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Abstract

In this thesis, we compare solutions of the Camassa-Holm equation with solutions

of the Double Dispersion equation and the Hunter-Saxton equation. In the first part of

this thesis work, we determine a class of Boussinesq-type equations from which can be

asymptotically derived. We use an expansion determined by two small positive parame-

ters measuring nonlinear and dispersive effects. We then rigorously show that solutions

of the Camassa-Holm equation are well approximated by corresponding solutions of a

certain class of the Double Dispersion equation over a long time scale. Finally we show

that any solution of the Double Dispersion equation can be written as the sum of solu-

tions of the two decoupled Camassa-Holm equations moving in opposite directions up

to a small error. We observe that the approximation error for the decoupled problem

is greater than the approximation error characterized by single Camassa-Holm approx-

imation. We also obtain similar results for Benjamin-Bona-Mahony approximation

to the Double Dispersion equation in the long wave limit. In the literature, Hunter-

Saxton equation arises as high frequency limit of the Camassa-Holm equation. In the

second part of this thesis work, we establish convergence results between the solutions

of the Hunter-Saxton equations and the solutions of the Camassa-Holm equation in

periodic setting providing a precise estimate for the approximation error.
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Özet

Bu tezde Camassa-Holm denkleminin çözümleri ile İkili Dispersif ve Hunter-Saxton
denklemlerinin çözümlerini kıyasladık. Tezin ilk bölümünde, Camassa-Holm denklem-
inin elde edilebileceği bir Boussinesq sınıfı belirledik. Açılımda doğrusal olmayan ter-
imi ve saçılmayı ölçen iki küçük pozitif parametre kullandık. Daha sonra Camassa-
Holm ve İkili Dispersif denklemlerin çözümlerinin uzun zaman aralığında birbirine
yakın kaldığını ispatladık. Buna ek olarak, İkili Dispersif denklemin bir çözümünün zıt
yönde giden iki Camassa-Holm denklemin çözümlerine ayrışabileceğini ve bu aşamada
ortaya çıkan hatanın tek yönlü Camassa-Holm yaklaşımı ile elde edilen hatadan büyük
olduğunu gözlemledik. İkili Dispersif ve Benjamin-Bona-Mahony denklemlerinin çözüm-
leri için de benzer sonuçlar elde ettik. Tezin ikinci bölümünde, Camassa-Holm den-
kleminin yüksek frekans limiti olan Hunter-Saxton denkleminin periyodik çözümleri
ile ona karşılık gelen Camassa-Holm denkleminin periyodik çözümlerinin uzun zaman
aralığında birbirine yakın kaldığını gösterdik. Yaklaşımdan elde edilen hatayı net bir
şekilde hesapladık.
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Chapter 1

Introduction and Preliminaries

In this thesis, we will present some recent results regarding comparisons of solutions
of some pairs of nonlinear wave equations in asymptotic regimes.

In the literature, there are many work about rigourously relating the solutions of
asymptotic equations with the equations of the physical problem. For example, the
Korteweg-DeVries (KdV), the Benjamin-Bona-Mahony (BBM) and the Camassa-Holm
(CH) equations are derived as long wave limits of water wave equations in the scope
of fluid dynamics [6], [19] and references therein. Moreover, there are some other work
showing that bidirectional, small amplitude long wave solutions of the water wave
problem are well-approximated first by combinations of the two uncoupled KdV equa-
tions [26] and later by the CH equations by [9]. These equations are generally obtained
from either the Euler equation or the Green Naghdi equations. Then, researchers con-
sider the problem within the scope of elasticity and present the rigorous derivation
of the CH equation from the Improved Boussinesq equation (IBq) in the long wave
limit [10]. Then, they prove that solutions of the CH equations are well approximated
by the corresponding solutions of the IBq equation [11]. They also show that any
solution of the IBq equation can be written as the sum of solutions of right and left
going CH equations up to a small error [12].

In the first part of this thesis work, we also consider the problem within the scope
of elasticity. We derive the CH equation as the long wave, small amplitude limit of a
certain class of the Double Dispersion (DD) equation. We use an expansion determined
by two small positive parameters measuring nonlinear and dispersive effects. We then
prove that solutions of the CH equations are well approximated by the corresponding
solutions of the DD equation. Finally, we show that any solution of the DD equation
can be written as the sum of solutions of CH equations moving in opposite directions
up to a small error. We also obtain similar results for the Benjamin-Bona-Mahony ap-
proximation to the DD equation. All the results we obtain so far are the extensions of
the results obtained in [10], [11] and [12] to “Improved Boussinesq-like DD equations”.

In the second part of this thesis, we consider similar problems between the Hunter-
Saxton (HS) equation and CH equation. In the literature, the Hunter-Saxton equa-
tion arises as high frequency limit of the Camassa-Holm equation [7], [17] and [22].
Existence-uniqueness of the solutions of Cauchy-problem for the HS equation is also
studied in different domains. In the second part of my thesis work, we approach the
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problem within the periodic setting and work on the conditions under which the solu-
tions of the CH and the HS equation remain close to each other.

The thesis is organized as follows. In the rest of this chapter, we present the main
tools and notations that are going to be used throughout the thesis. In Chapter 2,
we present the asymptotic derivation of the CH from the DD equation in the long
wave limit. We then examine the problem for the Good Boussinesq (Good Bq) and
Bad Boussinesq (Bad Bq) equations and show that the CH equation can be derived
from Bad Boussinesq equation whereas it cannot be derived from the Good Boussinesq
equation in the long wave limit. We then consider BBM and KdV approximations to
the DD equation. In Chapter 3, we first present the main convergence result between
the solutions of the DD and the CH equation. To this aim, we briefly explain the
general methodology for the comparison. Then we recall the well-posedness theorems
for Cauchy problems for both DD and CH equations before going through the details
of the proof. In Chapter 4, following the same methodology in [12], we verify that
any solution of the DD equation can be written as the sum of solutions of the two CH
equations moving in opposite directions up to a small error. Here, we mainly invoke
the theorems and their proofs obtained in Chapter 3 since they are almost parallel. As
in [12], we show that the approximation error for the decoupling problem is greater
than the approximation error characterized by the single CH equation. In Chapter
5, we first present the derivation of the HS equation from the CH equation provided
in [22]. Then, we state the convergence result between the periodic solutions of the HS
and CH equation since most of the well-posedness results on the initial problem for the
HS equation rely on the periodicity. For that reason, we recall existence uniqueness
results for Cauchy problems for both the HS and CH equation in the periodic setting
before giving the proof.

Now we present the main tools and theorems that will be used in this study.

1.1 Sobolev Spaces

In this section, we recall the definitions of Sobolev spaces and related concepts [14].
Let Ω ⊆ Rn be open set and α be multiindex. By Dα

xu we define the α-th weak
derivative of u. Then for each k = 1, 2, ..., Hk(Ω) is a Banach space with the norm

||u||2Hk(Ω) =
∑
|α|≤k

||Dα
xu||2L2(Ω).

We will closely look at the two cases where Ω = R and Ω = T = [0, 2π) ⊆ R, repectively.
Let Ω = R. Assume u is an integrable function. Then define Fourier Transform and
inverse Fourier Transform by

û(ξ) =

∫
R
e−ixξu(x)dx,

u(x) =
1

2π

∫
R
e−ixξu(ξ)dξ.

2



Using the Fourier Transform and Plancherel’s identity, norm on Hs(R) for all real
numbers s ≥ 0 can be equivalently defined by

||u||2Hs(R) =

∫
R
(1 + ξ2)s|û|2 dξ

where

〈u, v〉Hs = 〈Λsu,Λsv〉L2 =

∫
R
(1 + ξ2)sûv̂ dξ

is the inner product on Hs and Λs = (1−D2
x)
s/2.

1.1.1 Fourier series representation for periodic functions and Sobolev
spaces on T

Let u be periodic function with period 2π and integrable on [0, 2π). Then Fourier series
of u is given by

u(x) =
∞∑

n=−∞

une
inx.

We can find the Fourier coefficients precisely using the Fourier Transform:∫ 2π

0

u(x)e−imxdx =

∫ 2π

0

∞∑
n=−∞

une
inxe−imxdx

=
∞∑

n=−∞

∫ 2π

0

une
inxe−imxdx

=
∞∑

n=−∞

2πunδmndx

= 2πum

where δmn is the Kronecker delta defined as δmn = 1 for m = n and δmn = 0 for m 6= n.
Thus we arrive at

un = û(n) =
1

2π

∫ 2π

0

u(x)e−inxdx. (1.1)

Assume Dj
xu ∈ L2(T) for j = 0, 1, 2, ...., k. Then

||u||2L2(T) =
∞∑

n=−∞

|un|2

and

Dj
xu(x) =

∞∑
n=−∞

un(in)jeinx.

3



It follows that

||Dj
xu||L2(T) =

∞∑
n=−∞

n2j|un|2

and

||u||2Hk(T) =
k∑
j=0

∞∑
n=−∞

n2j|un|2

≈
∞∑

n=−∞

(1 + n2)k|un|2.

Similarly, for all real numbers s ≥ 0, we define

||u||2Hs(T) =
∞∑

n=−∞

(1 + n2)s|un|2.

1.1.2 Some Useful Sobolev Inequalities

• For any 0 < s1 ≤ s2 <∞ there holds

Hs1(R) ⊃ Hs2(R)

and
||h||Hs1 (R) ≤ ||h||Hs2 (R).

• Let f, g ∈ Hs(R) and s ≥ 0. Then

1. ||fg||Hs(R) ≤ C
(
||f ||Hs(R)||g||L∞(R) + ||f ||L∞(R)||g||Hs(R)

)
,

2. ||f ||∞ ≤ C||f ||s if s > 1/2.

1.2 Homogeneous Sobolev spaces and properties of the inverse operator
D−1
x on T

Assume u is the antiderivative of 2π-periodic function w. That is

u(x) = D−1
x w(x) =

∫ x

0

w(y)dy.

4



Assume moreover that w has mean zero:

w0 = ŵ(0) =
1

2π

∫ 2π

0

w(x) dx = 0.

Then u is also 2π periodic function and we have the following relation between the
Fourier series of Dxu and w:

Dxu(x) =
∞∑

n=−∞

unine
inx =

∞∑
n=−∞

wne
inx = w(x)

with wn = inun, for n 6= 0 .

All the observations above imply that in order for D−1
x w = u to exist w should have

mean zero.

Let k be a positive integer. The Homogenous Sobolev Space
.

Hk(T), the subspace
of Sobolev space Hk(T), is defined by

.

Hk(T) = {u : u ∈ Hk(T); û(0) = u0 = 0}.

This time norm is defined by

||u||2 .

Hk(T)
=
∑
n6=0

n2k|un|2

since u0 = 0.

Lemma 1.2.1 Let w ∈
.

Hk(T) and D−1
x w = u as above. Then

1. ||D−1
x w|| .

Hk(T)
≤ ||w|| .

H
k−1

(T)
≤ ||w||Hk−1(T)

2. ||D−1
x w||Hk(T) ≤ 2k/2||D−1

x w|| .

Hk(T)

3. ||D−1
x w||Hk(T) ≤ C||w||Hk−1(T).

Proof : Firstly, note that

||D−1
x w||2 .

Hk(T)
= ||u||2 .

Hk(T)
=
∑
n6=0

n2k|un|2 =
∑
n6=0

n2k |wn|2

(in)2
= ||w||2.

H
k−1

(T)

and n2k ≤ 1 + n2k ≤ (1 + n2)k. Hence

||w||2 .

Hk−1(T)
=
∑
n6=0

n2(k−1)|wn|2 ≤
∞∑

n=−∞

(1 + n2)k−1|wn|2 = ||w||2Hk−1(T).

5



We also have

||D−1
x w||2Hk(T) =

∞∑
n=−∞

(1 + n2)k|D̂−1
x w|2

=
∑
n 6=0

(1 + n2)k|ŵn
in
|2

=
∑
n 6=0

[
1 +

(
k

1

)
n2 +

(
k

2

)
n4 + ..+

(
k

k

)
n2k

]
|ŵn
in
|2

≤
∑
n6=0

2kn2k|ŵn
in
|2

= 2k||D−1
x w||2 .

Hk(T)
.

