the graph, where the model assumes that vertices have some sort
of classification, based on their connectivity patterns.
Generative models adopt Bayesian inference [48], in which the best fit is obtained through the
maximization of a likelihood. Bayesian inference uses observations to estimate the probability
that a given hypothesis is true. It is based on two elements: the evidence, expressed by the
information one has about the system (e.g. through measurements), and a statistical model
with parameters.
Block modelling [49] is a popular approach in statistics and social network analysis to decom-
pose a graph in classes of vertices with common properties. Vertices are grouped in classes of
equivalence. There are two main definitions of topological equivalence for vertices: structural
equivalence [50], in which vertices are equivalent if they have the same neighbours; regular equiv-
alence [51] [52], in which vertices of a class have similar connection patterns to vertices of the
other classes.
Model selection [53] try to find models which are both simple and good at describing a sys-
tem/process. To select a model, there is not one defined way, but some heuristics.
Information theory has also been used to detect communities in graphs. Ziv et al. [54] have
designed a method in which the information contained in the graph topology is compressed such
to preserve some predefined information. This is the underlying philosophy of the information
bottleneck method [55].

Non-negative Matrix Factorization

Non-negative Matrix Factorization (NMF) [56] [57] has been applied to many applications such
as clustering and classification. It provides a linear representation of non-negative data in high
dimensional space with the product of two non-negative matrices. Some papers explicitly include
the notion of sparseness, improving the found decompositions [58] [59]; some others incorporate
discriminant constraints in the decomposition [60]. Some recent research works suggest that
data of many applications in a high dimensional Euclidean space are usually embedded in a
low dimensional manifold [61]. To explore the local structure on the low dimensional manifold,
papers have proposed Locality Preserving NMF and Neighbourhood Preserving NMF, which
add constraints between a point and its neighbours [62] [63].

Nonlinear Spectral algorithms and Total Variation approaches

Modularity optimization is an NP-complete problem. We have seen that many algorithms, such
as spectral clustering methods or non-negative matrix factorization (NMF) methods, relax the
discrete optimization space into a continuous one to obtain an easier optimization procedure.
However, in general the solution of the relaxed continuous problem and that of the discrete NP-
hard problem can be very different. A new set of algorithms obtains tighter relaxations, taking

16

idea from the image processing literature. They are based on the concept of total variation
(TV), which favours the formation of sharp indicator functions in the continuous relaxation.
These functions equal one on a subset of the graph, zero elsewhere and exhibit a non-smooth
jump between these two regions. At the beginning, total variation techniques had a recursive
bi-partitioning procedure to handle more than two classes. Later, Bühler and Hein and Bresson
et al. proposed two methods that do not rely on a recursive procedure [64] [65].
In 2013, Hu et al. showed that modularity optimization is equivalent to minimizing a particular
non-convex total variation based functional over a discrete domain [66] and, in 2018, Boyd et
al. showed that this equivalence states for a convex total variation based functional [67]. Both
algorithms assume that the number of communities is known. This process is called non-linear
exact relaxation of the modularity function.
In recent times, Tudisco et al. and Tudisco and Higham proposed instead nonlinear spectral
methods [68] [69].
Finally, in 2020, Cristofari et al. introduced the modularity total variation (TVQ) and showed
that its box-constrained global maximum coincides with the maximum of the original discrete
modularity function [70].

2.2 Community Detection in Multi-Layer Graphs

In contrast to the community detection problem in single graphs, new challenges arise for com-
munity detection in multi-layer graphs. It is natural to detect multi-layer communities by
extending the algorithms for single-layer community detection. The most popular approaches
that have been employed for this extension can be grouped into two strategies: the first one re-
duces the multi-layer networks into a single-layer network and then applies single-layer network
algorithms to obtain the communities in the collapsed network [71]; whereas the second strategy
obtains the communities for each layer applying single-layer network algorithms, and then com-
bines the obtained communities by using consensus clustering [72]. However, these algorithms
are criticized for their low accuracy because they either cannot preserve the community struc-
ture in compressed networks or ignore the connection among various layers. Another problem
is connected to noise, in fact these methods usually suppose that each layer is informative but
in real networks some of them are just noise. To overcome these problems, algorithms must
simultaneously take into account multiple layers. Thus, there is necessity to develop effective
algorithms for community detection in multi-layer networks, rather than by simply extending
the available single-layer network algorithms.
In their work, Kim and Lee [73] divide community detection algorithms for two-layer graphs,
from detection algorithms that can support multi-layer graphs containing more than or equal
to two layers. We follow this subdivision in our review.

2.2.1 Community detection in two-layer graphs

In this subsection, we introduce community detection algorithms in two-layer graphs. All algo-
rithms described in this section can only support two-layer graphs and mostly consider structural
and attribute information.

17

Cluster Expansion

Li et al. [74] proposed a hierarchical community detection algorithm based on both relations
and textual attributes using the cluster expansion idea. Initially the algorithm quinckly finds
the centers as seed of communities, then it expands the centers into the communities. The
algorithm is composed by four steps: core probing, core merging, affiliation, and classification.

Matrix Factorization

Qi et al. [75] proposed a community detection algorithm based both on link structure and edge
content using the Edge-Induced Matrix Factorization (EIMF). The key point of this algorithm
is the use of edge content for the community detection process, which can be useful when
nodes interact with multiple communities, since it can help distinguishing between the different
interactions of nodes. This algorithm firstly takes into consideration just the link structure, then
it incorporates also the edge content.

Unified Distance

Zhou et al. [76] proposed a community detection algorithm, called SA-Cluster, based on both
structural and attribute similarities using a unified distance measure. The main contributions
of SA-Cluster are a unified distance measure to take simultaneously into account both struc-
tural and attribute similarities and a weight self-adjustment method to control the degree of
importance of structural and attribute similarities.

Model-Based Method

Xu et al. [77] proposed a model-based community detection method based on both structural and
attribute aspects of a graph. The main idea of this approach is the use of a probabilistic model
that fuses both structural and attribute information instead of an artificial distance measure.
The algorithm firstly constructs the probabilistic model and then a variational approach to solve
it.

Pattern Mining

Silva et al. [78] proposed a community detection algorithm based on structural correlation
pattern mining, called SCPM. The key point of SCPM is to reveal the connection between
vertex attributes and dense subgraphs using both frequent itemset mining and quasi-clique
mining. Here, a dense subgraph is defined by a quasi-clique.

Graph Merging

Ruan et al. [79] proposed a community detection approach, called CODICIL, to combine struc-
tural and attribute information using the graph merging process. The main contribution of this
algorithm is to delate noise in the link structure using content information.

18

2.2.2 Community detection in multi-layer graphs

In this section, we introduce community detection algorithms that can support multi-layer graphs
containing more than or equal to two layers.

Matrix Factorization

Tang et al. [80] and Dong et al. [81] proposed graph clustering algorithms for multi-layer
graphs based on matrix factorization. The key point of these two algorithms is to fuse different
information by extracting common factors from multiple layers, which may then be used by
general clustering methods. Tang et al. [80] approximates adjacency matrices while Dong et al.
[81] approximates graph Laplacian matrices.

Pattern Mining

Zeng et al. [82] proposed a subgraph mining algorithm for finding quasi-cliques that appear
on multiple layers with a frequency above a given threshold. The main contribution of this
algorithm is to find cross-graph quasi-cliques that are frequent, coherent, and closed. Generally,
the cross-graph quasi-clique has been defined as a set of vertices belonging to a quasi-clique that
appears on all layers and must be the maximal set [83].

Spectral Methods

Some methods try to extend spectral clustering to multi-layer graphs. In general, these algo-
rithms aim to define a graph operator that contains all the information of the multi-layer graph
such that the eigenvectors corresponding to the smallest eigenvalues are informative about the
clustering structure. These methods usually rely on some sort of arithmetic mean, for example
the Laplacian of the average adjacency matrix or the average Laplacian matrix [84]. Further
examples are the work of Zhou and Burges, which defines a multiple cut graph, which is good
on average while it may not be the best on single graphs [85], and the algorithm designed by
Chen and Hero, that performs convex aggregation of layers based on graph noise models [86].

Other Approaches

Some approaches adopt Bayesian inference [48], in which certain hypotheses about connections
between nodes are made to find the best fit of a model to the graph through the optimization
of a suitable likelihood [87].
Other methods try to propose an extension of Newman’s modularity [28] and connected null
models. For instance, the method proposed by Wilson et al. finds overlapping communities and
proves consistency in a suitable multi-layer stochastic block model [88].
A co-training approach is proposed by Kumar and Daumé [89], where the algorithm aims to
find a consistent clustering under the main assumption that all the layers are informative, so
each single layer has a piece of meaningful information from its own perspective. Kumar et al.
[90] concentrated on this approach under the notion of co-regularization.

19

20

Chapter 3

Presentation of the Methods

In this Chapter, we present some methods for community detection in multi-layer networks.
The algorithms are based on the Louvain heuristic method for single-layer graphs [9], that we
mentioned in Chapter 2 describing modularity based methods.
The natural extension of this method to the multi-layer case, already studied in the literature,
is to locally maximize the modularity average on the layers during phase 1, instead of the mod-
ularity of a single layer. In Section 3.1, we suggest two variants that, in the selection criteria
of the algorithm during phase 1, take into account the variance of modularity on the layers, in
addition to the average. This is due to the fact that in real networks we can have two cases:
the informative case, where there are all informative layers, so each single layer has a piece of
meaningful information from its own perspective, but we can also have the noisy case, where
there are some noisy layers, which give us wrong information about communities.
In Section 3.2, we present a more sophisticated filter type algorithm. We are studying a multi-
objective optimization problem, so we decide to memorize all the possible moves in a list and
then we maintain just the modularity vectors that are not dominated according to a suitably
developed Pareto search. We use different functions as criterion for handling the list, in partic-
ular, we use the average on modularity of the layers, and the convex combination of the average
and the variance, thus getting two different approaches. Notice that these methods with unit
length of the list correspond respectively to the algorithms described before.
These algorithms coincide with the Louvain method on single layer graphs.
Matlab codes of the methods are available in the Appendix.

3.1 Louvain Expansion

In this Section, we present the Louvain Expansion method for community detection in multi-
layer networks. It is based on the Louvain method for single-layer graphs [9] and tries to expand
it to the multi-layer case.

The input of the algorithm is a multi-layer graph G with k layers. We suppose to have multi-
layer graphs where just edges vary between layers, thus each node is present in all layers, and

21

there are not edges between nodes of different layers. Each layer is an undirected graph and
just a single edge between nodes is allowed. The output of the algorithm is a final assignment
of nodes to communities.
The algorithm is composed of two phases that are repeated iteratively.
At the beginning of the first phase, each node forms a community. The algorithm calculates
some values related to this first partition, s.a. Qs the modularity of the clustering in layer s for
s=1,..,k and a defined function F connected to them. We consider as neighbours of a node i the
union of the neighbours of node i in the various layers. Then the algorithm starts a loop, where
each node is considered in order (for this reason the indexing of the nodes changes the output of
the algorithm). Call i the node taken into consideration and Ci its community. The algorithm
removes node i from its community Ci and calculates the modularity gain ∆Q1i on each layer.
For each neighbour j of node i (if the community of node j has not already been considered),
the method includes i in the community of node j, called Cj, and calculates the corresponding
modularity gain ∆Q2i→j on each layer. Now the algorithm calculates the gain ∆Fi→j of the
defined function F, for changing the community of node i. Among all the positive gains of
function F, which therefore give an increase of the function, the algorithm selects the highest
one ∆Fi→j* and put node i into the corresponding community Cj*. The algorithm recalculates
the modularity and the function values corresponding to this new partition. This first phase
stops when it finds a local maxima of the function, i.e. when no individual move can improve
the function value.
The second phase remains unchanged respect to the original method for single-layer graphs.
The algorithm constructs a reduced network, where each community becomes a node, such that
all-singleton partition has the same value of modularity as the partition that we identified at
the end of the first phase. To do so, the weights of the links between the new nodes are given
by the sum of the weight of the links between nodes in the corresponding two communities, and
links between nodes of the same community lead to self-loops for the community.
The algorithm then iterates the whole procedure, until the heuristic converges, i.e. until phase
2 induces no further changes.
Look at Algorithm 1 for a pseudocode of the Louvain Expansion method.

Note that the output of the algorithm depends on the order of the nodes. Therefore, the way
in which we index the new communities at the end of phase 2 is important. It seems that the
ordering of the nodes does not influence significantly the final modularity, however it appears
to affect the computational time. In the literaturate, this aspect is still unclear. We decide to
order the nodes due to the community size.

The Louvain heuristic is very popular for its simplicity and efficiency. Part of the algorithm’s
efficiency results from the fact that the modularity can be calculated iteratively during the
procedure. At the beginning of phase 1, the method calculates the modularity from scratch.
In Chapter 1 we proposed a formula to calculate modularity of an unweighted graph (equation
(1.2)), however during phase 2 the algorithm creates a reduced graph with weighted edges,

22

Algorithm 1 Louvain Expansion

Input: G multi-layer graph
Output: C final assignment of nodes to communities

1: function Louvain Expansion(G)
2:
3: repeat
4: PHASE 1
5: Initialize:
6: C ← initial partition, where each vertex of graph G is a community
7: Q ← modularity vector of the initial partition
8: F ← function value of the initial partition
9: NB ← neighbour nodes vector

10: repeat
11:
12: for each node i do
13: remove node i from its community
14: ∆Q1i ← modularity gain for removing node i from its community
15:
16: for each node j that is neighbour of node i do
17: insert node i into community of node j
18: ∆Q2i→j ← modularity gain for inserting i into community of j
19: ∆Fi→j ← function gain for changing the community of node i
20: end for
21: ∆Fi→j* ← best function gain
22:
23: if ∆Fi→j* >0 then
24: move node i into community of node j*
25: Q ← modularity vector of the new partition
26: F ← function value of the new partition
27: end if
28: end for
29:
30: until no improved clustering found.
31:
32: PHASE 2
33: G ← reduced graph where each community of partition C is a node
34:
35: until no improved clustering found.
36: return C
37: end function

23

therefore we show also the corresponding formula for weighted graphs

Qw =
1

2w

∑
i,j

(
Wij −

sisj
2w

)
δ(Ci,Cj) (3.1)

where the sum runs over all pairs of vertices, W is the incidence matrix, w the sum of the
weights of all the edges of the graph, si is the strength of node i (the sum of the weights of all
the edges incident to i), and Ci is the community of node i. The function δ yields one if vertices
i and j are in the same community (Ci=Cj), zero otherwise.
From now we suppose to work with a unweighted graph, however each formula can be easily
extended to the weighted case.
To calculate modularity, the algorithm actually uses this formula, that is equivalent to the
equation (1.2),

Q =
∑
c∈C

|E(c)|
m
−

(∑
i∈N ki

2m

)2

(3.2)

where C =(C1,...,Cn) is the clustering, m=|E| is the number of edges, |E(c)| is the sum of all the
links between nodes in C and ki is the degree of node i.
During the loop, the algorithm calculates the gain in modularity in an easy way. The gain ∆Q1i
obtained by moving a node i from its community c can easily be computed by

∆Q1i =

∑
tot ·ki

2m2
− ki

2

2m2
− ki,in

m
(3.3)

where
∑

tot is the sum of weights of the links incident to node in c, ki is the degree of node i,
ki,in is the sum of weights of the links from i to nodes in c, m is the sum of weights of all the
links inside the network.
The following expression is used in order to evaluate the change of modularity ∆Q2j when an
isolated node i is moved into the community c of node j

∆Q2i→j =

∑
i,in

m
−
∑

tot ·ki
2m2

(3.4)

where
∑

i,in is the sum of weights of the links inside community c,
∑

tot is the sum of weights
of the links incident to node in c, ki is the degree of node i, m is the sum of weights of all the
links inside the network.
Thus, if a node i has changed community, the algorithm calculates the modularity of the new
partition just adding to the initial modularity value the gains obtained above, rather than cal-
culate it from scratch. Thanks to this fact, the Louvain heuristic is extremely fast.

In our method, it’s reasonable to use a function F that can include the information of the
multiple layers and that can be calculated iteratively.
The most intuitive idea to extend the Louvain heuristic from the single-layer to the multi-layer
case, already studied in the literature, is to take as function F the average of modularity on the
layers

MQ =

∑k
s=1 Qs

k
(3.5)

24

where k is the number of layers and Qs is the modularity of layer s.
The gain of this function can be calculated easily as follow

∆MQ =

∑k
s=1 ∆Qs

k
(3.6)

where k is the number of layers and ∆Qs is the gain on modularity of layer s.
We refer to this method with community-average (ComA).
Matlab code of this method is available in Appendix A.

In real networks, different situations arise. We study two cases: the informative case, where
each single layer has a piece of meaningful information from its own perspective, and the noisy
case, where there are some noisy layers, which give us wrong information about communities.
In order to analyse better these two situations, we propose two functions that take into account
sample variance of modularity on the layers

VQ =

∑k
s=1(Qs −MQ)2

k− 1
(3.7)

where k is the number of layers, Qs is the modularity on layer s and MQ is the average of
modularity on the layers.
We suggest to take a convex combination of the average and the variance of modularity on the
layers. In particular, we study these two function

F- = (1− γ)MQ − γVQ (3.8)

F+ = (1− γ)MQ + γVQ (3.9)

where MQ is the average of modularity on the layers, VQ is the variance of modularity on the
layers and γ ∈ [0, 1].
The idea behind is that: for the informative case we would like to maximize the average and
minimize the variance of modularity on the layers, instead in the noisy case we want to maximize
both the values.
The gain of both the functions can be easily calculated during the algorithm respectively in
these ways

∆F- = (1− γ)∆MQ − γ
(

V∆Q +
2

k− 1
(Q−MQ)t(∆Q−∆MQ)

)
(3.10)

∆F+ = (1− γ)∆MQ + γ
(

V∆Q +
2

k− 1
(Q−MQ)t(∆Q−∆MQ)

)
(3.11)

where k is the number of layers, Q is a vector in which the entrance s is the initial modularity
of layer s, MQ is the initial average of modularity on the layers, ∆Q is a vector in which the
entrance s is the gain in modularity of layer s, ∆MQ is the gain of the average of modularity on
the layers (that coincides with M∆Q the average of ∆Q, as shown in equation (3.6)), V∆Q is the
variance of ∆Q, calculated as follows

V∆Q =

∑k
s=1(∆Qs −∆MQ)2

k− 1
(3.12)

25

We refer to the method that uses the function F- as community-variance-minus (ComV-) and
to the method that uses the function F+ as community-variance-plus (ComV+).
Matlab codes of these methods are available in Appendix B and Appendix C.

All the methods that we have introduced coincide with the original Louvain algorithm if applied
to single-layer graphs.

3.2 Louvain Multiobjective

In this Section, we present the Louvain Multiobjective method for community detection in multi-
layer networks, that is more sophisticated respect to the one described in Section 3.1. The
algorithm is a filter type method that takes into account the multiobjective nature of the prob-
lem. It is based on the Louvain method for single-layer graphs [9] and tries to expand it to the
multi-layer case. The basic idea is to not decide just one community to put in node i during
phase 1, but to follow more case studies.

The problem of maximizing modularity over multiple layers is a problem of multiobjective op-
timization. We consider a vector Q=(Qs)s=1,..,k where k is the number of layers, and we want
to maximize simultaneously all its entries. If there are no conflicts between the entries, the
straightforward optimal solution of the problem is obtained solving separately k optimization
problems. However, this is not what usually happens in real networks. In multiobjective op-
timization there is not a unique way to define the concept of optimality, since there is not a
total order for IRk. Each partial order defines a different definition of optimality. We adopt
a definition that was proposed for the first time by Edgeworth in 1881 and later revised by
Vilfredo Pareto in 1896 [91]. All the definitions are referred to a maximisation problem.

Definition 1. Given two vectors z1 and z2 ∈ IRk, z1 dominates z2 according to Pareto, and we
write z1 ≥P z2, if

z1
i ≥ z2

i for each index i=1,..,k and

z1
j > z2

j for at least one index j=1,..,k.

This binary relation induces a partial order over IRk. Thus we can give the definition of opti-
mality according to Pareto.

Definition 2. A vector z* ∈ IRk is Pareto optimal if there is not other vectors z ∈ IRk such
that z* ≤P z.

The Pareto front is the set of all Pareto optimals.
We define a filter as a list of vectors such that no vector dominates the others.

