

Goal-Oriented Hierarchical Task Networks and Its

Application on Interactive Narrative Planning

by

Emir Artar

Submitted to the Graduate School of Engineering and Natural

Sciences

in partial fulfillment of

the requirements for the degree of

Master of Science

Sabancı University

August 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sabanci University Research Database

https://core.ac.uk/display/328813102?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

© Emir Artar 2019

All Rights Reserved

ii

Abstract

GOAL-ORIENTED HIERARCHICAL TASK NETWORKS AND ITS

APPLICATION ON INTERACTIVE NARRATIVE PLANNING

Emir Artar

Computer Science and Engineering, Master Thesis, August 2019

Thesis Advisor

Prof. Berrin Yanikoglu

Thesis Co-Advisor

Assoc. Prof. Barbaros Bostan

Keywords: Artificial Intelligence, Game Design, Narrative Planning

Abstract

Two of the most commonly used AI architectures in digital games are Behavior Tree

(BT) and Goal-Oriented Action Planning (GOAP). The BT architecture is script based,

highly controllable but barely expandable. On the other hand the GOAP architecture is

planner based, barely controllable but highly expandable. This thesis proposes a hybrid

AI architecture called Goal-Oriented Hierarchical Task Network (GHTN); combining

planner based approach of GOAP with script based approach of BT. GHTN modifies

the Hierarchical Task Network (HTN) architecture by replacing its iterative planner

with a goal oriented planner, while maintaining the BT-like scripting capabilities of

HTN.

iii

GHTN's iterative-planner hybrid architecture is suitable to be used for Interactive

Narrative Planning. Using GHTN with a previously crafted domain, it is possible to

obtain a non-repetitive and continuous narrative flow which can also be directed by

external goals. The user is presented with choices that are intelligently chosen to push

the narrative towards the goal; then, depending on the answers new choices are

generated. The initial state of the world and the goals are specified by a Scenarist who

has the knowledge of the domain. The proposed architecture is tested on Interactive

Narrative Planning task with an example domain set in the Lala Land universe, and the

architecture is tested with several initial world states and goals.

iv

Özet

HEDEF ODAKLI HİYERARŞİK GÖREV AĞLARI

VE ETKİLEŞİMLİ ANLATIM PLANLAMADA UYGULAMASI

Emir Artar

Bilgisayar Bilimi ve Mühendisliği, Yüksek Lisans Tezi, Ağustos 2019

Tez Danışmanı

Prof. Berrin Yanikoğlu

Tez Eş Danışmanı

Assoc. Prof. Barbaros Bostan

Keywords: Yapay Zeka, Oyun Tasarımı, Anlatım Planlama

Özet

Dijital oyunların yapay zeka mimarilerinde en sık kullanılan yöntemler Karar Ağaçları

(BT) ve Hedef-Odaklı Aksiyon Planlamadır (GOAP). Karar ağaçları mimarisi senaryo

tabanlı çalıştığından ötürü çok kontrol edilebilirdir fakat genişletilmeye açık değildir.

Bunun aksine GOAP mimarisi planlama temellidir, dolayısıyla kontrol edilebilirliği

azdır fakat kolaylıkla genişletilebilirdir. Bu tez Hedef-Odaklı Hiyerarşik Görev

Ağları’nı (GHTN) ileri sürer. GHTN; Planlama temelli olan Hedef-Odaklı Aksiyon

Planlama mimarisi ile senaryo temelli Karar Ağacı mimarisinin karması olarak disayn

edilmiştir. GHTN, Hiyeralşik Görev Ağları (HTN) yapısının mimarisinde değişikliklere

giderek HTN’in yinelemeli planlama yapısını hedef odaklı bir planlama yapısı ile

v

değiştirir ve bu modifikasyon esnasında Karar Ağaçları’nda olduğu gibi bir senaryo

yazım yapısını eklemeyi hedefler.

GHTN’nin senaryo-planlama karması mimarisi, Etkileşimli Anlatı Planlama için

kullanılabilir. Öncesinde yaratılmış bir görev ağı ile beraber çalıştırıldığında, tekrarsız

ve devamlı bir anlatı akışı sağlar ve bu anlatı akışının dışarıdan verilen hedefler

çerçevesinde düzenler. Kullanıcıya, anlatıyı hedefe götürmek üzere akıllıca seçilmiş

sorular sorulur ve kullanıcının yaptığı seçimler doğrultusunda hikayeyi hedefe doğru

tekrar yönlendirir. Dünyanın başlangıç durumu ve hedefleri, görev ağına hakim bir

Senarist tarafından seçilir. Bu tezde, sunulan GHTN mimarisne Etkileşimli Anlatı

Planlama görevi verilmiştir. Anlatıda kullanılacak görev ağı, “Lala Land” dünyasından

esinlenerek yaratılmış, ve çeşitli başlangıç ve hedef durumları ile sınanmıştır.

vi

TABLE OF CONTENTS

CHAPTER 1 ... 1

Introduction ... 1

1.1. Thesis Structure .. 5

CHAPTER 2 ... 6

Background Information ... 6

2.1. Interactive Narrative ... 6

2.1.1. Key requirements of Interactive Narrative ... 11

2.2. AI Architectures ... 12

2.2.1. Behavior Trees .. 12

2.2.2. GOAP .. 15

2.2.3. Hierarchical Task Networks (HTN) ... 19

CHAPTER 3 ... 23

Methods ... 23

3.1. Goal Oriented Hierarchical Task Networks (GHTN) 25

3.1.1. Base HTN Algorithm Simplifications .. 25

3.1.2. Goal ... 26

3.1.3. Tasks and Methods ... 27

3.1.4. Preparing Behavior Space for Goals ... 27

3.1.5. Trigger .. 29

3.1.6. Task Queries ... 31

3.1.7. Categorization ... 31

3.1.8. Preparing the Behavior Space for Planning .. 31

3.1.9. Planner’s World States .. 33

3.1.10. Interactive Planning (Interactive Narrative Only) 35

3.2. Designing Task Network Space ... 37

3.2.1. Ordering Tasks and Methods .. 37

3.2.2. Designing World States .. 37

3.2.3. Trigger Selection and Design ... 39

3.2.4. Designing When To Use Queries ... 39

3.2.5. A* and The Integer Problems ... 40

3.3. GHTN in Interactive Narrative ... 42

vii

3.3.1. Setting Initial States in Interactive Narrative .. 42

3.3.2. Setting Goal States in Interactive Narrative ... 42

3.3.3. Tasks and Methods ... 43

3.3.4. Scenarist .. 45

3.3.5. Scenarist and Task Preparation ... 47

3.3.6. Interactive Planning (Asking Questions) .. 47

3.4. Further Research ... 50

3.4.1. Bidirectional Search .. 50

3.4.2. Novelty Pruning .. 51

3.4.3. Interactive Narrative Quality .. 52

3.4.4. Guarantee of Finding a Plan ... 54

3.5. Full Algorithm Overview in a Test Environment ... 56

Bibliography ... 67

viii

LIST OF TABLES

Table 1: Every plan is different and there are no milestones

Table 2: Every plan is different but there are milestones; (Assume A, B, J are

milestones)

Table 3: Plans overlap and there are no milestones

Table 4: Plans overlap and there are milestones.

Table 5: Glaive & BFS Algorithm comparison in different domains

LIST OF FIGURES

Figure 1: Dwarf Fortress

Figure 2: The unfolding of the story through tree graph representation

Figure 3: different paths leading to a same outcome at a later stage

Figure 4: A Generic Behavior Tree

Figure 5: Oversaturated Behavior Tree with a Thousand Tasks

Figure 6: GOAP explanation from its creator, Orkin

Figure 7: Planning to Eat with GOAP, Domain Figure

Figure 8: Planning to Eat with GOAP, Expansion Figure

Figure 9: HTN Visualization of Tasks

Figure 10: Preparation Algorithm

Figure 11: Relations of Tasks (yellow) with Green (world states).

Figure 12: The ending story node takes the events that happened in the story into

consideration and create an ending.

ix

LIST OF ABBREVATIONS

AI Artificial Intelligence

BT Behavior Tree

GOAP Goal Oriented Action Planning

HTN Hierarchical Task Network

GHTN Goal-Oriented Hierarchical Task Network

1

CHAPTER 1

Introduction

In modern video games both the game world and the action space available to the player

is massive. Because of the unpredictable nature of the player, it is very costly if not

impossible to design for every possible event chains in the game. Artificial Intelligence

(AI) as a dynamic decision mechanism; provides a practical solution to this problem.

Game AI's are designed to predict and counter player inputs. AI is a valuable tool used

to enrich the experience and provide fair challenge to the player.

There are many aspects to a game that can be improved with the use of AI. Among

these features most commonly known is AI controlled agents also known as bots. Bots

can benefit or hinder the progress of player. By using a rubber-band AI approach,

difficulty provided by these bots can change real-time, resulting in a challenging game

independent from the skill of the player. AI can also be used as a hidden assistance tool,

as in the use of AI in kinematic animations. In complex animations, predicting the

player inputs result in fluent animations, a feat only possible because the use of AI.

Another field that makes use of AI is Interactive Narrative, where systems can be

designed to take on the role of a narrator, such as the popular culture examples of Black

Mirror: Bandersnatch or dungeon masters in table top D&D games.

Repetitiveness and discontinuity must be avoided in Interactive Narrative. Stories where

repetition happens often, or causality relationships are not established strongly appear

unbelievable and artificial. Interactive Narrative planning is the arrangement of story

content with the context of chronological relation; in order to create a continuous and

non-repetitive narrative. The categories that test interactive narratives are robustness,

controllability and the ability to keep the user engaged.

2

Creating an Intractable Narrative is the equivalent work for creating several non-

interactive works, due to the large domain size required from which different narratives

are born; which is a burdensome overhead. Automating the process of story generation

is commonly used in video game industries, since most domains are limited in size. The

procedural algorithms are not only used in narrative creation but can even be used in

conjunction with other aspects of the game. Some examples of procedural generation

used in games are: procedurally generated worlds (Minecraft, Elite Dangerous),

procedurally generated world items (Borderlands), procedural generated audio ques

(Half-life), procedural generated characters (No Mans Sky). The provided benefit of

automation processes is to make each player’s experience of the same game or narrative

differently and uniquely. Developing a domain where different stories can be generated

from is costly in terms of designer and developer time. However once the framework is

established, the AI architecture can generate exponentially many content then the hand-

crafted approach.

Critically acclaimed game Skyrim (Bethesda Softworks, 2011) has a hand written

narrative for its main story. However optional missions are generated through

procedural generation techniques, these missions are called Radiant Missions. The

world can generate infinite amounts of these Radiant Missions. Radiant Missions are

generated by the request of the player, and the game chooses a location and a target for

the mission and alters the game world; creating a new mission and creating the illusion

as if the mission was already in the game. Resulting mission can be in any number of

locations in the game world and any number of characters can be a part of the mission.