Combining the above estimates, we obtain part 3 where C = 2k/2. 2

Note that The Homogenous Sobolev Spaces can also be defined for all real numbers
s ≥ 0. Thus all the inequalities above are also valid for real numbers s ≥ 0.

In the rest of the thesis we will use ||.||,||.||s and ||.|| .s for the L2, Hs and
.

Hs norms
respectively and C is a generic constant.

1.3 Commutator estimates

The commutator of two operators K and L is defined as [K,L] = KL − LK. In this
section, we present some commutator estimates listed from [19] for the completeness
of the work.

Proposition 1.3.2 Let q0 ≥ 1/2, s ≥ 0 and Λs = (1−D2
x)
s/2. If −q0 < r ≤ q0 + 1− s

and w ∈ Hq0+1, then for all g ∈ w ∈ Hr+s−1 one has

||[Λs, w]g||r ≤ C||w||q0+1||g||r+s−1.

1. Assume q0 = s > 1/2. Then −s < r ≤ 1 and

• ||[Λs, w]g|| ≤ C||w||s+1||g||s−1

• ||[Λs, w]g||1 ≤ C||w||s+1||g||s.

2. Assume s > 3/2 and q0 = s− 1 > 1/2. Then −(s− 1) < r ≤ 0 and

• ||[Λs, w]g|| ≤ C||w||Hs||g||Hs−1 .

Lemma 1.3.3 Assume u and h are smooth enough, then

1. 〈hΛsux,Λ
su〉 = −1

2
〈hxΛsu,Λsu〉,

6



2. 〈Λs(hux),Λ
su〉 = 〈[Λs, h]ux,Λ

su〉 − 1
2
〈hxΛsu,Λsu〉.

Proof : Using the fact that the operator Dx is skew-symmetric, we obtain

〈hΛsux,Λ
su〉 = 〈hΛsu,Λsux〉 = −〈Dx(hΛsu),Λsu〉

= −〈hxΛsu,Λsu〉 − 〈hΛsux,Λ
su〉.

Thus 2〈hΛsux,Λ
su〉 = −〈hxΛsu,Λsu〉 and the result follows.

Note also that

〈Λs(hux),Λ
su〉 = 〈[Λs, h]ux,Λ

su〉+ 〈hΛsux,Λ
su〉

= 〈[Λs, h]ux,Λ
su〉 − 1

2
〈hxΛsu,Λsu〉

where we use part 1 for the second term. 2

1.4 Asymptotic expansion

In this section, we want to summarize some results about asymptotic expansions. We
mainly refer to [13], [18] and [30] for the definitions, examples and notations.

Let R be a set. The sequence of functions {φn} is called an asymptotic sequence
for x→ x0 in R if for each n, φn is defined in R and φn+1 = o(φn) as x→ x0. In other
words,

lim
x→x0

[φn+1(x)/φn(x)] = 0 ∀n = 0, 1, 2...

For example {φn}(x) = xn is an asymptotic sequence for x→ 0.

The series
∑N

n=0 anφn(x) is said to be asymptotic expansion of f(x) if

f(x) =
N∑
n=0

anφn(x) + o(φN) as x→ x0.

It is usually written

f(x) ∼
N∑
n=0

anφn(x) as x→ x0. (1.2)

Following example illustrates that an asymptotic expansion of a function can be dif-
ferent from its Taylor expansion.

7



Example 1.4.1 Let c be an arbitrary constant. Then

1

1− x
+ ce−1/x ∼ 1 + x+ x2 + ....... as x→ 0+

since e−1/x = o(xn). However,

1

1− x
+ ce−1/x 6= 1 + x+ x2 + ....... as x→ 0+.

Following example demonstrates a useful property of asymptotic expansions.

Example 1.4.2 Consider the error function erf(x) : R→ R defined by

erf(x) =
1

2π

∫ x

0

e−t
2

dt.

Its power series expansion

erf(x) =
1

2π

{
x− x3

2
+ ...+

(−1)n

(2n+ 1)!
x2n+1 + ....

}
obtained by integrating the power series expansion of e−t

2
is convergent for every x ∈ R.

For large values of x, however, the convergence is very slow for the Taylor series of
the error function at x = 0. Instead, we can use the following divergent asymptotic
expansion to obtain accurate approximations of erf(x) for large x:

erf(x) ∼ 1− e−x
2

√
π

∞∑
n=0

(−1)n+1 1 · 3 · . . . · (2n− 1)!

2n
1

xn+1

is divergent as x → ∞. For example, when x = 3, we need 31 terms in the Taylor
series at x = 0 to approximate erf(3) to an accuracy of 10−5 , whereas we only need 2
terms in the asymptotic expansion.
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Chapter 2

Asymptotic Derivations

In the literature, there are many work on asymptotic approximations to the Euler
equation. One of the most typical model equation is the Camassa-Holm equation
(CH) which is given by

vτ + κ1vξ + 3vvξ − vξξτ = κ2(2vξvξξ + vvξξξ) (2.1)

derived for the unidirectional propagation of long water waves in the context of a
shallow water approximation to the Euler equation [6]. Also, the CH equation has
been derived as long wave limit of the Improved Boussinesq equation (IBq) over a long
time scale in [10]. In the present chapter, we consider the problem within the scope of
elasticity as in [10] and give the class of Bq-type equations from which the CH equation
can be formally derived.

2.1 Derivation of the Camassa-Holm equation from the Double
Dispersion equation

We consider the Double Dispersive equation (DD)

utt − uxx + auxxxx − buxxtt = (u2)xx, (2.2)

where u(x, t) is a real-valued function, the subscripts x and t denote partial differen-
tiations and a and b are positive constants. Now, we will provide formal derivation
of the CH equation from the DD equation in the long wave limit. In other words, we
are going to show that right-going, small-but-finite amplitude, long wave solutions of
DD equation satisfy CH equation asymptotically. For this purpose, we introduce the
scaling transformation

u(x, t) = εU(δ(x− t), δt) = εU(Y, S)

where ε and δ are positive small parameters measuring the effects of nonlinearity and
dispersion, respectively. Then we are going to plug this solution into (2.2). We first
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find all the derivatives appearing there as follows:

ut = [−UY + US]

utt = εδ2 [UY Y − 2UY S + USS]

Di
xu = εδiUY for i = 1, 2, 3, 4

uxxt = εδ3 [−UY Y Y + UY Y S]

uxxtt = εδ4 [UY Y Y Y − 2UY Y Y S + UY Y SS]

(u2)xx = ε2δ2(U2)Y Y .

Now we plug them all in equation (2.2) to obtain

USS − 2UY S + δ2 [(a− b)UY Y Y Y + 2bUY Y Y S − bUY Y SS] = ε(U2)Y Y . (2.3)

Our aim is to seek asymptotic solution of (2.3) in the form

U(Y, S; ε, δ) = U0(Y, S) + εU1(Y, S) + δ2U2(Y, S) + εδ2U3(Y, S) +O(ε2, δ4). (2.4)

We note that only even powers of δ appear in this form since there are only even order
spatial derivatives in the DD equation.

We plug (2.4) in (2.3). Then we obtain

U0SS − 2U0Y S + δ2 ((a− b)U0Y Y Y Y + 2bU0Y Y Y S − bU0Y Y SS)

+ε
[
U1SS − 2U1Y S + δ2 ((a− b)U1Y Y Y Y + 2bU1Y Y Y S − bU1Y Y SS)

]
+δ2

[
U2SS − 2U2Y S + δ2 ((a− b)U2Y Y Y Y + 2bU2Y Y Y S − bU2Y Y SS)

]
εδ2
[
U3SS − 2U3Y S + δ2 ((a− b)U3Y Y Y Y + 2bU2Y Y Y S − bU3Y Y SS)

]
−ε
[
U2

0 + ε2U2
1 + δ4U2

2 + ε2δ4U2
3

]
Y Y

−2ε
[
εU0U1 + δ2U0U2 + εδ2U0U3 + εδ2U1U2 + ε2δ2U1U3 + εδ4U2U3)

]
Y Y

+ . . . = 0.

We can rewrite the equation at all orders in the following way:

O(1) : U0SS − 2U0Y S = 0 (2.5)

O(ε) : U1SS − 2U1Y S − (U2
0 )Y Y = 0 (2.6)

O(δ2) : (a− b)U0Y Y Y Y + 2bU0Y Y Y S − bU0Y Y SS + U2SS − 2U2Y S = 0 (2.7)

O(εδ2) : (a− b)U1Y Y Y Y + 2bU1Y Y Y S − bU1Y Y SS + U3SS − 2U3Y S − 2(U0U2)Y Y = 0.

(2.8)

Now, we are going to solve these equations iteratively and find Ui for i = 1, 2, 3. We
assume that all unknowns Ui and their derivatives decay to zero as |Y | tends to infinity.
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Equation (2.5) implies (DS − 2DY )U0S = 0. Then

U0S = 0 and U0 = U0(Y ). (2.9)

If we rewrite equation (2.6), we get

(DS − 2DY )U1S − (U2
0 )Y Y = 0. (2.10)

Using U0 = U0(Y ), we differentiate (2.10) with respect to S to obtain

(DS − 2DY )U1SS = 0,

which implies that
U1SS = 0 and U1S = U1S(Y ). (2.11)

From equation (2.10) and (2.11) we have −2U1SY = (U2
0 )Y Y . This implies

U1S = −1

2
(U2

0 )Y . (2.12)

Rewriting equation (2.7), we get

(DS − 2DY )U2S + (a− b)U0Y Y Y Y + 2bU0Y Y Y S − bU0Y Y SS = 0.

By (2.9), we have
(DS − 2DY )U2S + (a− b)U0Y Y Y Y = 0. (2.13)

Now we differentiate this equation with respect to S and use (2.9) to obtain

(DS − 2DY )U2SS = 0

and
U2SS = 0 and U2S = U2S(Y ). (2.14)

From equation (2.13) and (2.14) we have −2U2SY + (a− b)U0Y Y Y Y = 0 and

U2S =
(a− b)

2
U0Y Y Y . (2.15)

We rewrite equation (2.8), we get

(DS − 2DY )U3S + (a− b)U1Y Y Y Y + 2bU1Y Y Y S − bU1Y Y SS − 2(U0U2)Y Y = 0.

Using (2.9), latter equation reduces to

(DS − 2DY )U3S + (a− b)U1Y Y Y Y + 2bU1Y Y Y S − 2(U0U2)Y Y = 0. (2.16)

We differentiate equation (2.16) with respect to S and use (2.11) to get

(DS − 2DY )U3SS + (a− b)U1Y Y Y Y S − 2(U0U2)Y Y S = 0. (2.17)

If we differentiate equation (2.17) with respect to S once again and use (2.11), we
obtain

(DS − 2DY )U3SSS − 2(U0U2)Y Y SS = 0.
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However,

(U0U2)Y Y SS = (U0SU2 + U0U2S)Y Y S = (U0U2S)Y Y S = (U0SU2S + U0U2SS)Y Y = 0

by (2.9) and (2.14). Then it follows that

(DS − 2DY )U3SSS = 0.

Therefore,
U3SSS = 0 and U3SS = U3SS(Y ).

Then equation (2.17) reduces to

−2U3SSY + (a− b)U1Y Y Y Y S − 2(U0U2)Y Y S = 0

and

U3SS =
(a− b)

2
U1Y Y Y S − (U0U2)Y S. (2.18)

However,

(U0U2)Y S = (U0YU2 + U0U2Y )S

= (U0Y SU2 + U0YU2S + U0SU2Y + U0U2Y S)

= (U0YU2S + U0U2Y S)

= (U0U2S)Y .