The input of the Louvain Multiobjective algorithm is a multi-layer graph G with k layers. We
suppose to have multi-layer graphs where just edges vary between layers, thus each node is
present in all layers, and there are not edges between nodes of different layers. Each layer is an

26

undirected graph and just a single edge between nodes is allowed. The output of the algorithm
is a final assignment of nodes to communities.
The algorithm is composed of two phases that are repeated iteratively.
At the beginning of the first phase, each node forms a community. The algorithm calculates
some values related to this first partition, s.a. Qs the modularity of the clustering in layer s for
s=1,..,k and a defined function F connected to them. The method inserts the initial partition
and the corresponding modularity vector in a filter L. We consider as neighbours of a node i
the union of the neighbours of node i in the various layers. Then the algorithm starts a loop,
where each node is considered in order (for this reason the indexing of the nodes changes the
output of the algorithm). Call i the node taken into consideration. For each partition in filter
L, the method does the following procedure. Call Ci the community of node i in the considered
partition. The algorithm removes node i from its community Ci and calculates the modularity
gain ∆Q1i on each layer. For each neighbour j of node i (if the community of node j has
not already been considered), the method includes i in the community of node j, called Cj,
and calculates the corresponding modularity gain ∆Q2i→j on each layer. Now the algorithm
calculates the gain ∆Fi→j of the defined function F, for changing the community of node i. If
the function gain is positive, which therefore gives an increase of the function, the algorithm
memorises the partition and the corresponding modularity vector in the filter. More precisely,
the new modularity vector is added to L only if it is not dominated and, if this condition is
verified, the method delates from the list all the modularity vectors that are now dominated by
the new one. When the method has finished doing this procedure on each element of the initial
filter, it checks the length of the new list L. If the filter is too long compared to a previously
decided length h, the filter is cut removing the partitions with the least function values, until it
is of the required length. This first phase stops when no moves change the filter. At this point,
the method selects the partition of the filter with the maximum value of the function.
The second phase remains unchanged respect to the original method for single-layer graphs.
The algorithm constructs a reduced network, where each community becomes a node, such that
all-singleton partition has the same value of modularity as the partition that we identified at
the end of the first phase. To do so, the weights of the links between the new nodes are given
by the sum of the weight of the links between nodes in the corresponding two communities, and
links between nodes of the same community lead to self-loops for the community.
The algorithm then iterates the whole procedure, until the heuristic converges, i.e. until phase
2 induces no further changes.
Look at Algorithm 2 for a pseudocode of the Louvain Multiobjective method.

Note that, also in this method, the output depends on the order of the nodes. We decide to
order the nodes due to the community size to study the informative case, instead to index them
following the initial order to study the noisy case, because this case has a higher computational
time.

The method uses a filter because we want to get closer to the Pareto front. However, considering
all the case studies would be too expensive in terms of computational time. For this reason, the
method cuts the list to a length h using as a criterion a function F.

27

Algorithm 2 Louvain Multiobjective

Input: G multi-layer graph
Output: C final assignment of nodes to communities

function Louvain Multiobjective(G)

repeat
PHASE 1
Initialize:

C ← initial partition, where each vertex of graph G is a community
Q ← modularity vector of the initial partition
F ← function value of the initial partition
NB ← neighbour nodes vector
L ← (C,Q) filter

repeat

for each node i do
Lold ← L

for each element (C,Q) in Lold do
remove node i from its community
∆Q1i ← modularity gain for removing node i from its community

for each node j that is neighbour of node i do
insert node i into community of node j
∆Q2i→j ← modularity gain for inserting i into community of j
∆Fi→j ← function gain for changing the community of node i

if ∆Fi→j > 0 then
move node i into community of node j : Ci→j new partition
Qi→j ← modularity vector of the new partition

if Qi→j not dominated by any element of the filter L then
L ← L ∪ (Ci→j,Qi→j)
L ← L \ (elements dominated by (Ci→j,Qi→j))

end if
end if

end for
end for

if length(L) > h then
remove from L the partitions with the least function values, until it is of length h

end if
end for

until no changes of filter L
(C*,Q*) ← element of the filter with the maximum value of the function

PHASE 2
G ← reduced graph where each community of partition C* is a node

until no improved clustering found.
return C

end function

28

We study three variants of this method, taking as function F : the average of modularity on
layers MQ described in (3.5), and the functions F- and F+ defined in (3.8) and (3.9). We re-
fer to these algorithms respectively as multi-average (MultiA), multi-variance-minus (MultiV-),
multi-variance-plus (MultiV+).
Matlab codes of these methods are available respectively in Appendix D, Appendix E and Ap-
pendix F.

As we have seen in Section 3.1, the algorithm calculates the modularity and the function values
in a iterative and easy way.

Note that this method coincides with the method described in Section 3.1 when the filter has
a unit length. Therefore, it is equal to the original Louvain algorithm if applied to single-layer
graphs.

29

30

Chapter 4

Experimentation

We implemented the methods described in Chapter 3 using Matlab, starting from a available
Matlab code for the Louvain heuristic for single layer graphs [92]. The Matlab codes are reported
in the Appendix. We tested the algorithms using a machine equipped with i7 processor with 1.8
GHz and 16 GB of ram memory. The tests were performed both on artificial networks and on
real world networks.
In this Chapter, we show the obtained results. Section 4.2 presents the results achieved on
artificial graphs, and Section 4.3 reports the algorithm outputs obtained on real datasets. Pre-
liminarily, in Section 4.1 we focus on how evaluate the partitions obtained as results of the
methods, to later compare them. In particular, we used the accuracy and the Normalized
Mutual Information.

4.1 Evaluation

In order to compare the results of the algorithms described in Chapter 3, we need to evaluate
the partitions obtained as output. In the literature, various ways have been proposed on how
to measure the performance of an algorithm for community detection. However, this question
has not been fully resolved yet. We worked under the main assumption of knowing the com-
munity structure of the graph, that we call standard partition. On the other hand, we refer to
the partitions obtained by the algorithms as predicted partitions. We evaluated the results of
our algorithms through two values: the accuracy (AC) and the Normalized Mutual Information
(NMI). To calculate both these values, we use indirectly the confusion matrix.

The confusion matrix T is a table that allows visualization of the performance of an algorithm.
It has a row for each community of the standard partition and a column for each community of
the predicted partition. The element Tij represents the number of nodes in the j community of
the predicted partition that are in the i community of the standard partition. The sum of the
i row (resp. column) gives us the total number of nodes of the i community of the standard
(resp. predicted) partition. The values on the diagonal are the nodes that are in the same
community in both the partitions, instead the values off-diagonal are the nodes placed in the
wrong community.

31

One disadvantage of the confusion matrix is that it depends on the labels of the communities.

The first way adopted to measure the results of the algorithms is the accuracy (Ac), i.e. the
percentage of nodes placed in the right community. First of all, we calculated the number of
nodes that are placed in the right community, using the confusion matrix and labelling the
communities appropriately. We then considered the percentage of the nodes placed in the right
community respect to the total number of nodes, in order to possibly compare results reffered
to graphs of different size.

We evaluated the output partitions obtained by the algorithms also through the Normalized
Mutual Information (NMI), because we supposed that the community structures were known.
Mutual Information is widely used in physics, statistics, and machine learning as a tool for
comparing different labellings of a set of objects. In network science it is perhaps the standard
measure for quantifying the performance of community detection algorithms. However, it can
give inaccurate answers under certain conditions, s.a. when communities have different size. For
this reason, Danon et al. proposed a normalization of this measure, called Normalized Mutual
Information [93]. Given the standard partitioning C* and the obtained partitioning C, the
Normalized Mutual Information can be calculated by the following formula

NMI(C*,C) =
2 · I(C*,C)

H(C*) +H(C)
(4.1)

where H(C) is the entropy of partition C and I(C*,C) is the Mutual Information between C*
and C. This is defined by

I(C*,C) = H(C*)−H(C*|C) (4.2)

where H(C* |C) is the conditional entropy of C* respect to C.
We calculated the NMI using the confusion matrix T, through the formula

NMI(C*,C) =
−2 ·

∑|C|
i=1

∑|C*|
i=1 Tij · log

(
Tijt

Ti.T.j

)
∑|C|

i=1 Ti. · log
(
Ti.
t

)
+
∑|C*|

j=1 T.j · log
(
T.j

t

) (4.3)

where t = sum(T) is the number of nodes, Ti. is the sum of row i of T and T.j is the sum of
column j of T.
NMI(C*,C) is a number between 0 and 1. It is equal to 1 when the two partitions are identical
and equal to 0 when the two partitions are totally independent, s.a. when C is the single
community that includes the whole graph.
A nice feature of NMI is that it is invariant under permutations of the labels of the communities.

4.2 Artificial Networks

We tested the algorithms described in Chapter 3 on artificial networks. In this Section, we show
and compare the obtained results.

32

The Stochastic Block Model (SBM) is a generative model for graphs showing certain clusters
structures through the parameters pin and pout. These parameters represent the edge probabili-
ties: given nodes vi and vj the probability of observing an edge between them is pin (resp. pout),
if vi and vj belong to the same (resp. different) cluster.
We analysed two different settings: in the first one all layers have the same class structure, in
the second setting one layer is informative and the remaining layers are just noise. We set
pin >> pout on the informative layers and pin = pout on the noisy layers.
In particular, we created networks with 4 communities of 125 nodes each and with k = 2, 3
layers, by fixing pin = 0.1 and varying pout. In the noisy layers, we fixed pin = pout = 0.1.

For each case, we report the results in a table. Each row corresponds to a method, which is
indicated in the first column. We studied the Louvain Multiobjective models for length of the
filter h = 2, 3 and, in the definition of function F- in equation (3.8) and F+ in equation (3.9),
we set γ = 0.1, 0.3, 0.5. The ratio between pin and pout changes between columns and it is
specified in the second row. For each method and ratio between pin and pout, the tables report
the accuracy (Ac) in percentage, the Normalized Mutual Information (NMI) and the execution
time in seconds (Cpu) of the corresponding output. The best performances are marked with
bold fonts and gray background and second best performances with only gray background. We
show the results also using bar plots. In the tables and in the bar plots, we report the average
of the values on 10 runs. We summarize the results of the multiple runs through some boxplots.

4.2.1 Informative case

In the informative case all layers have the same community structure, so each single layer has a
piece of meaningful information.

For this case, we compared the models community-average (ComA) and community-variance-
minus (ComV-) (Section 3.1), multi-average (MultiA) and multi-variance-minus (MultiV-) (Sec-
tion 3.2). The idea behind is that for the informative case we would like to maximize the average
and minimize the variance of modularity on the layers.

Table 4.1 shows the average results for the informative case on graphs with k = 2 layers. Fig-
ure 4.1 and Figure 4.2 represent the Accuracy and the NMI of the results in some bar plots. We
summarize the results of the 10 runs in the boxplots in Figure 4.3 and Figure 4.4.
pin is fixed equal to 0.1 and pout varies according to the ratio between pin and pout equal to 3,
2.5, 2, 1.5.
The results get worse as the ratio between pin and pout decreases, in fact intuitively the commu-
nities are less defined when pout is close to pin. For this reason, the execution times behave the
same way, increasing as the ratio decreases. In particular, the Louvain Multiobjective methods
are slower than the others.
All the methods perform very good in the first two cases with pin/pout = 3, 2.5, a little less
well in the third case with pin/pout = 2 and get worst in the last situation with pin/pout = 1.5.

33

The algorithms show similar results unless for pin/pout = 2, where the better performances are
obtained by MultiV- with h = 2, γ = 0.3 and 0.5.
We studied in depth the more critical interval [2.5, 2], sampling it. Table 4.2 shows the perfor-
mances to vary of pin/pout = 2.6, 2.4, 2.2, 2. The methods still perform approximately the same
way. Figure 4.5 and Figure 4.6 represent the Accuracy and the NMI of the results in some bar
plots. We summarize the results of the 10 runs in the boxplots in Figure 4.7 and Figure 4.8.

Table 4.3 shows the average results for the informative case on graphs with k = 3 layers. Fig-
ure 4.9 and Figure 4.10 represent the Accuracy and the NMI of the results in some bar plots.
We summarize the results of the 10 runs in the boxplots in Figure 4.11 and Figure 4.12.
pin is fixed equal to 0.1 and pout varies according to the ratio between pin and pout equal to 3,
2.5, 2, 1.5.
Also in this case, the results get worse as the ratio between pin and pout decreases, and the
execution times behave the same way. In particular, the Louvain Multiobjective methods are
slower than the others.
All the methods perform very good and similar for values of pin/pout = 3, 2.5, 2, but unfortu-
nately all of them get worst in the last case with pin/pout = 1.5.
We analysed better the more interesting interval [2, 1.5] in Table 4.4, taking pin/pout = 2, 1.9,
1.8, 1.7. The algorithms obtain almost the same results for the first two values; in the third case
MultiV- with h = 2, γ = 0.1 and ComA achieve the best results; finally in the last case MultiA
with h = 3 definitely outperforms all the other methods. Figure 4.13 and Figure 4.14 represent
the Accuracy and the NMI of the results in some bar plots. We summarize the results of the 10
runs in the boxplots in Figure 4.15 and Figure 4.16.
Compared to the case with 2 layers, all the methods give best results. In fact, in the informative
case, have multiple layers correspond to have more information. Nevertheless, execution times
are higher for graphs with 3 layers.

In general, in the informative case on graphs with both 2 and 3 layers: when the community
structure is well defined, all the algorithms perform well; when it is more confused, they give
different outputs, but there is not a method that always dominated all the others.

4.2.2 Noisy case

In the noisy case just one layer is informative, so it has a community structure, and all the other
layers are just noise, so they give wrong information about the clustering.

For this case, we compared the models community-average (ComA) and community-variance-
plus (ComV+) (Section 3.1), multi-average (MultiA) and multi-variance-plus (MultiV+) (Sec-
tion 3.2). The idea behind is that for the noisy case we would like to maximize both the average
and the variance of modularity on the layers.

Table 4.5 shows the average results for the noisy case on graphs with k = 2 layers. Figure 4.17
and Figure 4.18 represent the Accuracy and the NMI of the results in some bar plots. We

34

INFORMATIVE CASE: k=2

pin/pout=3 pin/pout=2.5 pin/pout=2 pin/pout=1.5
Ac NMI Cpu Ac NMI Cpu Ac NMI Cpu Ac NMI Cpu

ComA 99.74 0.989 2.52 99.04 0.962 3.98 75.04 0.575 6.96 21.84 0.045 5.36
MultiA

99.76 0.990 140.72 98.84 0.955 214.42 74.22 0.577 254.66 21.08 0.049 287.80
h=2

MultiA
99.80 0.992 147.78 98.92 0.957 328.00 78.20 0.620 425.17 21.58 0.047 451.14

h=3
ComV-

99.76 0.990 2.86 98.84 0.955 5.05 75.44 0.588 8.03 21.02 0.043 7.14
γ=0.1
ComV-

99.76 0.990 3.46 98.76 0.952 5.35 73.86 0.577 7.77 21.00 0.041 6.90
γ=0.3
ComV-

99.74 0.990 6.05 98.74 0.952 5.66 74.74 0.591 7.41 21.46 0.042 7.51
γ=0.5

MultiV-
99.76 0.990 163.26 98.80 0.954 248.27 77.08 0.609 262.40 21.44 0.050 292.21

γ=0.1, h=2
MultiV-

99.80 0.992 170.17 98.96 0.959 446.78 75.72 0.588 421.59 22.08 0.051 437.92
γ=0.1, h=3

MultiV-
99.80 0.992 169.90 98.98 0.960 250.46 81.64 0.656 262.39 21.10 0.045 295.12

γ=0.3, h=2
MultiV-

99.72 0.988 197.79 98.96 0.959 311.20 76.70 0.593 435.59 20.90 0.043 452.44
γ=0.3, h=3

MultiV-
99.78 0.991 106.79 98.74 0.951 228.23 80.72 0.642 266.18 21.40 0.051 287.89

γ=0.5, h=2
MultiV-

99.76 0.990 185.08 98.92 0.958 331.87 76.84 0.579 419.15 21.70 0.046 460.25
γ=0.5, h=3

Table 4.1: Experiments in the informative case on artificial graphs with k=2 layers. Nota-
tion: best performances are marked with bold fonts and gray background and second best
performances with only gray background.

35

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

20

40

60

80

100

A
cc

ur
ac

y

(a) pin/pout=3

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

20

40

60

80

100

A
cc

ur
ac

y

(b) pin/pout=2.5

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

20

40

60

80

100

A
cc

ur
ac

y

(c) pin/pout=2

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

20

40

60

80

100

A
cc

ur
ac

y

(d) pin/pout=1.5

Figure 4.1: Accuracy of the experiments in the informative case on artificial graphs with k=2
layers

36

ComA

MultiV
(h=3)

MultiV
-(h

=2)

Algorithms

0

0.2

0.4

0.6

0.8

1

N
M

I

(a) pin/pout=3

ComA

MultiV
(h=3)

MultiV
-(h

=2)

Algorithms

0

0.2

0.4

0.6

0.8

1

N
M

I

(b) pin/pout=2.5

ComA

MultiV
(h=3)

MultiV
-(h

=2)

Algorithms

0

0.2

0.4

0.6

0.8

1

N
M

I

(c) pin/pout=2

ComA

MultiV
(h=3)

MultiV
-(h

=2)

Algorithms

0

0.2

0.4

0.6

0.8

1

N
M

I

(d) pin/pout=1.5

Figure 4.2: NMI of the experiments in the informative case on artificial graphs with k=2 layers

37

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

99.4

99.5

99.6

99.7

99.8

99.9

100

100.1

A
cc

ur
ac

y

(a) pin/pout=3

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

97.5

98

98.5

99

99.5

A
cc

ur
ac

y

(b) pin/pout=2.5

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

20

40

60

80

100

A
cc

ur
ac

y

(c) pin/pout=2

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

16

18

20

22

24

26

A
cc

ur
ac

y

(d) pin/pout=1.5

Figure 4.3: Accuracy of the experiments in the informative case on artificial graphs with k=2
layers

38

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

0.975

0.98

0.985

0.99

0.995

1

1.005

N
M

I

(a) pin/pout=3

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

N
M

I

(b) pin/pout=2.5

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

0.2

0.4

0.6

0.8

1

N
M

I

(c) pin/pout=2

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

N
M

I

(d) pin/pout=1.5

Figure 4.4: NMI of the experiments in the informative case on artificial graphs with k=2 layers

39

INFORMATIVE CASE: k=2

pin/pout=2.6 pin/pout=2.4 pin/pout=2.2 pin/pout=2
Ac NMI Cpu Ac NMI Cpu Ac NMI Cpu Ac NMI Cpu

ComA 98.90 0.956 3.13 98.32 0.936 3.99 93.28 0.833 4.15 75.04 0.575 6.96
MultiA

98.94 0.975 139.63 98.30 0.934 197.19 96.78 0.888 219.62 74.22 0.577 254.66
h=2

MultiA
98.96 0.958 227.07 98.42 0.939 276.52 97.16 0.895 295.49 78.20 0.620 425.17

h=3
ComV-

98.90 0.956 4.20 98.32 0.935 4.90 97.26 0.898 4.98 75.44 0.588 8.03
γ=0.1
ComV-

98.92 0.956 4.29 98.26 0.933 4.92 97.00 0.891 5.06 73.86 0.577 7.77
γ=0.3
ComV-

98.94 0.957 4.59 98.44 0.940 4.65 97.20 0.896 4.83 74.74 0.591 7.41
γ=0.5

MultiV-
98.92 0.956 144.55 98.46 0.941 200.38 96.70 0.880 203.30 77.08 0.609 262.40

γ=0.1, h=2
MultiV-

98.96 0.958 216.71 98.36 0.937 286.79 97.06 0.890 296.29 75.72 0.588 421.59
γ=0.1, h=3

MultiV-
99.00 0.959 180.89 98.30 0.935 192.75 96.52 0.885 200.45 81.64 0.656 262.39

γ=0.3, h=2
MultiV-

98.94 0.957 240.51 98.32 0.936 287.64 95.86 0.874 295.01 76.70 0.593 435.59
γ=0.3, h=3

MultiV-
99.00 0.959 144.67 98.42 0.939 188.69 96.98 0.888 199.50 80.72 0.642 266.18

γ=0.5, h=2
MultiV-

99.00 0.959 231.16 98.20 0.931 280.32 96.82 0.886 297.55 76.84 0.579 419.15
γ=0.5, h=3

Table 4.2: Experiments in the informative case on artificial graphs with k=2 layers. Nota-
tion: best performances are marked with bold fonts and gray background and second best
performances with only gray background.