Radiant Missions generate a unique mission for the player to partake in. By embarking

the mission’s journey, the player may encounter new areas or characters by simply

trying to reach to the objective. These missions being infinitely generateable, Radiant

Missions encourages the player to explore, thus enriching the gameplay experience. It

extends the lifetime of the product through content generation.

While being a solid system, Radiant Mission system lacks in few aspects. In Skyrim, the

main plot is hand crafted and Radiant Missions are a side addition. To be able to coexist

with the already existing hand crafted main plot, Radiant Missions cannot affect the

main story line in any way or form. If an assassination mission is generated through a

Radiant Mission; its target cannot be any of the key characters from the main plot. Their

demise would break the main plot, since the main plot isn’t designed to handle scenarios

3

where any of the essential characters can have an untimely death. Therefore the game

simply forbids such key characters and items to be targeted by the Radiant Mission

system. Another lacking point of Radiant Mission system is its repetitive nature. Two

missions generated by Radiant Mission system only differs by the location and the

target. Because of these lacking points of Radiant Missions, players figured out the

artificiality of the system, and the player feedback on Radiant Missions were negative;

otherwise a very critically acclaimed game title. The negative reception would be

opposite if Radiant Missions had some effect on the main story, thus players would take

feedback from the game world as if the time and effort put into accomplishing the

Radiant Mission would have repercussions on the world, assuming the player could kill

a key figure in the narrative and change the whole plot of the story.

Dwarf Fortress is a prime example of how narrative planning can make a successful

product. Unlike modern games where graphical fidelity is achieved using complex 3D

models, animation capture software and high fidelity sound effects to captivate the

audience; Dwarf Fortress has none of this, and is one of the games featured on Museum

of Modern Arts in 2012. Dwarf Fortress being an ASCII game only communicates with

its user by ASCII characters. It shows a bird’s eye view to the land and its inhabitants

only using ASCII and colors, where different ASCII characters such as ☺ may

represent a dwarf and the character g may represent a goblin. From an interview with its

creator studio Bay 12 Games, “For instance, when you travel to certain cities in the

game and speak to a merchant they might tell you that their leather caps are made in an

elvish city half a world away. And it will be true. They really were made there, during

world creation, and traveled to this market for you to buy before you even started

playing.”
[1]

.

The captivating aspect of the Dwarf Fortress comes purely from the narrative

experience it offers. Dwarf Fortress is a game which is built on top of an astounding

world generation algorithm. Before the player starts the game, a world must be

generated. This world creation process generates entire continents, mountains, caves,

wildlife and mineral deposits. Game simulates geological events and records these

generated data to be used later in the game and generation process. After world

generation, narrative planning takes place where the game places civilizations on the

created world; humans, elves, goblins, dwarfs. These factions wage war with each other

prosper and fall, kingdoms are formed and trade routes are established, heroes with

4

legendary deeds are generated and betrayals are made, natural disasters occur. The

whole generation process simulates thousands of years of time in the generated game

world. All of this history is stored in the world for the player to discover. Only after the

world generation is complete the player can embark upon a new journey in this rich

environment ready to be explored. In Dwarf fortress player takes control of a dwarf

colony. Where player must make decisions to expand, secure and prosper the colony.

Other factions may decide to wage war on player or make a trade deal, all dependent on

the actions of the player and the events that take place in the simulated game world.

Figure 1: Dwarf Fortress

Since Dwarf Fortress is a game of a constant struggle for survival, it lacks an end to its

story. The ending for Dwarf Fortress is either the death of the dwarf colony or the

player choses to stop playing. It’s an unending test of endurance, where all world events

are generated without a final goal in mind. Since the playtime of the game is

significantly less than the simulation time of the world generation algorithm, the

interactions of the user does not affects the narrative in an interesting way.

In our thesis we are proposing a hybrid AI architecture, Goal-oriented Hierarchical Task

Networks (GHTN), combining different approaches of the two most popular AI

architectures in gaming industry; Behavior Trees and Goal Oriented Action Planning.

GHTN is a Hierarchical Task Network (HTN) based architecture, where Behavior Tree-

5

like approach to scripting and Goal Oriented Action Planning-like planning mechanisms

is combined in harmony.

With GHTN we designed a case study for Interactive Narrative to explore the

capabilities of the architecture. GHTN is also applicable to other domains of such as

procedural generation and behavior planning. Interactive Narrative is one of the more

challenging domains for study since it fully utilizes both the iterative and planning

features.

1.1. Thesis Structure

The rest of this thesis is organized as follows.

Chapter 2 provides an introduction to Interactive Narrative as well as requirements from

a good Interactive Narrative system. Chapter 2 continues on with AI architectures

Behavior Tree, GOAP and Hierarchical Task Networks, their advantages and

disadvantages.

Chapter 3 describes the modifications proposed to HTN, details the designing process

for behavioral tasks, and discusses how Interactive Narrative can be applied to the

proposed system.

Chapter 3.4 goes over the pre-planning and planning algorithms by simulating the

algorithm on a predesigned task space, visualizing interactions and inner workings of

the algorithm’s planning system.

6

CHAPTER 2

Background Information

2.1. Interactive Narrative

It has been witnessed during the recent years that there has been an increase in the

development of training systems that are simulation based and has the capacity to

engage multiple spectrums under it in order to cater the needs of the market (Magerko,

Stensrud and Holt). For example in order for a pilot to learn properly how to fly an

aircraft, simulation based training system would allow the pilot to learn flying an

aircraft without having the need to practice over a real aeroplane. The simulation based

training system would act like a real world aircraft which would help the pilots to

enhance to learn or even to enhance their flying skills. These kinds of simulation

systems has already been introduced in the market and has been catering different kinds

of industries such as health care, business management, education, military etc. “human

in the loop” simulation system is another name for simulation based training where

synthetic environment is created for trainee in order for them to acquire the necessary

skills and education through the use of the simulation system. Traditionally, the way of

training people was very different as compared to the ways of current era. In the past

there were no training systems as such or even if they were in place, they were not

comprehensive enough to teach a trainee the necessary skills. Therefore trainees were

provided real world scenarios and real world application to test their skills and increase

their knowledge which was also very expensive (Hill, Gratch and Marsella) (Faria,

Hutchinson and Wellington). Compared to the current situation, such costs can be

avoided through the use of comprehensive simulation systems which would allow

trainees to gain necessary skills and knowledge affordably and in the least expensive

ways. Such a simulation systems would also allow interactive virtual experience which

not only enhances the skills of the trainee but also gives the trainee room for committing

7

errors which would not be possible when being exposed to a physical environment

where the margin for errors is next to none. Hence better learning opportunities are

available for the trainees leading to developing better skills and performance. Although

the simulation systems have gained increasing popularity over the years yet there are a

lot of challenges being faced for developing a comprehensible simulation based

systems. Training refers to exposing a person to different number of scenarios or

sequence of events where a trainee could enhance their multiple skills. This is one of the

most critical elements of a simulation system since through the use of it, multiple

objectives of training are achieved. Being able to be exposed to different scenarios,

trainee is able to undertake multiple training sessions and certain training missions to be

able to enhance their skills effectively. However ensuring that the trainee is able to

achieve the desired objectives, it takes a lot of time since manual authoring of multiple

scenarios is one of the bottlenecks being faced during the training sessions. Moreover,

care has to be taken about how the scenarios will be executed while ensuring the actions

taken by the trainee influences the outcomes of the scenarios and helps to progress the

training accordingly (Zee, Holkenborg and Robinson) (Riedl, Stern and Dini).

The other name for Interactive narrative is known to be interactive story telling which

has now gained certain grounds as digital entertainment around the globe. Training

domains are very actively taking interactive narrative into consideration where trainee

or a player has the choice to unfold the story of the scenarios according to the actions

which they take in the virtual world. The virtual environments now created are highly

immersed which is also one of the visions of the interactive storytelling and allows

creating dramatic experiences for the trainee by allowing them to influence and unfold

the story according to their actions. Such an experience is also termed as Holodeck

experience. Certain automated means like AI planning are also employed by most

interactive narrative systems in order for them to generating narratives due to which the

burden of authoring is alleviated. Although multiple areas of interactive storytelling are

in their infancy and a lot of research is being conducted in this regard as well in order to

improvise and improve the interactive narrative systems (Kato). Over the last twenty

(20) years multiple interactive narrative systems are being developed and multiple

techniques has also been offered in this regard over the years (Faria, Hutchinson and

Wellington). The foremost challenge which has been observed during these years has

been about balancing the need to coherently progress the story with the user agency.

8

Since progression of a story in multiple directions due to influential actions taken by a

trainee requires deep understanding of what actions might certainly be taken by the

trainee hence designing the outcomes for those scenarios requires comprehensive

understanding to unfold the story and reach a conclusion. There are no best ways of

knowing the intensions of a user since user has the options to act in a way which they

feel would be best for them. Designing scenarios accordingly is one of the most

challenging aspects of interactive narrative systems or interactive storytelling. The users

are not determined to take predefined steps to unfold a story but they are more prone

towards testing the limits of the story telling to learn how vividly a story might unfold

and in which directions therefore such an uncertain situation creates challenges. These

challenges are to be catered by balancing the competing needs of the individuals and

allowing them to feel that they have the control over unfolding the story in the most

appropriate manner while ensuring that the coherency of their experiences are

maintained (Hill, Gratch and Marsella) (Riedl, Stern and Dini).

One of the solutions to cater to these challenges has been through the use of drama

manager who ensures that the narrative is being driven forward according to certain

models in place which ensures quality and experience for the player. The drama

manager is also known as the experience manager who plays a vital role in influencing

the actions of the character which are being controlled by the user. The drama manager

ensures by way of intervening that the actions undertaken by the user are being

implemented in the narrative. The drama manager actually interprets the future actions

of the user controlled activities by way of future projections. The projections are not

made randomly but through narratological principles and other criteria’s through which

the quality of the user experiences are ensured (Zee, Holkenborg and Robinson).

The fictional world can be in different states due to the actions being performed by the

NPC’s, users and drama manager. Considering the fact that NPC’s had not been

discussed previously therefore it would be feasible to understand the concept behind

what NPC’s are. Basically NPC’s can be defined as the transitioning of the virtual world

through the transitioning of the virtual world in different states by means of the actions

of the NPC’s just the way a virtual world would transition by the actions taken by the

user. NPC’s are more basically helping the user to implement their actions in the virtual

world and drama manager is there to ensure that appropriate outcomes and experience is

being generated by such actions being undertaken. All these criteria and agents are

9

being built by the human author in controlling the virtual since it is necessary to shape

the experience of the user and since human author will not be present their to ensure

such quality of experience therefore such agents are in place to implement the actions

and shape the user experience accordingly. Considering the importance of the human

author and drama manager, it is necessary that a relationship exists between them in

order to ensure that the concerns of the interactive narrative research are being catered

vividly (Riedl, Stern and Dini). The whole scenario can be explained through the figure

1 which shows various transitioning states and outcomes of multiple actions being taken

by the user to unfold the story while ensuring quality of their experience.