From (2.12) and (2.15), equation (2.18) becomes

U3SS = −(a− b)
4

(U2
0 )Y Y Y Y −

(a− b)
2

(U0U0Y Y Y )Y . (2.19)

We now plug equation (2.19) in equation (2.16), and solve for U3SY and obtain that

U3SY = −(a− b)
8

(U2
0 )Y Y Y Y −

(a− b)
4

(U0U0Y Y Y )Y

+
(a− b)

2
U1Y Y Y Y + bU1Y Y Y S − (U0U2)Y Y . (2.20)

Integrating equation (2.20) we get

U3S = −(a− b)
8

(U2
0 )Y Y Y −

(a− b)
4

(U0U0Y Y Y ) +
(a− b)

2
U1Y Y Y + bU1Y Y S − (U0U2)Y .

(2.21)
Finally we insert all results (2.9),(2.12),(2.15),and (2.21) in equation (2.4) and obtain

US =U0S + εU1S + δ2U2S + εδ2U3S +O(ε2, δ4)

=0− ε1
2

(U2
0 )Y + δ2 (a− b)

2
U0Y Y Y

+ εδ2

[
−(a− b)

8
(U2

0 )Y Y Y −
(a− b)

4
(U0U0Y Y Y )

]
+ εδ2

[
(a− b)

2
U1Y Y Y + bU1Y Y S − (U0U2)Y

]
+O(ε2, δ4). (2.22)
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On the other hand,

1

2
(U2

0 )Y = U0U0Y

(U0U0Y )Y Y = 3U0YU0Y Y + U0U0Y Y Y

(U0U2)Y = U0YU2 + U0U2Y

U1S = −U0U0Y .

If we plug all these in (2.22), we get

US = −εU0U0Y +
δ2(a− b)

2
U0Y Y Y

+εδ2

[
−3(a− b)

4
U0YU0Y Y −

(a− b)
4

U0U0Y Y Y −
(a− b)

4
U0U0Y Y Y

]
+εδ2

[
(a− b)

2
U1Y Y Y − b(U0U0Y )Y Y − U0YU2 − U0U2Y

]
+O(ε2, δ4)

= −εU0U0Y +
δ2(a− b)

2
U0Y Y Y

+εδ2

[
−3(a− b)

4
U0YU0Y Y −

(a− b)
2

U0U0Y Y Y +
(a− b)

2
U1Y Y Y

]
+εδ2 [−U0YU2 − U0U2Y − 3bU0YU0Y Y − bU0U0Y Y Y ] +O(ε2, δ4)

= −εU0U0Y +
δ2(a− b)

2
U0Y Y Y

+εδ2

[
−(3a+ 9b)

4
U0YU0Y Y −

(a+ b)

2
U0U0Y Y Y +

(a− b)
2

U1Y Y Y

]
+εδ2 [−U0YU2 − U0U2Y ] +O(ε2, δ4)

= −εU0U0Y +
δ2(a− b)

2
U0Y Y Y

+εδ2

[
−(3a+ 9b)

4
U0YU0Y Y −

(a+ b)

2
U0U0Y Y Y +

(a− b)
2

U1Y Y Y

]
+εδ2 [−U0YU2 − U0U2Y ] +O(ε2, δ4). (2.23)

We observe the following

UUY U0Y εU1Y δ2U2Y εδ2U3Y

U0 U0U0Y εU0U1Y δ2U0U2Y εδ2U0U3Y

εU1 εU1U0Y ε2U1U1Y εδ2U1U2Y ε2δ2U1U3Y

δ2U2 δ2U2U0Y εδ2U2U1Y δ4U2U2Y εδ4U2U3Y

εδ2U3 εδ2U3U0Y ε2δ2U3U1Y εδ3U3U2Y ε2δ3U3U3Y
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Multiplying UUY by ε requires multiplication of each entry by ε individually. At
O(ε2, δ4), all the entries above become

εUUY U0Y εU1Y δ2U2Y εδ2U3Y

εU0 εU0U0Y 0 εδ2U0U2Y 0

ε2U1 0 0 0 0

εδ2U2 εδ2U2U0Y 0 0 0

ε2δ2U3 0 0 0 0

Thus,

εUUY = εU0U0Y + εδ2 [U0U2Y + U2U0Y ] +O(ε2, δ4).

On the other hand,

δ2

2
UY Y Y =

δ2

2

[
U0 + εU1 + δ2U2 + εδ2U3

]
Y Y Y

=
δ2

2
[U0Y Y Y + εU1Y Y Y ] +O(ε2, δ4).

Similar argument gives that

εδ2UYUY Y = εδ2U0YU0Y Y

εδ2UUY Y Y = εδ2U0U0Y Y Y .

Now we rewrite equation (2.23) as

0 = US + εU0U0Y + εδ2 [U0YU2 + U0U2Y ]− δ2(a− b)
2

[U0Y Y Y + εU1Y Y Y ]

+
εδ2

4
[(3a+ 9b)U0YU0Y Y + 2(a+ b)U0U0Y Y Y ] +O(ε2, δ4)

= US + εUUY −
δ2(a− b)

2
UY Y Y +

εδ2

4
[(3a+ 9b)UYUY Y + 2(a+ b)UUY Y Y ] .

Remark 2.1.1 Solution of (2.2) of the form (2.4) satisfies

US + εUUY −
δ2(a− b)

2
UY Y Y +

εδ2

4
[(3a+ 9b)UYUY Y + 2(a+ b)UUY Y Y ] = 0 (2.24)

asymptotically.

Note that we require UY , UY SS terms in the equation (2.24) in the corresponding coordi-
nate system. On the other hand, we need scaled free form of this equation and we need
right coefficients of the terms and correct ratio for UYUY Y and UUY Y Y as in equation
(2.1).
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Step 1 We let X = mY + nS and T = rS where m,n, r are positive constants to
obtain the term UY . Then

U(Y, S) = V (mY + nS, rS) = V (X,T )

US = VXXS + VTTS = nVX + rVT

Di
YUD

j
YU = mi+jDi

XV D
j
XV.

In other words, whenever we take derivative with respect to Y we gain m as a product.

We plug all these in (2.24), then

rVT + nVX + εmV VX −
δ2(a− b)

2
m3VXXX

+
εδ2m3

4
[(3a+ 9b)VXVXX + 2(a+ b)V VXXX ] = 0. (2.25)

Step 2 Now, we need VTXX term in the equation. At level O(1), equation (2.25)
becomes rVT + nVX + εmV VX = 0. We solve for VX and differentiate with respect to
X twice to obtain

VX = − r
n
VT −

εm

n
V VX +O(δ2, εδ2)

VXXX = − r
n
VTXX −

εm

n
(V VX)XX +O(δ2, εδ2). (2.26)

We plug (2.26) in (2.25) and keep the terms up to O(δ2, εδ2),

rVT + nVX + εmV VX +
δ2(a− b)

2
m3
[ r
n
VTXX +

εm

n
(V VX)XX

]
+
εδ2m3

4
[(3a+ 9b)VXVXX + 2(a+ b)V VXXX ] = 0. (2.27)

However,

(V VX)XX = (V 2
X + V VXX)X = 2VXVXX + VXVXX + V VXXX = 3VXVXX + V VXXX .

We plug this in (2.27) and divide by r to obtain

VT +
n

r
VX +

εm

r
V VX +

δ2m3(a− b)
2n

VTXX

+
εδ2m3

2r

[(
3(a− b)m

n
+

(3a+ 9b)

2

)
VXVXX

]
+
εδ2m3

2r

[(
(a− b)m

n
+ a+ b

)
V VXXX

]
= 0. (2.28)

Step 3 We need parameters-free form of (2.28). We let v = εV , X = δξ, and T = δτ .
Then we multiply equation (2.28) by εδ to get

εδVT + εδ
n

r
VX + ε2δ

m

r
V VX + εδ3m

3(a− b)
2n

VTXX

+ ε2δ3m
3

2r

[(
3(a− b)m

n
+

(3a+ 9b)

2

)
VXVXX

]
+ ε2δ3m

3

2r

[(
(a− b)m

n
+ a+ b

)
V VXXX

]
= 0. (2.29)
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However, we have

v = εV (X,T ) = εV (δξ, δτ)

vτ = εδVT

vξ = εδVX .

Note that we gain ε from nonlinearity and δ as a product from each derivative. If we
plug all these in (2.29), we obtain

vτ +
n

r
vξ +

m

r
vvξ +

m3(a− b)
2n

vτξξ

+
m3

2r

[(
3(a− b)m

n
+

(3a+ 9b)

2

)
vξvξξ +

(
(a− b)m

n
+ a+ b

)
vvξξξ

]
= 0. (2.30)

Step 4 Now, we need to determine the coefficients in equation (2.30). Sign of vτξξ
should be negative. This requires that b > a > 0. Moreover, we have to choose m,n, r
so that the following hold.

m

r
= 3 (2.31)

m3(a− b)
2n

= −1 (2.32)

3(a− b)m
n

+
3a+ 9b

2
= 2

(
(a− b)m

n
+ a+ b

)
. (2.33)

From (2.33), we get

(b− a)m

n
=

3a+ 9b

2
− 2(a+ b) =

5b− a
2

(2.34)

which is
m

n
=

5b− a
2(b− a)

. (2.35)

Conditions (2.32) and (2.34) imply

(b− a)m

n
=

2

m2
=

5b− a
2

and m2 =
4

5b− a
. (2.36)

Moreover (2.31) and (2.36) imply

n

r
=

n

m

m

r
= 3

n

m
=

6(b− a)

5b− a
(2.37)

m3

2r
=
m2

2

m

r
=

3

2
m2 =

6

5b− a
. (2.38)

From (2.35) we have

3(a− b)m
n

+
(3a+ 9b)

2
=

3(a− b)(5b− a)

2(b− a)
+

(3a+ 9b)

2
= 3(a− b). (2.39)
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If we plug (2.31),(2.32), (2.37),(2.38) and (2.39) in equation (2.30), we get

vτ +
6(b− a)

5b− a
vξ + 3vvξ − vτξξ +

6

5b− a

[
3(a− b)vξvξξ +

3(a− b)
2

vvξξξ

]
= 0

which is equivalent to

vτ +
6(b− a)

5b− a
vξ + 3vvξ − vτξξ =

9(b− a)

5b− a
(2vξvξξ + vvξξξ) . (2.40)

Remark 2.1.2 Equation (2.40) is of CH-type with

κ1 =
6(b− a)

5b− a
, κ2 =

9(b− a)

5b− a

if and only if b > a.

Step 5 We want to find the coordinate transformation between (ξ, τ) and (x, t) as
follows: We know that v = v(ξ, τ). On the other hand we have

X = δξ, Y = δ(x− t), S = δt.

Therefore

X = mY + nS

δξ = mδ(x− t) + nδt

ξ = m(x− t) + nt = m
(
x−

(
1− n

m

)
t
)

T = rS

δτ = rδt

τ = rt

So we need m, 1− n
m
, and r. We observe that m = 2√

5b−a . Then

1− n

m
=

3b+ a

5b− a

r =
m

3
=

2

3
√

5b− a
.

All these imply that

ξ =
2√

5b− a

(
x− 3b+ a

5b− a
t

)
; τ =

2

3
√

5b− a
t (2.41)

v(ξ, τ) = v

(
2√

5b− a
x− 2(3b+ a)

(5b− a)
√

5b− a
t,

2

3
√

5b− a
t

)
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vx =
2√

5b− a
vξ

vt = − 2(3b+ a)

(5b− a)
√

5b− a
vξ +

2

3
√

5b− a
vτ

vxx =
4

5b− a
vξξ

vxxx =
8

(5b− a)
√

5b− a
vξξξ

vtxx = − 2(3b+ a)

(5b− a)
√

5b− a
4

5b− a
vξξξ +

2

3
√

5b− a
4

5b− a
vτξξ

=
4

5b− a

(
− 2(3b+ a)

(5b− a)
√

5b− a
vξξξ +

2

3
√

5b− a
vτξξ

)
.

Now,

vξ =

√
5b− a

2
vx

2

3
√

5b− a
vτ = vt +

2(3b+ a)

(5b− a)
√

5b− a
vξ

= vt +
2(3b+ a)

(5b− a)
√

5b− a

√
5b− a

2
vx

= vt +
3b+ a

5b− a
vx.

Then

vτ =
3
√

5b− a
2

vt +
3
√

5b− a
2

3b+ a

5b− a
vx.

Moreover

5b− a
4

vtxx = − 2(3b+ a)

(5b− a)
√

5b− a
vξξξ +

2

3
√

5b− a
vτξξ.