40

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

20

40

60

80

100

A
cc

ur
ac

y

(a) pin/pout=2.6

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

20

40

60

80

100

A
cc

ur
ac

y

(b) pin/pout=2.4

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

20

40

60

80

100

A
cc

ur
ac

y

(c) pin/pout=2.2

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

20

40

60

80

100

A
cc

ur
ac

y

(d) pin/pout=2

Figure 4.5: Accuracy of the experiments in the informative case on artificial graphs with k=2
layers

41

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

0.2

0.4

0.6

0.8

1

N
M

I

(a) pin/pout=2.6

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

0.2

0.4

0.6

0.8

1

N
M

I

(b) pin/pout=2.4

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

0.2

0.4

0.6

0.8

1

N
M

I

(c) pin/pout=2.2

ComA

MultiV
(h=3)

MultiV
-(h

=2)

Algorithms

0

0.2

0.4

0.6

0.8

1

N
M

I

(d) pin/pout=2

Figure 4.6: NMI of the experiments in the informative case on artificial graphs with k=2 layers

42

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

98.4

98.6

98.8

99

99.2

99.4

99.6

A
cc

ur
ac

y

(a) pin/pout=2.6

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

97.5

98

98.5

99

A
cc

ur
ac

y

(b) pin/pout=2.4

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

60

65

70

75

80

85

90

95

100

A
cc

ur
ac

y

(c) pin/pout=2.2

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

20

40

60

80

100

A
cc

ur
ac

y

(d) pin/pout=2

Figure 4.7: Accuracy of the experiments in the informative case on artificial graphs with k=2
layers

43

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

0.94

0.95

0.96

0.97

0.98

N
M

I

(a) pin/pout=2.6

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

N
M

I

(b) pin/pout=2.4

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
M

I

(c) pin/pout=2.2

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

0.2

0.4

0.6

0.8

1

N
M

I

(d) pin/pout=2

Figure 4.8: NMI of the experiments in the informative case on artificial graphs with k=2 layers

44

INFORMATIVE CASE: k=3

pin/pout=3 pin/pout=2.5 pin/pout=2 pin/pout=1.5
Ac NMI Cpu Ac NMI Cpu Ac NMI Cpu Ac NMI Cpu

ComA 99.90 0.996 5.11 99.84 0.993 5.42 98.80 0.952 5.42 25.56 0.076 7.20
MultiA

99.90 0.996 231.03 99.84 0.993 264.99 98.80 0.952 275.88 24.38 0.079 325.63
h=2

MultiA
99.90 0.996 358.93 99.84 0.993 408.75 98.80 0.952 417.78 26.20 0.076 477.31

h=3
ComV-

99.90 0.996 5.94 99.84 0.993 6.19 98.72 0.949 6.31 25.36 0.072 10.13
γ=0.1
ComV-

99.90 0.996 6.09 99.84 0.993 6.11 98.74 0.950 6.36 27.48 0.093 9.75
γ=0.3
ComV-

99.90 0.996 5.67 99.84 0.993 5.75 98.72 0.949 6.29 29.00 0.096 8.68
γ=0.5

MultiV-
99.90 0.996 231.36 99.84 0.993 271.00 98.70 0.948 277.56 24.24 0.071 312.35

γ=0.1, h=2
MultiV-

99.88 0.995 352.77 99.84 0.993 402.17 98.84 0.953 426.00 27.88 0.092 507.82
γ=0.1, h=3

MultiV-
99.90 0.996 273.54 99.84 0.993 266.89 98.86 0.954 231.57 25.00 0.076 334.74

γ=0.3, h=2
MultiV-

99.90 0.996 354.30 99.82 0.992 406.74 98.78 0.952 425.64 24.44 0.072 509.90
γ=0.3, h=3

MultiV-
99.92 0.997 234.06 99.84 0.993 268.40 98.80 0.952 277.64 24.76 0.072 337.01

γ=0.5, h=2
MultiV-

99.90 0.996 346.97 99.84 0.993 396.08 98.82 0.953 422.18 26.98 0.104 521.42
γ=0.5, h=3

Table 4.3: Experiments in the informative case on artificial graphs with k=3 layers. Nota-
tion: best performances are marked with bold fonts and gray background and second best
performances with only gray background.

45

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

20

40

60

80

100

A
cc

ur
ac

y

(a) pin/pout=3

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

20

40

60

80

100

A
cc

ur
ac

y

(b) pin/pout=2.5

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

20

40

60

80

100

A
cc

ur
ac

y

(c) pin/pout=2

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

20

40

60

80

100

A
cc

ur
ac

y

(d) pin/pout=1.5

Figure 4.9: Accuracy of the experiments in the informative case on artificial graphs with k=3
layers

46

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

0.2

0.4

0.6

0.8

1

N
M

I

(a) pin/pout=3

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

0.2

0.4

0.6

0.8

1

N
M

I

(b) pin/pout=2.5

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

0.2

0.4

0.6

0.8

1

N
M

I

(c) pin/pout=2

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

0.2

0.4

0.6

0.8

1

N
M

I

(d) pin/pout=1.5

Figure 4.10: NMI of the experiments in the informative case on artificial graphs with k=3 layers

47

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

99.4

99.5

99.6

99.7

99.8

99.9

100

100.1

A
cc

ur
ac

y

(a) pin/pout=3

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

99.6

99.7

99.8

99.9

100

100.1

A
cc

ur
ac

y

(b) pin/pout=2.5

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

97.5

98

98.5

99

99.5

A
cc

ur
ac

y

(c) pin/pout=2

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

20

25

30

35

40

A
cc

ur
ac

y

(d) pin/pout=1.5

Figure 4.11: Accuracy of the experiments in the informative case on artificial graphs with k=3
layers

48

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

0.975

0.98

0.985

0.99

0.995

1

1.005

N
M

I

(a) pin/pout=3

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

0.985

0.99

0.995

1

1.005

N
M

I

(b) pin/pout=2.5

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

N
M

I

(c) pin/pout=2

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

0.05

0.1

0.15

0.2

N
M

I

(d) pin/pout=1.5

Figure 4.12: NMI of the experiments in the informative case on artificial graphs with k=3 layers

49

INFORMATIVE CASE: k=3

pin/pout=2 pin/pout=1.9 pin/pout=1.8 pin/pout=1.7
Ac NMI Cpu Ac NMI Cpu Ac NMI Cpu Ac NMI Cpu

ComA 98.80 0.952 5.42 98.02 0.924 6.04 96.20 0.865 6.59 61.88 0.440 7.56
MultiA

98.80 0.952 233.60 98.16 0.929 249.74 90.72 0.804 275.88 65.76 0.467 293.36
h=2

MultiA
98.80 0.952 357.67 98.10 0.927 396.72 84.92 0.742 417.78 85.64 0.684 440.85

h=3
ComV-

98.72 0.949 6.23 97.76 0.915 6.31 96.02 0.859 7.80 69.76 0.528 9.81
γ=0.1
ComV-

98.74 0.950 6.36 97.90 0.920 7.07 89.36 0.791 8.47 52.44 0.342 9.20
γ=0.3
ComV-

98.72 0.949 6.29 98.04 0.925 7.27 94.84 0.838 8.76 68.78 0.499 10.45
γ=0.5

MultiV-
98.70 0.948 238.61 98.02 0.923 266.97 95.88 0.858 277.56 58.94 0.390 303.89

γ=0.1, h=2
MultiV-

98.84 0.953 369.92 98.18 0.929 404.17 96.30 0.868 426.00 70.76 0.512 475.77
γ=0.1, h=3

MultiV-
98.86 0.954 231.57 98.18 0.929 265.74 93.06 0.819 298.45 69.80 0.530 312.52

γ=0.3, h=2
MultiV-

98.78 0.952 365.66 97.90 0.919 425.64 89.24 0.784 437.12 63.30 0.460 449.65
γ=0.3, h=3

MultiV-
98.80 0.952 241.91 98.10 0.926 267.20 96.10 0.863 275.88 53.40 0.349 277.64

γ=0.5, h=2
MultiV-

98.82 0.953 356.77 97.96 0.922 392.99 84.18 0.718 422.18 64.54 0.439 437.57
γ=0.5, h=3

Table 4.4: Experiments in the informative case on artificial graphs with k=3 layers. Nota-
tion: best performances are marked with bold fonts and gray background and second best
performances with only gray background.

50

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

20

40

60

80

100

A
cc

ur
ac

y

(a) pin/pout=2

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

20

40

60

80

100

A
cc

ur
ac

y

(b) pin/pout=1.9

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

20

40

60

80

100

A
cc

ur
ac

y

(c) pin/pout=1.8

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

20

40

60

80

100

A
cc

ur
ac

y

(d) pin/pout=1.7

Figure 4.13: Accuracy of the experiments in the informative case on artificial graphs with k=3
layers

51

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

0.2

0.4

0.6

0.8

1

N
M

I

(a) pin/pout=2

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

0.2

0.4

0.6

0.8

1

N
M

I

(b) pin/pout=1.9

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

0.2

0.4

0.6

0.8

1

N
M

I

(c) pin/pout=1.8

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

0.2

0.4

0.6

0.8

1

N
M

I

(d) pin/pout=1.7

Figure 4.14: NMI of the experiments in the informative case on artificial graphs with k=3 layers

52

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

97.5

98

98.5

99

99.5

A
cc

ur
ac

y

(a) pin/pout=2

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

96

96.5

97

97.5

98

98.5

99

99.5

A
cc

ur
ac

y

(b) pin/pout=1.9

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

30

40

50

60

70

80

90

100

A
cc

ur
ac

y

(c) pin/pout=1.8

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

20

40

60

80

100

120

A
cc

ur
ac

y

(d) pin/pout=1.7

Figure 4.15: Accuracy of the experiments in the informative case on artificial graphs with k=3
layers

53

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

N
M

I

(a) pin/pout=2

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

0.86

0.88

0.9

0.92

0.94

0.96

0.98

N
M

I

(b) pin/pout=1.9

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
M

I

(c) pin/pout=1.8

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

0

0.2

0.4

0.6

0.8

1

N
M

I

(d) pin/pout=1.7

Figure 4.16: NMI of the experiments in the informative case on artificial graphs with k=3 layers

54

summarize the results of the 10 runs in the boxplots in Figure 4.19 and Figure 4.20.
pin is fixed equal to 0.1 and pout varies according to the ratio between pin and pout equal to 3,
2.5, 2.
The results get worse as the ratio between pin and pout decreases, in fact intuitively the commu-
nities are less defined when pout is close to pin. For this reason, the execution times behave the
same way, increasing as the ratio decreases. In particular, the Louvain Multiobjective methods
are slower than the others.
ComV+ outperforms all the other methods in the first two cases with pin/pout = 3, 2.5. All the
algorithm gives bad results in the last case with pin/pout = 2.

Table 4.6 shows the average results for the noisy case on graphs with k = 3 layers. Figure 4.21
and Figure 4.22 represent the Accuracy and the NMI of the results in some bar plots. We
summarize the results of the 10 runs in the boxplots in Figure 4.23 and Figure 4.24.
pin is fixed equal to 0.1 and pout varies according to the ratio between pin and pout equal to 3,
2.5, 2, 1.5.
Also in this case, the results get worse as the ratio between pin and pout decreases, and the
execution times behave the same way. In particular, the Louvain Multiobjective methods are
slower than the others.
MultiV+ with γ = 0.5, h = 3 achieves the best result in the first situation with pin/pout = 3.
All the algorithms obtained bad results in all the other cases.
Compared to the case with 2 layers, all the methods give worst results. In fact, in the noisy
case, just the first layer is informative and all the others are noise, so the noise increases as the
number of layer increases. Moreover, execution times are higher for graphs with k = 3 layers.

In general, in the noisy case on graphs with both 2 and 3 layers, almost all the methods overcome
ComA, and the best performances are obtained by the methods that take into consideration the
variance of modularity on the layers as well as the average, giving them the same weight in
equation (3.9).

All the algorithms achieve better results in the informative case then the noisy one. Moreover,
execution times are lower in the informative case than in the noisy case. In fact, in the informa-
tive case each layer has a piece of meaningful information, instead in the noisy case some layers
can give wrong information.

4.3 Real World Networks

In this Section, we compare the performances of the proposed approaches on real networks. We
considered three real datasets: 3sources [94], BBCSports [95] and Wikipedia [96]. We used the
corresponding layer matrices provided by Mercado et al. [97], which have used a similarity mea-
sure and have considered the unweighted version of the symmetric k-nearest neighbour graph
(i.e. they have taken the k neighbours with highest correlation). Also in this case, we knew the
community structure of the graphs.
3sources dataset corresponds to new articles of BBC, Reuters and Guardian. It produces a

55

NOISY CASE: k=2

pin/pout=3 pin/pout=2.5 pin/pout=2
Ac NMI Cpu Ac NMI Cpu Ac NMI Cpu

ComA 49.42 0.318 7.34 27.00 0.109 7.35 22.46 0.054 8.01
MultiA

58.68 0.369 255.28 29.42 0.116 289.26 21.06 0.053 312.98
h=2

MultiA
47.06 0.289 226.51 30.22 0.128 383.26 21.62 0.056 483.20

h=3
ComV+

56.84 0.382 7.03 27.36 0.102 8.32 21.30 0.053 9.00
γ=0.1

ComV+
54.56 0.343 5.56 29.36 0.128 9.52 21.50 0.054 9.99

γ=0.3
ComV+

75.86 0.581 9.19 35.34 0.173 9.62 21.88 0.058 10.41
γ=0.5

MultiV+
56.30 0.368 260.59 32.74 0.142 281.59 20.78 0.054 300.20

γ=0.1, h=2
MultiV+

58.14 0.370 379.66 29.30 0.126 386.27 22.08 0.060 439.44
γ=0.1, h=3

MultiV+
59.22 0.396 190.88 28.36 0.126 254.34 21.30 0.052 269.15

γ=0.3, h=2
MultiV+

57.54 0.394 211.16 30.78 0.144 379.35 21.36 0.057 525.10
γ=0.3, h=3

MultiV+
62.36 0.432 164.39 32.62 0.157 252.06 24.02 0.067 283.00

γ=0.5, h=2
MultiV+

65.02 0.466 318.62 31.98 0.154 407.74 22.12 0.067 474.81
γ=0.5, h=3

Table 4.5: Experiments in the noisy case on artificial graphs with k=2 layers. Notation: best
performances are marked with bold fonts and gray background and second best performances
with only gray background.

56

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

20

40

60

80

100

A
cc

ur
ac

y

(a) pin/pout=3

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

20

40

60

80

100

A
cc

ur
ac

y

(b) pin/pout=2.5

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

20

40

60

80

100

A
cc

ur
ac

y

(c) pin/pout=2

Figure 4.17: Accuracy of the experiments in the noisy case on artificial graphs with k=2 layers

57

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

0.2

0.4

0.6

0.8

1

N
M

I

(a) pin/pout=3

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

0.2

0.4

0.6

0.8

1

N
M

I

(b) pin/pout=2.5

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

0.2

0.4

0.6

0.8

1

N
M

I

(c) pin/pout=2

Figure 4.18: NMI of the experiments in the noisy case on artificial graphs with k=2 layers

58

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

30

40

50

60

70

80

90

A
cc

ur
ac

y

(a) pin/pout=3

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

5

10

15

20

25

30

35

A
cc

ur
ac

y

(b) pin/pout=2.5

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

16

18

20

22

24

26

28

30

32

A
cc

ur
ac

y

(c) pin/pout=2

Figure 4.19: Accuracy of the experiments in the noisy case on artificial graphs with k=2 layers

59

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
M

I

(a) pin/pout=3

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

0.2

0.3

0.4

0.5

0.6

N
M

I

(b) pin/pout=2.5

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

N
M

I

(c) pin/pout=2

Figure 4.20: NMI of the experiments in the noisy case on artificial graphs with k=2 layers

60

NOISY CASE: k=3

pin/pout=3 pin/pout=2.5 pin/pout=2
Ac NMI Cpu Ac NMI Cpu Ac NMI Cpu

ComA 31.08 0.140 6.61 23.32 0.074 7.15 21.48 0.046 8.23
MultiA

36.54 0.183 198.97 23.18 0.069 242.43 20.72 0.045 280.91
h=2

MultiA
35.40 0.169 366.69 21.76 0.066 431.68 21.86 0.054 441.05

h=3
ComV+

37.36 0.196 8.67 23.92 0.085 9.97 20.34 0.044 13.69
γ=0.1

ComV+
38.68 0.219 8.58 25.94 0.095 9.57 20.76 0.045 11.57

γ=0.3
ComV+

52.64 0.328 9.88 25.52 0.092 10.34 21.32 0.055 12.94
γ=0.5

MultiV+
36.62 0.188 245.82 22.84 0.070 293.56 21.06 0.037 331.74

γ=0.1, h=2
MultiV+

32.32 0.151 348.44 23.56 0.077 363.38 21.52 0.051 440.29
γ=0.1, h=3

MultiV+
42.10 0.227 225.27 23.70 0.082 260.47 21.30 0.047 277.16

γ=0.3, h=2
MultiV+

36.00 0.189 373.14 23.16 0.069 418.36 21.20 0.042 439.75
γ=0.3, h=3

MultiV+
48.02 0.306 253.78 27.08 0.102 292.30 21.48 0.057 309.10

γ=0.5, h=2
MultiV+

59.48 0.402 362.97 24.44 0.099 408.00 20.80 0.049 442.13
γ=0.5, h=3

Table 4.6: Experiments in the noisy case on artificial graphs with k=3 layers. Notation: best
performances are marked with bold fonts and gray background and second best performances
with only gray background.

61

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

20

40

60

80

100

A
cc

ur
ac

y

(a) pin/pout=3

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

20

40

60

80

100

A
cc

ur
ac

y

(b) pin/pout=2.5

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

20

40

60

80

100

A
cc

ur
ac

y

(c) pin/pout=2

Figure 4.21: Accuracy of the experiments in the noisy case on artificial graphs with k=3 layers

62

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

0.2

0.4

0.6

0.8

1

N
M

I

(a) pin/pout=3

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

0.2

0.4

0.6

0.8

1

N
M

I

(b) pin/pout=2.5

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

0.2

0.4

0.6

0.8

1

N
M

I

(c) pin/pout=2

Figure 4.22: NMI of the experiments in the noisy case on artificial graphs with k=3 layers

63

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

20

30

40

50

60

70

80

90

A
cc

ur
ac

y

(a) pin/pout=3

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

20

25

30

35

A
cc

ur
ac

y

(b) pin/pout=2.5

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

16

18

20

22

24

26

28

A
cc

ur
ac

y

(c) pin/pout=2

Figure 4.23: Accuracy of the experiments in the noisy case on artificial graphs with k=3 layers

64

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N
M

I

(a) pin/pout=3

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

0.05

0.1

0.15

N
M

I

(b) pin/pout=2.5

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

N
M

I

(c) pin/pout=2

Figure 4.24: NMI of the experiments in the noisy case on artificial graphs with k=3 layers

65

muti-layers graph with 169 nodes, 3 layers, and 6 communities of size 56, 21, 11, 18, 51, 12.
BBCSports is a dataset of sports articles of BBC and corresponds to a multi-layer graph with
544 nodes, 2 layers and 5 communities of size 62, 104, 193, 124, 61.
The last dataset, called Wikipedia, reports Wikipedia articles and gives a multi-layer graph with
693 nodes, 2 layers and 10 communities of size 34, 88, 96, 85, 65, 58, 51, 41, 71, 104.

We analysed the informative and the noisy settings. In the noisy case, we kept the first layer
and we added to all the other layers a matrix, generated by the Stochastic Block Model with
pin = pout = 0.05. For each dataset, we tested the algorithms on 10 runs.

For each of the two cases, we report the results in a table. Each row corresponds to a method,
which is indicated in the first column. We studied the Louvain Multiobjective models for length
of the filter h = 2, 3 and, in the definition of function F- in equation (3.8) and F+ in equation
(3.9), we set γ = 0.1, 0.3, 0.5. The names of the datasets are reported in the second row. For
each real dataset we show the accuracy (Ac) in percentage, the Normalized Mutual Information
(NMI) and the execution time in seconds (Cpu) of the corresponding output. The best perfor-
mances are marked with bold fonts and gray background and second best performances with
only gray background. We show the results also using bar plots. In the noisy case, in the tables
and in the bar plots, we report the average of the values on 10 runs. We summarize the results
of the multiple runs through some boxplots.

4.3.1 Informative case

In the informative case, all layers have the same community structure, so each single layer has
a piece of meaningful information.

For this case, we compared the models community-average (ComA) and community-variance-
minus (ComV-) (Section 3.1), multi-average (MultiA) and multi-variance-minus (MultiV-) (Sec-
tion 3.2). The idea behind is that for the informative case we would like to maximize the average
and minimize the variance of modularity on the layers.

Table 4.7 shows the results for the informative case. Figure 4.25 and Figure 4.26 represent the
Accuracy and the NMI of the results in some bar plots.
All the methods perform very good on the first two datasets 3sources and BBCSports. ComA
performs the worst results. The best performances are achieved by MultiV- with h = 2,
γ = 0.5 in the first dataset and by MultiV- with h = 3, γ = 0.1 in the second one. In the
Wikipedia dataset the results are slightly worse and the highest outputs are obtained by MultiA
with h = 3, ComV- with γ = 0.3 and ComA.
Execution times increase with increasing number of nodes and are higher for the Louvain Mul-
tiobjective methods.

66

4.3.2 Noisy case

In the noisy case, we kept the first layer and we added to all the other layers a matrix, generated
by the Stochastic Block Model with pin = pout = 0.05. For each dataset, we tested the algorithms
on 10 runs.

For this case, we compared the models community-average (ComA) and community-variance-
plus (ComV+) (Section 3.1), multi-average (MultiA) and multi-variance-plus (MultiV+) (Sec-
tion 3.2). The idea behind is that for the noisy case we would like to maximize both the average
and the variance of modularity on the layers.