Figure 2: The unfolding of the story through tree graph representation

The figure shows different outcomes of a single story due to multiple actions being

taken by different users. Since these outcomes vary widely due to having users to

pursue different kinds of tactics to explore the dynamic nature of the interactive

narrative systems therefore multiple scenarios are being created to overcome that

challenge. Also in order to ensure the quality of the user experience, drama managers

are built in place to ensure that the outcome of an action doesn’t skips a path and lead to

a farther outcome for an action hence drama manager ensures that the story unfolds in a

logical manner and not jump from path 3 to path 8 directly or from path 3 jump to path

10

7. If such drama manager were not being put in place then the quality of the user

experience would have been compromised since the outcome of an action to pursue path

5 would be against it and path 7 would be pursued. In such a situation drama manager

ensurs that the outcome of path 5 should be path 8 or path 9 only. Also it is not

necessary that the story unfolding from path 5 will have an entirely different outcome

and different story if being pursued. Different paths could lead to a same story as well

which can be explained through figure 2 as follows

Figure 3: different paths leading to a same outcome at a later stage

Figure 2 explains the fact that the conclusion of different paths could be the same but in

certain situations they could be different as well. Hence it is not obvious that different

paths will have entirely a different story but the story could unfold in entirely a different

way while leading to a similar or same conclusion at the end. All these paths and

trajectories are being designed by the human author but as drama manager acts as a

replacement for the human author in interactive narrative systems.

11

2.1.1. Key requirements of Interactive Narrative

For the purpose of the development of the interactive narrative system, there are certain

key considerations that need to be followed to ensure quality experience of the user.

Two categories have been found for the purpose of key requirements in developing

interactive narrative systems which are as follows:

The first category deals with the perspective of the trainers about how they would want

an interactive narrative system to help them achieve their desired goals. In this regards

robustness and controllability of the system are being tested.

The second category deals with the perspective of the trainee in which the trainee

considers how much engaging the experiences could be through the use of interactive

narrative system. In this regard personalization and interaction is being taken under

consideration.

Under the first category, controllability is focused towards how the desired outcomes

are being achieved through the use of the interactive narrative system to meet certain

training goals. Whereas robustness is considered as the robustness of the outcomes in a

virtual world. Since it is a known fact that there are multiple actions that could possibly

be performed by the user which has different outcomes but just to explore that

possibility of achieving exceptional outcomes, users may perform certain actions which

could lead to outcomes not being considered by the interactive narrative system and has

might lead to undesired outcomes. Such undesired outcomes are to be avoided at all

costs and such considerations are called robustness.

Under the second category personalization refers to outcomes that are being preferred

by the individual users or trainers according to their needs whereas interaction refers to

influencing the storyline of the interactive narrative system for unfolding the story

(Kato) (Riedl, Stern and Dini) (Zee, Holkenborg and Robinson).

12

2.2. AI Architectures

AI research starts with asking a question to figure out which AI architecture is the most

feasible solution to the problem at hand. In the process of considering different

architectures, Behavior Trees are the first architecture to consider. The following

section explores Behavior Trees and other the most frequently used AI architectures.

2.2.1. Behavior Trees

Behavior Tree (BT) is an AI architecture, which is used to implement complex

sequences of events. BTs consist of two parts; the BlackBoard and the tree.

The BlackBoard is a globally accessible bundle of states, which represents the current

state of the world. The nodes in the tree updates BlackBoard globally, the BlackBoard

never has a local copy anywhere.

The tree is a branching list of nodes, originating from root to leaves, where branching

appears in the presence of multiple paths from a single node. The tree is not balanced

and number of children varies from node to node. In the most common implementation;

 The root node is insignificant, is mostly used as a pointer to the tree

 The internal nodes are a bundle of expected BlackBoard conditions. They may

contain other internal nodes or leaf nodes as their children.

 The leaf nodes represent actions, which can be taken.

BT is a reactive system, which takes the BlackBoard as a parameter, and iteratively

works from the root to the leaves. The iterations work very similarly to depth first

search (DFS). At the start of every depth level, every children of the current node is

evaluated left to right until one with valid preconditions (with respect to BlackBoard) is

found. When the preconditions match, the depth is increased and search is done for the

matching node. When no preconditions match on that level, the recursion returns false

and search is continued on the parent node again. In the most common implementation,

the search stops when a leaf node is executed. In more advanced implementations, there

13

are modifier nodes (selector and sequence) so that the search may last until a leaf is

executed, or a sequence of leaves is executed.

Behavior Trees have no Goals, they work once or they are run multiple times until an

external stop command is given.

Figure 4: A Generic Behavior Tree

Advantages of BTs

BTs are often the most suitable architecture to solve the problem in hand due to the fact

that they are simple to code, easy to design and somewhat scalable.

It is relatively easy to prototype a design in BTs due to its simplicity and

straightforward nature. Behavior trees also have many different implementations being

available widely over the game engines, most of which support GUI and drag and drop

features, which enable non-coding background designers to design a system with ease.

BTs are also the go-to AI architecture in most computer games due to the nature of

game AI having a low count of behaviors and cause and effect relations being simple.

14

Disadvantages of BTs

BTs can scale from tens of nodes to few hundreds of nodes; however it is very

infeasible to develop a behavior tree further in the node count. In an oversaturated

Behavior Tree, the tree itself becomes unmaintainable since it becomes harder and

harder to read, understand and create relations in. When a new node is designed to be

added, its preconditions should be decided and the newly designed node should be

attached to another node in the behavior tree. The attaching operation is complex, since

the whole tree should be considered while adding; the node may require to be added

multiple times to different parts of the tree. While attaching to its parent, the location of

the new node with respect to its sister nodes is also important due to the fact that the

nodes are evaluated left to right.

Figure 5: Oversaturated Behavior Tree with a Thousand Tasks

Since the BT algorithm works iteratively; the algorithm cannot undo operations and go

back to previous world states. Imagine the ruleset of Towers of Hanoi; this task is

unsolvable in BTs unless you give the mathematical solution in the format of a tree. If a

new disk is added to the ruleset, the whole mathematical solution must be updated in

order to meet with the new requirements. BTs cannot solve such a problem without the

full mathematical solution since they are not capable of planning. BTs are best used in

iterative problems where it can act reactively to the BlackBoard.

15

According to Damian Isla, Lead AI Developer at Bungie, “Hackability is key” when

dealing with BTs. In his proceeding in Game Developers Conference, a very prestigious

conference for its domain; Isla explains different approaches to BTs and how to modify

BT’s flow with modifiers he calls “Stimulus Behavior” and “Behavior Impulses”. These

implementations create callbacks within the BT and force it to handle certain cases.

Whilst his propositions are perfectly valid and solve main problems of BTs, they do not

contribute to scalability factor, creating what he calls the “Parameter Creep”; rendering

the maintenance of the BT tougher over time.

2.2.2. GOAP

Goal Oriented Action Planning is proposed by Jeff Orkin in 2006, and was used widely

on many classic computer games until 2012. Orkin’s research was phenomenal in its

time, taking the focus off of script-like architectures (BTs), and putting it into planners

(GOAP) in Game AI development. Orkin states that “The planning system that we

implemented for F.E.A.R. most closely resembles the STRIPS planning system from

academia.” Orkin states 4 main differences between the algorithms, however we will

not explicitly cover these due to our scope.

GOAP consists of three parts; the world state, actions and a planner.

World State is a bundle of state variables bundled together. Initial World State is the

world state at the beginning of the algorithm, and Goal World State is the expected

world state at the end of the algorithm. It serves the same purpose as BlackBoard serves

to Behavior Trees, however while a BT has one and only one BlackBoard, GOAP can

have multiple World States.

Actions are nodes available in the planning space. Each action has a precondition, an

effect, and cost. In order for an action to execute, its preconditions must be satisfied.

When the preconditions are satisfied, the world state is locally updated. The cost of an

action is higher for difficult tasks, and it is an arbitrary number greater than or equal to

0. GOAP algorithm does not have any physical structure such as trees; there are no

connections between nodes.

16

Figure 6: GOAP explanation from its creator, Orkin

The planner in GOAP uses A* search algorithm, to find a “path” between the Initial

World State and the Goal World State. The A* algorithm utilizes the costs of the actions

as a heuristic, and at every expansion utilizes the lowest cost action. In order to find a

path, the algorithm starts from the Goal World State, and backtracks into the Initial

World State. The path is the ordering of actions, there can be a path between two

actions if the precondition of the one action is satisfied after the action is executed on

World State.

Figure 7: Planning to Eat with GOAP, Domain Figure

Since the algorithm works in reverse, planning starts from the Goal World State, and

picks the first action which creates this state. Runtime of the example above is a

following:

17

World State:

 hasPhoneNumber = true

 hasIngredients = true

Goal:

 Hungry = false

The algorithm starts with the Goal, and finds a path backwards to the initial world state.

1. The action “Eat” is chosen and added to the plan because its post conditions

(Hungry = false) is satisfied.

a. Local Goal State is updated to (Hungry = true, hasFood = true)

b. Plan is [Eat]

c. Algorithm continues, The Local Goal cannot be satisfied by some subset

of Initial World State

2. The action “Serve” is chosen and added to the plan. In parallel, “Wait for

Delivery” can also be added to the plan instead, we are not exploring that path

for the sake of simplicity. Assume that the “Wait for Delivery” task is a high

weight task so it is ignored.

a. Local Goal State is updated to (Hungry = true, hasFood = true,

foodCooked = true)

b. Plan is [Eat, Serve]

c. Algorithm continues, The Local Goal cannot be satisfied by some subset

of Initial World State

3. The action “Bake” is chosen and added to the plan.

a. Local Goal State is updated to (Hungry = true, hasFood = true,

foodCooked = true, foodMixed = true)

b. Plan is [Eat, Serve, Bake]

c. Algorithm continues, The Local Goal cannot be satisfied by some subset

of Initial World State

4. The action “Mix” is chosen and added to the plan.

a. Local Goal State is updated to (Hungry = true, hasFood = true,

foodCooked = true, foodMixed = true, hasIngredients = true)

b. Plan is [Eat, Serve, Bake, Mix]

18

c. Algorithm continues, The Local Goal cannot be satisfied by some subset

of Initial World State

5. The Local Goal can now be satisfied by some subset of Initial World State, the

planning algorithm stops.

Figure 8: Planning to Eat with GOAP, Expansion Figure

At the end of execution, the algorithm returns the shortest path to the Goal from the

World State.