We solve for vτξξ:

vτξξ =
3
√

5b− a
2

(
3
√

5b− a5b− a
4

vtxx +
2(3b+ a)

(5b− a)
√

5b− a
vξξξ

)
=

3
√

5b− a
2

(
3
√

5b− a5b− a
4

vtxx +
2(3b+ a)

(5b− a)
√

5b− a
(5b− a)

√
5b− a

8
vxxx

)
=

3
√

5b− a
2

(
3
√

5b− a5b− a
4

vtxx +
3b+ a

4
vxxx

)
.

We put everything in (2.40) to obtain

3
√

5b− a
2

vt +
3
√

5b− a
2

3b+ a

5b− a
vx +

6(b− a)

5b− a

√
5b− a

2
vx + 3v

√
5b− a

2
vx

− 3
√

5b− a
2

(
3
√

5b− a5b− a
4

vtxx +
3b+ a

4
vxxx

)
=

9(b− a)

5b− a
(5b− a)

√
5b− a

8
(2vxvxx + vvxxx) . (2.42)
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We simplify the coefficient of vx as

3
√

5b− a
2

3b+ a

5b− a
+

6(b− a)

5b− a

√
5b− a

2
=

3
√

5b− a
2

(
3b+ a

5b− a
+

2(b− a)

5b− a

)
=

3
√

5b− a
2

.

We divide equation (2.42) by 3
√

5b−a
2

to get

vt + vx + vvx −
5b− a

4
vtxx −

3b+ a

4
vxxx =

3(b− a)

4
(2vxvxx + vvxxx) . (2.43)

Thus, we obtain the following result.

Corollary 2.1.1 Solutions of the form (2.4) of the DD equation (2.2) with b > a
satisfy CH equation (2.43) asymptotically.

2.1.1 The case of the Improved Boussinesq equation

We consider the Improved Boussinesq equation (IBq) given as

utt − uxx − uttxx = (u2)xx. (2.44)

Note that (2.44) is not DD-type since a = 0, b = 1, yet the approximation above
holds. Thus the right going solutions of equation (2.44) satisfy the CH equation (2.43)
asymptotically. This coincides with the result obtained in [10].

2.1.2 The case of the Bad Boussinesq equation

We consider the Bad Boussinesq equation (Bad Bq) given as

utt − uxx − uxxxx = (u2)xx. (2.45)

This equation is not DD-type equation for a = −1, b = 0. However, asymptotic
expansion holds also here. Thus, the right going solutions of (2.45) of the form (2.4)
satisfy CH equation asymptotically.
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2.1.3 The case of the Good Boussinesq equation

We consider Good Boussinesq equation (Good Bq) given as

utt − uxx + uxxxx = (u2)xx. (2.46)

This is the special case of the DD equation since a = 1, b = 0. Solutions of (2.46) of
the form (2.4) satisfy

vτ +
n

r
vξ +

m

r
vvξ +

m3

2n
vτξξ

+
m3

2r

[(
3m

n
+

3

2

)
vξvξξ +

(m
n

+ 1 + 0
)
vvξξξ

]
= 0. (2.47)

However, this is not a CH like equation since the sign of vτξξ is positive. Thus we
conclude that right-going solutions of the Good Bq equation do not satisfy any CH
equation.

Remark 2.1.3 We will call the Double Dispersion equation with b > a > 0 as “Im-
proved Boussinesq-like DD equation”.

2.2 Derivation of the Benjamin-Bona-Mahony and Korteweg-De Vries
equations

Now we can provide a result for lower order approximations:

Corollary 2.2.2 Right-going solutions of the DD equation with b > a > 0 satisfy the
KdV equation.

Proof : We consider asymptotic solution of (2.3) in the form

U(Y, S; ε, δ) = U0(Y, S) + εU1(Y, S) + δ2U2(Y, S) +O(ε, εδ2, δ4). (2.48)

Then equation (2.24) reduces to

US + εUUY +
δ2(b− a)

2
UY Y Y = 0. (2.49)

We use the same coordinate transformations in step 1, step 3 and step 5 and (2.25)
becomes

VT +
n

r
VX + ε

m

r
V VX +

δ2(b− a)

2r
m3VXXX = 0. (2.50)
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Letting v = εV , X = δξ, and T = δτ we get

vτ +
n

r
vξ +

m

r
vvξ +

(b− a)

2r
m3vξξξ = 0. (2.51)

This is the KdV equation. Thus we conclude that the right-going solutions of the DD
equation of the form (2.48) satisfies the KdV equation (2.51) asymptotically. 2

Corollary 2.2.3 The right-going solutions of the DD equation with b > a > 0 satisfy
the BBM equation asymptotically.

Proof : At the order O(1), equation (2.50) becomes rVT +nVX = 0. However, we need
the term VTXX . So we solve for VX and differentiate with respect to X twice to obtain

VX = − r
n
VT +O(ε, δ2, εδ2)

VXXX = − r
n
VTXX +O(ε, δ2, εδ2). (2.52)

However, VXXX = − r
n
VTXX at O(1) . Then

VT +
n

r
VX + ε

m

r
V VX −

δ2(b− a)

2

m3

n
VTXX = 0. (2.53)

Afterwards we use the same coordinate transformations in step 1, step 3 and step 5
and we obtain the BBM equation:

vt + vx + vvx −
5b− a

4
vtxx −

3b+ a

4
vxxx = 0. (2.54)

2

Corollary 2.2.4 1. The right-going solutions of the Improved Boussinesq equation
satisfy the BBM equation asymptotically:

vt + vx + vvx −
3

4
vtxx +

5

4
vxxx = 0. (2.55)

2. The right-going solutions of the Bad Bq equation satisfy the BBM equation asymp-
totically:

vt + vx + vvx +
1

4
vtxx −

1

4
vxxx = 0. (2.56)
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Chapter 3

The Camassa-Holm equation as the long-wave limit of the Dou-
ble Dispersion equation

3.1 Problem setting

We consider following Cauchy problems for the Double Dispersion equation and the
Camassa-Holm equation in scaled forms respectively in the same coordinate system:

utt − uxx + aδ2uxxxx − bδ2uxxtt − ε(u2)xx = 0 x ∈ R, t > 0 (3.1)

u(x, 0) = u0(x), ut(x, 0) = u1(x) x ∈ R (3.2)

wt + wx + εwwx −
5b− a

4
δ2wtxx −

3b+ a

4
δ2wxxx =

3

4
(b− a)εδ2(2wxwxx + wwxxx)

(3.3)

w(x, 0) = w0(x), x ∈ R, t > 0 (3.4)

where b > a > 0, ε > 0 measures nonlinearity and δ > 0 dispersive effects. We will
show that solutions of CH equations are well approximated by solutions of DD equation
with b > a > 0 over a long time scale. In other words, we are going to show that it is
always possible to find a solution of (3.1) whenever we are given the solution of (3.3)
that remains close to it over a long time:

Theorem 3.1.1 Let w0 ∈ Hs+6(R), s > 3/2 and suppose wε,δ is the solution of Cauchy
problem (3.3)-(3.4). Then there exists T > 0 and δ0 ≤ 1 such that the solution uε,δ of
the Cauchy problem (3.1)-(3.2) with the same initial values

u0(x) = w0(x) u1(x) = wt(x, 0)

and b > a > 0 that satisfy

||uε,δ(t)− wε,δ(t)||s ≤ C(ε2 + δ4)t

for all t ∈
[
0, T

ε

]
and all 0 < ε ≤ δ ≤ δ0.
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There is a general methodology that is used to compare the solutions of the model
equation and parent equation in the literature [25], [2] and [11]. Firstly, we show that
model equation is derived from parent equation asymptotically. Secondly, we need
existence-uniqueness results for Cauchy problems for both equations. In addition to
that, solutions of the model equation should be uniformly bounded over a long time
for the estimation of the residual term coming from the approximation. Lastly, using
energy methods, we show that difference between solutions of the parent and model
equations remain small in some appropriate function spaces on a relevant time interval.
One can also use the scaled-free form of the equations above. However, scaled forms are
more appropriate to deal with long waves with small amplitude. Note that derivation
part of the methodology has already been discussed in the previous chapter.

There are many work on well-posedness of the Cauchy problem for the Double Dis-
persion equation. One of them is stated in [28]. The researchers in [1] also obtained
well-posedness of the solutions of the Cauchy problem for a generalized form of the
Double Dispersion equation.

On the other hand, there are many work on wellposedness of Cauchy problem for dif-
ferent forms of Camassa-Holm equation in both perodic and non-periodic cases. Most
of them are on Cauchy problem for (2.1) with κ1 = 0. In 1997, Constantin [3] showed
the local well-posedness in the Sobolev spaces Hs(T) for s > 4. Then, Constantin and
Escher [5] improved the result in 1998 with s > 3. Then, Danchin [8] considered the
same problem with initial conditions in Besov spaces in 2001. In 2002, Misiolek [23]
proved local well-posedness in the space of continuously differentiable functions again
in periodic setting by viewing the equation as an ODE in a Banach space using the
geometric interpretation. On the other hand, Li and Olver [21] obtained results for
s > 3/2 in non-periodic setting using regularization technique in 2000. Then, in 2001,
Rodriguez-Blanco obtained the same result by using Kato semigroup theory for the
quasilinear differential equations [24]. In 2016, Lee and Preston [20] obtained well-
posedness results in the space of continuously differentiable functions by using group
diffeomorphisms.

The equation (3.3) involves the term wxxx. Besides this, we will need uniform bounds
for the solutions of Cauchy problem for (3.3) on the real line. For that reason, we
consider the work (Proposition 4 in [6]) on well-posedness of the Cauchy problem for a
more generalized form of the Camassa-Holm equation which covers (3.3) as well. It not
only provides existence-uniqueness results but also provides information about uniform
bounds of the solutions. As in [11], we will use rephrased form of the result to adapt
it to our problem:

Theorem 3.1.2 (Corollary 1 in [11]) Let w0 ∈ Hs+k+1(R), s > 1/2, k ≥ 1. Then
there exists T > 0, C > 0 and a unique family of solutions

wε,δ ∈ C
(

[0,
T

ε
], Hs+k(R)

)
∩ C1

(
[0,

T

ε
], Hs+k−1(R)

)
to (3.3) with the initial value w(x, 0) = w0(x), satisfying

||wε,δ(t)||s+k + ||wε,δt (t)||s+k−1 ≤ C,

for all 0 < ε ≤ δ ≤ 1 and t ∈ [0, T
ε
].
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In the next section, we are going to concentrate on the remaining steps of the method-
ology.

3.2 Energy for the Double Dispersion Equation

In other to make the rest of the steps more clear, we are going to first consider

rtt − rxx + aδ2rxxxx − bδ2rxxtt − ε(r2 + 2wr)xx = −Fx, (3.5)

r(x, 0) = 0, rt(x, 0) = qx(x), (3.6)

where r, w ∈ C([0, T̄ ], Hs+1(R)) ∩ C1([0, T̄ ], Hs(R)), F ∈ C([0, T̄ ], Hs(R)) for s > 3/2.

We are going to find the energy for equation (3.5) and an estimate for it. Note that
rt(x, 0) is derivative of some function and nonhomogenous part of (3.5) is of the form
Fx. Then we can take r = ρx for some function ρ(x, t) and equation (3.5) becomes

ρttx − ρxxx + aδ2ρxxxxx − bδ2ρxxxtt − ε((r2 + 2wr)ρx)xx = −Fx. (3.7)

We integrate over x

ρtt − ρxx + aδ2ρxxxx − bδ2ρxxtt − ε(r2 + 2wr)x = −F. (3.8)

We multiply (3.8) by Λsρt and integrate the equation over R:

〈Λs/2ρt,Λ
s/2
(
ρtt − ρxx + aδ2ρxxxx − bδ2ρxxtt

)
〉 − ε〈Λs/2ρt,Λ

s/2(r2 + 2wr)x〉

= −〈Λs/2ρt,Λ
s/2F 〉.

Now we use integration by parts to obtain

〈Λs/2ρt,Λ
s/2ρtt〉+ 〈Λs/2ρtx,Λ

s/2ρx〉+ aδ2〈Λs/2ρtxx,Λ
s/2ρxx〉+ bδ2〈Λs/2ρtx,Λ

s/2ρxtt〉

+ ε〈Λs/2ρtx,Λ
s/2(r2 + 2wr)〉 = −〈Λs/2ρt,Λ

s/2F 〉.