Table 4.8 shows the average results for the noisy case. Figure 4.27 and Figure 4.28 represent
the Accuracy and the NMI of the results in some bar plots. We summarize the results of the 10
runs in the boxplots in Figure 4.29 and Figure 4.30.
All the methods perform well on the first two datasets 3sources and BBCSports. The worst
results are obtained by algorithms that use function F+ with γ = 0.3 and 0.5. Unfortunately,
all the methods give bad results for the Wikipedia dataset.

All the algorithms achieve better results in the informative case than the noisy one. Moreover,
execution times are lower in the noisy case than in the informative case. In fact, in the informa-
tive case each layer has a piece of meaningful information, in fact in the noisy case some layers
can give wrong information.
As seen in the informative case, execution times increase with increasing number of nodes and
are higher for the Louvain Multiobjective methods.

67

INFORMATIVE CASE

3sources BBCSport Wikipedia
Ac NMI Cpu Ac NMI Cpu Ac NMI Cpu

ComA 85.80 0.749 0.21 74.82 0.753 2.09 55.56 0.544 4.02
MultiA

86.39 0.765 3.59 89.89 0.825 51.44 52.53 0.521 136.54
h=2

MultiA
86.98 0.773 5.30 79.04 0.791 85.77 55.84 0.546 207.34

h=3
ComV-

85.80 0.749 0.25 82.35 0.789 2.54 54.83 0.520 5.87
γ=0.1
ComV-

85.80 0.749 0.26 75.18 0.751 2.40 41.70 0.285 5.43
γ=0.3
ComV-

86.98 0.781 0.24 83.27 0.798 2.69 37.52 0.285 8.94
γ=0.5

MultiV-
86.39 0.765 3.69 84.38 0.784 56.48 54.55 0.503 144.25

γ=0.1, h=2
MultiV-

86.98 0.773 5.60 90.44 0.837 89.38 54.40 0.520 265.18
γ=0.1, h=3

MultiV-
86.39 0.765 3.64 84.56 0.787 56.22 44.30 0.337 167.55

γ=0.3, h=2
MultiV-

88.76 0.805 5.97 80.51 0.787 70.36 44.30 0.369 264.88
γ=0.3, h=3

MultiV-
88.76 0.812 4.13 80.88 0.784 50.78 37.09 0.266 178.91

γ=0.5, h=2
MultiV-

86.98 0.775 8.12 86.40 0.816 82.10 36.65 0.279 207.46
γ=0.5, h=3

Table 4.7: Experiments in the informative case on real datasets. Notation: best performances
are marked with bold fonts and gray background and second best performances with only gray
background.

68

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

20

40

60

80

100

A
cc

ur
ac

y

(a) 3sources

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

20

40

60

80

100

A
cc

ur
ac

y

(b) BBCSport

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

20

40

60

80

100

A
cc

ur
ac

y

(c) Wikipedia

Figure 4.25: Accuracy of the experiments in the informative case on real datasets

69

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

0.2

0.4

0.6

0.8

1

N
M

I

(a) 3sources

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

0.2

0.4

0.6

0.8

1

N
M

I

(b) BBCSport

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

0.2

0.4

0.6

0.8

1

N
M

I

(c) Wikipedia

Figure 4.26: NMI of the experiments in the informative case on real datasets

70

NOISY CASE

3sources BBCSport Wikipedia
Ac NMI Cpu Ac NMI Cpu Ac NMI Cpu

ComA 75.50 0.706 1.01 81.18 0.749 4.49 17.59 0.065 7.84
MultiA

76.80 0.715 14.48 81.84 0.752 128.82 17.30 0.067 397.11
h=2

MultiA
77.04 0.717 22.32 83.25 0.757 192.67 17.34 0.068 452.51

h=3
ComV+

77.63 0.717 1.20 80.74 0.739 5.29 17.29 0.063 8.79
γ=0.1

ComV+
74.73 0.698 1.28 71.10 0.686 4.97 17.17 0.061 9.22

γ=0.3
ComV+

69.53 0.661 1.09 65.09 0.648 5.03 16.26 0.058 9.07
γ=0.5

MultiV+
77.87 0.717 15.00 81.27 0.739 129.70 17.84 0.066 302.08

γ=0.1, h=2
MultiV+

74.14 0.698 23.33 77.67 0.728 190.31 17.71 0.066 453.98
γ=0.1, h=3

MultiV+
74.20 0.699 14.69 74.03 0.698 122.65 17.55 0.063 317.09

γ=0.3, h=2
MultiV+

75.33 0.703 21.85 74.23 0.699 192.38 17.30 0.062 441.93
γ=0.3, h=3

MultiV+
67.81 0.658 14.25 65.42 0.648 125.40 16.70 0.058 320.44

γ=0.5, h=2
MultiV+

69.59 0.661 21.05 63.14 0.644 187.00 17.11 0.058 450.51
γ=0.5, h=3

Table 4.8: Experiments in the noisy case on real datasets. Notation: best performances are
marked with bold fonts and gray background and second best performances with only gray
background.

71

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

20

40

60

80

100

A
cc

ur
ac

y

(a) 3sources

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

20

40

60

80

100

A
cc

ur
ac

y

(b) BBCSport

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

20

40

60

80

100

A
cc

ur
ac

y

(c) Wikipedia

Figure 4.27: Accuracy of the experiments in the noisy case on real datasets

72

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

0.2

0.4

0.6

0.8

1

N
M

I

(a) 3sources

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

0.2

0.4

0.6

0.8

1

N
M

I

(b) BBCSport

Com
A

M
ult

iV
(h

=3
)

M
ult

iV
-(h

=2
)

Algorithms

0

0.2

0.4

0.6

0.8

1

N
M

I

(c) Wikipedia

Figure 4.28: NMI of the experiments in the noisy case on real datasets

73

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

60

65

70

75

80

85

90

A
cc

ur
ac

y

(a) 3sources

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

60

65

70

75

80

85

90

A
cc

ur
ac

y

(b) BBCSport

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

15

16

17

18

19

20

A
cc

ur
ac

y

(c) Wikipedia

Figure 4.29: Accuracy of the experiments in the noisy case on real datasets

74

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

0.6

0.65

0.7

0.75

0.8

N
M

I

(a) 3sources

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

0.6

0.65

0.7

0.75

0.8

N
M

I

(b) BBCSport

Com
A

M
ult

iV
-(h

=2
)

M
ult

iV
(h

=3
)

Algorithms

0.05

0.055

0.06

0.065

0.07

0.075

N
M

I

(c) Wikipedia

Figure 4.30: NMI of the experiments in the noisy case on real datasets

75

76

Chapter 5

Conclusions

In this thesis project we presented multiple methods for community detection in multi-layer
graphs.
Most of the current algorithms either reduce multi-layer networks into a single-layer network or
extend the algorithms for single-layer networks by using consensus clustering. However, these
algorithms are criticized for their low accuracy because they either cannot preserve the com-
munity structure in compressed networks or ignore the connection among various layers. To
overcome these problems, we tried to simultaneously take into account multiple layers.

The algorithms that we proposed are based on the Louvain heuristic method, that is a popular
algorithm for community detection in single-layer graphs. It is an iterative procedure composed
by two phases. During phase 1, it uses as criterion the modularity function, that is the most
popular quality function for measuring the goodness of partitions.
The most intuitive idea to extend this work to the multi-layer case, already studied in the liter-
ature, is to use the average of modularity on the layers.
The first method that we proposed, called Louvain Expansion, instead of considering just the
modularity average, it takes into account the modularity variance.
The second algorithm, called Louvain Multiobjective, is more sophisticated and it is a filter type
method, in fact it maintains just the modularity vectors that are not dominated according to a
suitably developed Pareto search.
We suggested different versions of these methods to better analyse two situations: the informa-
tive case, where each layer has the same community structure, and the noisy case, where instead
just some layers present a community structure and all the others are noise.

We implemented all the algorithms using Matlab.
The methods have been tested on both artificial and real world networks. In both cases, we
studied the informative and the noisy situation. We compared the results of the different algo-
rithms calculating the accuracy and the Normalized Mutual Information.
We generated artificial networks with 2 and 3 layers using the Stochastic Block Model. In the
informative case all the algorithms behave almost the same way unless in few occasions; instead
in the noisy case the method already proposed in the literature, that considers just the average

77

of modularity on the layers, is outdated by almost all the other methods. In particular, the best
performances are achieved by the algorithms that consider the modularity variance as well as
the modularity average giving them the same weight.
We tested our methods also on three real datasets from the literature. Also in this case we
verified that our proposed approaches are competitive with the already proposed method.
For time reasons, we did not test our models against state-of-the-art algorithms and this would
be an additional step for providing robust results.

For further research in future studies, we could improve the models using a filter also in the
phase 2 and trying to nominate the communities in different ways, s.a. randomizing the labels
at the beginning of phase 1.
We should perform an in depth computational analysis with different values of h length of the
list and γ weight of variance in the objective function.
A further goal is to test the methods on different type networks. For instance, we could use
artificial graphs with different number of nodes, communities of various size, or with more than
3 layers. We should also test the algorithms on real networks from different fields.
A further idea is to evaluate and compare the outputs of the methods through the use of different
tools.

78

Appendix A

Matlab code of the
community-average method
(Section 3.1)

1 %community -average

2 %

3 % Inputs :

4 % M : adjacent matrix

5 % s : 1 = Recursive computation

6 % : 0 = Just one level computation

7 %

8 % Output :

9 % COMTY , structure with the following information

10 % for each level i :

11 % COMTY.COM{i} : vector of community partition

12 % COMTY.SIZE{i} : vector of community sizes

13 % COMTY.MOD{i} : vector of modularities of clustering on the layers

14 % COMTY.Average(i) : average of modularity on the layers

15 % COMTY.Niter(i) : Number of iteration before convergence

16 % ending :

17 function [COMTY ending] = community_average(M,z)

18 if nargin < 1

19 error(’not enough argument ’);

20 end

21

22 if nargin < 2

23 z = 1;

24 end

25

26 S = size(M);

27 N = S(1);

28 if length(S)==3

79

29 k = S(3);

30 else k = 1;

31 end

32

33 ending = 0;

34

35 for s=1:k

36 M2(:,:,s)=M(:,:,s)-diag(diag(M(:,:,s)));

37 end

38

39 %total weight of the graph

40 for s=1:k

41 if z==1

42 M(:,:,s) = M(:,:,s) + diag(diag(M(:,:,s)));

43 end

44 m{s} = sum(sum(M(:,:,s)))/2;

45 end

46

47 Niter = 0; %number of iterations

48

49 if (sum(cellfun(@(x)x>0,m))==0) | N == 1

50 ending = 1;

51 COMTY = 0;

52 return

53 end

54

55 %Delate layers with m=0

56 M(:,:,(cellfun(@(x)x==0,m)))=[];

57 k = k - sum(cellfun(@(x)x==0,m));

58

59 COM = 1:S(1); % Community of node i

60

61 for s=1:k

62 K(:,:,s) = sum(M(:,:,s)); % K(i)= sum of wieght incident to node i

63 SumTot(:,:,s) = sum(M(:,:,s)); %SumTot(i)= sum of weight incident to

nodes in community i

64 SumIn(:,:,s) = diag(M(:,:,s)) ’; %SumIn(i)= sum of weight inside

community i (loops)

65 %At the beginning each node is a

community

66 Q{s} = compute_modularity(COM ,M(:,:,s));

67 end

68 Average = sum([Q{:}])/k;

69

70 %Neighbor{j}{s} neighbor of node j in layer s

71 for j=1:N

72 for s=1:k

73 temp=M2(:,:,s);

74 Neighbor_j{s} = find(temp(j,:));

80

75 end

76 Neighbor{j}= Neighbor_j;

77 end

78

79 gain = 1;

80 while (gain == 1)

81 gain = 0;

82 for i=1:N

83 Ci = COM(i);

84 NB=unique(cat(2,Neighbor{i}{:}));

85 G = zeros(1,N); % Gain vector

86 best_increase = -inf;

87 Cnew = Ci;

88 COM(i) = -1;

89 %remove i from its community

90 for s=1:k

91 CNi = (COM==Ci); %list of nodes in Ci community , without i

92 Ki_in_i{s} = sum(M(i,CNi ,s)); %sum of weights between i and Ci

93 %Gain of modularity

94 GQ_i{s} = K(:,i,s)*SumTot(:,Ci ,s)/(2*(m{s}^(2))) - Ki_in_i{s}/m{

s} - ((K(:,i,s))^(2))/(2*(m{s}^(2)));

95 %Recalculate values

96 SumTot(:,Ci ,s) = SumTot(:,Ci ,s) - K(:,i,s); %weights incident to

Ci community

97 SumIn(:,Ci ,s) = SumIn(:,Ci,s) - 2*sum(M(i,CNi ,s)) - M(i,i,s); %

weights community i

98 end

99 for j=1: length(NB)

100 Cj = COM(NB(j));

101 if (G(Cj) == 0)

102 CNj = (COM==Cj); %nodes in community Cj , without j

103 for s=1:k

104 Ki_in_j{s} = sum(M(i,CNj ,s)); %sum of weights between i and

Cj

105 GQ_j{s} = Ki_in_j{s}/m{s} - (K(:,i,s)*SumTot(:,Cj ,s))/(2*(m{

s}^(2))); %gain deltaQ if I put isolated node i in Cj

106 end

107 %gain average

108 for s=1:k

109 DQ_j{s} = GQ_i{s} + GQ_j{s};

110 end

111 G(Cj) =(sum([DQ_j {:}])/k);

112 if G(Cj) > best_increase

113 best_increase = G(Cj);

114 DQ_j_t = DQ_j;

115 Cnew_t = Cj;

116 end

117 end

118 end

81

119 if best_increase > -10^(-15)

120 Cnew = Cnew_t;

121 Average = Average + best_increase;

122 for s=1:k

123 Q{s} = Q{s} + DQ_j_t{s};

124 end

125 end

126 %Recalculate

127 Ck = (COM==Cnew);

128 for s=1:k

129 SumIn(:,Cnew ,s) = SumIn(:,Cnew ,s) + 2*sum(M(i,Ck,s)) + M(i,i,s);

130 SumTot(:,Cnew ,s) = SumTot(:,Cnew ,s) + K(:,i,s);

131 end

132 COM(i) = Cnew;

133 if (Cnew ~= Ci)

134 gain = 1;

135 end

136 end

137 Niter = Niter + 1;

138 end

139 Niter = Niter - 1;

140 [COM] = reindex_com(COM);

141 COMTY.COM{1} = COM;

142 COMTY.MOD{1} = [Q{:}];

143 COMTY.Average (1) = Average;

144 COMTY.Niter (1) = Niter;

145

146

147 % Perform part 2

148 if (z == 1)

149 Mnew = M;

150 Mold = Mnew;

151 COMcur = COM;

152 COMfull = COM;

153 j = 2;

154 while 1

155 Mold = Mnew;

156 S2 = size(Mold);

157 Nnode = S2(1);

158

159 COMu = unique(COMcur);

160 Ncom = length(COMu);

161 ind_com = sparse(Ncom ,Nnode);

162 ind_com_full = sparse(Ncom ,N);

163 for p=1: Ncom

164 ind = find(COMcur ==p);

165 ind_com(p,1: length(ind)) = ind;

166 end

167 for p=1: Ncom

82

168 ind = find(COMfull ==p);

169 ind_com_full(p,1: length(ind)) = ind;

170 end

171 Mnew = [];

172 for s=1:k

173 Mnew(:,:,s) = zeros(Ncom ,Ncom); %new matrix (each node is a

community)

174 for m=1: Ncom

175 for n=m:Ncom

176 ind1 = ind_com(m,:);

177 ind2 = ind_com(n,:);

178 %weights of edges between communities

179 Mnew(m,n,s) = sum(sum(Mold(ind1(ind1 >0),ind2(ind2 >0),s)

));

180 Mnew(n,m,s) = sum(sum(Mold(ind1(ind1 >0),ind2(ind2 >0),s)

));

181 end

182 end

183 end

184 [COMt e] = community_average(Mnew ,0);

185 if (e ~= 1)

186 COMfull = sparse(1,N);

187 COMcur = COMt.COM {1};

188 for p=1: Ncom

189 ind1 = ind_com_full(p,:);

190 COMfull(ind1(ind1 >0)) = COMcur(p);

191 end

192 [COMfull2] = reindex_com(COMfull);

193 COMTY.COM{j} = COMfull2;

194 COMTY.MOD{j} = COMt.MOD {1};

195 COMTY.Average(j) = COMt.Average (1);

196 COMTY.Niter(j) = COMt.Niter;

197 Ind = (COMfull2 == COMTY.COM{j-1});

198 if (sum(Ind) == length(Ind))

199 return;

200 end

201 else

202 return;

203 end

204 j = j + 1;

205 end

206 end

207 end

208

209 % Re-index community partition by size

210 function [C Ss] = reindex_com(COMold)

211 C = sparse(1,length(COMold));

212 COMu = unique(COMold);

213 S = sparse(1,length(COMu));

83

214 for l=1: length(COMu)

215 S(l) = length(COMold(COMold ==COMu(l)));

216 end

217 [Ss INDs] = sort(S,’descend ’);

218 for l=1: length(COMu)

219 C(COMold ==COMu(INDs(l))) = l;

220 end

221 end

222

223 %Compute modulartiy

224 function MOD = compute_modularity(C,Mat)

225

226 S = size(Mat);

227 N = S(1);

228 m = sum(sum(Mat))/2; %total weight

229 MOD = 0;

230 COMu = unique(C);

231

232 for j=1: length(COMu)

233 Cj = (C==COMu(j)); %list of nodes in Cj

234 Ec = sum(sum(Mat(Cj ,Cj))); %sum of weights between nodes in Cj

235 Et = sum(sum(Mat(Cj ,:))); %sum of weights of nodes incident in nodes

of Cj

236 if Et >0

237 MOD = MOD + Ec/(2*m)-(Et/(2*m))^2;

238 end

239 end

240 end

84

Appendix B

Matlab code of the
community-variance-minus method
(Section 3.1)

1 %community -variance -minus

2 %

3 % Inputs :

4 % M : weight matrix

5 % lambda : weight of variance in function for cut filter

6 % z : 1 = Recursive computation

7 % : 0 = Just one level computation

8 %

9 % Output :

10 % COMTY , structure with the following information

11 % for each level i :

12 % COMTY.COM{i} : vector of community partition

13 % COMTY.SIZE{i} : vector of community sizes

14 % COMTY.MOD{i} : vector of modularities of clustering on the layers

15 % COMTY.Average(i) : average of modularity on the layers

16 % COMTY.Niter(i) : Number of iteration before convergence

17 %

18 function [COMTY ending] = community_variance_minus(M,lambda)

19

20 if nargin < 1

21 error(’not enough argument ’);

22 end

23

24 if nargin < 2

25 error(’not lambda defined ’);

26 end

27

28 if nargin < 3

85

29 z = 1;

30 end

31

32 S = size(M);

33 N = S(1);

34 if length(S)==3

35 k = S(3);

36 else k = 1;

37 end

38

39 ending = 0;

40

41 for s=1:k

42 M2(:,:,s)=M(:,:,s)-diag(diag(M(:,:,s)));

43 end

44

45 %total weight of the graph

46 for s=1:k

47 if z==1

48 M(:,:,s) = M(:,:,s) + diag(diag(M(:,:,s)));

49 end

50 m{s} = sum(sum(M(:,:,s)))/2;

51 end

52

53 Niter = 0; %number of iterations

54

55 if (sum(cellfun(@(x)x>0,m))==0) | N == 1

56 ending = 1;

57 COMTY = 0;

58 return;

59 end

60

61 %Delate layers with m=0

62 M(:,:,(cellfun(@(x)x==0,m)))=[];

63 k = k - sum(cellfun(@(x)x==0,m));

64

65 COM = 1:S(1); % Community of node i

66

67 for s=1:k

68 K(:,:,s) = sum(M(:,:,s)); % K(i)= sum of wieght incident to node i

69 SumTot(:,:,s) = sum(M(:,:,s)); %SumTot(i)= sum of weight incident to

nodes in community i

70 SumIn(:,:,s) = diag(M(:,:,s)) ’; %SumIn(i)= sum of weight inside

community i (loops)

71 %At the beginning each node is a

community

72 Q{s} = compute_modularity(COM ,M(:,:,s));

73 end

74 Average = sum([Q{:}])/k;

86

75 if k==1

76 Variance = 0;

77 else

78 Variance = (sum(([Q{:}]- Average).^(2))) / (k-1); %variance

79 end

80 Function = (1-lambda) * Average - lambda * Variance; %function

81

82 %Neighbor{j}{s} neighbor of node j in layer s

83 for j=1:N

84 for s=1:k

85 temp=M2(:,:,s);

86 Neighbor_j{s} = find(temp(j,:));

87 end

88 Neighbor{j}= Neighbor_j;

89 end

90

91 gain = 1;

92 while (gain == 1)

93 gain = 0;

94 for i=1:N

95 Ci = COM(i);

96 NB=unique(cat(2,Neighbor{i}{:}));

97 G = zeros(1,N); % Gain vector

98 best_increase = -inf;