Advantages of GOAP

It is an effortless task to add a new action to the planning domain. The action’s

preconditions and its effect should be decided, which is a trivial task; considering the

fact that each action can be initially designed independent from each other. Determining

the cost of the action is experimental since the cost should be in line with other tasks’

costs, and the cost is the only parameter which determines the likelihood of the action

being planned. An action with a very high cost would be chosen rarely by the planner,

while an action with a low cost would be picked more often; since it does not

dramatically worsen the heuristic. Related to this topic, Orkin gives the following

example: Consider a new action TurnOnLights with the effect LightsOn=true is

designed. If the TurnOnLights action is to be added to our planning domain, all that is

required is to add LightsOn==true as a precondition to another action MoveAround.

Therefore, actor will make sure to call TurnOnLights before calling MoveAround, to be

able to navigate when they are in a dark environment. For every Goal which requires

MoveAround action, it can be guaranteed that TurnOnLights action is called; meaning

the lights are turned on, if they were not already on.

19

Disadvantages of GOAP

In GOAP, when an action is selected, it is removed from the list of available actions to

prevent the repetition problem, however this is a two edged sword. Simple different

tasks would require implementation differences to be solvable by the algorithm.

Consider the case where the AI is required to collect 3 indifferent stones, and there is an

PickOneStone action the available actions. If the planner picks the action

PickOneStone, it will be removed from the available actions, and the plan would be

unsolvable, even though there is a simple solution through repetition. Another approach

would be implementing PickFirstStone, PickSecondStone and PickThirdStone actions;

however such approach is not scalable.

In GOAP, creating new actions and adding them to the planning space is an effortless

task. The absence of a real structure, such as not being in the form of a tree or a state

machine, causes complexities if the designer wants to give some input to the planning

process. Since there is a lack of higher structure, it is not possible to intervene and

dynamically modify the search space. The designer can always edit weights for the

heuristic dynamically; however this is not a trivial task since all the actions are only

weighted by that one single metric. Such approach is very problematic since the

planning ambiguity of the system makes it very fragile, modifying a weight value of an

action will affect many actions that rely on the modified action, without the intention.

GOAP is a black box in this sense, and tinkering with the ambiguity will cause more

harm than good in a domain with high number of tasks.

2.2.3. Hierarchical Task Networks (HTN)

Hierarchical Task Networks (HTN) is a planning based, Goal oriented AI architecture.

While having limited applications in the Game AI research, HTN is an architecture

which is a good mix of the two most popular algorithms, BT and GOAP. Structurally,

HTN is composed of multiple trees with height 1; and the planner algorithm jumps from

tree to tree to find a solution, depending on the ongoing internal state. In video game

industry HTN is used in many franchises such as Killzone, Max Payne, Total War and

Dark Souls.

20

Figure 9: HTN Visualization of Tasks

HTN consists of multiple parts; World State, Primitive Tasks, Operators, Compound

Tasks, Methods and the Planner.

World state is a bunch of states bundled together, which represents the current state of

the world. In HTN, there is a single World State throughout the entire execution. The

World State is changed by Operators.

Primitive Tasks are basic tasks which includes one or more Operators. All the Operators

in a Primitive Task are called sequentially.

Compound Tasks consists of Methods, which are possible ways for solving that

Compound Task. A Compound Task can have one or multiple Methods. When a

Compound Task is executed, the algorithm tries to find a Method where its conditions

are satisfied. Similar to BTs, HTN algorithm starts from the leftmost child Method and

moves towards the rightmost Method until it can successfully run a Method. If there are

no methods in a Compound Task that are satisfiable, the Compound Task does nothing.

Compound Tasks are 1 height trees. The root node has the name of the Compound Task,

and each of the leaf nodes correspond to a method.

21

The planner is given an Initial World State, a Task Array to start running from and an

optional Goal State. The planner stops execution when the Task Array at hand is

emptied; meaning that all the tasks that this planning operation was responsible for, are

completed. If a Goal State is given, the planner will stop if its World State reaches to the

Goal State. It is also possible to limit the planner by iteration count. At the end of

execution, the planner returns the list of Primitive Tasks(These include Operators) so

the World State changes can be applied one by one.

If the Compound Task “Eat” has two methods, CallPizzaDelivery and BakeCake, the

leftmost child of the parent will have the first opportunity to work, in this case

CallPizzaDelivery’s preconditions will be checked first. If the preconditions do not

match, BakeCake’s preconditions will be tested. If the preconditions do not match for

BakeCake as well, nothing will be done in this method. However if one of these

Methods execute, they will add new tasks to the Task Array.

Advantages of HTN

The HTN algorithm is extendable due to the constant tree depth of 1 and extensive

decoupling of tasks, methods and operators. Being able to group Methods under

Compound Tasks allows the designer to create an internal order of execution

mechanism inside Compound Tasks. Also, Compound Task, Primitive Task and

Operator decoupling from each other allows the designer to freely implement any new

task or operator without having to worry about previously implemented ones, and ease

the complexity of debugging.

Hierarchical Task Networks are composed of 1 height trees; therefore they keep the

initial ordering between nodes that is set by the designer. This allows the designer to

create an order of importance to Methods sharing the same Compound Task before the

planning phase, which will be kept and respected throughout the planning phase.

Expanding the search space in HTNs can be done through implementing a new Method

to an already existing Compound Task, Creating a new Compound or Primitive Task or

implementing a new operator. Adding newly implemented features require a single pass

through the whole domain. Tasks are very easily debug-able since starting Task Array

can be set to start with the newly implemented task, or the task that calls the new task.

22

Disadvantages of HTN

A planner exists in HTN; however the planner is not a heavy-duty planner as in GOAP.

The HTN planner iterates over the network and checks conditions, accumulates the

methods and updates a local copy of the initial world state until the local copy matches

the Goal State. Wrong ordering of Tasks and Methods may cause the planner to never

come up with a valid plan to reach the Goal State, even if logically the Goal State looks

possible given the domain.

23

CHAPTER 3

Methods

The proposed algorithm Goal Oriented Hierarchical Task Network (GHTN) is a hybrid

architecture for AI programming, utilizing both BT-like and GOAP-like approaches

together. Unlike BTs, GHTN algorithm is fully fledged in capabilities. The unmodified

BT algorithm is not plug-n-play level usable, and most real world implementations

(such as Unreal Engine 4) implement parallel tasks, callbacks and other functions to

extend the system for general use. The GHTN algorithm is designed to be capable of

any foreseeable technical requirements in the domain of game AI, without any need of

extensions.

This thesis focuses on simplifying the HTN algorithm, extending its features with

extensions, and implementing a secondary GOAP-like planner for path finding in the

behavior space.

We will be using the domain “Interactive Narrative” to explain the GHTN algorithm.

The GHTN algorithm provides a discontinued, non-repetitive and interactive framework

for the chosen domain.

In methods, we will explore the modifications on the HTN architecture and

implementation details, with respect to the requirements of our domain of application,

Interactive Narrative. The format of the Methods section will be as following;

 “Section 3.1: Goal Oriented Hierarchical Task Networks” explains the algorithm

of GHTN architecture without any domain specific explanations.

 “Section 3.2: Designing Task Network” explains how to design a task network

to better utilize the features of GHTN algorithm.

 “Section 3.3: Use of GHTN in Interactive Narrative” application of GHTN to

Interactive Narrative is discussed and domain specific examples are explored.

24

 “Section 3.4: Further Research” discusses how the algorithm can be improved

and what are similar methods used in planning and interactive narrative

research.

 “Section 3.5:Full Algorithm Overview in a Test Environment” demonstrates a

use run case for both the planner and iterative parts of the algorithm.

25

3.1. Goal Oriented Hierarchical Task Networks (GHTN)

The HTN architecture explained in the background section of the thesis is the most

common architecture found in most HTN implementations. GHTN takes the HTN

algorithm as its base algorithm; however we have gone through several structural

modifications to HTN while minimizing the impact on the flow of the algorithm. The

reasoning behind the proposed modifications can be explained as the following;

 The AI algorithms explored throughout the thesis are mostly used in game AI;

they are designed for the use of small and confined behavior counts. The nature

of our work requires more extensive amounts of behaviors in order to be able to

create different plans within the same behavior space. Simplifying the already

existing HTN terminology will allow us to add our terminology for new terms

without minimizing any complications.

 The HTN algorithm is very modular but complex in structure. The structure can

be simplified without altering the workflow, but hurting modularity. To increase

modularity, free functions can always be used when designing the behavior

space. In HTN, the excessive modularity increases the boilerplate code and

design required just to do very simple tasks; complicating the design process.

3.1.1. Base HTN Algorithm Simplifications

In the GHTN algorithm, Compound and Primitive Tasks are merged into Tasks. Like

the HTN algorithm, a task can have one or multiple methods and tasks can optionally

have a default method. To simplify the planning and designing flow, tasks can modify

world states as if they are calling other tasks.

To better differentiate tasks that do not add any sequence and tasks that fail; tasks can

now return an invalid state when they fail. A task without a default method will fail if

none of its methods’ preconditions’ holds. The existence of invalid state relaxes the

requirements of the task network designer, simplifying the flow from designer’s

creativity to algorithm’s expected format.

26

3.1.2. Goal

A Goal is the expected end of the algorithm. The algorithm works until the Goal is

satisfied, and stops on the instant the Goal is satisfied. Reaching the Goal is not the end

of the algorithm since Goals can be given to the algorithm in sequence, one after

another.

A Goal can be expressed to the algorithm as a bundle of states, bundle of tasks or

categories of tasks. As long as it is possible to convert the input to a bundle of world

states, anything can be expressed as a Goal. Combination of all the above mentioned

Goals can also be combined. Even though all the above mentioned types of Goal input

are supported, using tasks and categories to create world states require some knowledge

of the designed world space. These options can cause instability in the task network by

creating special cases in the preparation algorithm, which are to be explored in Section

“3.1.4: Preparing Behavior Space for Goals”.

Goal as a bundle of states can be represented as an array of world states. Goal States are

expressed as [bCondition1 = true, bCondition2 = false]. The algorithm will attempt to

find a sequence of events to satisfy both requirements in this state at the same time, or

one after the other; depending on the behavior space created by the designers.

Goal can be tasks since tasks can be converted to world states. Goal as task is expressed

as [NameOfTask1, NameOfTask2]. Task Goals are distinguished from state Goals since

there are no “=” in the expression, and there exists one task with the name

“NameOfTask1” and “NameOfTask2”. The algorithm’s first job is to convert the tasks

into world states in order to express this Goal requirement with already existing

systems. If the task has a single method, the preconditions of that method are registered

as the Goal State. If the task has multiple methods, the preconditions are converted to

Goal States, and they are registered as parallel Goals. These tasks are moved in front of

other tasks in the behavioral space, so the Goal task has priority over every other task in

the behavioral space. For every task in the Goal tasks, this conversion is repeated.