Use the fact that ρx = r to get

〈Λs/2ρt,Λ
s/2ρtt〉+ 〈Λs/2rt,Λ

s/2r〉+ aδ2〈Λs/2rtx,Λ
s/2rx〉+ bδ2〈Λs/2rt,Λ

s/2rtt〉

+ ε〈Λs/2rt,Λ
s/2(r2 + 2wr)〉 = −〈Λs/2ρt,Λ

s/2F 〉.

Finally we have

1

2

d

dt

(
||ρt(t)||2s + ||r(t)||2s + aδ2||rx(t)||2s + bδ2||rt(t)||2s

)
+ε〈Λs(r2 + 2wr)(t),Λsrt(t)〉+ 〈ΛsF (t),Λsρt(t)〉 = 0. (3.9)
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Thus, we define the modified energy as follows:

E2
s (t) =

1

2

(
||ρt(t)||2s + ||r(t)||2s + aδ2||rx(t)||2s + bδ2||rt(t)||2s

)
+
ε

2
〈Λs(r2 + 2wr)(t),Λsr(t)〉. (3.10)

3.3 Energy Estimate for the Double Dispersion Equation

Lemma 3.3.3 Assume s > 3/2 and r, w ∈ C([0, T̄ ], Hs(R)). Let ||r(t)||s < 1 for
0 ≤ t ≤ T̄ and ε < 1

2 sup
0≤t≤T̄

(1+2||w(t)||s)
, then the energy (3.10) for the Cauchy problem

(3.5)-(3.6) is equivalent to

Es(t) ≈ ||ρt(t)||s + ||r(t)||s +
√
aδ||rx(t)||s +

√
bδ||rt(t)||s

for 0 ≤ t ≤ T̄ .

Proof : Note that

|〈Λs(r2 + 2wr)(t),Λsr(t)〉| ≤ ||r(t)||3s + 2||w(t)||s||r(t)||2s ≤ (1 + 2||w(t)||s)||r(t)||2s

Then

E2
s (t) ≥

1

2

(
||ρt(t)||2s + ||r(t)||2s + aδ2||rx(t)||2s + bδ2||rt(t)||2s

)
− ε

2
〈Λs(r2 + 2wr)(t),Λsr(t)〉

≥

(
1

2
− ε

2
sup

0≤t≤T̄
(1 + 2||w(t)||s)

)(
||ρt(t)||2s + ||r(t)||2s + aδ2||rx(t)||2s + bδ2||rt(t)||2s

)
.

Since ε < 1
2 sup

0≤t≤T̄

(1+2||w(t)||s)
, we have

E2
s (t) ≥

1

4

(
||ρt(t)||2s + ||r(t)||2s + aδ2||rx(t)||2s + bδ2||rt(t)||2s

)
.

Also

E2
s (t) ≤

1

2

(
||ρt(t)||2s + ||r(t)||2s + aδ2||rx(t)||2s + bδ2||rt(t)||2s

)
+
ε

2
〈Λs(r2 + 2wr)(t),Λsr(t)〉

≤

(
1

2
+ ε sup

0≤t≤T̄
(1 + 2||w(t)||s)

)(
||ρt(t)||2s + ||r(t)||2s + aδ2||rx(t)||2s + bδ2||rt(t)||2s

)
≤ ||ρt(t)||2s + ||r(t)||2s + aδ2||rx(t)||2s + bδ2||rt(t)||2s.

Taking square roots of the expressions we complete the proof. 2
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Lemma 3.3.4 Assume s > 3/2 and r, w ∈ C([0, T̄ ], Hs(R)) ∩ C ′([0, T̄ ], Hs(R)) and
F ∈ C([0, T̄ ], Hs(R)). Let ||r(t)||s < 1 for t ≤ T̄ and ε < 1

2 sup
0≤t≤T̄

(1+2||w(t)||s)
, then there

exists some C such that the energy (3.10) for the Cauchy Problem (3.5)-(3.6) satisfies

Es(t) ≤ C

(
Es(0) + t sup

0≤t≤T̄
||F (t)||s

)
for 0 ≤ t ≤ T̄ ≤ T/ε.

Proof : We differentiate the energy defined in (3.10):

d

dt
E2
s (t) =〈Λs/2ρt,Λ

s/2ρtt〉+ 〈Λs/2rt,Λ
s/2r〉+ aδ2〈Λs/2rtx,Λ

s/2rx〉+ bδ2〈Λs/2rt,Λ
s/2rtt〉

+
d

dt

ε

2
〈Λs(r2 + 2wr),Λsr〉.

We eliminate the term ρtt by using (3.8) as follows

d

dt
E2
s (t) =〈Λs/2ρt,Λ

s/2
(
ρxx − aδ2ρxxxx + bδ2ρxxtt + ε(r2 + 2wr)x − F

)
〉

+ 〈Λs/2rt,Λ
s/2r〉+ aδ2〈Λs/2rtx,Λ

s/2rx〉+ bδ2〈Λs/2rt,Λ
s/2rtt〉

+
d

dt

ε

2
〈Λs(r2 + 2wr),Λsr〉

=− 〈Λs/2rt,Λ
s/2r〉 − aδ2〈Λs/2rtx,Λ

s/2rx〉 − bδ2〈Λs/2rt,Λ
s/2rtt〉

+ 〈Λs/2rt,Λ
s/2r〉+ aδ2〈Λs/2rtx,Λ

s/2rx〉+ bδ2〈Λs/2rt,Λ
s/2rtt〉

− ε〈Λs(r2 + 2wr),Λsrt〉 − 〈ΛsF,Λsρt〉+
d

dt

ε

2
〈Λs(r2 + 2wr),Λsr〉

=
d

dt

ε

2
〈Λs(r2 + 2wr),Λsr〉 − ε〈Λs(r2 + 2wr),Λsrt〉 − 〈ΛsF,Λsρt〉

=
d

dt

[ ε
2
〈Λsr2),Λsr〉+ ε〈Λswr,Λsr〉

]
− ε〈Λs(r2 + 2wr),Λsrt〉 − 〈ΛsF,Λsρt〉

=
ε

2
〈Λsr2,Λsr〉t + ε〈Λswr,Λsr〉t − ε〈Λs(r2 + 2wr),Λsrt〉 − 〈ΛsF,Λsρt〉.

Thus we obtain that

d

dt
E2
s (t) =ε〈Λsrrt,Λ

sr〉+
ε

2
〈Λsr2,Λsrt〉+ ε〈Λs(wr)t,Λ

sr〉+ ε〈Λswr,Λsrt〉

− ε〈Λsr2,Λsrt〉 − 2ε〈Λswr,Λsrt〉 − 〈ΛsF,Λsρt〉

=ε〈Λsrrt,Λ
sr〉 − ε

2
〈Λsr2,Λsrt〉+ ε〈Λs(wr)t,Λ

sr〉 − ε〈Λswr,Λsrt〉 − 〈ΛsF,Λsρt〉

=ε〈Λsrrt,Λ
sr〉 − ε

2
〈Λsr2,Λsrt〉 − ε〈Λswr,Λsrt〉

+ ε〈Λswtr,Λ
sr〉+ ε〈Λswrt,Λ

sr〉 − 〈ΛsF,Λsρt〉.

Hence we get

|〈Λswtr,Λ
sr〉| ≤ ||wt||∞||Λsr||2 ≤ ||wt||s−1||Λsr||2 ≤ ||wt||s||Λsr||2 ≤ C||r||2s ≤ CE2

s (t)

|〈ΛsF,Λsρt〉| ≤ ||ΛsF ||||Λsρt|| = ||F ||s||ρt||s ≤ ||F ||sEs(t)
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since s− 1 > 1/2. We observe that

〈Λswrt,Λ
sr〉 = 〈[Λs, w]rt,Λ

sr〉 − 〈wΛsr,Λsrt〉

−〈Λswr,Λsrt〉 = −〈[Λs, w]r,Λsrt〉+ 〈wΛsrt,Λ
sr〉

and 〈wΛsr,Λsrt〉 = 〈wΛsrt,Λ
sr〉. Moreover,

|〈[Λs, w]rt,Λ
sr〉| ≤ ||w||s||rt||s−1||r||s ≤ CE2

s (t)

〈[Λs, w]r,Λsrt〉 = |〈Λ[Λs, w]r,Λs−1rt〉|

≤ ||w||s||r||s||rt||s−1 ≤ CE2
s (t)

by Proposition 1.3.2. On the other hand,

〈Λsrrt,Λ
sr〉 = 〈Λs−1Λ2r,Λs−1rrt〉

= 〈Λs−1(1−D2
x)r,Λ

s−1rrt〉

= 〈Λs−1r,Λs−1rrt〉 − 〈Λs−1rxx,Λ
s−1rrt〉

1

2
〈Λsr2,Λsrt〉 = 〈Λs−1Λ2r2,Λs−1rt〉

=
1

2
〈Λs−1(1−D2

x)r
2,Λs−1rt〉

=
1

2
〈Λs−1r2,Λs−1rt〉 −

1

2
〈Λs−1(r2)xx,Λ

s−1rt〉

=
1

2
〈Λs−1r2,Λs−1rt〉 − 〈Λs−1(rrx)x,Λ

s−1rt〉

=
1

2
〈Λs−1r2,Λs−1rt〉 − 〈Λs−1r2

x,Λ
s−1rt〉 − 〈Λs−1rrxx,Λ

s−1rt〉.

We now find estimates for all of them in terms of ||r||s and ||rt||s−1 using Proposition
1.3.2:

|〈Λs−1r,Λs−1rrt〉| ≤ ||r||s−1||rrt||s−1 ≤ C||r||2s−1||rt||s−1 ≤ C||r||2s||rt||s−1

|〈Λs−1r2,Λs−1rt〉| ≤ ||r2||s−1||rt||s−1 ≤ C||r||2s||rt||s−1

|〈Λs−1r2
x,Λ

s−1rt〉| ≤ ||r2
x||s−1||rt||s−1 ≤ C||rx||2s−1||rt||s−1 ≤ C||r||2s||rt||s−1.

For the terms with rxx we see that

〈Λs−1rrxx,Λ
s−1rt〉 = 〈[Λs−1, r]rxx,Λ

s−1rt〉 − 〈rΛs−1rxx,Λ
s−1rt〉

−〈Λs−1rxx,Λ
s−1rrt〉 = −〈[Λs−1, r]rt,Λ

s−1rxx〉+ 〈rΛs−1rt,Λ
s−1rxx〉

and 〈rΛs−1rxx,Λ
s−1rt〉 = 〈rΛs−1rt,Λ

s−1rxx〉. Moreover using commutator estimates in
Proposition 1.3.2 we get

|〈[Λs−1, r]rxx,Λ
s−1rt〉| ≤ ||r||s−1||rxx||s−2||rt||s−1 ≤ C||r||2s||rt||s−1

|〈[Λs−1, r]rt,Λ
s−1rxx〉| = |〈Λ[Λs−1, r]rt,Λ

s−2rxx〉|

≤ C||r||s||rt||s−1||rxx||s−2 ≤ C||r||2s||rt||s−1.
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Thus,
||r||2s||rt||s−1 ≤ C||r||s||rt||s−1 ≤ CE2

s (t)

since ||r||s < 1 for t ≤ T̄ and

||rt||s−1 = ||ρxt||s−1 ≤ C|||ρt||s ≤ Es(t).

We invoke Grönwall’s Lemma and all these calculations above imply that

d

dt
E2
s (t) ≤ CεE2

s (t) + sup ||F (t)||sEs(t)

Es(t) ≤ eCεt
(
Es(0) + sup ||F (t)||s

1

ε

(
1− e−Cεt

))
≤ eCεtEs(0) + sup ||F (t)||s

1

ε

(
eCεt − 1

)
≤ C (Es(0) + t sup ||F (t)||s) for t ≤ T̄ ≤ T

ε
.