99 Cnew = Ci;

100 COM(i) = -1;

101 %remove i from its community

102 for s=1:k

103 CNi = (COM==Ci); %list of nodes in Ci community , without i

104 Ki_in_i{s} = sum(M(i,CNi ,s)); %sum of weights between i and Ci

105 %Gain of modularity

106 GQ_i{s} = K(:,i,s)*SumTot(:,Ci ,s)/(2*(m{s}^(2))) - Ki_in_i{s}/m{

s} - ((K(:,i,s))^(2))/(2*(m{s}^(2)));

107 %Recalculate values

108 SumTot(:,Ci ,s) = SumTot(:,Ci ,s) - K(:,i,s); %weights incident to

Ci community

109 SumIn(:,Ci,s) = SumIn(:,Ci,s) - 2*sum(M(i,CNi ,s)) - M(i,i,s); %

weights community i

110 end

111 for j=1: length(NB)

112 Cj = COM(NB(j));

113 if (G(Cj) == 0)

114 CNj = (COM==Cj); %nodes in community Cj , without j

115 for s=1:k

116 Ki_in_j{s} = sum(M(i,CNj ,s)); %sum of weights between i and

Cj

117 GQ_j{s} = Ki_in_j{s}/m{s} - (K(:,i,s)*SumTot(:,Cj ,s))/(2*(m{

s}^(2))); %gain deltaQ if I put isolated node i in Cj

118 end

87

119 %variance gain

120 if k==1

121 GV_j = 0;

122 else

123 for s=1:k

124 DQ{s} = GQ_i{s} + GQ_j{s}; %gains

125 end

126 M_DQ = sum([DQ {:}])/k; %gain average

127 GV_j = ((sum (([DQ{:}] - M_DQ).^(2))) / (k-1)) + (2/(k-1)) *

sum(sum(([Q{:}]- Average) .* ([DQ{:}] - M_DQ))); %gain

variance

128 end

129 %gain of the function

130 G(Cj) = (1-lambda)*M_DQ - lambda* GV_j;

131 if G(Cj) > best_increase

132 best_increase = G(Cj); %gain function

133 Q_t = DQ; %gain of modularity;

134 M_t = M_DQ; %gain average

135 V_t = GV_j;%gain of variance

136 Cnew_t = Cj;

137 end

138 end

139 end

140 if best_increase > -10^(-15)

141 Cnew = Cnew_t;

142 for s=1:k

143 Q{s} = Q{s} + Q_t{s};

144 end

145 Average = Average + M_t;

146 Variance = Variance + V_t;

147 Function = Function + best_increase;

148 end

149 %Recalculate

150 Ck = (COM==Cnew);

151 for s=1:k

152 SumIn(:,Cnew ,s) = SumIn(:,Cnew ,s) + 2*sum(M(i,Ck,s)) + M(i,i,s);

153 SumTot(:,Cnew ,s) = SumTot(:,Cnew ,s) + K(:,i,s);

154 end

155 COM(i) = Cnew;

156 if (Cnew ~= Ci)

157 gain = 1;

158 end

159 end

160 Niter = Niter + 1;

161 end

162 Niter = Niter - 1;

163 [COM] = reindex_com(COM);

164 COMTY.COM{1} = COM;

165 COMTY.MOD{1} = [Q{:}];

88

166 COMTY.Average (1) = Average;

167 COMTY.Variance (1) = Variance;

168 COMTY.Function (1) = Function;

169 COMTY.Niter (1) = Niter;

170

171 % Perform part 2

172 if (z == 1)

173 Mnew = M;

174 Mold = Mnew;

175 COMcur = COM;

176 COMfull = COM;

177 j = 2;

178

179 while 1

180 Mold = Mnew;

181 S2 = size(Mold);

182 Nnode = S2(1);

183

184 COMu = unique(COMcur);

185 Ncom = length(COMu);

186 ind_com = sparse(Ncom ,Nnode);

187 ind_com_full = sparse(Ncom ,N);

188 for p=1: Ncom

189 ind = find(COMcur ==p);

190 ind_com(p,1: length(ind)) = ind;

191 end

192 for p=1: Ncom

193 ind = find(COMfull ==p);

194 ind_com_full(p,1: length(ind)) = ind;

195 end

196 Mnew = [];

197 for s=1:k

198 Mnew(:,:,s) = zeros(Ncom ,Ncom); %new matrix (each node is a

community)

199 for m=1: Ncom

200 for n=m:Ncom

201 ind1 = ind_com(m,:);

202 ind2 = ind_com(n,:);

203 %weights of edges between communities

204 Mnew(m,n,s) = sum(sum(Mold(ind1(ind1 >0),ind2(ind2 >0),s)

));

205 Mnew(n,m,s) = sum(sum(Mold(ind1(ind1 >0),ind2(ind2 >0),s)

));

206 end

207 end

208 end

209 [COMt e] = community_variance_minus(Mnew ,lambda ,0);

210 if (e ~= 1)

211 COMfull = sparse(1,N);

89

212 COMcur = COMt.COM {1};

213 for p=1: Ncom

214 ind1 = ind_com_full(p,:);

215 COMfull(ind1(ind1 >0)) = COMcur(p);

216 end

217 [COMfull2] = reindex_com(COMfull);

218 COMTY.COM{j} = COMfull2;

219 COMTY.MOD{j} = COMt.MOD {1};

220 COMTY.Average(j) = COMt.Average (1);

221 COMTY.Variance(j) = COMt.Variance (1);

222 COMTY.Function(j) = COMt.Function (1);

223 COMTY.Niter(j) = COMt.Niter;

224 Ind = (COMfull2 == COMTY.COM{j-1});

225 if (sum(Ind) == length(Ind))

226 return;

227 end

228 else

229 return;

230 end

231 j = j + 1;

232 end

233 end

234 end

235

236 % Re-index community partition by size

237 function [C Ss] = reindex_com(COMold)

238 C = sparse(1,length(COMold));

239 COMu = unique(COMold);

240 S = sparse(1,length(COMu));

241 for l=1: length(COMu)

242 S(l) = length(COMold(COMold ==COMu(l)));

243 end

244 [Ss INDs] = sort(S,’descend ’);

245 for l=1: length(COMu)

246 C(COMold ==COMu(INDs(l))) = l;

247 end

248 end

249 %Compute modulartiy

250 function MOD = compute_modularity(C,Mat)

251

252 S = size(Mat);

253 N = S(1);

254 m = sum(sum(Mat))/2; %total weight

255 MOD = 0;

256 COMu = unique(C);

257

258 for j=1: length(COMu)

259 Cj = (C==COMu(j)); %list of nodes in Cj

260 Ec = sum(sum(Mat(Cj ,Cj))); %sum of weights between nodes in Cj

90

261 Et = sum(sum(Mat(Cj ,:))); %sum of weights of nodes incident in nodes

of Cj

262 if Et >0

263 MOD = MOD + Ec/(2*m)-(Et/(2*m))^2;

264 end

265 end

266 end

91

92

Appendix C

Matlab code of the
community-variance-plus method
(Section 3.1)

1 %community -variance -plus

2 %

3 % Inputs :

4 % M : weight matrix

5 % lambda : weight of variance in function for cut filter

6 % z : 1 = Recursive computation

7 % : 0 = Just one level computation

8 %

9 % Output :

10 % COMTY , structure with the following information

11 % for each level i :

12 % COMTY.COM{i} : vector of community partition

13 % COMTY.SIZE{i} : vector of community sizes

14 % COMTY.MOD{i} : vector of modularities of clustering on the layers

15 % COMTY.Average(i) : average of modularity on the layers

16 % COMTY.Niter(i) : Number of iteration before convergence

17 %

18 function [COMTY ending] = community_variance_plus(M,lambda ,z)

19

20 if nargin < 1

21 error(’not enough argument ’);

22 end

23

24 if nargin < 2

25 error(’not lambda defined ’);

26 end

27

28 if nargin < 3

93

29 z = 1;

30 end

31

32 S = size(M);

33 N = S(1);

34 if length(S)==3

35 k = S(3);

36 else k = 1;

37 end

38

39 ending = 0;

40

41 for s=1:k

42 M2(:,:,s)=M(:,:,s)-diag(diag(M(:,:,s)));

43 end

44

45 %total weight of the graph

46 for s=1:k

47 if z==1

48 M(:,:,s) = M(:,:,s) + diag(diag(M(:,:,s)));

49 end

50 m{s} = sum(sum(M(:,:,s)))/2;

51 end

52

53 Niter = 0; %number of iterations

54

55 if (sum(cellfun(@(x)x>0,m))==0) | N == 1

56 ending = 1;

57 COMTY = 0;

58 return;

59 end

60

61 %Delate layers with m=0

62 M(:,:,(cellfun(@(x)x==0,m)))=[];

63 k = k - sum(cellfun(@(x)x==0,m));

64

65 COM = 1:S(1); % Community of node i

66

67 for s=1:k

68 K(:,:,s) = sum(M(:,:,s)); % K(i)= sum of wieght incident to node i

69 SumTot(:,:,s) = sum(M(:,:,s)); %SumTot(i)= sum of weight incident to

nodes in community i

70 SumIn(:,:,s) = diag(M(:,:,s)) ’; %SumIn(i)= sum of weight inside

community i (loops)

71 %At the beginning each node is a

community

72 Q{s} = compute_modularity(COM ,M(:,:,s));

73 end

74 Average = sum([Q{:}])/k;

94

75 if k==1

76 Variance = 0;

77 else

78 Variance = (sum(([Q{:}]- Average).^(2))) / (k-1); %variance

79 end

80 Function = (1-lambda) * Average + lambda * Variance; %function

81

82 %Neighbor{j}{s} neighbor of node j in layer s

83 for j=1:N

84 for s=1:k

85 temp=M2(:,:,s);

86 Neighbor_j{s} = find(temp(j,:));

87 end

88 Neighbor{j}= Neighbor_j;

89 end

90

91 gain = 1;

92 while (gain == 1)

93 gain = 0;

94 for i=1:N

95 Ci = COM(i);

96 NB=unique(cat(2,Neighbor{i}{:}));

97 G = zeros(1,N); % Gain vector

98 best_increase = -inf;

99 Cnew = Ci;

100 COM(i) = -1;

101 %remove i from its community

102 for s=1:k

103 CNi = (COM==Ci); %list of nodes in Ci community , without i

104 Ki_in_i{s} = sum(M(i,CNi ,s)); %sum of weights between i and Ci

105 %Gain of modularity

106 GQ_i{s} = K(:,i,s)*SumTot(:,Ci ,s)/(2*(m{s}^(2))) - Ki_in_i{s}/m{

s} - ((K(:,i,s))^(2))/(2*(m{s}^(2)));

107 %Recalculate values

108 SumTot(:,Ci ,s) = SumTot(:,Ci ,s) - K(:,i,s); %weights incident to

Ci community

109 SumIn(:,Ci,s) = SumIn(:,Ci,s) - 2*sum(M(i,CNi ,s)) - M(i,i,s); %

weights community i

110 end

111 for j=1: length(NB)

112 Cj = COM(NB(j));

113 if (G(Cj) == 0)

114 CNj = (COM==Cj); %nodes in community Cj , without j

115 for s=1:k

116 Ki_in_j{s} = sum(M(i,CNj ,s)); %sum of weights between i and

Cj

117 GQ_j{s} = Ki_in_j{s}/m{s} - (K(:,i,s)*SumTot(:,Cj ,s))/(2*(m{

s}^(2))); %gain deltaQ if I put isolated node i in Cj

118 end

95

119 %variance gain

120 if k==1

121 GV_j = 0;

122 else

123 for s=1:k

124 DQ{s} = GQ_i{s} + GQ_j{s}; %gains

125 end

126 M_DQ = sum([DQ {:}])/k; %gain average

127 GV_j = ((sum (([DQ{:}] - M_DQ).^(2))) / (k-1)) + (2/(k-1)) *

sum(sum(([Q{:}]- Average) .* ([DQ{:}] - M_DQ))); %gain

variance

128 end

129 %gain of the function

130 G(Cj) = (1-lambda)*M_DQ + lambda* GV_j;

131 if G(Cj) > best_increase

132 best_increase = G(Cj); %gain function

133 Q_t = DQ; %gain of modularity;

134 M_t = M_DQ; %gain average

135 V_t = GV_j;%gain of variance

136 Cnew_t = Cj;

137 end

138 end

139 end

140 if best_increase > -10^(-15)

141 Cnew = Cnew_t;

142 for s=1:k

143 Q{s} = Q{s} + Q_t{s};

144 end

145 Average = Average + M_t;

146 Variance = Variance + V_t;

147 Function = Function + best_increase;

148 end

149 %Recalculate

150 Ck = (COM==Cnew);

151 for s=1:k

152 SumIn(:,Cnew ,s) = SumIn(:,Cnew ,s) + 2*sum(M(i,Ck,s)) + M(i,i,s);

153 SumTot(:,Cnew ,s) = SumTot(:,Cnew ,s) + K(:,i,s);

154 end

155 COM(i) = Cnew;

156 if (Cnew ~= Ci)

157 gain = 1;

158 end

159 end

160 Niter = Niter + 1;

161 end

162 Niter = Niter - 1;

163 [COM] = reindex_com(COM);

164 COMTY.COM{1} = COM;

165 COMTY.MOD{1} = [Q{:}];

96

166 COMTY.Average (1) = Average;

167 COMTY.Variance (1) = Variance;

168 COMTY.Function (1) = Function;

169 COMTY.Niter (1) = Niter;

170

171 % Perform part 2

172 if (z == 1)

173 Mnew = M;

174 Mold = Mnew;

175 COMcur = COM;

176 COMfull = COM;

177 j = 2;

178

179 while 1

180 Mold = Mnew;

181 S2 = size(Mold);

182 Nnode = S2(1);

183

184 COMu = unique(COMcur);

185 Ncom = length(COMu);

186 ind_com = sparse(Ncom ,Nnode);

187 ind_com_full = sparse(Ncom ,N);

188 for p=1: Ncom

189 ind = find(COMcur ==p);

190 ind_com(p,1: length(ind)) = ind;

191 end

192 for p=1: Ncom

193 ind = find(COMfull ==p);

194 ind_com_full(p,1: length(ind)) = ind;

195 end

196 Mnew = [];

197 for s=1:k

198 Mnew(:,:,s) = zeros(Ncom ,Ncom); %new matrix (each node is a

community)

199 for m=1: Ncom

200 for n=m:Ncom

201 ind1 = ind_com(m,:);

202 ind2 = ind_com(n,:);

203 %weights of edges between communities

204 Mnew(m,n,s) = sum(sum(Mold(ind1(ind1 >0),ind2(ind2 >0),s)

));

205 Mnew(n,m,s) = sum(sum(Mold(ind1(ind1 >0),ind2(ind2 >0),s)

));

206 end

207 end

208 end

209 [COMt e] = community_variance_plus(Mnew ,lambda ,0);

210 if (e ~= 1)

211 COMfull = sparse(1,N);

97

212 COMcur = COMt.COM {1};

213 for p=1: Ncom

214 ind1 = ind_com_full(p,:);

215 COMfull(ind1(ind1 >0)) = COMcur(p);

216 end

217 [COMfull2] = reindex_com(COMfull);

218 COMTY.COM{j} = COMfull2;

219 COMTY.MOD{j} = COMt.MOD {1};

220 COMTY.Average(j) = COMt.Average (1);

221 COMTY.Variance(j) = COMt.Variance (1);

222 COMTY.Function(j) = COMt.Function (1);

223 COMTY.Niter(j) = COMt.Niter;

224 Ind = (COMfull2 == COMTY.COM{j-1});

225 if (sum(Ind) == length(Ind))

226 return;

227 end

228 else

229 return;

230 end

231 j = j + 1;

232 end

233 end

234 end

235

236 % Re-index community partition by size

237 function [C Ss] = reindex_com(COMold)

238 C = sparse(1,length(COMold));

239 COMu = unique(COMold);

240 S = sparse(1,length(COMu));

241 for l=1: length(COMu)

242 S(l) = length(COMold(COMold ==COMu(l)));

243 end

244 [Ss INDs] = sort(S,’descend ’);

245 for l=1: length(COMu)

246 C(COMold ==COMu(INDs(l))) = l;

247 end

248 end

249

250 %Compute modulartiy

251 function MOD = compute_modularity(C,Mat)

252

253 S = size(Mat);

254 N = S(1);

255 m = sum(sum(Mat))/2; %total weight

256 MOD = 0;

257 COMu = unique(C);

258

259 for j=1: length(COMu)

260 Cj = (C==COMu(j)); %list of nodes in Cj

98

261 Ec = sum(sum(Mat(Cj ,Cj))); %sum of weights between nodes in Cj

262 Et = sum(sum(Mat(Cj ,:))); %sum of weights of nodes incident in nodes

of Cj

263 if Et >0

264 MOD = MOD + Ec/(2*m)-(Et/(2*m))^2;

265 end

266 end

267 end

99

100

Appendix D

Matlab code of the multi-average
method (Section 3.2)

1 %multi -average

2 %

3 % Inputs :

4 % M : vector of weight matrix of each layer

5 % h : length of the filter

6 % z : 1 = Recursive computation

7 % : 0 = Just one level computation

8 %

9 % Output :

10 % L the filter with the following information

11 % for each element l:

12 % l{1}=Q cell with modularity of each layer

13 % l{2}={ COMcur COMfull COMindex} communities in the current graph , in

the

14 % original graph , communities in the current graph reindexed

15 % l{3}= SumTot (sum of weights of the links incident to nodes in a

community)

16 % l{4}= SumIn (sum of weights of the links inside a community)

17 % l{5}= Average (average)

18 %

19

20

21 function [L ending] = multi_average(M,h,z)

22 if nargin < 1

23 error(’not enough argument ’);

24 end

25 if nargin < 2

26 error(’not h defined ’);

27 end

28 if nargin < 3

29 z = 1;

101

30 end

31

32 S = size(M);

33 N = S(1);

34 if length(S)==3

35 k = S(3);

36 else k = 1;

37 end

38

39 ending = 0;

40

41 for s=1:k

42 M2(:,:,s)=M(:,:,s)-diag(diag(M(:,:,s)));

43 end

44

45 %total weight of the graph

46 for s=1:k

47 if z==1

48 M(:,:,s) = M(:,:,s) + diag(diag(M(:,:,s)));

49 end

50 m{s} = sum(sum(M(:,:,s)))/2;

51 end

52

53 Niter = 0; %number of iterations

54

55 % Calculation of the beginning values

56 COM {1} = 1:S(1); %current community %At the beginning each node is a

community

57 COM {2} = 1:S(1); %original graph commuity

58 COM {3} = 1:S(1); %community reindexed

59 %COM(i)= Community of node i

60

61 for s=1:k

62 K(:,:,s) = sum(M(:,:,s)); % K(i)= sum of wieght incident to node i

63 SumTot(:,:,s) = sum(M(:,:,s)); %SumTot(i)= sum of weight incident to

nodes in community i

64 SumIn(:,:,s) = diag(M(:,:,s)) ’; %SumIn(i)= sum of weight inside

community i (loops)

65 %At the beginning each node is a

community

66 Q{s} = compute_modularity(COM{1},M(:,:,s));

67 end

68 %average

69 Average = sum([Q{:}]) / k;

70

71 %filter

72 L={[{Q},{COM},SumTot ,SumIn ,Average]};

73 %If no edges in any layer or just one node

74 if (sum(cellfun(@(x)x>0,m))==0) | N == 1 %| logical or

102

75 ending = 1;

76 else

77

78 %Delate layers with m=0

79 M(:,:,(cellfun(@(x)x==0,m)))=[];

80 k = k - sum(cellfun(@(x)x==0,m));

81

82 %Neighbor{j}{s} neighbor of node j in layer s

83 for j=1:N

84 for s=1:k

85 temp=M2(:,:,s);

86 Neighbor_j{s} = find(temp(j,:));

87 end

88 Neighbor{j}= Neighbor_j;

89 end

90

91

92 GAIN = 1;

93 while (GAIN == 1) %Stop when putting nodes in other communities do not

increase the modularity

94 L_old=L;

95 L_new=L;

96 for i=1:N %for each node , in this order

97 L_o=L;

98 for l=1: length(L_o) %for each situation in the filter

99 %delate the point from the filter

100 L_new_o=L_new;

101 index = cellfun(@(x) isequal(x,L_o{l}), L_new , ’UniformOutput ’

, 1);

102 L_new(index)=[];

103 %step1

104 [L_new ,U] = step_1 ({L_o{l}{1}} ,{ L_o{l}{2}} ,L_o{l}{3},L_o{l

}{4},L_o{l}{5},k,Neighbor ,K,M,N,m,L_new ,h,i);

105 %if no new point , insert again the initial point in the filter

106 if U==0

107 L_new=L_new_o;

108 end

109 end

110 L_new = cut_filter(L_new ,h,k);

111 L=L_new;

112 end

113 %Check if nothing happened

114 if length(L_old)~= length(L_new)

115 GAIN =1;

116 else

117 C_old =[];

118 C_new =[];

119 for l=1: length(L_old)