A category of tasks can also be a Goal State. In the behavior space, multiple tasks can

be tagged with categories, and the planner can register that tag as a Goal. The Goal

registration system for categories utilizes the same algorithm of task Goals; for every

category in the Goal categories, the registration algorithm is run.

27

The algorithm of handling multiple Goals in parallel is explained in Section 3.1.10:

Interactive Planning.

3.1.3. Tasks and Methods

While creating a behavior space, ordering of tasks is a vital topic which directly affects

the outcome of system quality. The tasks are divided into two parts while designing;

Root Tasks and Non-root Tasks.

Root Tasks are the tasks that directly attach to the behavior space root. These tasks can

directly be called by the planner, can be used to initiate.

Non-root Tasks are the tasks that are not attached to the behavior space root; they are

free task networks without a connection to the main behavior space. Non-root Tasks can

be used in plans but cannot initiate plans, cannot be called by the planner directly but

Root Tasks may bring Non-root Tasks as their subtasks.

3.1.4. Preparing Behavior Space for Goals

Preparation is done after every new goal input in order to maintain a healthy behavior

space. Preparation trivializes many hard to accomplish problems, and eliminates the

need for designer intervention in the runtime; thus making the algorithm self-

sustainable. Through preparation, the system continuously reorders the sorting of tasks

in behavior space, and creates the illusion of existence of a designer whom constantly

mettles with the behavior space in order to create contextual questions. During the

preparation phase, the algorithm marks the related tasks with the goal. The main aim of

preparing the behavior space for new goal is to passively add direction to the behavior

space by changing the ordering of tasks, thus the AI is more likely to perform the

related tasks instead of non-related ones when multiple tasks’ preconditions are

satisfied.

Preparing the related tasks: The tasks which are related to the goal(s) are marked

when a new goal(s) is registered to the system. Since GHTN is designed to handle

28

larger behavioral spaces, the number of possible actions which can successfully be

taken is many. By finding related tasks directly or indirectly correlated with the Goal,

we are moving them above every other task in the behavioral space in terms of

importance for the story. Reordering of the behavior space allows the HTN-like left to

right search to be used more extensively; therefore reducing the need for more complex

search operations. The intractability system is greatly simplified by bringing Goal

related tasks up front in the behavior space ordering.

The following algorithm is utilized for marking the related tasks. The approach is

similar to creating a dependency graph. Starting with the Goal as states, the algorithm

finds the tasks which modify those states. And from those tasks, the algorithm looks at

their methods’ conditions and finds the tasks which affect those states towards the goal.

The algorithm stops when a new iteration starts with behavioral task count above %25

of total behavioral tasks. In other words, approximately %25-30 of the tasks that are

directly or indirectly related with the states in the Goal are heightened in priority. The

purpose of the percentage limit is to prevent extreme direction which would otherwise

be gained through setting a Goal. Instead the algorithm stealthily grants direction

through the existence of the Goal, which prevents bee lining to the Goal through the

interactions.

In the existence of Goals as tasks or Goals as categories, the tasks are moved above

every other task to priorities the taken actions when the any of the tasks’ preconditions

are met. This is a special case that breaks the rule for maintaining initial task order. Due

to the fact that the rule is broken, using tasks and categories as Goals require some

knowledge on the designed task network.

When the first Goal is completed and a new Goal is registered, the current ordering of

the tasks is saved as the initial task order, and preparation for the new goal starts again.

Updating the initial Goal ordering is important since when the second Goal is entered

the player has already built up their character in the narrative. Starting the second Goal

should maintain the history caused by the first Goal to strengthen the bond between the

player and the narrative. This helps the algorithm fulfill the requirement of continuity

between multiple Goals.

29

Disabling the contradicting methods: disables certain methods which prevent the goal

to be reached. If all methods of a task are blocked, the task is blocked from the

behavioral space.

The following two examples explain how a method is found contradicting;

For the both examples, assume the following behavior space, which reflects real life.

The goal is to play the guitar in the end of year concert, and be hungry at the same time.

In the above scenario;

 Eat task makes the player not hungry, but there are tasks that make the user

hungry again such as; sports, working and sleeping. The task eat is not

contradicting even though it negatively effects one of the goal states. Since the

effects of eat can be negated by different tasks in order to reach the goal, it is not

considered as contradicting with the goal.

 The task car crash makes the player’s wrist injured so they cannot play guitar or

drums ever again. Since there are no tasks which reverses the wrist injury, the

car crash task found contradicting and it is disabled.

In other words, a method is disabled when there is a Goal [stateX=true, …] and the

initial world state is [stateX=true, …] and consider there are methods that can update

stateX to false, but there are no tasks that update stateX to true. In this case, if stateX

becomes false at some point in the AI execution, it can never go back to true. In such

case any method that effect stateX negatively gets disabled in the behavior space. The

disabled methods are restored when the current Goal is completed, and reapplied when

a new Goal is registered.

3.1.5. Trigger

Triggers have multiple uses, one of which is to simulate external events on the system.

Triggers are special tasks which have priority over any other task in the task network. In

game AI, it is often that AI perception is decoupled from behavior AI to simplify the

system. Triggers are GHTN’s endpoint to satisfy such requirement, for example if an AI

Perception module exists in the system; it can be linked with GHTN through Triggers.

30

Another use of Triggers is similar to the observer pattern in software engineering. A

Trigger can be created on a state to catch the exact moment the state has changed. This

capability enables the designer to create related world states, and the designer can create

cause and effect relations on the world states.

Triggers are decoupled from every other task to simulate the dynamic structure of the

world in the task network. They are the leftmost child of the root, coming before the

behavior space. Their uses in design and narrative generation will be explained more in

depth in “Section 3.2.3: Trigger Selection and Design” for designing task space for uses

in interactive narrative.

Figure 10: Preparation Algorithm

31

3.1.6. Task Queries

When a task is queried, the system checks what action that task takes in the current

world state, without executing the task itself. Since a task can return a valid plan, or

return invalid; we can understand whether or not that task fulfills some custom

requirements by the HTN system. Queries can also be created using custom local world

states to deduct how the task would respond to such change in world state. Queries are

mainly used by Trigger system and the Interactive Planning algorithm. For example, a

Trigger can call a Query on a function to learn how that function behave with the

upcoming change to the world state; while not disturbing the flow of the planner or the

Interactive Planning algorithm.

3.1.7. Categorization

Tasks can be tagged with multiple categories, and the categories can be used as a Goal.

Categories allow the possibility of having a broader Goal, therefore breaks the

uniformity of always having a single Goal. Categories also create a more hack-able

system thus improving the freedom of design. In the domain of game AI, thanks to

categorization through tagging, the designer can easily implement

“ThrowHandGranade” and “ThrowExplosiveBarrel” tasks with the tag “AreaOfEffect”.

The planner understands that both these tasks have area effects, thus can create dynamic

and different plans when an area effect attack is required. If the categorization system is

not implemented, such tasks would still be created in the system using different world

states however that would overcomplicate the design progress.

3.1.8. Preparing the Behavior Space for Planning

In the notation of HTN, the second method requires the first method to fail. The HTN

tasks must be prepared for planning in order to fix such precedence problems which are

only visible to the planner. It is similar to flattening in machine learning; the tree

structure must be reduced into a one dimensional vector.

32

Consider the following task "GoCinema". This task has some romance and band related

events. If the player satisfies any of these conditions, unfold happens and the end of the

story is written;

The first method is always ignored since there are no methods above to compare it with.

The algorithm sequentially checks the methods from top to bottom, adding negation of

previous methods’ preconditions’ to the lower priority ones

In preparation, the system knows the exact conditions required by the flattened

methods, and the precedence problems are solved. The following problem is avoided;

Consider GoCinema:Method3 is selected by the planner. The condition "bandInvited

=true" would be added to the planning world state. Once planning is complete and the

user is going through the plan, we can guarantee that the task “GoCinema” will be

called, however we cannot guarantee that method 3 of “GoCinema” will be called. The

world states may resolve the task by using method 1 and method 2. The reason of this

complication is the following. When the algorithm was on the planner phase and the

method is called with an update to planning world state, the system does not make sure

that method 3 will be called without interference of the methods above itself. While

planning for the conditions of method 3, the system must also make sure that methods 1

33

and 2 will not be called. By preparing the behavior space for the planner, we solve this

problem by preventing higher in priority methods to interfere with the system by

making programmatically adding new preconditions to force the methods to be mutually

exclusive.

3.1.9. Planner’s World States

The planner must maintain its world states while planning. In our domain, one task may

change a condition, which was required by a previously already planned task. The

planner has to understand this unwanted change, and add additional tasks to negate this

change while planning. To accomplish this, the planner has to keep a log of the world

state changes during planning. The list is kept ordered to allow the planner to

understand cause and affect relationships between tasks. The world states that are not

included in this list are not defaulted since they are unknown by the planner. Since this

is a log, there can be repetitions of the same world state, even though the world states

are conflicting. The planner maintains this list while planning, updating the world states

with symbols to track progress. The planning is completed if every world states inside

the list can be achieved. When the planner starts working, it copies the goal state into its

local space to work on. Similarly to the GOAP algorithm(Section 2.2.2: GOAP),

planning goes from the goal state to the initial world state. When the planner plans

through some task's method, it updates the planner’s world states to make sure that the

method’s preconditions will be satisfied at the point of execution.

Throughout the thesis, the "<=" symbol will be used to signify the current iteration in

the planner’s world states list.

The "." symbol signifies the state has been recently added to the list. The "." symbol is

used solely for easier verbal explanation. Existence of "." and no symbol is identical for

the algorithm.

There are 4 symbols available symbols;

 "!" Registered state - can be considered as a local variable which was introduced

directly by the iterator “<=”

34

 "%" Registered state through subtask. – can be considered as a local variable

which was introduced indirectly by the iterator “<=”

 "+" Satisfied in the planner’s initial world state or with “!” or “%”

 "$" The other tasks of the subtask which includes the goal, these are ignored

More extensive example will be explored on “Section: 3.5: Full Algorithm Overview in

a Test Environment”.

This list is taken from the middle of a planner execution. The currently explored state is

miaInvited = true.

Consider that the A* algorithm proposes CoffeeShop:Method1 as a fitting expansion.

In order to satisfy the state miaInvited = true, the algorithm adds attendedPlay = true to

its list. Therefore CoffeeShop:Method1’s preconditions will be satisfied.

Since attendedPlay = 0 is the precondition of the method, it is added before miaInvited

= true. Also since miaInvited = true is registered now, it gets the symbol "!"

35

Now the iteration jumps to the first element in the list, which is "miaImpressed = true".

3.1.10. Interactive Planning (Interactive Narrative Only)

Interactive Planning is used to determine how questions are asked. The algorithm is

expected to create a constant number (N) of questions at every iteration, to not alter the

natural flow of the interaction. If the algorithm cannot come up with the required

number of questions (N), less questions are presented. If only one question can be

created by the algorithm, it is not presented as a question. The single question is

invisibly chosen as an answer, the world state is updated accordingly and the algorithm

continues with the preparation of the next question.