3.4 Residual term corresponding to Camassa-Holm approximation

Let wε,δ be the family of solutions for the Cauchy problem of the CH equation (3.3)
with w(x, 0) = w0(x) and uε,δ be the family of solution of the Cauchy problem for DD
equation (3.1) such that u(x, 0) = w(x, 0) = w0(x) and ut(x, 0) = wt(x, 0) where we
dropped the indices for simplicity and wt(x, 0) is function obtained from

wt =Q
(
−wx − εwwx +

3b+ a

4
δ2wxxx +

3(b− a)

4
εδ2(2wxwxx + wwxxx)

)
at t = 0 and it is a function in terms of w0 where Q =

(
1− 5b−a

4
δ2D2

x

)−1
.

Let r = u − w. Then r(x, 0) = rt(x, 0) = 0. We substitute the function r into
the equation (2.2) and observe that

0 =utt − uxx + aδ2uxxxx − bδ2uxxtt − ε(u2)xx

=(r + w)tt − (r + w)xx + aδ2(r + w)xxxx − bδ2(r + w)xxtt − ε(r + w)2
xx

=rtt − rxx + aδ2rxxxx − bδ2rxxtt

+
(
wtt − wxx + aδ2wxxxx − bδ2wxxtt

)
− ε(r2 + 2wr)xx − ε(w2)xx.

Then we have Cauchy problem for function r

rtt − rxx + aδ2rxxxx − bδ2rxxtt − ε(r2 + 2wr)xx = −f (3.11)

r(x, 0) = 0, rt(x, 0) = 0, (3.12)
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where
f = wtt − wxx + aδ2wxxxx − bδ2wxxtt − ε(w2)xx. (3.13)

We will show that f = Fx for some F ∈ C([0, T
ε
], Hs(R)) under some reasonable con-

ditions.

We rewrite equation (3.3) as follows

wt+wx = −εwwx+
5b− a

4
δ2wtxx+

3b+ a

4
δ2wxxx+

3

4
(b−a)εδ2(2wxwxx+wwxxx). (3.14)

We continue with inserting (3.14) in (3.13):

f =(Dt −Dx)(wt + wx) + aδ2wxxxx − bδ2wxxtt − ε(w2)xx

=(Dt −Dx)

(
−εwwx +

5b− a
4

δ2wtxx +
3b+ a

4
δ2wxxx +

3

4
(b− a)εδ2(2wxwxx + wwxxx)

)
+aδ2wxxxx − bδ2wxxtt − ε(w2)xx

=− ε
[
(Dt −Dx)wwx + (w2)xx

]
+ (Dt −Dx)

(
5b− a

4
δ2wtxx +

3b+ a

4
δ2wxxx

)
+ aδ2wxxxx − bδ2wxxtt − ε(w2)xx + (Dt −Dx)

3

4
(b− a)εδ2(2wxwxx + wwxxx)

=− ε [(wwx)t − (wwx)x + 2(wwx)x] +
5b− a

4
δ2wttxx −

5b− a
4

δ2wtxxx

+
3b+ a

4
δ2wtxxx −

3b+ a

4
δ2wxxxx + aδ2wxxxx − bδ2wxxtt

+ (Dt −Dx)
3

4
(b− a)εδ2(2wxwxx + wwxxx)

=− ε [wtwx + wwxt + wxwx + wwxx] +

(
5b− a

4
− b
)
δ2wttxx

+

(
3b+ a

4
− 5b− a

4

)
δ2wtxxx +

(
a− 3b+ a

4

)
δ2wxxxx

+ (Dt −Dx)
3

4
(b− a)εδ2(2wxwxx + wwxxx)

=− ε [wx(wt + wx) + w(wx + wt)x]−
a− b

4
δ2wttxx +

a− b
2

δ2wtxxx +
3(a− b)

4
δ2wxxxx

+ (Dt −Dx)
3

4
(b− a)εδ2(2wxwxx + wwxxx)

=− ε [w(wx + wt)]x +
a− b

2
δ2 (wtxxx + wxxxx) +

a− b
4

δ2 (wxxxx − wttxx)

+ (Dt −Dx)
3

4
(b− a)εδ2(2wxwxx + wwxxx)

=− εDx [w(wx + wt)] +
a− b

2
δ2D3

x(wx + wt) +
a− b

4
δ2
[
D2
x(Dx −Dt)(wx + wt)

]
+ (Dt −Dx)

3

4
(b− a)εδ2(2wxwxx + wwxxx)

=− εDx [w(wx + wt)] +
a− b

4
δ2
[
3D3

x −D2
xDt

]
[wx + wt] (3.15)

+ (Dt −Dx)
3

4
(b− a)εδ2(2wxwxx + wwxxx).
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We continue by using (3.14) one more time:

f =− εDx

[
w

(
−εwwx +

5b− a
4

δ2wtxx +
3b+ a

4
δ2wxxx

)]
− εDx

[
w

3

4
(b− a)εδ2(2wxwxx + wwxxx)

]
+
a− b

4
δ2
[
3D3

x −D2
xDt

](
−εwwx +

5b− a
4

δ2wtxx +
3b+ a

4
δ2wxxx

)
+
a− b

4
δ2
[
3D3

x −D2
xDt

] 3

4
(b− a)εδ2(2wxwxx + wwxxx)

+ (Dt −Dx)
3

4
(b− a)εδ2(2wxwxx + wwxxx)

=ε2(w2wx)x −
εδ2

4
Dx [(5b− a)wwtxx + (3b+ a)wwxxx]

− εDx

[
w

3

4
(b− a)εδ2(2wxwxx + wwxxx)

]
+
b− a

4
εδ2Dx

[
3D2

x −DxDt)wwx
]

+
b− a

16
δ4
[
(D2

xDt − 3D3
x) [(5b− a)wxxt + (3b+ a)wxxx]

]
+
a− b

4
δ2
[
3D3

x −D2
xDt

] 3

4
(b− a)εδ2(2wxwxx + wwxxx)

+ (Dt −Dx)
3

4
(b− a)εδ2(2wxwxx + wwxxx)

=ε2D2
x

w3

3
+
εδ2

4
Dx

[
(b− a)(3D2

x −DtDx)wwx − (5b− a)wwtxx − (3b+ a)wwxxx
]

− εDx

[
w

3

4
(b− a)εδ2(2wxwxx + wwxxx)

]
+
b− a

16
δ4
[
(D2

xDt − 3D3
x) [(5b− a)wxxt + (3b+ a)wxxx]

]
+
a− b

4
δ2
[
3D3

x −D2
xDt

] 3

4
(b− a)εδ2(2wxwxx + wwxxx)

+ (Dt −Dx)
3

4
(b− a)εδ2(2wxwxx + wwxxx).

Now we continue as

f =ε2D2
x

(
w3

3

)
+
b− a

16
δ4
[
(D2

xDt − 3D3
x) [(5b− a)wxxt + (3b+ a)wxxx]

]
+
εδ2

4
Dx

[
(b− a)(3D2

x −DtDx)wwx − (5b− a)wwtxx − (3b+ a)wwxxx
]

+
3

4
ε2δ2(a− b)Dx [w(2wxwxx + wwxxx)]

+
3

16
εδ4(b− a)2

(
D2
xDt − 3D3

x

)
(2wxwxx + wwxxx)

+
3

4
εδ2(b− a)(Dt −Dx)(2wxwxx + wwxxx).
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Now, we use the fact that Dx (w2
x + 2wwxx) = 2(2wxwxx + wwxxx).

f =ε2D2
x

(
w3

3

)
+
b− a

16
δ4
[
(D2

xDt − 3D3
x) [(5b− a)wxxt + (3b+ a)wxxx]

]
+
εδ2

4
Dx

[
(b− a)(3D2

x −DtDx)wwx − (5b− a)wwtxx − (3b+ a)wwxxx
]

+
3

8
ε2δ2(a− b)Dx

[
wDx

(
w2
x + 2wwxx

)]
+

3

32
εδ4(b− a)2Dx

(
D2
xDt − 3D3

x

) (
w2
x + 2wwxx

)
+

3

8
εδ2(b− a)Dx(Dt −Dx)

(
w2
x + 2wwxx

)
. (3.16)

At O(εδ2):

εδ2

8
Dx

[
2(b− a)(3Dx −Dt)Dx(wwx) + 3(b− a)(Dt −Dx)

(
w2
x + 2wwxx

)]
+
εδ2

4
Dx [−(5b− a)wwtxx − (3b+ a)wwxxx]

=
εδ2

8
Dx

[
2(b− a)(3Dx −Dt)(w

2
x + wwxx) + 3(b− a)(Dt −Dx)

(
w2
x + 2wwxx

)]
− εδ2

4
Dx [−(5b− a)wwtxx − (3b+ a)wwxxx]

=
εδ2

8
Dx

[
(b− a)(3Dx +Dt)w

2
x + 4(b− a)Dt (wwxx)

]
− εδ2

4
Dx [(5b− a)wwtxx + (3b+ a)wwxxx]

=
εδ2

4
Dx [3(b− a)wxwxx + (b− a)wxwxt + 2(b− a)wtwxx + 2(b− a)wwxxt]

− εδ2

4
Dx [(5b− a)wwtxx + (3b+ a)wwxxx]

=
εδ2

4
Dx [(−3b− a)w(wx + wt)xx + (2b− 2a)wxx(wx + wt) + (b− a)wx(wx + wt)x] .

(3.17)

We then obtain

f =ε2D2
x

(
w3

3

)
+
b− a

16
δ4
[
(D2

xDt − 3D3
x) [(5b− a)wxxt + (3b+ a)wxxx]

]
+

3

8
ε2δ2(a− b)Dx

[
wDx

(
w2
x + 2wwxx

)]
+

3

32
εδ4(b− a)2Dx

(
D2
xDt − 3D3

x

) (
w2
x + 2wwxx

)
+
εδ2

4
Dx

[
(−3b− a)wD2

x + (2b− 2a)wxx + (b− a)wxDx

]
(wx + wt)
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=ε2D2
x

(
w3

3

)
+
b− a

16
δ4
[
(D2

xDt − 3D3
x) [(5b− a)wxxt + (3b+ a)wxxx]

]
+

3

8
ε2δ2(a− b)Dx

[
w
(
w2
x + wwxx

)
x

]
+

3

32
εδ4(b− a)2Dx

(
D2
xDt − 3D3

x

) (
w2
x + 2wwxx

)
− ε2δ2

4
Dx

[
(−3b− a)wD2

x + (2b− 2a)wxx + (b− a)wxDx

]
wwx

+
εδ4

16
Dx

[
(−3b− a)wD2

x + (2b− 2a)wxx + (b− a)wxDx

]
[(5b− a)wxxt]

+
εδ4

16
Dx

[
(−3b− a)wD2

x + (2b− 2a)wxx + (b− a)wxDx

]
[(3b+ a)wxxx]

+
3ε2δ4

16
Dx

[
(−3b− a)wD2

x + (2b− 2a)wxx + (b− a)wxDx

]
[(b− a) (2wxwxx)]

+
3ε2δ4

16
Dx

[
(−3b− a)wD2

x + (2b− 2a)wxx + (b− a)wxDx

]
[(b− a) (wwxxx)] .

All the terms in the above expression contains Dx as a multiplication. Thus, we can
write f = Fx:

F =ε2Dx

(
w3

3

)
+
b− a

16
δ4
[
(DxDt − 3D2

x) [(5b− a)wxxt + (3b+ a)wxxx]
]

− ε2δ2

8

[
3(b− a)w

(
w2
x + wwxx

)
x

]
− ε2δ2

8

[
(−3b− a)w(w2)xxx + (2b− 2a)wxx(w

2)x + (b− a)wxD(w2)xx
]

+
εδ4

32

[
3(b− a)2

(
D2
xDt − 3D3

x

) (
w2
x + 2wwxx

)]
+
εδ4

32

[
2(−3b− a)wD2

x + (2b− 2a)wxx + (b− a)wxDx

]
[(5b− a)wxxt + (3b+ a)wxxx]

+
ε2δ4

16

[
(b− a)(−9b− 3a)wD2

x + 6(b− a)2wxx + 3(b− a)2wxDx

]
[(2wxwxx + wwxxx)] .

(3.18)

3.5 Estimate for the residual term corresponding to Camassa-Holm
approximation

Lemma 3.5.5 Let w0 ∈ Hs+6(R), s > 3/2. Then there is some C > 0 so that the
family of solutions wε,δ to the CH (3.3) equation with initial value w(x, 0) = w0(x),
satisfy

wtt − wxx + aδ2wxxxx − bδ2wxxtt − ε(w2)xx = Fx
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with
||F (t)||s ≤ C(ε2 + δ4)

for all 0 < ε ≤ δ ≤ 1 and t ∈
[
0, T

ε

]
.