120 R_old =[];

103

121 R_new =[];

122 for s=1:k

123 R_old = [R_old L_old{l}{1}{s}];

124 R_new = [R_new L_new{l}{1}{s}];

125 end

126 C_old = [C_old ; R_old];

127 C_new = [C_new ; R_new];

128 end

129 C = ismembertol(C_old ,C_new ,10^(-6));

130 if size(C,1)*size(C,2) == sum(sum(C))

131 GAIN =0;

132 end

133 end

134 Niter = Niter + 1;

135 end

136 end

137

138 % Perform part 2

139 if (z==1)

140 L = cut_filter(L,1,k); %one final element

141 Mnew=M; %new weight matrix of this iteration

142 Mold=Mnew; %old weight matrix of iteration befor

143 COMcur = L{1}{2}{3}; %communities in the graph of this iteration

144 COMfull = L{1}{2}{3}; %communities in the original graph

145 LL=L;

146 j=2;%number of pass (step1+step2)

147 S=1;

148 while S

149 L_old=LL;

150 Mold = Mnew;

151 S2 = size(Mold); %number of nodes

152 Nnode = S2(1);

153

154 COMu = unique(COMcur); %list of communities without repetitions

and in sorted order

155 Ncom = length(COMu); %number of communities

156 ind_com = sparse(Ncom ,Nnode); %zero matrix with a row for each

community and a column for each node in this configuration

157 ind_com_full =sparse(Ncom ,N); %zero matrix with a row for each

community and a column for each node of the original graph

158

159 for p=1: Ncom %for each community

160 ind = find(COMcur ==p);

161 ind_com(p,1: length(ind)) = ind;

162 end

163 for p=1: Ncom

164 ind = find(COMfull ==p);

165 ind_com_full(p,1: length(ind)) = ind;

166 end

104

167 Mnew =[];

168 for s=1:k

169 Mnew(:,:,s) = sparse(Ncom ,Ncom); %new matrix (each node is

a community)

170 for m=1: Ncom

171 for n=m:Ncom

172 ind1 = ind_com(m,:);

173 ind2 = ind_com(n,:);

174 %weights of edges between communities

175 Mnew(m,n,s) = sum(sum(Mold(ind1(ind1 >0),ind2(ind2 >0)

,s)));

176 Mnew(n,m,s) = sum(sum(Mold(ind1(ind1 >0),ind2(ind2 >0)

,s)));

177 end

178 end

179 end

180 %apply first step to this new matrix but z=0 without recursive

181 [LLL e] = multi_average(Mnew ,h,0);

182 if isempty(LLL)

183 L=LLL;

184 return

185 else

186 LL = cut_filter(LLL ,1,k); %one final element

187 %if (e ~= 1)

188 COMfull = sparse(1,N); %communities of the original graph

189 COMcur = LL {1}{2}{3}; %communities

190 for p=1: Ncom

191 ind1 = ind_com_full(p,:); %nodes in community p in the

original graph

192 COMfull(ind1(ind1 >0)) = COMcur(p); %community now of

node i

193 end

194 [COMfull] = reindex_com(COMfull);

195 LL {1}{2}{2}= COMfull;

196 %communities do not change

197 if isequal(L_old {1}{2}{2} ,LL {1}{2}{2})

198 %return not just this value , but all the value of the

last list

199 %calculate COMfull for each element of the last list

200 for l=1: length(LLL)

201 COMfull = sparse(1,N); %communities of the original

graph

202 COMcur = LLL{l}{2}{3}; %communities

203 for p=1: Ncom

204 ind1 = ind_com_full(p,:); %nodes in community p

in the original graph

205 COMfull(ind1(ind1 >0)) = COMcur(p); %community

now of node i

206 end

105

207 [COMfull] = reindex_com(COMfull);

208 LLL{l}{2}{2}= COMfull;

209 end

210 L = LLL;

211 S=0;

212 end

213 j = j + 1; %start another pass

214 tEnd = toc;

215 if tEnd > 1200

216 L = {};

217 return

218 end

219 end

220 end

221 end

222 end

223

224 %Compute step_1

225 function [L,U] = step_1(Q,COM ,SumTot ,SumIn ,Average ,k,Neighbor ,K,M,N,m,L,

h,i)

226

227 U=0; %if U=1 add at least an element to the list , otherwise put again

the initial point in the filter

228 COMcur=COM {1}{1}; %current community

229 Ci = COMcur(i); %community of node i

230

231 NB=unique(cat(2,Neighbor{i}{:}));

232

233 SumTot2=SumTot;

234 SumIn2=SumIn;

235

236 %remove i from its community

237 for s=1:k

238 COMcur2 = COMcur;

239 COMcur2(i) = -1;

240 CNi = (COMcur2 ==Ci); %list of nodes in Ci community , without i

241 Ki_in_i{s} = sum(M(i,CNi ,s)); %sum of weights between i and Ci

242 GQ_i{s} = (K(:,i,s)*SumTot2(:,Ci ,s))/(2*(m{s}^(2))) - Ki_in_i{s}/m{s

} - ((K(:,i,s))^(2))/(2*(m{s}^(2)));

243 %Recalculate values

244 SumTot2(:,Ci ,s) = SumTot2(:,Ci ,s) - K(:,i,s); %weights incident to

Ci community

245 SumIn2(:,Ci,s) = SumIn2(:,Ci ,s) - 2*sum(M(i,CNi ,s)) - M(i,i,s); %

weights community i

246 end

247

248 G = sparse(1,N);

249 for j=1: length(NB)

250 SumTot3=SumTot2;

106

251 SumIn3=SumIn2;

252 Cj = COMcur(NB(j)); %community of node j

253 if (G(Cj) == 0) %If not tried with another node of community Cj yet

254 G(Cj)=1;

255 for s=1:k

256 COMcur3 = COMcur;

257 COMcur3(i) = -1;

258 %I put i in the community of j for each layer

259 CNj = (COMcur3 ==Cj); %nodes in community Cj , without j

260 Ki_in_j{s} = sum(M(i,CNj ,s)); %sum of weights between i and

Cj

261 GQ_j{s} = Ki_in_j{s}/m{s} - (K(:,i,s)*SumTot3(:,Cj ,s))/(2*(m

{s}^(2))); %gain deltaQ if I put isolated node i in Cj

262 %Recalculate

263 SumTot3(:,Cj ,s) = SumTot3(:,Cj ,s) + K(:,i,s);

264 SumIn3(:,Cj ,s) = SumIn3(:,Cj ,s) + 2*sum(M(i,CNj ,s)) + M(i,i,

s);

265 end

266 COMcur4=COMcur;

267 COMcur4(i)=Cj;

268 COM {1}{1}= COMcur4;

269 [COMcur4] = reindex_com(COMcur4);

270 COM {1}{3}= COMcur4;

271 for s=1:k

272 DQ{s} = GQ_i{s} + GQ_j{s}; %gain modularity

273 end

274 GA_j = sum([DQ {:}])/k; %gain average

275 if GA_j > -10^(-14)

276 A_j = Average + GA_j;

277 %modularity

278 for s=1:k

279 Q_j{s} = Q{1}{s} + DQ{s};

280 end

281 [L] = add_to_filter ({Q_j},COM ,SumTot3 ,SumIn3 ,A_j ,L,k);

282 U=1;

283 end

284 end

285 end

286 end

287

288 %add a point to the filter

289 function [L] = add_to_filter(QQ,COM ,SumTot ,SumIn ,Average ,L,k)

290

291 if length(L) ~= 0

292

293 COMcur=COM {1}{1}; %current community

294

295 %1. Check if the new point is dominated by a point in the filter

296 DD=0;

107

297 l=1;

298 while (DD==0) & l<= length(L)

299 D=0;

300 s=1;

301 while (D==0) & s<=k

302 if QQ{1}{s}>L{l}{1}{s}

303 D=1;

304 end

305 s=s+1;

306 end

307 if D %the new point is not dominated by l

308 DD=1;

309 end

310 l=l+1;

311 end

312 if DD %the new point is not dominated

313 DDD =0;

314 l=1;

315 while (DDD ==0) & l<= length(L)

316 D=1;

317 s=1;

318 while D & s<=k

319 if abs(L{l}{1}{s} - QQ{1}{s}) > 10^(-14)

320 D=0;

321 end

322 s = s + 1;

323 end

324 if D

325 DDD=1;

326 end

327 l = l + 1;

328 end

329

330 if DDD ==0

331

332 %2.Check if the other points in the filter are dominated by the new

point %

333

334 for l=1: length(L)

335 D=1;

336 s=1;

337 while D & s<=k

338 if L{l}{1}{s}>QQ{1}{s}+10^(-14)

339 D=0;

340 end

341 s=s+1;

342 end

343 if D %l is dominated by the new point so I remove it from the

filter

108

344 L{l}=[];

345 end

346 end

347

348 empties =(cellfun(@isempty ,L));

349 L(empties) = [];

350 L{end +1}=[QQ,COM ,SumTot ,SumIn ,Average]; %Add the new point to the

filter

351

352 end

353 end

354 else

355 L{end +1}=[QQ,COM ,SumTot ,SumIn ,Average]; %Add the new point to the

filter

356 end

357 end

358

359 %cut the filter

360 function [L] = cut_filter(L,h,k)

361

362 %calculate the function for every element of the list

363 if length(L)>h

364 for l=1: length(L)

365 %function

366 Average{l} = L{l}{5};

367 end

368

369 %remuve the situations in the filter with the lower values

370 for t=1:(length(L)-h)

371 [mn,idx]=min([Average {:}]);

372 v=find([Average {:}]== mn); %if more element with same average values ,

delate the last one (because with h=1 I have same result as

cluster_jl_average_variance)

373 idx_t=v(end);

374 Average{idx_t}=Inf;

375 L{idx_t }=[];

376 end

377

378 empties = find(cellfun(@isempty ,L));

379 L(empties) = [];

380 end

381 end

382

383 %Compute modulartiy

384 function MOD = compute_modularity(C,Mat)

385

386 S = size(Mat);

387 N = S(1);

388

109

389 m = sum(sum(Mat))/2; %total weight

390

391 MOD = 0;

392 COMu = unique(C); %list of communities without repetiotions and in

sorted order

393 %for each community calculate modularity and then sum all together

394 for j=1: length(COMu)

395 Cj = (C==COMu(j)); %list of nodes in Cj

396 %faster then Cj = find(C==COMu(j))

397 Ec = sum(sum(Mat(Cj ,Cj))); %sum of weights between nodes in Cj

398 %Mat(Cj,Cj) submatrix

399 Et = sum(sum(Mat(Cj ,:))); %sum of weights of nodes incident in nodes

of Cj

400 if Et >0

401 MOD = MOD + Ec/(2*m)-(Et/(2*m))^2;

402 end

403 end

404

405 end

406

407 % Re-index community partition by size

408 function [C Ss] = reindex_com(COMold)

409 C = sparse(1,length(COMold));

410 COMu = unique(COMold);

411 S = sparse(1,length(COMu));

412 for l=1: length(COMu)

413 S(l) = length(COMold(COMold ==COMu(l)));

414 end

415 [Ss INDs] = sort(S,’descend ’);

416 for l=1: length(COMu)

417 C(COMold ==COMu(INDs(l))) = l;

418 end

419 end

420 %Re-index community partition no by size but by initial order

421 %function [C] = reindex_com(COMold)

422 %C = sparse(1,length(COMold)); %vector with a index for each node

423 %COMu = unique(COMold); %unique(v)=same data of v but not repetitions

and in sorted order

424 %COMolds=sort(COMold);

425 %COMu=COMolds ([true;diff(COMolds (:)) >0]);

426 %for l=1: length(COMu)

427 % C(COMold ==COMu(l)) = l; %Riname the communities

428 %end

429 %end

110

Appendix E

Matlab code of the
multi-variance-minus method
(Section 3.2)

1 %multi -variance -minus

2 %

3 % Inputs :

4 % M : vector of weight matrix of each layer

5 % z : 1 = Recursive computation

6 % : 0 = Just one level computation

7 % Output :

8 % L the filter with the following information

9 % for each element l:

10 % l{1}=Q cell with modularity of each layer

11 % l{2}={ COMcur COMfull COMindex} communities in the current graph , in

the

12 % original graph , communities in the current graph reindexed

13 % l{3}= SumTot (sum of weights of the links incident to nodes in a

community)

14 % l{4}= SumIn (sum of weights of the links inside a community)

15 % l{5}= Average (average)

16 % l{6}= Function (funtion)

17 %

18

19

20 function [L ending] = multi_variance_minus(M,lambda ,h,z)

21

22 if nargin < 1

23 error(’not enough argument ’);

24 end

25 if nargin < 2

26 error(’not lambda defined ’);

111

27 end

28 if nargin < 3

29 error(’not h defined ’);

30 end

31 if nargin < 4

32 z = 1;

33 end

34

35 S = size(M);

36 N = S(1);

37 if length(S)==3

38 k = S(3);

39 else k = 1;

40 end

41

42 ending = 0;

43

44 for s=1:k

45 M2(:,:,s)=M(:,:,s)-diag(diag(M(:,:,s)));

46 end

47

48 %total weight of the graph

49 for s=1:k

50 if z==1

51 M(:,:,s) = M(:,:,s) + diag(diag(M(:,:,s)));

52 end

53 m{s} = sum(sum(M(:,:,s)))/2;

54 end

55

56 Niter = 0; %number of iterations

57

58 % Calculation of the beginning values

59 COM {1} = 1:S(1); %current community %At the beginning each node is a

community

60 COM {2} = 1:S(1); %original graph commuity

61 COM {3} = 1:S(1); %community reindexed

62 %COM(i)= Community of node i

63

64 for s=1:k

65 K(:,:,s) = sum(M(:,:,s)); % K(i)= sum of wieght incident to node i

66 SumTot(:,:,s) = sum(M(:,:,s)); %SumTot(i)= sum of weight incident to

nodes in community i

67 SumIn(:,:,s) = diag(M(:,:,s)) ’; %SumIn(i)= sum of weight inside

community i (loops)

68 %At the beginning each node is a

community

69 Q{s} = compute_modularity(COM{1},M(:,:,s));

70 end

71 %average

112

72 Average = sum([Q{:}]) / k;

73 %variance

74 if k==1

75 Variance = 0;

76 else

77 Variance = (sum(([Q{:}]- Average).^(2))) / (k-1);

78 end

79 %function

80 Function = (1-lambda) * Average - lambda * Variance;

81

82 %filter

83 L={[{Q},{COM},SumTot ,SumIn ,Average ,Function]};

84 %If no edges in any layer or just one node

85 if (sum(cellfun(@(x)x>0,m))==0) | N == 1 %| logical or

86 ending = 1;

87 else

88

89 %Delate layers with m=0

90 M(:,:,(cellfun(@(x)x==0,m)))=[];

91 k = k - sum(cellfun(@(x)x==0,m));

92

93 %Neighbor{j}{s} neighbor of node j in layer s

94 for j=1:N

95 for s=1:k

96 temp=M2(:,:,s);

97 Neighbor_j{s} = find(temp(j,:));

98 end

99 Neighbor{j}= Neighbor_j;

100 end

101

102

103 GAIN = 1;

104 while (GAIN == 1) %Stop when putting nodes in other communities do not

increase the modularity

105 L_old=L;

106 L_new=L;

107 for i=1:N %for each node , in this order

108 L_o=L;

109 for l=1: length(L_o) %for each situation in the filter

110 %delate the point from the filter

111 L_new_o=L_new;

112 index = cellfun(@(x) isequal(x,L_o{l}), L_new , ’UniformOutput ’

, 1);

113 L_new(index)=[];

114 %step1

115 [L_new ,U] = step_1 ({L_o{l}{1}} ,{ L_o{l}{2}} ,L_o{l}{3},L_o{l

}{4},L_o{l}{5},L_o{l}{6},k,Neighbor ,K,M,N,m,L_new ,h,lambda ,

i);

116 %if no new point , put again the initial point in the filter

113

117 if U==0

118 L_new=L_new_o;

119 end

120 end

121 L_new = cut_filter(L_new ,h,k,lambda);

122 L=L_new;

123 end

124 %Check if nothing happened

125 if length(L_old)~= length(L_new)

126 GAIN =1;

127 else

128 C_old =[];

129 C_new =[];

130 for l=1: length(L_old)

131 R_old =[];

132 R_new =[];

133 for s=1:k

134 R_old = [R_old L_old{l}{1}{s}];

135 R_new = [R_new L_new{l}{1}{s}];

136 end

137 C_old = [C_old ; R_old];

138 C_new = [C_new ; R_new];

139 end

140 C = ismembertol(C_old ,C_new ,10^(-6));

141 if size(C,1)*size(C,2) == sum(sum(C))

142 GAIN =0;

143 end

144 end

145 Niter = Niter + 1;

146 end

147 end

148

149 % Perform part 2

150 if (z==1)

151 L = cut_filter(L,1,k); %one final element

152 Mnew=M; %new weight matrix of this iteration

153 Mold=Mnew; %old weight matrix of iteration befor

154 COMcur = L{1}{2}{3}; %communities in the graph of this iteration

155 COMfull = L{1}{2}{3}; %communities in the original graph

156 LL=L;

157 j=2;%number of pass (step1+step2)

158 S=1;

159 while S

160 L_old=LL;

161 Mold = Mnew;

162 S2 = size(Mold); %number of nodes

163 Nnode = S2(1);

164

165 COMu = unique(COMcur); %list of communities without repetitions

114

and in sorted order

166 Ncom = length(COMu); %number of communities

167 ind_com = sparse(Ncom ,Nnode); %zero matrix with a row for each

community and a column for each node in this configuration

168 ind_com_full =sparse(Ncom ,N); %zero matrix with a row for each

community and a column for each node of the original graph

169

170 for p=1: Ncom %for each community

171 ind = find(COMcur ==p);

172 ind_com(p,1: length(ind)) = ind; %in row p put the indeces of

the nodes in community p in this configuration

173 end

174 for p=1: Ncom

175 ind = find(COMfull ==p);

176 ind_com_full(p,1: length(ind)) = ind; %in row p put the

indeces of the nodes in community p in the original graph

177 end

178 Mnew =[];

179 for s=1:k

180 Mnew(:,:,s) = sparse(Ncom ,Ncom); %new matrix (each node is

a community)

181 for m=1: Ncom

182 for n=m:Ncom

183 ind1 = ind_com(m,:);

184 ind2 = ind_com(n,:);

185 %weights of edges between communities

186 Mnew(m,n,s) = sum(sum(Mold(ind1(ind1 >0),ind2(ind2 >0)

,s)));

187 Mnew(n,m,s) = sum(sum(Mold(ind1(ind1 >0),ind2(ind2 >0)

,s)));

188 end

189 end

190 end

191 %apply first step to this new matrix but z=0 without recursive

192 [LLL e] = multi_variance_minus(Mnew ,lambda ,h,0);

193 if isempty(LLL)

194 L=LLL;

195 return

196 else

197 LL = cut_filter(LLL ,1,k); %one final element

198 COMfull = sparse(1,N); %communities of the original graph

199 COMcur = LL {1}{2}{3}; %communities

200 for p=1: Ncom

201 ind1 = ind_com_full(p,:); %nodes in community p in the

original graph

202 COMfull(ind1(ind1 >0)) = COMcur(p); %community now of

node i

203 end

204 [COMfull] = reindex_com(COMfull);

115

205 LL {1}{2}{2}= COMfull;

206 %communities do not change

207 if isequal(L_old {1}{2}{2} ,LL {1}{2}{2})

208 %return not just this value , but all the value of the

last list

209 %calculate COMfull for each element of the last list

210 for l=1: length(LLL)

211 COMfull = sparse(1,N); %communities of the original

graph

212 COMcur = LLL{l}{2}{3}; %communities

213 for p=1: Ncom

214 ind1 = ind_com_full(p,:); %nodes in community p

in the original graph

215 COMfull(ind1(ind1 >0)) = COMcur(p); %community

now of node i

216 end

217 [COMfull] = reindex_com(COMfull);

218 LLL{l}{2}{2}= COMfull;

219 end

220 L = LLL;

221 S=0;

222 end

223 j = j + 1; %start another pass

224 tEnd = toc;

225 if tEnd > 1200

226 L = {};

227 return

228 end

229 end

230 end

231 end

232 end

233

234 %Compute step_1

235 function [L,U] = step_1(Q,COM ,SumTot ,SumIn ,Average ,Function ,k,Neighbor ,K

,M,N,m,L,h,lambda ,i)

236

237 U=0; %if U=1 add at least an element to the list , otherwise insert again

the initial point in the filter

238 COMcur=COM {1}{1}; %current community

239 Ci = COMcur(i); %community of node i

240

241 NB=unique(cat(2,Neighbor{i}{:}));

242

243 SumTot2=SumTot;

244 SumIn2=SumIn;

245

246 %remove i from its community

247 for s=1:k

116

248 COMcur2 = COMcur;

249 COMcur2(i) = -1;

250 CNi = (COMcur2 ==Ci); %list of nodes in Ci community , without i

251 Ki_in_i{s} = sum(M(i,CNi ,s)); %sum of weights between i and Ci

252 GQ_i{s} = (K(:,i,s)*SumTot2(:,Ci ,s))/(2*(m{s}^(2))) - Ki_in_i{s}/m{s

} - ((K(:,i,s))^(2))/(2*(m{s}^(2)));