Depending on the existence of an active Goal State, the algorithm works differently in

order to provide contextual questions.

When Goals are not yet activated or the last active Goal is completed; there are no

active Goals in the system. In the absence of a Goal, the algorithm utilizes the HTN

tree. Sequentially, Queries are sent to the children tasks of the main task node, with

respect to left to right ordering. The valid plans that Queries return are collected and

when the collected number of plans reaches N, these valid plans are asked to the user as

if they are questions. Through the preparation algorithms, the questions are guaranteed

to be related with the world context. Creating questions from tasks will be explored in

“Section 3.3.6: Interactive Planning”.

In the event of an active Goal State, the Interactive Planning algorithm acts completely

differently. The algorithm searches for N different valid sequence of tasks to the Goal

State. These paths cannot be calculated with the basic planner of HTN, since the planner

works sequentially and it does not have a search algorithm. The problem is very similar

36

to the problem that GOAP tries to tackle; therefore we use a similar approach to what

GOAP algorithm does.

In this mode any HTN based logic is disabled until questions are formed, only the tree

data structure is used. From the Goal State, the algorithm works backwards to the

current world state using the A* search algorithm. A* is a heuristic based shortest path

algorithm, mainly used in path finding in game AI. The application of a heuristic

algorithm to a behavioral domain is done before by GOAP, and our algorithm is

following the footsteps. From the Goal world state to the current world state, the A*

algorithm is run. In the search, every children node of the main task node can be

considered as a valid action. Only the children tasks of the main task nodes are

considered because, if a node is not registered under the main task, it cannot be reached

directly by the user. If this limitation is not given, the A* will create a plan which are

valid, but the created plan will not be executable by the player. The heuristic value of

A* is tied to the number of subtasks on the chosen task; the more subtasks a task has,

the more questions are asked in the plan since number of subtasks increases the plan

length.

Normally, the A* algorithm only return a single path from initial world state to Goal.

We modified the A* algorithm in order to get N different plans to the same Goal. In

interactivity, the user only sees the question which is formulated from the first or first

few plan steps. Therefore after we get the initial path, we block the first task of the plan

and restart the A* algorithm to get an alternative path. If the algorithm cannot find a

path, this means that the blocked task had no alternatives; the first task is unblocked and

the second task gets blocked and the A* algorithm tries again. We repeat this operation

for N times, to end up with N paths. Formulating these plans into interactions is domain

specific, which will be discussed in Sectio5: 3.3.8.

Since being domain and application specific, the algorithm to create questions from a

sequence of plan will be explored at “Section 3.3.6: Interactive Planning”.

37

3.2. Designing Task Network Space

3.2.1. Ordering Tasks and Methods

The ordering of tasks should be made in a descending order, where the first task is the

most significant task. In a single run only one task can work; the more significant a task

is, more opportunity for that task to be used in iterative phase. If a task with easy to

satisfy conditions are put into a high significance, it will be chosen very often. While

ordering tasks, the following should be considered; “Given all of my tasks can work at

the same time, can an order of significance be created”. The ordering of methods inside

a task should be considered with the rules above.

While the iterative algorithm considers the task orderings; the planning algorithm does

not consider the task ordering while planning; however it does consider method

ordering.

3.2.2. Designing World States

World States are variables for the system to keep track of the current situation on the

game world. A world state can have a boolean, integer or a string type. World States

have default values; these values are enabled when an explicit value is not given to the

state on the execution.

World states are written in the format of StateName=StateValue. For example;

StateName1=true StateName2=13, StateName3=”Sebastian”. StateName1 is a boolean,

StateName2 is an integer, StateName3 is a string.

Infinitely many world states can be created in the system however it is better to

minimize the world state count to lessen the burden on the planner algorithm. There are

mechanisms, such as Triggers, to simplify the work flow when there are too many

world states for the designer to consider.

38

Figure 11: Relations of Tasks (yellow) with Green (world states).

39

3.2.3. Trigger Selection and Design

Triggers are useful when used with observer pattern of software engineering in mind.

Consider the designers want to introduce lycanthropy to the behavioral domain, so

characters can become werewolves. The preconditions of being a werewolf is

[bFullMoon=”true”], this system is easily implementable through a simple task and

without using Triggers. However the designer has to make sure that this task will

somehow always stay higher in priority. If it is not always high in priority, reordering of

tasks through preperation may cause other tasks to drop lycanthropy so behind in

importance, there will be delays in becoming a werewolf or it might not even happen at

all. Making this a Trigger instead will force lycanthropy on the instant that a change in

bFullMoon is detected.

Another reason to make lycanthropy a Trigger is the following case; consider the

behavior space is expanding and a new precondition is added to lycanthropy; characters

can become werewolves if there is a full moon or they are angry. Now the behavior

space has 2 states (bFullMoon and bAngry) linked to lycanthropy. At this point, it is

more manageable to create a Trigger where if [bFullMoon=”true” or bAngry=”true”],

bLycanthrophy becomes true. Consider 5 more possible preconditions are added to

lycanthropy, instead of checking 7 world states before every lycanthropy related task, it

is more feasible to just check for [bLycanthrophy=”true”].

3.2.4. Designing When To Use Queries

Through queries we can learn how a task would act in the current world state,

decoupled from the planning algorithms. Consider the task “Concert”, the main focus of

Sebastian’s jazz band. Through Triggers, the system can be designed to understand that

concert is soon. However now the problem evolves into understands which characters

can go attend the concert since if a member cannot attend, there must be a search for

replacement or the concert will be cancelled. Running the task “Concert” will cause the

agents to try to leave for concert, but it is impossible if there is a member missing in the

band. We can solve this problem with using queries on the task “Concert” with a fake

extension to the world state which says [AllAttending = true]. This will trick the

40

“Concert” task into ignoring the AllAttending condition; therefore through this query,

the system can understand which band members are capable of joining. The query will

return the subtasks of the satisfiable method, and the designer can deduct meaning from

the subtasks. In the case of the example, the query will be sent once for every band

member with the fake world state [AllAttending = true], the query will return the

subtasks for those band member who can attend the concert and will return invalid for

the band member who cannot attend the concert.

3.2.5. A* and The Integer Problems

Using integers as counters is problematic if a wrong approach is followed in the general

design. Using integers as numbers does create several hurdles that we could not bypass.

Mathematical operations (+,-,*,/) should not be made in subtasks of any task. Integers

used as enumerations, or numerical integers that are not in any subtasks but are

maintained through alternative solutions are also not problematic.

When the A* algorithm gets an integer state in the goal or while planning, to which

there exist tasks that can do mathematical operations on them; the A* algorithm will

endlessly try to use those tasks given the preconditions hold and the heuristic is low.

This can be solved by using limiting operators such as >,<,>=,<= however the A*

algorithm will still try apply the same method until the limiting condition return false.

This is a massive exploration time lost for the algorithm; however the algorithm will

still give meaningful results even if integers as numbers with mathematical operators

are used. This problem will only hurt the run time and memory requirement, the runtime

will get substantially worse even if there is one mathematical operation can be planned

by A*.

The root of the problem is the A* algorithm, since it is only partially suitable for such

domain where goals are infinitely dimensional. A* is a fitting algorithm when x, y, z are

the only dimensions however a task domain of 100 task has 100 pseudo-dimensions.

For this reason our and GOAP’s implementation of A* only has a part of heuristic

implemented. Weight is given to tasks through some mechanism; however distance to

goal is not calculateable. A* is still preferred in such algorithms over DFS or BFS due

41

to its exploratory nature, since A* will always hone for the good heuristic path over bad

heuristic nodes.

42

3.3. GHTN in Interactive Narrative

We have selected the “LaLa Land” universe as our domain and created our tasks

thematically fitting with the universe. The main drive behind selecting “LaLa Land” is

because it is a universe based on real world. Fantasy universes can also be applied, and

studies such as Propp’s “Methodology of the Fairy Tale” can be utilized to create new

tasks in many of the given fantasy universes.

3.3.1. Setting Initial States in Interactive Narrative

A world state is any variable that represent a state of the world such as; location of

actors, belongings, and whether or not some important events have occurred.

The initial world state represents the beginning of the narrated world. The following

world state would start the narrative where Sebastian has met Mia, is angry to the bar

owner about the repertoire and has a concert tonight;

[metMia = true, angryAtRepertoire = true, concertTonight = false]

All the states that are missing in the above initial world state, but exist in the world state

table are set to their values such as:

[miaGirlfriend = false, bandProblems = false … and others]

3.3.2. Setting Goal States in Interactive Narrative

Having a Goal as a state where Sebastian is Mia’s boyfriend and Sebastian’s band going

through troubled time is expressed as:

[bandProblems = true, miaGirlfriend = true]

The missing states in the Goal are not set to their default value; they are indifferent for

the algorithm. The algorithm does not guarantee every state will appear in the plan at

some point. If every state is forced to appear in the plan, the outcome of our narrative

43

system would always give the same story but with different orderings of events and

would disregard user interaction; this is not a valuable approach to narrative thus not the

purpose of our system. Our purpose is to create explorative, continuous and non-

repetitive narratives; therefore only related events in the behavior space should be

included in the narrative. In our case, less is more.

We will now explore examples on tasks as Goal and categories as Goal. These 2

approaches will utilize the Goal as a bundle of world states system.

Method as a Goal, expresses the following requirement to the algorithm: “Create a

story, where Sebastian opens his bar.” This Goal can be expressed as [BarOpening].

The algorithm registers this as a method due to the fact that there is no = sign in the

Goal, and there is a task called BarOpening in the tasks. The system will now seek

different paths that are ending with this task, and those different paths create the context

of each question. If the system cannot find the required amount of different paths, the

unconstructed questions will be hidden.

The other Goal input method is using a task category. When a task category is

registered as a Goal, the system creates invisible world states to force members of the

task category to be planned. Consider a task category called “Loss”, where the tagged

methods are “LoseItem”, “FriendLost” and “LosePrevilege”. When the director inputs

the category “Loss” as a Goal, the planner finds plans in the behavior space where these

tasks occur at the very end of the plan, and direct player into experiencing one of these

tasks. If a plan cannot be created for one of the Goals in the current world state, that

Goal will be ignored to prevent a disconnected narrative. Each question will point to a

different task in the category, if there are more plan-able Goals then the question count.

If not, multiple questions may point to the same Goal through different paths.

3.3.3. Tasks and Methods

On top of the previous rules about tasks and methods, to satisfy requirements to create

an interactive narrative there are additional design highlights.

44

The Interactive Planning algorithm starts plans from the task space root and plans only

with the root tasks. Non-root tasks cannot be used in plans directly, however can be

added as subtasks of root tasks.