Proof : We observe that F in (3.18) is a combination of terms of the form Dj
xw with

j ≤ 5 or Dl
xwt with l ≤ 4. We only need to check the term wxxxtt. We first recall that

we rewrite the CH equation as

wt = Q
(
−wx − εwwx +

3b+ a

4
δ2wxxx +

3(b− a)

4
εδ2(2wxwxx + wwxxx)

)
(3.19)

where Q =
(
1− 5b−a

4
δ2D2

x

)−1
. We then apply D3

xDt to (3.19) and get

wttxxx = D3
xDtQ

(
−wx − εwwx +

3b+ a

4
δ2wxxx +

3(b− a)

4
εδ2(2wxwxx + wwxxx)

)
= DtQ (−wxxxx − ε(wwx)xxx)

+DtQ

(
3b+ a

4
δ2D2

xwxxxx + εδ2D2
x

3(b− a)

4
(2wxwxx + wwxxx)x

)
, (3.20)

which implies that

||wxxxtt||s ≤ C
(
||Qwxxxxt||s + ||δ2QD2

xwxxxxt||s
)
. (3.21)

Note that the operator Q and δ2QD2
x are bounded on the Hs(R):

||Qv||2s =

∫
R
(1 + ξ2)s(Q̂v)2dξ

≤
∫
R
(1 + ξ2)s

(
1 +

5b− a
4

δ2ξ2

)−2

v̂2dξ

≤
∫
R
(1 + ξ2)sv̂2dξ = ||v||2s. (3.22)

On the other hand,

||δ2QD2
xv||2s =

∫
R
(1 + ξ2)s

[
( ̂δ2QD2

xv)
]2

dξ

≤
∫
R
(1 + ξ2)sδ4ξ4

(
1 +

5b− a
4

δ2ξ2

)−2

v̂2dξ

≤
(

4

5b− a

)2 ∫
R
(1 + ξ2)sv̂2dξ =

(
4

5b− a

)2

||v||2s. (3.23)

Now (3.22) and (3.23) both imply that

||Q||s ≤ 1 and ||δ2QD2
x||s ≤

4

5b− a
.
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Thus

||wxxxtt||s ≤ C
(
||Q||s||wxxxxt||s + ||δ2QD2

x||s||wxxxxt||s
)

≤ C||wxxxxt||s +

(
4

5b− a

)
||wxxxxt||s

≤ C||wxxxxt||s

≤ C||wt||s+4, (3.24)

where C is generic constant.

Since all the terms of F have coefficients ε2, εδ2, δ4, we get the following estimate:

||F (t)||s ≤ C(ε2 + δ4) (||w(t)||s+5 + ||wt(t)||s+4) , (3.25)

for 0 ≤ t ≤ T/ε. By Theorem 3.1.2, the solutions w of Cauchy problem for (3.3) are
bounded with k = 5 and this completes the proof. 2

3.6 Convergence result with Camassa-Holm approximation

Now we are ready to prove Theorem 3.1.1.

3.6.1 Proof of the Theorem 3.1.1

Let wε,δ be the solution of CH equation with w(x, 0) = w0. So we consider the Cauchy
problem for the DD equation with uε,δ(x, 0) = wε,δ(x, 0) = w0(x) and ut(x, 0) =
wt(x, 0). Note that solution wε,δ of CH equation exists for all times t ≤ T/ε by Theo-
rem 3.1.2. Therefore r = u−w will exist over the same interval as long as the solution
u of DD does not blow up in a shorter time. Note that we have r(x, 0) = 0. Therefore,
by continuity there exists some t̄ such that ||r(t)||s ≤ 1 for all 0 ≤ t ≤ t̄ ≤ T/ε. We
define

T ε,δ0 = sup{t ≤ T

ε
: ||r(t)||s ≤ 1 for all t ∈ [0, t̄ ]}. (3.26)

Note that difference r satisfies (3.11)-(3.12) with F in (3.18). Consider the energy
(3.10). We observe that Es(0) = 0. Choose ε ≤ 1

2 sup
0≤t≤t̄

(1+2||w(t)||s)
= ε0. Then by Lemma

3.3.4 the energy satisfies

Es(t) ≤ C(ε2 + δ4)t for t ≤ t̄ ≤ T/ε

for some generic constant C and 0 ≤ ε ≤ δ ≤ 1 and ε ≤ ε0. We now choose δ so that
0 ≤ ε ≤ δ ≤ δ0 ≤ ε0 ≤ 1. Then C(ε2 + δ4)T ε,δ0 ≤ C(ε20 + δ4

0)T ε,δ0 = ε′ << 1. Then

||uε,δ(t)− vε,δ(t)||s = ||r(t)||s ≤ CEs(t) ≤ C(ε20 + δ4
0)T ε,δ0 = ε′ << 1 remains very small

for 0 ≤ t ≤ T/ε. 2
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Remark 3.6.1 Initially we know that uε,δ exists locally for some t ≤ T ε,δ. However,
the estimate above shows that uε,δ stays bounded and so exists for [0, T/ε].

3.7 Convergence result with Benjamin-Bona-Mahony approximation

Theorem 3.7.6 Let w0 ∈ Hs+6(R), s > 3/2 and suppose wε,δ is the solution of the
BBM equation with initial value w(x, 0) = w0(x). Then there exists T > 0 and δ0 ≤ 1
such that the solution uε,δ of the Cauchy problem for the DD equation, with the same
initial values, satisfies

||uε,δ − wε,δ||s ≤ C(ε2 + δ4)t

for all t ∈
[
0, T

ε

]
and all 0 < ε ≤ δ ≤ δ0.

Proof : Note that the proof will be the same with proof of Theorem 3.1.1. But we
need to find the residual term arising when we plug the solution of BBM equation into
DD equation. Method is the same but we are going to obtain less terms in f since we
do not have higher powers of ε, δ. The residual term f for the DD is

f = wtt − wxx + aδ2wxxxx − bδ2wxxtt − ε(w2)xx, (3.27)

where we dropped the indices ε, δ for simplicity. We rewrite the BBM equation as
follows:

wt + wx = −εwwx +
5b− a

4
δ2wtxx +

3b+ a

4
δ2wxxx. (3.28)

Now we plug (3.28) in (3.27) and get (3.15)

f =(Dt −Dx)(wt + wx) + aδ2wxxxx − bδ2wxxtt − ε(w2)xx

=− εDx [w(wx + wt)] +
a− b

4
δ2
[
3D3

x −D2
xDt

]
[wx + wt] . (3.29)

We plug (3.28) in (3.29) and obtain

f =− εDx [w(wx + wt)] +
a− b

4
δ2
[
3D3

x −D2
xDt

]
[wx + wt] (3.30)

=− εDx

[
w

(
−εwwx +

5b− a
4

δ2wtxx +
3b+ a

4
δ2wxxx

)]
+
a− b

4
δ2
(
3D3

x −D2
xDt

)(
−εwwx +

5b− a
4

δ2wtxx +
3b+ a

4
δ2wxxx

)
=ε2(w2wx)x −

εδ2

4
Dx [(5b− a)wwtxx + (3b+ a)wwxxx] +

b− a
4

εδ2Dx

[
3D2

x −DxDt)wwx
]

+
b− a

16
δ4
[
(D2

xDt − 3D3
x) [(5b− a)wxxt + (3b+ a)wxxx]

]
=ε2D2

x

w3

3
+
εδ2

4
Dx

[
(b− a)(3D2

x −DtDx)wwx − (5b− a)wwtxx − (3b+ a)wwxxx
]

+
b− a

16
δ4
[
(D2

xDt − 3D3
x) [(5b− a)wxxt + (3b+ a)wxxx]

]
(3.31)
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and we see that f = Fx:

F =ε2Dx
w3

3
+
εδ2

4

[
(b− a)(3D2

x −DtDx)wwx − (5b− a)wwtxx − (3b+ a)wwxxx
]

+
b− a

16
δ4
[
(DxDt − 3D2

x) [(5b− a)wxxt + (3b+ a)wxxx]
]
.

(3.32)

We observe that F is a combination of terms of the form Dj
xw with j ≤ 5 or Dl

xwt with
l ≤ 4. Thus all the terms of F are uniformly bounded according to Constantin and
Lannes [6]. We only need to check the term wxxxtt: We first rewrite BBM equation as

wt −
5b− a

4
δ2wtxx = −wx − εwwx +

3b+ a

4
δ2wxxx

wt =

(
1− 5b− a

4
δ2D2

x

)−1(
−wx − εwwx +

3b+ a

4
δ2wxxx

)
(3.33)

wttxxx = D3
xDtQ

(
−wx − εwwx +

3b+ a

4
δ2wxxx

)
= DtQ

(
−wxxxx − ε(wwx)xxx +

3b+ a

4
δ2D2

xwxxxx

)
. (3.34)

Thus,
||F (t)||s ≤ C(ε2 + δ4) (||w(t)||s+5 + ||wt(t)||s+4) , (3.35)

for 0 ≤ t ≤ T/ε. By Theorem 3.1.2, the solutions w of Cauchy problem for (3.3) are
bounded with k = 5 and this completes the proof. 2
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Chapter 4

Decoupling of the Double Dispersion equation into two uncou-
pled Camassa-Holm equations

In the previous chapter, we have shown that solutions of

w+
t + w+

x + εw+w+
x −

5b− a
4

δ2w+
txx −

3b+ a

4
δ2w+

xxx =
3

4
(b− a)εδ2(2w+

x w
+
xx + w+w+

xxx)

(4.1)

are well-approximated by associated solutions of Cauchy problem for the DD equation

utt − uxx + aδ2uxxxx − bδ2uxxtt − ε(u2)xx = 0 (4.2)

u(x, 0) = 0, ut(x, 0) = u1(x) (4.3)

with a proper choice of initial data where we placed w by w+ to emphasize the direction
of the wave. Now, we are going to concentrate on the solutions of the Cauchy Problem
for the DD equation traveling both sides. For this aim, we replace t by −t to obtain
CH equations for left going waves:

w−t − w−x − εw−w−x −
5b− a

4
δ2w−txx +

3b+ a

4
δ2w−xxx

= −3

4
(b− a)εδ2(2w−w−xx + w−w−xxx). (4.4)

We are going to show that any solution u of Cauchy Problem (4.2)-(4.3) can be ap-
proximated by the sum of solutions of CH equations (4.1) and (4.4). In other words,
we are going to establish the conditions for the existence of solutions w+ and w− of
Cauchy Problems (4.1) and (4.4) with initial values w+(x, 0) = w+

0 and w−(x, 0) = w−0
satisfying u = w+ + w− up to a small error.

Naturally, we would like to select w+
0 and w−0 so that

u0(x) = w+(x, 0) + w−(x, 0) = w+
0 + w−0 (4.5)

u1(x) = w+
t (x, 0) + w−t (x, 0). (4.6)
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hold. We see from (4.1)-(4.4) that

w+
t + w−t =− w+

x + w−x − ε(w+w+
x − w−w−x )

+
5b− a

4
δ2
(
w+
txx + w−txx

)
+

3b+ a

4
δ2(w+

xxx − w−xxx)

+
3

4
(b− a)εδ2

(
2w+

x w
+
xx + w+w+

xxx − 2w−w−xx + w−w−xxx
)

(4.7)

and w+
t + w−t = −w+

x + w−x +O(ε, δ2, εδ2).