253 %Recalculate values

254 SumTot2(:,Ci ,s) = SumTot2(:,Ci ,s) - K(:,i,s); %weights incident to

Ci community

255 SumIn2(:,Ci,s) = SumIn2(:,Ci ,s) - 2*sum(M(i,CNi ,s)) - M(i,i,s); %

weights community i

256 end

257

258 G = sparse(1,N);

259 for j=1: length(NB)

260 SumTot3=SumTot2;

261 SumIn3=SumIn2;

262 Cj = COMcur(NB(j)); %community of node j

263 if (G(Cj) == 0) %If not tried with another node of community Cj yet

264 G(Cj)=1;

265 for s=1:k

266 COMcur3 = COMcur;

267 COMcur3(i) = -1;

268 %Insert i in the community of j for each layer

269 CNj = (COMcur3 ==Cj); %nodes in community Cj , without j

270 Ki_in_j{s} = sum(M(i,CNj ,s)); %sum of weights between i and

Cj

271 GQ_j{s} = Ki_in_j{s}/m{s} - (K(:,i,s)*SumTot3(:,Cj ,s))/(2*(m

{s}^(2))); %gain deltaQ if I put isolated node i in Cj

272 %Recalculate

273 SumTot3(:,Cj ,s) = SumTot3(:,Cj ,s) + K(:,i,s);

274 SumIn3(:,Cj ,s) = SumIn3(:,Cj ,s) + 2*sum(M(i,CNj ,s)) + M(i,i,

s);

275 end

276 COMcur4=COMcur;

277 COMcur4(i)=Cj;

278 COM {1}{1}= COMcur4;

279 [COMcur4] = reindex_com(COMcur4);

280 COM {1}{3}= COMcur4;

281

282 %variance

283 if k==1

284 GV_j = 0;

285 else

286 for s=1:k

287 DQ{s} = GQ_i{s} + GQ_j{s}; %gains

288 end

289 M_DQ = sum([DQ{:}])/k; %gain average

290 GV_j = ((sum (([DQ{:}] - M_DQ).^(2))) / (k-1)) + (2/(k-1)) * sum(

117

sum (([Q{1}{:}] - Average) .* ([DQ{:}] - M_DQ))); %gain variance

291 end

292 GF_j = (1-lambda)*M_DQ - lambda* GV_j;

293 if GF_j > -10^(-14)

294 F_j = Function + GF_j;

295 %modularity

296 for s=1:k

297 Q_j{s} = Q{1}{s} + DQ{s};

298 end

299 %average

300 A_j = Average + M_DQ;

301 [L] = add_to_filter ({Q_j},COM ,SumTot3 ,SumIn3 ,A_j ,F_j ,L,k);

302 U=1;

303 end

304 end

305 end

306 end

307

308 %add a point to the filter

309 function [L] = add_to_filter(QQ,COM ,SumTot ,SumIn ,Average ,Function ,L,k)

310

311 if length(L) ~= 0

312

313 COMcur=COM {1}{1}; %current community

314

315 %1. Check if the new point is dominated by a point in the filter

316 DD=0;

317 l=1;

318 while (DD==0) & l<= length(L)

319 D=0;

320 s=1;

321 while (D==0) & s<=k

322 if QQ{1}{s}>L{l}{1}{s}

323 D=1;

324 end

325 s=s+1;

326 end

327 if D %the new point is not dominated by l

328 DD=1;

329 end

330 l=l+1;

331 end

332 if DD %the new point is not dominated

333 DDD =0;

334 l=1;

335 while (DDD ==0) & l<= length(L)

336 D=1;

337 s=1;

338 while D & s<=k

118

339 if abs(L{l}{1}{s} - QQ{1}{s}) > 10^(-14)

340 D=0;

341 end

342 s = s + 1;

343 end

344 if D

345 DDD=1;

346 end

347 l = l + 1;

348 end

349

350 if DDD ==0

351

352 %2.Check if the other points in the filter are dominated by the new

point %

353

354 for l=1: length(L)

355 D=1;

356 s=1;

357 while D & s<=k

358 if L{l}{1}{s}>QQ{1}{s}+10^(-14)

359 D=0;

360 end

361 s=s+1;

362 end

363 if D %l is dominated by the new point so I remove it from the

filter

364 L{l}=[];

365 end

366 end

367

368 empties =(cellfun(@isempty ,L));

369 L(empties) = [];

370 L{end +1}=[QQ,COM ,SumTot ,SumIn ,Average ,Function]; %I add the new point

to the filter

371

372 end

373 end

374 else

375 L{end +1}=[QQ,COM ,SumTot ,SumIn ,Average ,Function]; %I add the new

point to the filter

376 end

377 end

378

379 %cut the filter

380 function [L] = cut_filter(L,h,k,lambda)

381

382 %calculate the function for every element of the list

383 if length(L)>h

119

384 for l=1: length(L)

385 %function

386 Function{l} = L{l}{6};

387 end

388

389 %remuve the situations in the filter with the lower values

390 for t=1:(length(L)-h)

391 [mn,idx]=min([Function {:}]);

392 v=find([Function {:}]== mn); %if more element with same average values ,

delate the last one (because with h=1 I have same result as

cluster_jl_average_variance)

393 idx_t=v(end);

394 Function{idx_t }=Inf;

395 L{idx_t }=[];

396 end

397

398 empties = find(cellfun(@isempty ,L));

399 L(empties) = [];

400 end

401 end

402

403 %Compute modulartiy

404 function MOD = compute_modularity(C,Mat)

405

406 S = size(Mat);

407 N = S(1);

408

409 m = sum(sum(Mat))/2; %total weight

410

411 MOD = 0;

412 COMu = unique(C); %list of communities without repetiotions and in

sorted order

413 %for each community calculate modularity and then sum all together

414 for j=1: length(COMu)

415 Cj = (C==COMu(j)); %list of nodes in Cj

416 Ec = sum(sum(Mat(Cj ,Cj))); %sum of weights between nodes in Cj

417 Et = sum(sum(Mat(Cj ,:))); %sum of weights of nodes incident in nodes

of Cj

418 if Et >0

419 MOD = MOD + Ec/(2*m)-(Et/(2*m))^2;

420 end

421 end

422

423 end

424

425 % Re-index community partition by size

426 function [C Ss] = reindex_com(COMold)

427 C = sparse(1,length(COMold));

428 COMu = unique(COMold);

120

429 S = sparse(1,length(COMu));

430 for l=1: length(COMu)

431 S(l) = length(COMold(COMold ==COMu(l)));

432 end

433 [Ss INDs] = sort(S,’descend ’);

434 for l=1: length(COMu)

435 C(COMold ==COMu(INDs(l))) = l;

436 end

437 end

438 %Re-index community partition not by size but by initial order

439 %function [C] = reindex_com(COMold)

440 %C = sparse(1,length(COMold)); %vector with a index for each node

441 %COMu = unique(COMold); %unique(v)=same data of v but not repetitions

and in sorted order

442 %COMolds=sort(COMold);

443 %COMu=COMolds ([true;diff(COMolds (:)) >0]);

444 %for l=1: length(COMu)

445 % C(COMold ==COMu(l)) = l; %Riname the communities

446 %end

447 %end

121

122

Appendix F

Matlab code of the
multi-variance-plus method
(Section 3.2)

1 %multi -variance -plus

2 %

3 % Inputs :

4 % M : vector of weight matrix of each layer

5 % h : length of the filter

6 % lambda : weight of variance in function for cut filter

7 % z : 1 = Recursive computation

8 % : 0 = Just one level computation

9 % Output :

10 % L the filter with the following information

11 % for each element l:

12 % l{1}=Q cell with modularity of each layer

13 % l{2}={ COMcur COMfull COMindex} communities in the current graph , in

the

14 % original graph , communities in the current graph reindexed

15 % l{3}= SumTot (sum of weights of the links incident to nodes in a

community)

16 % l{4}= SumIn (sum of weights of the links inside a community)

17 % l{5}= Average (average)

18 % l{6}= Function (funtion)

19 %

20

21

22 function [L ending] = multi_variance_plus(M,lambda ,h,z)

23

24 if nargin < 1

25 error(’not enough argument ’);

26 end

123

27 if nargin < 2

28 error(’not lambda defined ’);

29 end

30 if nargin < 3

31 error(’not h defined ’);

32 end

33 if nargin < 4

34 z = 1;

35 end

36

37 S = size(M);

38 N = S(1);

39 if length(S)==3

40 k = S(3);

41 else k = 1;

42 end

43

44 ending = 0;

45

46 for s=1:k

47 M2(:,:,s)=M(:,:,s)-diag(diag(M(:,:,s)));

48 end

49

50 %total weight of the graph

51 for s=1:k

52 if z==1

53 M(:,:,s) = M(:,:,s) + diag(diag(M(:,:,s)));

54 end

55 m{s} = sum(sum(M(:,:,s)))/2;

56 end

57

58 Niter = 0; %number of iterations

59

60 % Calculation of the beginning values

61 COM {1} = 1:S(1); %current community %At the beginning each node is a

community

62 COM {2} = 1:S(1); %original graph commuity

63 COM {3} = 1:S(1); %community reindexed

64 %COM(i)= Community of node i

65

66 for s=1:k

67 K(:,:,s) = sum(M(:,:,s)); % K(i)= sum of wieght incident to node i

68 SumTot(:,:,s) = sum(M(:,:,s)); %SumTot(i)= sum of weight incident to

nodes in community i

69 SumIn(:,:,s) = diag(M(:,:,s)) ’; %SumIn(i)= sum of weight inside

community i (loops)

70 %At the beginning each node is a

community

71 Q{s} = compute_modularity(COM{1},M(:,:,s));

124

72 end

73 %average

74 Average = sum([Q{:}]) / k;

75 %variance

76 if k==1

77 Variance = 0;

78 else

79 Variance = (sum(([Q{:}]- Average).^(2))) / (k-1);

80 end

81 %function

82 Function = (1-lambda) * Average + lambda * Variance;

83

84 %filter

85 L={[{Q},{COM},SumTot ,SumIn ,Average ,Function]};

86 %If no edges in any layer or just one node

87 if (sum(cellfun(@(x)x>0,m))==0) | N == 1 %| logical or

88 ending = 1;

89 else

90

91 %Delate layers with m=0

92 M(:,:,(cellfun(@(x)x==0,m)))=[];

93 k = k - sum(cellfun(@(x)x==0,m));

94

95 %Neighbor{j}{s} neighbor of node j in layer s

96 for j=1:N

97 for s=1:k

98 temp=M2(:,:,s);

99 Neighbor_j{s} = find(temp(j,:));

100 end

101 Neighbor{j}= Neighbor_j;

102 end

103

104

105 GAIN = 1;

106 while (GAIN == 1) %Stop when putting nodes in other communities do not

increase the modularity

107 %while Niter <=2

108 L_old=L;

109 L_new=L;

110 for i=1:N %for each node , in this order

111 L_o=L;

112 for l=1: length(L_o) %for each situation in the filter

113 %delate the point from the filter

114 L_new_o=L_new;

115 index = cellfun(@(x) isequal(x,L_o{l}), L_new , ’UniformOutput ’

, 1);

116 L_new(index)=[];

117 %step1

118 [L_new ,U] = step_1 ({L_o{l}{1}} ,{ L_o{l}{2}} ,L_o{l}{3},L_o{l

125

}{4},L_o{l}{5},L_o{l}{6},k,Neighbor ,K,M,N,m,L_new ,h,lambda ,

i);

119 %if no new point , insert again the initial point in the filter

120 if U==0

121 L_new=L_new_o;

122 end

123 end

124 L_new = cut_filter(L_new ,h,k,lambda);

125 L=L_new;

126 end

127 %Check if nothing happened

128 if length(L_old)~= length(L_new)

129 GAIN =1;

130 else

131 C_old =[];

132 C_new =[];

133 for l=1: length(L_old)

134 R_old =[];

135 R_new =[];

136 for s=1:k

137 R_old = [R_old L_old{l}{1}{s}];

138 R_new = [R_new L_new{l}{1}{s}];

139 end

140 C_old = [C_old ; R_old];

141 C_new = [C_new ; R_new];

142 end

143 C = ismembertol(C_old ,C_new ,10^(-6));

144 if size(C,1)*size(C,2) == sum(sum(C))

145 GAIN =0;

146 end

147 end

148 Niter = Niter + 1;

149 tEnd = toc;

150 if tEnd > 500

151 L={};

152 return

153 end

154 end

155 end

156

157 % Perform part 2

158 if (z==1)

159 L = cut_filter(L,1,k); %one final element

160 Mnew=M; %new weight matrix of this iteration

161 Mold=Mnew; %old weight matrix of iteration befor

162 COMcur = L{1}{2}{3}; %communities in the graph of this iteration

163 COMfull = L{1}{2}{3}; %communities in the original graph

164 LL=L;

165 j=2;%number of pass (step1+step2)

126

166 S=1;

167 while S

168 L_old=LL;

169 Mold = Mnew;

170 S2 = size(Mold); %number of nodes

171 Nnode = S2(1);

172

173 COMu = unique(COMcur); %list of communities without repetitions

and in sorted order

174 Ncom = length(COMu); %number of communities

175 ind_com = sparse(Ncom ,Nnode); %zero matrix with a row for each

community and a column for each node in this configuration

176 ind_com_full =sparse(Ncom ,N); %zero matrix with a row for each

community and a column for each node of the original graph

177

178 for p=1: Ncom %for each community

179 ind = find(COMcur ==p);

180 ind_com(p,1: length(ind)) = ind; %in row p insert the indeces

of the nodes in community p in this configuration

181 end

182 for p=1: Ncom

183 ind = find(COMfull ==p);

184 ind_com_full(p,1: length(ind)) = ind; %in row p insert the

indeces of the nodes in community p in the original graph

185 end

186 Mnew =[];

187 for s=1:k

188 Mnew(:,:,s) = sparse(Ncom ,Ncom); %new matrix (each node is

a community)

189 for m=1: Ncom

190 for n=m:Ncom

191 ind1 = ind_com(m,:);

192 ind2 = ind_com(n,:);

193 %weights of edges between communities

194 Mnew(m,n,s) = sum(sum(Mold(ind1(ind1 >0),ind2(ind2 >0)

,s)));

195 Mnew(n,m,s) = sum(sum(Mold(ind1(ind1 >0),ind2(ind2 >0)

,s)));

196 end

197 end

198 end

199 %apply first step to this new matrix but z=0 without recursive

200 [LLL e] = multi_variance_plus(Mnew ,lambda ,h,0);

201 if isempty(LLL)

202 L=LLL;

203 return

204 else

205 LL = cut_filter(LLL ,1,k); %one final element

206 COMfull = sparse(1,N); %communities of the original graph

127

207 COMcur = LL {1}{2}{3}; %communities

208 for p=1: Ncom

209 ind1 = ind_com_full(p,:); %nodes in community p in the

original graph

210 COMfull(ind1(ind1 >0)) = COMcur(p); %community now of

node i

211 end

212 [COMfull] = reindex_com(COMfull);

213 LL {1}{2}{2}= COMfull;

214 %communities do not change

215 if isequal(L_old {1}{2}{2} ,LL {1}{2}{2})

216 %return not just this value , but all the value of the

last list

217 %calculate COMfull for each element of the last list

218 for l=1: length(LLL)

219 COMfull = sparse(1,N); %communities of the original

graph

220 COMcur = LLL{l}{2}{3}; %communities

221 for p=1: Ncom

222 ind1 = ind_com_full(p,:); %nodes in community p

in the original graph

223 COMfull(ind1(ind1 >0)) = COMcur(p); %community

now of node i

224 end

225 [COMfull] = reindex_com(COMfull);

226 LLL{l}{2}{2}= COMfull;

227 end

228 L = LLL;

229 S=0;

230 end

231 j = j + 1; %start another pass

232 tEnd = toc;

233 if tEnd > 600

234 L = {};

235 return

236 end

237 end

238 end

239 end

240 end

241

242 %Compute step_1

243 function [L,U] = step_1(Q,COM ,SumTot ,SumIn ,Average ,Function ,k,Neighbor ,K

,M,N,m,L,h,lambda ,i)

244

245 U=0; %if U=1 add at least an element to the list , otherwise insert again

the initial point in the filter

246 COMcur=COM {1}{1}; %current community

247 Ci = COMcur(i); %community of node i

128

248

249 NB=unique(cat(2,Neighbor{i}{:}));

250

251 SumTot2=SumTot;

252 SumIn2=SumIn;

253

254 %remove i from its community

255 for s=1:k

256 COMcur2 = COMcur;

257 COMcur2(i) = -1;

258 CNi = (COMcur2 ==Ci); %list of nodes in Ci community , without i

259 Ki_in_i{s} = sum(M(i,CNi ,s)); %sum of weights between i and Ci

260 GQ_i{s} = (K(:,i,s)*SumTot2(:,Ci ,s))/(2*(m{s}^(2))) - Ki_in_i{s}/m{s

} - ((K(:,i,s))^(2))/(2*(m{s}^(2)));

261 %Recalculate values

262 SumTot2(:,Ci ,s) = SumTot2(:,Ci ,s) - K(:,i,s); %weights incident to

Ci community

263 SumIn2(:,Ci,s) = SumIn2(:,Ci ,s) - 2*sum(M(i,CNi ,s)) - M(i,i,s); %

weights community i

264 end

265

266 G = sparse(1,N);

267 for j=1: length(NB)

268 SumTot3=SumTot2;

269 SumIn3=SumIn2;

270 Cj = COMcur(NB(j)); %community of node j

271 if (G(Cj) == 0) %If have not tried with another node of community Cj

yet

272 G(Cj)=1;

273 for s=1:k

274 COMcur3 = COMcur;

275 COMcur3(i) = -1;

276 %I put i in the community of j for each layer

277 CNj = (COMcur3 ==Cj); %nodes in community Cj , without j

278 %faster then CNj = find(COMcur ==Cj)

279 Ki_in_j{s} = sum(M(i,CNj ,s)); %sum of weights between i and

Cj

280 GQ_j{s} = Ki_in_j{s}/m{s} - (K(:,i,s)*SumTot3(:,Cj ,s))/(2*(m

{s}^(2))); %gain deltaQ if I put isolated node i in Cj

281 %Recalculate

282 SumTot3(:,Cj ,s) = SumTot3(:,Cj ,s) + K(:,i,s);

283 SumIn3(:,Cj ,s) = SumIn3(:,Cj ,s) + 2*sum(M(i,CNj ,s)) + M(i,i,

s);

284 end

285 COMcur4=COMcur;

286 COMcur4(i)=Cj;

287 COM {1}{1}= COMcur4;

288 [COMcur4] = reindex_com(COMcur4);

289 COM {1}{3}= COMcur4;

129

290

291 %variance

292 if k==1

293 GV_j = 0;

294 else

295 for s=1:k

296 DQ{s} = GQ_i{s} + GQ_j{s}; %gains

297 end

298 M_DQ = sum([DQ{:}])/k; %gain average

299 GV_j = ((sum (([DQ{:}] - M_DQ).^(2))) / (k-1)) + (2/(k-1)) * sum(

sum (([Q{1}{:}] - Average) .* ([DQ{:}] - M_DQ))); %gain variance

300 end

301 GF_j = (1-lambda)*M_DQ + lambda* GV_j;

302 if GF_j > -10^(-14)

303 F_j = Function + GF_j;

304 %modularity

305 for s=1:k

306 Q_j{s} = Q{1}{s} + DQ{s};

307 end

308 %average

309 A_j = Average + M_DQ;

310 [L] = add_to_filter ({Q_j},COM ,SumTot3 ,SumIn3 ,A_j ,F_j ,L,k);

311 U=1;

312 end

313 end

314 end

315 end

316

317 %add a point to the filter

318 function [L] = add_to_filter(QQ,COM ,SumTot ,SumIn ,Average ,Function ,L,k)

319

320 if length(L) ~= 0

321

322 COMcur=COM {1}{1}; %current community

323

324 %1. Check if the new point is dominated by a point in the filter

325 DD=0;

326 l=1;

327 while (DD==0) & l<= length(L)

328 D=0;

329 s=1;

330 while (D==0) & s<=k

331 if QQ{1}{s}>L{l}{1}{s}

332 D=1;

333 end

334 s=s+1;

335 end

336 if D %the new point is not dominated by l

337 DD=1;

130

338 end

339 l=l+1;

340 end

341 if DD %the new point is not dominated

342 DDD =0;

343 l=1;

344 while (DDD ==0) & l<= length(L)

345 D=1;

346 s=1;

347 while D & s<=k

348 if abs(L{l}{1}{s} - QQ{1}{s}) > 10^(-14)

349 D=0;

350 end

351 s = s + 1;

352 end

353 if D

354 DDD=1;

355 end

356 l = l + 1;

357 end

358

359 if DDD ==0

360

361 %2.Check if the other points in the filter are dominated by the new

point %

362

363 for l=1: length(L)

364 D=1;

365 s=1;