Consider the case where “MiaRomantic” is a root task. Since this is a root task, the

planner may use this task freely while planning. This will cause the narration to force

the player to have romance with Mia all out of a sudden, without any backstory and

create a disconnected story. To prevent discontinuity, “MiaRomantic” should be as

Non-root task, so it should not be used in plans directly. Since “MiaRomantic” is a Non-

root task, it requires some root task to work with.

To be in line with the universe, consider the task “GoCinema”. In our universe, people

with affections can go to cinema to have a romantic time. To simulate a storyline in the

narrative flow, “GoCinema” should be designed as follows;

As seen in the figure, GoCinema will be called when MiaRomantic is planned and it

will create a continuous narrative. The separation between root and Non-root tasks helps

the designer tackle this problem with relative ease.

For interactive narrative purposes only, there is a unique tag called “milestone”.

Milestone tasks are important tasks such as “GoCinema” or “CoffeeShop”. The reason

these tasks are tagged as milestone is that they offer a good and bad outcome, which

should not be spoiled while the questions are being constructed. “CoffeeShop” have two

possible scenarios as meeting Mia or having a chill day, and “GoCinema” have three

possible scenarios two of which are romance and last to strengthen band relationships.

45

This unique category “milestone” is utilized in the upcoming “Section 3.3.6: Interactive

Planning”.

3.3.4. Scenarist

The Scenarist is the user responsible of the narrative flow. The Scenarist interacts with

the algorithm through inputs such as setting the initial world state, setting the Goal and

forcing the Goal.

Initial world state is the first input to the AI system; the system creates a world instance

with the given set of states. This is the starting point of the narrative. Scenarist can set

the starting location, starting possessions, starting ability and skills all at once at this

point.

The Scenarist creates an initial world state with a bundle of states and their values. The

states which are not mentioned in the initial world state bundle are set to their default

values. The next input of the Scenarist comes directly after; the Goal. Scenarist prepares

the Goal using the desired world states they want to have at the end of the execution.

46

Figure 12: The ending story node takes the events that happened in the story into

consideration and create an ending.

47

3.3.5. Scenarist and Task Preparation

When the Goal is entered, preparation algorithms are applied to favor the world into

moving towards the Goal set by The Scenarist. Planning algorithms which bee-lines the

user to the Goal will not work until The Scenarist inputs the “Force Goal” command.

With the force Goal command, the algorithm allows Scenarist to decide approximately

when to end the narration. Having two modes of operation where the algorithm silently

pushes you to the Goal and the algorithm forces you to the Goal creates the illusion of

freedom, adds replayability value while maintaining the guarantee that the user will end

up in the Goal State.

After the Scenarist enters the Goal for the first time, preparation algorithm runs to move

related tasks higher in the order of all the behavioral tasks; therefore passively creates

direction in the story. Afterwards, the methods that are contradicting with the goal are

disabled to prevent a stuck state; where the Goal can never be reached using the tasks in

the behavioral space.

3.3.6. Interactive Planning (Asking Questions)

The algorithmic background being discussed in Section 3.1.10, we will now explore

how to formulate question in the interactive narrative domain.

The Interactive Planning algorithm returns N paths, where N is the number of questions

at every step. Between the N paths, the longest common subsequence from the start is

calculated for each plan, 1 more task is added to the subsequence and these

subsequences are formatted as interaction strings and can now be prompted.

Script strings are denoted by “S” and question strings are denoted by “Q”;

48

Consider N is 3, so the Interactive Planning algorithm returns these 3 plans where every

letter corresponds to a task;

First Milestone Script String Question String

ABC

ABC

DEF

DEF

GHIJ

GHIJ
 Table 1: Every plan is different and there are no milestones

First Milestone Script String Question String

ABC A

A

DEF

DEF

GHIJ J GHI J

Table 2: Every plan is different but there are milestones; (Assume A, B, J are

milestones)

Noncommon First Milestone Script String Question String

ABCDE ABCD

ABCD

 ABCGP ABCG

ABCG

 AHJKP AH

AH

 Table 3: Plans overlap and there are no milestones

Noncommon First Milestone Script String Question String

ABCDE ABCD B A B

ABCGP ABCG B A B

AHJKP AH

AH

 Table 4: Plans overlap and there are milestones.

49

ABCDE and ABCGP plans should not be printed as is to not spoil the outcome of task

“B” in the script text, “B” should be in question text. Since “B” is a milestone task, both

these questions will print up to A.script + B.question. However this will cause two

questions to be exactly the same, which is an unwanted behavior. In an outcome like

this, we ask the planner to come up with a new plan while blocking the “AB” and

“AHJKP” plans. The blocking operation is done by modifying the heuristic on the

selected plans last task locally (specifically on that instance) to max possible heuristic

value; thus the planner will not evaluate those paths further. If the planner can come up

with an alternative plan, the mentioned algorithm is reapplied, if there are no alternative

plans the 3
rd

 question is omitted.

50

3.4. Further Research

3.4.1. Bidirectional Search

Instead of a unidirectional A* algorithm implementation, Bidirectional Search can be

applied to reduce complexity. In Bidirectional Search, two search algorithms start

simultaneously, from goal to initial state and from initial state to goal. The search

terminates when the fringes of these two algorithms meet; if they expand to the same

world state.

While the goal-to-initial search will work the same as the unidirectional A*, the initial-

to-goal algorithm will work differently. In theory, since the initial state includes all the

possible world states that are defined in the behavioral space, the search starting from

the initial world state will be more exploratory in nature with respect to the goal-to-

initial search where the starting states are severely limited. Since the exploratory nature

expand the fringe of the initial-to-goal search, the goal-to-initial search will have more

points for termination; which will cause in less node exploration in total. Even though

the time cost of the algorithm is better than its unidirectional counterpart, we believe it

can be further improved by testing weighted uses on the goal-to-initial and initial-to-

goal searches rather than running them on equal resources.

Instead of using weights to further improve bidirectional search in our domain, a state-

space representation can be studied on the system to further improve the general search

methodology. In his book Planning Algorithms(LaValle, 2006) chapter 2, LaValle

discusses how STRIPS-like models can be converted to State-Space Representation, and

logic-based planning methods can be applied through creating planning graphs.

51

3.4.2. Novelty Pruning

Novelty Pruning is a method proposed in “Fast and Diverse Narrative Planning through

Novelty Pruning” (Farrell and Ware, 2016) to prune the non-novelty nodes in the search

space. The algorithm is implemented on “Glaive: A state-space narrative planner

supporting intentionality and conflict” (Ware and Young, 2014) and different

algorithms and benchmarked in the proposing paper. A node is removed from the node

space if it not effective neither on the current state nor on any of the planner’s ongoing

planning states. By doing so, the amount of non-novelty nodes will be reduced,

improving the planning speed. It is reported that “Glaive with novelty pruning is up to

107.3 times faster than Glaive without novelty pruning”.

Both Glaive and our algorithm being A* based, a similar approach to Novelty Pruning

is also applicable in our algorithm. The reduced search space may greatly reduce the

total expansion of A* through disabling the nodes deemed to be not novelty. Novelty

Pruning may also help us tackle the problems we have with integers, as discussed in

“Section 3.2.5: A* and The Integer Problems”.

Novelty Pruning can also bring different advantages to our data preparation system

discussed in “Section 3.1.4: Preparing Behavior Space for Goals”. While our algorithm

reduces the unrelated tasks in the hierarchy, Novelty Pruning completely eliminates the

tasks which are deemed non-novelty. Novelty Pruning being a much more aggressive

approach, will lead to better outcomes in large domains when paired with heuristic

search techniques, where many alternative tasks may exist in the domain.

Motivation Pruning is another technique discussed in this paper, designed to work

alongside Novelty Pruning. Since Glaive is designed for Interactive Narrative, it

requires finding explanations to steps in the plans the algorithm create. When an

explanation cannot be created by a node, the node is pruned since it is certain that this

node can never lead to a solution.

Both of these algorithms strengthen the quality of the narrative created by the planner.

While we lack such pruning algorithms, we partially fill these requirements through

preparing the data when a new goal is assigned to the system. Our algorithms disable

contradicting methods; which is similar to Motivation Pruning, and reorders the task

network depending on the given goal, similar to Novelty Pruning. Both the Motivation

52

Pruning and Novelty Pruning are much aggressive than our algorithms and further study

is required in order to apply such aggressive algorithms to our systems better.

3.4.3. Interactive Narrative Quality

Three main features discussed by “Fast and Diverse Narrative Planning through Novelty

Pruning” (Farrell and Ware, 2016) to ensure quality plans are;

Build branching stories while maintaining user agency

In our algorithm when the Scenarist forces the user to the ending, every step is taken by

the user and the steps are guaranteed to end at the goal (assuming there are valid plans

to the goal). Due to our planning algorithm, our system searches the task space to come

up with choices with no overlap at the beginning. However in our system we don’t have

free-will of the user; the choices of the user are created beforehand in planning and are

presented as alternatives. Our system can be improved to have a dynamic number of

questions asked, instead of a static number; depending on the number of possible plans

possible in the domain.

Allow the human author to choose from possible goals

The human author in our case is called the Scenarist. In our system the Scenarist is

completely free in picking goals from the list of world states. This is a two edged sword;

while the Scenarist is completely free in choosing the goals, we require the Scenarist to

have absolute knowledge on the domain in order to understand the world states to come

up with a goal. The Scenarist system can be improved with quality of life features such

as giving a dependency graph on the world states to explain the underlying system in

the domain.

Every goal set is not guaranteed to be possible; the goal can be directly or indirectly

conflicting with each other. As discussed in “Section 3.4.4: Guarantee of Finding a

Plan”; the planner is guaranteed to find a plan with enough resources. To avoid

impossible goal sets, the planner can be utilized after a goal set is registered to the

system to check if the goal set is possible to satisfy.

53

ISIF distance metrics to make sure created plans are unique

ISIF, Important-Step Intention-Frame algorithm is a distance metric that compares two

plans. The summaries of intention frames are calculated with the following quadruple

<c,g,m,f> where c is the character, g is the goal, m is the task that motivates toward the

goal, and f is the final satisfying step that accomplishes the goal g.

The ISIF distance will be closer to 0 for plans which have the same motivating step and

the same achieving step. In other words, the most differentiating elements of a plan are

the initial and the last step of the plan.

In our algorithm we are creating questions when a milestone task is encountered.

Therefore our algorithm makes sure that the first real important point in the story is

recognized by the system and our other plans are calculated in a way that ignores the

task related with the question created at that point, so the other plans generated by the

algorithm will not consider this milestone task. Therefore we guarantee that if there

exists multiple plans to the goal; the algorithm will never pick the already selected

initial step for its plan again.