366 while D & s<=k

367 if L{l}{1}{s}>QQ{1}{s}+10^(-14)

368 D=0;

369 end

370 s=s+1;

371 end

372 if D %l is dominated by the new point so I remove it from the

filter

373 L{l}=[];

374 end

375 end

376

377 empties =(cellfun(@isempty ,L));

378 L(empties) = [];

379 L{end +1}=[QQ,COM ,SumTot ,SumIn ,Average ,Function]; %I add the new point

to the filter

380

381 end

382 end

383 else

131

384 L{end +1}=[QQ,COM ,SumTot ,SumIn ,Average ,Function]; %I add the new

point to the filter

385 end

386 end

387

388 %cut the filter

389 function [L] = cut_filter(L,h,k,lambda)

390

391 %calculate the function for every element of the list

392 if length(L)>h

393 for l=1: length(L)

394 %function

395 Function{l} = L{l}{6};

396 end

397

398 %remuve the situations in the filter with the lower values

399 for t=1:(length(L)-h)

400 [mn,idx]=min([Function {:}]);

401 v=find([Function {:}]== mn); %if more element with same average values ,

delate the last one (because with h=1 I have same result as

cluster_jl_average_variance)

402 idx_t=v(end);

403 Function{idx_t }=Inf;

404 L{idx_t }=[];

405 end

406

407 empties = find(cellfun(@isempty ,L));

408 L(empties) = [];

409 end

410 end

411

412 %Compute modulartiy

413 function MOD = compute_modularity(C,Mat)

414

415 S = size(Mat);

416 N = S(1);

417

418 m = sum(sum(Mat))/2; %total weight

419

420 MOD = 0;

421 COMu = unique(C); %list of communities without repetiotions and in

sorted order

422 %for each community I calculate modularity and then sum all together

423 for j=1: length(COMu)

424 Cj = (C==COMu(j)); %list of nodes in Cj

425 Ec = sum(sum(Mat(Cj ,Cj))); %sum of weights between nodes in Cj

426 Et = sum(sum(Mat(Cj ,:))); %sum of weights of nodes incident in nodes

of Cj

427 if Et >0

132

428 MOD = MOD + Ec/(2*m)-(Et/(2*m))^2;

429 end

430 end

431

432 end

433

434 % Re-index community partition by size

435 function [C Ss] = reindex_com(COMold)

436 C = sparse(1,length(COMold));

437 COMu = unique(COMold);

438 S = sparse(1,length(COMu));

439 for l=1: length(COMu)

440 S(l) = length(COMold(COMold ==COMu(l)));

441 end

442 [Ss INDs] = sort(S,’descend ’);

443 for l=1: length(COMu)

444 C(COMold ==COMu(INDs(l))) = l;

445 end

446 end

447 %Re-index community partition not by size but by initial order

448 %function [C] = reindex_com(COMold)

449 %C = sparse(1,length(COMold)); %vector with a index for each node

450 %COMu = unique(COMold); %unique(v)=same data of v but not repetitions

and in sorted order

451 %COMolds=sort(COMold);

452 %COMu=COMolds ([true;diff(COMolds (:)) >0]);

453 %for l=1: length(COMu)

454 % C(COMold ==COMu(l)) = l; %Riname the communities

455 %end

456 %end

133

134

Bibliography

[1] L. Euler, “Commentarii academiae scientiarum petropolitanae,” Solutio problematis ad ge-
ometriam situs pertinentis, vol. 8, pp. 128–140, 1736.

[2] J. S. Coleman, An Introduction to Mathematical Sociology. Collier-Macmillan, London, UK,
1964.

[3] B. Krishnamurthy and J. Wang, “On network-aware clustering of web clients,” in Pro-
ceedings of the conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication, pp. 97–110, 2000.

[4] R. Gallotti and M. Barthelemy, “The multilayer temporal network of public transport in
great britain,” Scientific data, vol. 2, no. 1, pp. 1–8, 2015.

[5] J. Chen and B. Yuan, “Detecting functional modules in the yeast protein–protein interaction
network,” Bioinformatics, vol. 22, no. 18, pp. 2283–2290, 2006.

[6] Y. Dourisboure, F. Geraci, and M. Pellegrini, “Extraction and classification of dense com-
munities in the web,” in Proceedings of the 16th international conference on World Wide
Web, pp. 461–470, 2007.

[7] R. Guimerá and L. Amaral, “Cartography of complex networks: modules and universal
roles j stat mech p02001,” 2005.

[8] M. Steyvers et al., “Kdd’04: Proceedings of the tenth acm sigkdd international conference
on knowledge discovery and data mining,” New York, NY, USA: ACM, pp. 306–315, 2004.

[9] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Stat mech theory exp.
2008,” P10008, 2008.

[10] M. E. Newman and M. Girvan, “Finding and evaluating community structure in networks,”
Physical review E, vol. 69, no. 2, p. 026113, 2004.

[11] S. Fortunato and M. Barthelemy, “Resolution limit in community detection,” Proceedings
of the national academy of sciences, vol. 104, no. 1, pp. 36–41, 2007.

[12] J. Ruan and W. Zhang, “Identifying network communities with a high resolution,” Physical
Review E, vol. 77, no. 1, p. 016104, 2008.

135

[13] B. H. Good, Y.-A. De Montjoye, and A. Clauset, “Performance of modularity maximization
in practical contexts,” Physical Review E, vol. 81, no. 4, p. 046106, 2010.

[14] S. Fortunato, “Community detection in graphs,” Physics reports, vol. 486, no. 3-5, pp. 75–
174, 2010.

[15] A. Pothen, “Graph partitioning algorithms with applications to scientific computing,” in
Parallel Numerical Algorithms, pp. 323–368, Springer, 1997.

[16] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for partitioning graphs,” The
Bell system technical journal, vol. 49, no. 2, pp. 291–307, 1970.

[17] L. R. Ford and D. R. Fulkerson, “Maximal flow through a network,” in Classic papers in
combinatorics, pp. 243–248, Springer, 2009.

[18] A. V. Goldberg and R. E. Tarjan, “A new approach to the maximum-flow problem,” Journal
of the ACM (JACM), vol. 35, no. 4, pp. 921–940, 1988.

[19] G. W. Flake, S. Lawrence, C. L. Giles, and F. M. Coetzee, “Self-organization and identifi-
cation of web communities,” Computer, vol. 35, no. 3, pp. 66–70, 2002.

[20] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning, vol. 1.
Springer series in statistics New York, 2001.

[21] J. MacQueen et al., “Some methods for classification and analysis of multivariate obser-
vations,” in Proceedings of the fifth Berkeley symposium on mathematical statistics and
probability, vol. 1, pp. 281–297, Oakland, CA, USA, 1967.

[22] W. E. Donath and A. J. Hoffman, “Lower bounds for the partitioning of graphs,” in Selected
Papers Of Alan J Hoffman: With Commentary, pp. 437–442, World Scientific, 2003.

[23] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak mathematical journal, vol. 23,
no. 2, pp. 298–305, 1973.

[24] M. Girvan and M. E. Newman, “Community structure in social and biological networks,”
Proceedings of the national academy of sciences, vol. 99, no. 12, pp. 7821–7826, 2002.

[25] P. Holme, M. Huss, and H. Jeong, “Subnetwork hierarchies of biochemical pathways,”
Bioinformatics, vol. 19, no. 4, pp. 532–538, 2003.

[26] J. Pinney and D. Westhead, “Betweenness-based decomposition methods for social and
biological networks. interdisciplinary statistics and bioinformatics, 87–90,” 2006.

[27] E. Estrada, “Community detection based on network communicability,” Chaos: An Inter-
disciplinary Journal of Nonlinear Science, vol. 21, no. 1, p. 016103, 2011.

[28] M. E. Newman, “Modularity and community structure in networks,” Proceedings of the
national academy of sciences, vol. 103, no. 23, pp. 8577–8582, 2006.

136

[29] M. E. Newman, “Fast algorithm for detecting community structure in networks,” Physical
review E, vol. 69, no. 6, p. 066133, 2004.

[30] A. Clauset, M. E. Newman, and C. Moore, “Finding community structure in very large
networks,” Physical review E, vol. 70, no. 6, p. 066111, 2004.

[31] L. Danon, A. Dı́az-Guilera, and A. Arenas, “The effect of size heterogeneity on community
identification in complex networks,” Journal of Statistical Mechanics: Theory and Experi-
ment, vol. 2006, no. 11, p. P11010, 2006.

[32] P. Schuetz and A. Caflisch, “Efficient modularity optimization by multistep greedy algo-
rithm and vertex mover refinement,” Physical Review E, vol. 77, no. 4, p. 046112, 2008.

[33] K. Kirkpatrick, C. Gelatt, and M. Vecchi, “Science 220 671 kirkpatrick ks 1984,” J. Stat.
Phys, vol. 34, p. 975, 1983.

[34] R. Guimerá, M. Sales-Pardo, and L. A. N. Amaral, “Modularity from fluctuations in random
graphs and complex networks,” Physical Review E, vol. 70, no. 2, p. 025101, 2004.

[35] S. Boettcher and A. G. Percus, “Optimization with extremal dynamics,” complexity, vol. 8,
no. 2, pp. 57–62, 2002.

[36] J. Duch and A. Arenas, “Community detection in complex networks using extremal opti-
mization,” Physical review E, vol. 72, no. 2, p. 027104, 2005.

[37] V. A. Traag, P. Van Dooren, and Y. Nesterov, “Narrow scope for resolution-limit-free
community detection,” Physical Review E, vol. 84, no. 1, p. 016114, 2011.

[38] L. Donetti and M. A. Muñoz, “Detecting network communities: a new systematic and
efficient algorithm,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2004,
no. 10, p. P10012, 2004.

[39] N. A. Alves, “Unveiling community structures in weighted networks,” Physical Review E,
vol. 76, no. 3, p. 036101, 2007.

[40] A. Capocci, V. D. Servedio, G. Caldarelli, and F. Colaiori, “Detecting communities in
large networks,” Physica A: Statistical Mechanics and its Applications, vol. 352, no. 2-4,
pp. 669–676, 2005.

[41] B. Yang and J. Liu, “Discovering global network communities based on local centralities,”
ACM Transactions on the Web (TWEB), vol. 2, no. 1, pp. 1–32, 2008.

[42] D. Fasino and F. Tudisco, “An algebraic analysis of the graph modularity,” SIAM Journal
on Matrix Analysis and Applications, vol. 35, no. 3, pp. 997–1018, 2014.

[43] D. Fasino and F. Tudisco, “Generalized modularity matrices,” Linear Algebra and its Ap-
plications, vol. 502, pp. 327–345, 2016.

[44] F.-Y. Wu, “The potts model,” Reviews of modern physics, vol. 54, no. 1, p. 235, 1982.

137

[45] B. D. Hughes, Random walks and random environments: random walks, vol. 1. Oxford
University Press, 1995.

[46] A. Pikovsky, J. Kurths, M. Rosenblum, and J. Kurths, Synchronization: a universal concept
in nonlinear sciences, vol. 12. Cambridge university press, 2003.

[47] D. J. MacKay and D. J. Mac Kay, Information theory, inference and learning algorithms.
Cambridge university press, 2003.

[48] R. Winkler, Introduction to Bayesian Inference and Decision. Probabilistic Publishing,
Gainesville, 2003.

[49] P. Doreian, V. Batagelj, and A. Ferligoj, Generalized blockmodeling, vol. 25. Cambridge
university press, 2005.

[50] F. Lorrain and H. C. White, “Structural equivalence of individuals in social networks,” The
Journal of mathematical sociology, vol. 1, no. 1, pp. 49–80, 1971.

[51] M. G. Everett and S. P. Borgatti, “Regular equivalence: General theory,” Journal of math-
ematical sociology, vol. 19, no. 1, pp. 29–52, 1994.

[52] D. R. White and K. P. Reitz, “Graph and semigroup homomorphisms on networks of
relations,” Social Networks, vol. 5, no. 2, pp. 193–234, 1983.

[53] K. Burnham et al., “dr anderson. 2002. model selection and multimodel inference: a prac-
tical information-theoretic approach,” Ecological Modelling. Springer Science & Business
Media, New York, New York, USA.

[54] E. Ziv, M. Middendorf, and C. H. Wiggins, “Information-theoretic approach to network
modularity,” Physical Review E, vol. 71, no. 4, p. 046117, 2005.

[55] N. Tishby, F. Pereira, and W. Bialek, “Proceedings of the 37th annual allerton conference
on communication, control and computing,” 1999.

[56] P. Paatero and U. Tapper, “Positive matrix factorization: A non-negative factor model
with optimal utilization of error estimates of data values,” Environmetrics, vol. 5, no. 2,
pp. 111–126, 1994.

[57] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix factor-
ization,” Nature, vol. 401, no. 6755, pp. 788–791, 1999.

[58] P. O. Hoyer, “Non-negative matrix factorization with sparseness constraints,” Journal of
machine learning research, vol. 5, no. Nov, pp. 1457–1469, 2004.

[59] J. Kim and H. Park, “Toward faster nonnegative matrix factorization: A new algorithm and
comparisons,” in 2008 Eighth IEEE International Conference on Data Mining, pp. 353–362,
IEEE, 2008.

138

[60] I. Kotsia, S. Zafeiriou, and I. Pitas, “A novel discriminant non-negative matrix factorization
algorithm with applications to facial image characterization problems,” IEEE Transactions
on Information Forensics and Security, vol. 2, no. 3, pp. 588–595, 2007.

[61] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally linear embed-
ding,” science, vol. 290, no. 5500, pp. 2323–2326, 2000.

[62] D. Cai, X. He, X. Wang, H. Bao, and J. Han, “Locality preserving nonnegative matrix
factorization.,” in IJCAI, vol. 9, pp. 1010–1015, 2009.

[63] Q. Gu and J. Zhou, “Neighborhood preserving nonnegative matrix factorization.,” in
BMVC, pp. 1–10, 2009.

[64] T. Bühler and M. Hein, “Spectral clustering based on the graph p-laplacian,” in Proceedings
of the 26th Annual International Conference on Machine Learning, pp. 81–88, 2009.

[65] X. Bresson, T. Laurent, D. Uminsky, and J. Von Brecht, “Multiclass total variation clus-
tering,” in Advances in Neural Information Processing Systems, pp. 1421–1429, 2013.

[66] H. Hu, T. Laurent, M. A. Porter, and A. L. Bertozzi, “A method based on total variation
for network modularity optimization using the mbo scheme,” SIAM Journal on Applied
Mathematics, vol. 73, no. 6, pp. 2224–2246, 2013.

[67] Z. M. Boyd, E. Bae, X.-C. Tai, and A. L. Bertozzi, “Simplified energy landscape for
modularity using total variation,” SIAM Journal on Applied Mathematics, vol. 78, no. 5,
pp. 2439–2464, 2018.

[68] F. Tudisco, P. Mercado, and M. Hein, “Community detection in networks via nonlinear
modularity eigenvectors,” SIAM Journal on Applied Mathematics, vol. 78, no. 5, pp. 2393–
2419, 2018.

[69] F. Tudisco and D. J. Higham, “A nonlinear spectral method for core–periphery detection
in networks,” SIAM Journal on Mathematics of Data Science, vol. 1, no. 2, pp. 269–292,
2019.

[70] A. Cristofari, F. Rinaldi, and F. Tudisco, “Total variation based community detection using
a nonlinear optimization approach,” SIAM Journal on Applied Mathematics, vol. 80, no. 3,
pp. 1392–1419, 2020.

[71] M. A. Rodriguez and J. Shinavier, “Exposing multi-relational networks to single-relational
network analysis algorithms,” Journal of Informetrics, vol. 4, no. 1, pp. 29–41, 2010.

[72] A. Lancichinetti and S. Fortunato, “Consensus clustering in complex networks,” Scientific
reports, vol. 2, p. 336, 2012.

[73] J. Kim and J.-G. Lee, “Community detection in multi-layer graphs: A survey,” ACM
SIGMOD Record, vol. 44, no. 3, pp. 37–48, 2015.

139

[74] H. Li, Z. Nie, W.-C. Lee, L. Giles, and J.-R. Wen, “Scalable community discovery on
textual data with relations,” in Proceedings of the 17th ACM conference on Information
and knowledge management, pp. 1203–1212, 2008.

[75] G.-J. Qi, C. C. Aggarwal, and T. Huang, “Community detection with edge content in
social media networks,” in 2012 IEEE 28th International Conference on Data Engineering,
pp. 534–545, IEEE, 2012.

[76] Y. Zhou, H. Cheng, and J. X. Yu, “Graph clustering based on structural/attribute similar-
ities,” Proceedings of the VLDB Endowment, vol. 2, no. 1, pp. 718–729, 2009.

[77] Z. Xu, Y. Ke, Y. Wang, H. Cheng, and J. Cheng, “A model-based approach to attributed
graph clustering,” in Proceedings of the 2012 ACM SIGMOD international conference on
management of data, pp. 505–516, 2012.

[78] A. Silva, W. Meira Jr, and M. J. Zaki, “Mining attribute-structure correlated patterns in
large attributed graphs,” arXiv preprint arXiv:1201.6568, 2012.

[79] Y. Ruan, D. Fuhry, and S. Parthasarathy, “Efficient community detection in large networks
using content and links,” in Proceedings of the 22nd international conference on World
Wide Web, pp. 1089–1098, 2013.

[80] W. Tang, Z. Lu, and I. S. Dhillon, “Clustering with multiple graphs,” in 2009 Ninth IEEE
International Conference on Data Mining, pp. 1016–1021, IEEE, 2009.

[81] X. Dong, P. Frossard, P. Vandergheynst, and N. Nefedov, “Clustering with multi-layer
graphs: A spectral perspective,” IEEE Transactions on Signal Processing, vol. 60, no. 11,
pp. 5820–5831, 2012.

[82] Z. Zeng, J. Wang, L. Zhou, and G. Karypis, “Coherent closed quasi-clique discovery from
large dense graph databases,” in Proceedings of the 12th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pp. 797–802, 2006.

[83] J. Pei, D. Jiang, and A. Zhang, “On mining cross-graph quasi-cliques,” in Proceedings of the
eleventh ACM SIGKDD international conference on Knowledge discovery in data mining,
pp. 228–238, 2005.

[84] S. Paul, Y. Chen, et al., “Spectral and matrix factorization methods for consistent commu-
nity detection in multi-layer networks,” The Annals of Statistics, vol. 48, no. 1, pp. 230–250,
2020.

[85] D. Zhou and C. J. Burges, “Spectral clustering and transductive learning with multiple
views,” in Proceedings of the 24th international conference on Machine learning, pp. 1159–
1166, 2007.

[86] P.-Y. Chen and A. O. Hero, “Multilayer spectral graph clustering via convex layer aggre-
gation: Theory and algorithms,” IEEE Transactions on Signal and Information Processing
over Networks, vol. 3, no. 3, pp. 553–567, 2017.

140

[87] T. P. Peixoto, “Bayesian stochastic blockmodeling,” Advances in network clustering and
blockmodeling, pp. 289–332, 2019.

[88] J. D. Wilson, J. Palowitch, S. Bhamidi, and A. B. Nobel, “Community extraction in multi-
layer networks with heterogeneous community structure,” The Journal of Machine Learning
Research, vol. 18, no. 1, pp. 5458–5506, 2017.

[89] A. Kumar and H. Daumé, “A co-training approach for multi-view spectral clustering,” in
Proceedings of the 28th international conference on machine learning (ICML-11), pp. 393–
400, 2011.

[90] A. Kumar, P. Rai, and H. Daume, “Co-regularized multi-view spectral clustering,” in Ad-
vances in neural information processing systems, pp. 1413–1421, 2011.

[91] V. Pareto, “Cours d’économie politique, rouge,” Lausanne, Switzerland, 1896.

[92] A. Scherrer, Matlab / C++ implementation of community detection algorithm, 28 Septem-
ber 2010. https://github.com/jblocher/matlab-network-utilities/tree/master/

Louvain.

[93] L. Danon, A. Diaz-Guilera, J. Duch, and A. Arenas, “Comparing community structure
identification,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2005, no. 09,
p. P09008, 2005.

[94] J. Liu, C. Wang, J. Gao, and J. Han, “Multi-view clustering via joint nonnegative matrix
factorization,” in Proceedings of the 2013 SIAM International Conference on Data Mining,
pp. 252–260, SIAM, 2013.

[95] D. Greene and P. Cunningham, “A matrix factorization approach for integrating multiple
data views,” in Joint European conference on machine learning and knowledge discovery in
databases, pp. 423–438, Springer, 2009.

[96] N. Rasiwasia, J. Costa Pereira, E. Coviello, G. Doyle, G. R. Lanckriet, R. Levy, and N. Vas-
concelos, “A new approach to cross-modal multimedia retrieval,” in Proceedings of the 18th
ACM international conference on Multimedia, pp. 251–260, 2010.

[97] P. Mercado, F. Tudisco, and M. Hein, “Generalized matrix means for semi-supervised
learning with multilayer graphs,” in Advances in Neural Information Processing Systems,
pp. 14877–14886, 2019.

141