The other important parameter in the ISIF distance is the final task which satisfies the

goal. In our algorithm we have no subsystems to ensure/force a difference at the last

step of the plan. In order to have a greater ISIF distance and therefore have better

diversity in our plans, our algorithm can be expanded with subsystems which prefer

unused tasks to be the final satisfying step instead of already used tasks. Such

subsystem will be a direct improvement for ISIF distance metrics and our plan quality.

54

3.4.4. Guarantee of Finding a Plan

Having an exhaustive search algorithm guarantees finding a plan given enough time and

memory for the planner. Algorithms such as BFS or DFS will visit every possible node

and their combinations in the task space to come up with a plan towards the goal. The

following table explains Farrell and Ware’s comparison of BFS and Glaive on Novelty

Pruning, however the table is modified to only include non-Novelty Pruning columns.

Table 5: Glaive & BFS Algorithm comparison in different domains

As seen in the table, both Glaive (A* heuristic based) and BFS can both come with

solutions in the given task spaces. These algorithms were limited with 100GB of RAM,

3.5 GHz Intel Xeon processor and 1 hour time.

55

The difference between these algorithms and our algorithm is the domain. While Glaive

works with nodes and plan a pathway through the nodes, our algorithm works on a

Hierarchical Task Networks, which is composed of multiple 1 depth networks of nodes.

Our preparation algorithm on “Section 3.1.8: Preparing Behavior Space for Planning”

dissolves/flattens the network into independent nodes therefore our A* planner can

work on the system. Via the preparation algorithm, the planning side of our domain

becomes identical with Glaive’s domain. There is no correlation between nodes, every

node has preconditions and post-conditions, every node are composed of a single

method therefore have no unseen preconditions.

For these reasons, we can safely say that a Glaive-like A* heuristic planner algorithm,

as well as BFS would work on our domain successfully. Our implementation of A* is

simpler than Glaive’s, which lacks or only satisfies some requirements to a certain

degree; mostly related with pruning algorithms explained in the previous “Section:

3.4.2: Novelty Pruning”. Future research on our planner would include implementation

of bidirectional search and similar higher performance search algorithms, or improving

the state-space representation in our system to prepare the system for logic-based search

methods as explained in “Section 3.4.1: Bidirectional Search”.

56

3.5. Full Algorithm Overview in a Test Environment

For simplicity, questions are not written at all and post selection texts are not written in

full form. World state changes are visible to make tracing through the example possible.

The Q line is where the user is asked to do a selection between 3 choices and it is

followed by how those selections affect the world states. The user’s choice is displayed

as the underlined question. The planner interaction starts at the start of day 3. Before

planner starts, the choices are given solely through preprocessed orderings of the tasks.

57

The narrative starts;

Q Coffee Shop, Stay Home, Groceries

 o metMia = true

 o “While on your way to the Coffee Shop, someone cut to your lane. You

almost had an accident. The driving lady shouted at you as if it was your fault...”

Q Stay Home, Meet Band, Sports

 o photoShootOnDay4 = true

 o “Meeting with the band, you plan a photoshoot on 4th day for publicity.”

Q TRIGGER(nightTime) [time == 2]

 o night = True

Q Lone Night, Nightwalk, Club

 o “Seb doesn’t feel much energetic, he spends a lonely night by the television”

Q TRIGGER(dayTime) [time == 3]

 o day++ //day = 1

 o time = 0

 o night = false

 o concertTonight = false

Q TRIGGER(BarConcertNight) [day % 7 == 1 or day % 7 == 2]

 o concertTonight = true

 o “Tonight Seb has to be at work at bar.”

Q Coffee Shop, Stay Home, Groceries

 o “There were nothing interesting happening at the coffee shop. You get

yourself a drink and head back home”

58

Q Stay Home, Meet Band, Piano Practice

 o angryAtRepertoire = true

 o “Due to the upcoming bar concert tonight, you wanted to practice. The

repertoire is too boring you think to yourself. You can’t express your feelings with

classical..”

Q TRIGGER(nightTime) [time == 3]

 o night = True

Q Concert Night, Nightwalk, Club

 o lastChanceAtBar = true

 o “Once again the owner was mad due to your jazz piano improvisations and

not following the repertoire. Last chance he says, getting tired of you.”

Q TRIGGER(dayTime) [time == 3]

 o day++ //day = 2

 o time = 0

 o concertTonight = false

Through goal forcing, the planner starts working at this point on day 3.

At this stage in the algorithm, we expect the planner to return us three plans from the

initial world state to the goal, to prompt questions to the user. For simplicity; we

simulate one plan, this plan is not the lowest cost path, nor is it guaranteed to be

selected by the planner. With this example our purpose is to show that the planner

works as a whole system, and plans can be generated using the algorithm.

59

From goal, the planners world state is generated. The currently iterated state is

miaGirlfriend = true.

The planner looks at the tasks to find one where miaGirlfriend = true happens.

There are two methods, MiaRomantic:Method1(cinema with good reputation with Mia)

and MiaRomantic:Method3(protect Mia from thugs outside club)

The planner selects the first method; for the sake of simplicity we are ignoring the fact

that Method3 may have a better heuristic. How A* works can be better explained

decoupled from this example.

MiaRomantic:Method1

Therefore the planner’s world state should become:

Even though this is a valid plan step, this is not executable by the user since

MiaRomantic is not a root task, it is a non-root task. The user can only be prompted

with root tasks. At this point the algorithm must find a root task, which calls

MiaRomantic.

60

Looking at the tasks, the algorithm finds the root task GoCinema, which calls

MiaRomantic.

The GoCinema task above is the original task in our system. On preparation for

planning phase the system prepares the methods to be independent from each other.

Following is the actually prepared GoCinema method utilized by the planner.

The planner algorithm selects GoCinema:1 and the partial plan currently is;

The preconditions of GoCinema are added on top of the planner’s world state and the

following world state is created.

The iteration now moves to the first state, inRelationship = false.

Since this state matches with initial world state, it is satisfied, symbol "+" is added to

the state.

61

The iteration moves to the next state, miaInvited = true

To solve miaInvited, the planner plans the task CoffeeShop;

CoffeeShop:1 satisfies the planners world state "miaInvited = true", therefore this

method is added to the plan.

The iterator moves to “miaImpressed = true”.

62

The planner algorithm searches for tasks that satisfy the state “miaImpressed = true”.

The algorithm sees the counterpart where the methods were prepared at the start, but the

prepared methods are identically same with the original one since method 2 is called,

and method 2 has a differentiating state with method 1. These methods are guaranteed

to stay as is after preparation.

The algorithm picks QuidditchCup:2 and the following world state is created.

The iterator moves to "photoshootOnDay4 = true". This state is already satisfied with

the starting world state. Iteration moves to “.invitedToMiaPlay = true”.

63

The planner finds this world state in the task MiaHearsYouPlay. However since this is

not a root task, the planner plans a root task which calls MiaHearsYouPlay.

The planner uses BarConcert since it calls MiaHearsYouPlay.

The invitedToMiaPlay = true" state is accomplished. The preconditions and sister

subtasks are added. The next iteration is “angryAtRepertoire = true”.

To satisfy ".angryAtRepertoire = true" the planner finds the task PianoPractice, first

method.

64

The task PianoPractice satisfies the world state “angryAtRepertoire =true” and the

following state & plan are created.

65

Iterator is on ". lastChanceAtBar = true" which is satisfied in the world state, symbol

"+" is given.

Plan is successful since there are no tasks left without a satisfied symbol!

The current plan is final!

Following is a narrative flow assuming this plan is followed from start to end.

66

In this planning run, the algorithm wanted to create a plan which satisfies the following

two requirements: Mia is Seb’s girlfriend and disagreements occurred in Seb’s band.

The planning starts on the start of 3
rd

 day and guides Seb through the goals. This

example illustrates a single plan and additional plans will also be created alongside this

one to give multiple choices to the user.

67

Bibliography

[1] Faria, A. J., et al. "Developments in business gaming a review of the past 40 years."

Simulation & Gaming (2009).

[2] Hill, R., et al. "Virtual humans in the mission rehearsal." kunstliche Intelligenz

(2003).

[3] Kato, P. M. "Video games in health care: Closing the gap." Review of General

Psychology (2010).

[4] Magerko, B., B. Stensrud and L. Holt. "Bringing the schoolhouse inside the box-a

tool for engaging, individualized training." 25th Army Science, 2006.

[5] Riedl, M. O., et al. "Dynamic experience management in virtual worlds for

entertainment, education, and training." International Transactions on Systems Science

and Applications (2008).

[6] Zee, D.J. Van Der, B. Holkenborg and S. Robinson. "Conceptual modeling for

simulation-based serious gaming." Decision Support Systems (2012).

[7] Faria, A. J., et al. "Developments in business gaming a review of the past 40 years."

Simulation & Gaming (2009).

[8] Hill, R., et al. "Virtual humans in the mission rehearsal." kunstliche Intelligenz

(2003).

[9] Kato, P. M. "Video games in health care: Closing the gap." Review of General

Psychology (2010).

[10] Magerko, B., B. Stensrud and L. Holt. "Bringing the schoolhouse inside the box-a

tool for engaging, individualized training." 25th Army Science, 2006.

[11] Riedl, M. O., et al. "Dynamic experience management in virtual worlds for

entertainment, education, and training." International Transactions on Systems

Science and Applications (2008).

68

[12] Zee, D.J. Van Der, B. Holkenborg and S. Robinson. "Conceptual modeling for

simulation-based serious gaming." Decision Support Systems (2012).

[13] Humphreys, T. "Exploring HTN Planners through Example". Game AI Pro, 3, 149-

167. (2017).

[14] Straatman, R., et al. "Hierarchical AI for Multiplayer Bots in Killzone 3". Game AI

Pro, 3, 377-390. (2017).

[15] LaValle, S. M. Planning algorithms. New York (NY): Cambridge University Press.

Chapter 2 Discrete Planning (2014).

[16] Mark, D. AI Architectures: A Culinary Guide. Retrieved from

http://intrinsicalgorithm.com/IAonAI/2012/11/ai-architectures-a-culinary-guide-gdmag-

article/ (2012, November 1).

[17] Farrell, R. and Ware, S. "Fast and Diverse Narrative Planning through Novelty

Pruning", 12th AAAI Conference on Artificial Intelligence and Interactive Digital

Entertainment (2016).

[18] Orkin, J. "Agent Architecture Considerations for Real-Time Planning in Games",

Monolith Productions. (2004).

[19] Orkin, J. "Applying Goal-Oriented Action Planning to Games", Monolith

Productions. (2003).

[20] Orkin, J. "Three States and a Plan: The AI of FEAR", Monolith Productions / MIT

Media Lab, Cognative Machines Group. (2003).

[21] Isla, D. "Handling Complexity in the Halo 2 AI", GDC 2005. (2005).

[22] Kelly, JP. "Planning with Hiearchical Task Networks in Video Games", Australian

National University. (2007).