We take u1(x) = −w+
x (x, 0) + w−x (x, 0) and assume that u1 = (v0)x. Then

u0 = w+
0 + w−0 , v0 = −w+

0 + w−0 . (4.8)

Solving for w+
0 and w−0 yields

w+
0 =

1

2
(u0 − v0), w−0 =

1

2
(u0 + v0). (4.9)

Assume that r = u− (w+ +w−). This gives r(x, 0) = 0 but rt(x, 0) 6= 0 because of the

approximation. Let us calculate rt(x, 0). Recall that Q =
(
1− 5b−a

4
δ2D2

x

)−1
. Then

w+
t + w−t =Q

(
−w+

x + w−x − ε(w+w+
x − w−w−x ) +

3b+ a

4
δ2(w+

xxx + w−xxx)

)
+Q3

4
(b− a)εδ2

(
2w+

x w
+
xx + w+w+

xxx − 2w−x w
−
xx − w−w−xxx

)
=Q

(
−w+

x + w−x −
ε

2
Dx((w

+)2 − (w−)2) +
3b+ a

4
δ2D3

x(w
+ − w−)

)
+Q3

4
(b− a)εδ2Dx

(
1

2
((w+

x )2 − (w−x )2)2 + w+w+
xx − w−w−xx

)
. (4.10)

We write (4.10) in terms of u0, v0 by using (4.8) and obtain:

rt(x, 0) =ut(x, 0)− (w+
t (x, 0) + w−t (x, 0))

=− w+
x (x, 0) + w−x (x, 0)− (w+

t (x, 0) + w−t (x, 0))

=Dxv0 −Q
(
Dxv0 +

ε

2
Dxu0v0 −

3b+ a

4
δ2D3

xv0

)
− 3

4
(b− a)εδ2QDx

(
(u0)x(−v0)x

2
− (u0 + v0)(u0 + v0)xx

4

)
− 3

4
(b− a)εδ2QDx

(
(u0 − v0)(u0 − v0)xx

4

)
.

We write v0 = QQ−1v0, then Q−1v0 = v0 − 5b−a
4
δ2(v0)xx and
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rt(x, 0) =DxQ
(
v0 −

5b− a
4

δ2(v0)xx − v0 −
ε

2
u0v0 +

3b+ a

4
δ2(v0)xx

)
+DxQ

3

8
(b− a)εδ2(u0)x(v0)x +Q3

8
(b− a)εδ2 (−u0(v0)xx − v0(u0)xx)

=DxQ
(
−b− a

2
δ2(v0)xx −

ε

2
u0v0

)
+DxQ

(
3

8
(b− a)εδ2 ((u0)x(v0)x + u0(v0)xx + v0(u0)xx)

)
=qx(x). (4.11)

4.1 Estimate for the residual term corresponding to two uncoupled
Camassa-Holm approximation

Lemma 4.1.1 Let w+
0 , w

−
0 ∈ Hs+6(R), s > 1/2. Then there is some C > 0 so that the

family of solutions (w+)ε,δ, (w−)ε,δ to the CH equations (4.1),(4.4) with initial values
w+(x, 0) = w+

0 (x), and w−(x, 0) = w−0 (x) satisfy

w+
tt − w+

xx + aδ2w+
xxxx − bδ2w+

xxtt − ε(w+)2
xx = F+

x

w−tt − w−xx + aδ2w−xxxx − bδ2w−xxtt − ε(w−)2
xx = F−x .

Moreover
||F̃ (t)||s ≤ C(ε+ δ4)

for all 0 < ε ≤ δ ≤ 1 and t ∈
[
0, T

ε

]
where F̃ = F+ + F− − 2ε(w+w−)x.

Proof : We know that

w+
tt − w+

xx + aδ2w+
xxxx − bδ2w+

xxtt − ε(w+)2
xx = F+

x

with F+ as in (3.18).

Replace t by −t, then we have

w−tt − w−xx + aδ2w−xxxx − bδ2w−xxtt − ε(w−)2
xx = F−x ,
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where

F− =ε2Dx

(
w3

3

)
+
b− a

16
δ4
[
(−DxDt − 3D2

x) [−(5b− a)wxxt + (3b+ a)wxxx]
]

− ε2δ2

8

[
3(b− a)w

(
w2
x + wwxx

)
x

]
− ε2δ2

8

[
(−3b− a)w(w2)xxx + (2b− 2a)wxx(w

2)x + (b− a)wx(w
2)xx

]
+
εδ4

32

[
3(b− a)2

(
−D2

xDt − 3D3
x

) (
w2
x + 2wwxx

)]
+
εδ4

32

[
2(−3b− a)wD2

x + (2b− 2a)wxx + (b− a)wxDx

]
[−(5b− a)wxxt]

+
εδ4

32

[
2(−3b− a)wD2

x + (2b− 2a)wxx + (b− a)wxDx

]
[(3b+ a)wxxx]

+
ε2δ4

16

[
(b− a)(−9b− 3a)wD2

x + 6(b− a)2wxx
]

[Dx (2wxwxx + wwxxx)]

+
ε2δ4

16

[
3(b− a)2wxDx

]
[Dx (2wxwxx + wwxxx)] (4.12)

Then by Lemma 3.5.5 there exist some C1, C2 > 0 so that

||F̃ ||s = ||F+ + F− − 2(w+w−)x||s

≤ ||F+(t)||s + ||F−(t)||s + 2εC0||w+||s+1||w−||s+1

≤ C1(ε2 + δ4) + C2(ε2 + δ4) + C3(ε+ δ4)

≤ C(ε+ δ4)

for all 0 < ε ≤ δ ≤ 1 and t ∈
[
0, T

ε

]
. 2

4.2 Convergence result for the Double Dispersion equation with
uncoupled Camassa-Holm equations

Plugging u = r + w+ + w− into equation (3.1) gives

0 =utt − uxx + aδ2uxxxx − bδ2uxxtt − ε(u2)xx

=(r + w+ + w−)tt − (r + w+ + w−)xx + aδ2(r + w+ + w−)xxxx

− bδ2(r + w+ + w−)xxtt − ε(r + w+ + w−)2
xx

=rtt − rxx + aδ2rxxxx − bδ2rxxtt − ε(r2 + 2(w+ + w−)r)xx

+ w+
tt − w+

xx + aδ2w+
xxxx − bδ2w+

xxtt − ε(w+)2
xx

+ w−tt − w−xx + aδ2w−xxxx − bδ2w−xxtt − ε(w−)2
xx − 2ε(w+w−)xx.
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It follows that the function r is the solution of the Cauchy Problem

rtt − rxx + aδ2rxxxx − bδ2rxxtt − ε(r2 + 2(w+ + w−)r)xx = −F̃x (4.13)

r(x, 0) = 0, rt(x, 0) = qx(x), (4.14)

where F̃ = F+ + F− − 2ε(w+w−)x and qx(x) in (4.11).

Theorem 4.2.2 Let u0 ∈ Hs+6(R), and v0 ∈ Hs+7(R), s > 3/2. Assume uε,δ be the
solution of DD equation (4.2)-(4.3).Let

w+
0 =

1

2
(u0 − v0), w−0 =

1

2
(u0 + v0).

Then for any given t0 there exists δ0 ≤ 1 so that the solutions (w+)ε,δ, (w−)ε,δ of the
CH equations (4.1)-(4.4) with initial values w+(x, 0) = w+

0 (x), and w−(x, 0) = w−0 (x)
satisfy

||uε,δ − (w+)ε,δ − (w−)ε,δ||s ≤ ((ε+ δ2) + (ε+ δ4)t)

for all t ∈ [0, t0] and all 0 < ε ≤ δ ≤ δ0.

Proof : Note that u0 ∈ Hs+6(R), and u1 ∈ Hs+7(R). Let r = u − w+ − w−. Then
w+, w− and hence r, w̃ are in Hs+6(R) since ||w̃||s+6 ≤ (||w+||s+6 + ||w−||s+6). More-
over, r(x, 0) = 0 and rt(x, 0) = (q(x))x for q(x) described in (4.11). Then r satisfies
the Dispersive Equation (4.13)-(4.14). We can consider the energy as in (3.10) for
w = w+ + w−. We know from Lemma 4.1.1 that

||F̃ (t)||s ≤ C(ε+ δ4)

for all 0 < ε ≤ δ ≤ 1 and t ∈
[
0, T

ε

]
. Using the same argument in the proof

of Theorem 3.1.1, we use the same set (3.26). Note that sup
0≤t≤t̄

(1 + 2||w(t)||s) =

sup
0≤t≤t̄

(
1 + 2||(w+ + w−)(t)||Hs(R)

)
≤ 1 + 2(M1 + M2) where M1 = sup ||w+(t)||s,M2 =

sup ||w−(t)||s. Assume that ε ≤ 1
1+2(M1+M2)

= ε0, then by Lemma 3.3.4 the modified

energy in (3.10) satisfies

Es(t) ≤ C

(
Es(0) + t sup

0≤t≤t̄
||F̃ (t)||s

)
for 0 ≤ t ≤ t̄ ≤ T/ε. Let us find an estimate for Es(0). We know that

E2
s (0) =

1

2

(
||ρt(0)||2s + ||r(0)||2s + aδ2||rx(0)||2s + bδ2||rt(0)||2s

)
+
ε

2
〈Λs(r2 + 2wr)(0),Λsr(0)〉

for some ρ with r = ρx. Note that rx(x, 0) = 0. Then

E2
s (0) =

1

2

(
||ρt(0)||2s + bδ2||rt(0)||2s

)
.

We know from (4.11) that

||rt(0)||s ≤ ||Q||s||u0||Hs+3||v0||Hs+3(ε+ δ2)
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and

||ρt(0)||s ≤ C||ρxt(0)||Hs−1 = ||rt(0)||Hs−1||Q||s||u0||Hs+2||v0||Hs+2(ε+ δ2).

Since Q is bounded operator on Hs, it follows that

Es(0) ≤ C1(ε+ δ2) + δC2(ε+ δ2) ≤ C(ε+ δ2 + εδ + δ3) ≤ C(ε+ δ2). (4.15)

Then energy satisfies

Es(t) ≤ C
(
(ε+ δ2) + t(ε+ δ4)

)
≤ C

(
(ε+ δ2) + T ε,δ0 (ε+ δ4)

)
by (4.15) and Lemma 4.1.1. Choose δ0 so that 0 < ε ≤ δ ≤ δ0 ≤ ε0 ≤ 1, then

||uε,δ − wε,δ||s = ||r(t)||s ≤ CEs(t) ≤ C
(

(δ0 + δ2
0) + T ε,δ0 (δ0 + δ4

0)
)

= ε′ << 1

for t ≤ T/ε.

4.3 Convergence result for the Double Dispersion equation with
uncoupled Benjamin-Bona-Mahony equations

We consider right-going and left-going BBM equations

w+
t + w+

x + εw+w+
x −

5b− a
4

δ2w+
txx −

3b+ a

4
δ2w+

xxx = 0, (4.16)

and

w−t − w−x − εw−w−x +
5b− a

4
δ2w−txx +

3b+ a

4
δ2w−xxx = 0. (4.17)

Theorem 4.3.3 Let u0 ∈ Hs+6(R), and u1 ∈ Hs+7(R), s > 3/2. Assume uε,δ be the
solution of DD equation (4.2) with initial data

u(x, 0) = u0(x), ut(x, 0) = (v0(x))x.

Let

w+
0 =

1

2
(u0 − v0), w−0 =

1

2
(u0 + v0).

Then for any given t0 there exists δ0 ≤ 1 so that the solutions (w+)ε,δ, (w−)ε,δ of the
BBM equations (4.16)-(4.17) with initial values w+(x, 0) = w+

0 (x), and w−(x, 0) =
w−0 (x) satisfy

||uε,δ − (w+)ε,δ − (w−)ε,δ||s ≤ ((ε+ δ2) + (ε+ δ4)t)

for all t ∈ [0, t0] and all 0 < ε ≤ δ ≤ δ0.
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Proof : We will follow the same argument as in the proof of Theorem 4.2.2. We just
take the residues F+, F− in F̃ as

F+ =ε2Dx
w+3

3
+
εδ2

4

[
(b− a)(3D2

x −DtDx)w
+w+

x

]
+
εδ2

4

[
−(5b− a)w+w+

txx − (3b+ a)w+w+
xxx

]
+
b− a

16
δ4
[
(DxDt − 3D2

x)
[
(5b− a)w+

xxt + (3b+ a)w+
xxx

]]
F− =ε2Dx

w−
3

3
+
εδ2

4

[
(b− a)(3D2

x +DtDx)w
−w−x

]
+
εδ2

4

[
(5b− a)w−w−txx − (3b+ a)w−w−xxx

]
+
b− a

16
δ4
[
(−DxDt − 3D2

x)
[
−(5b− a)w−xxt + (3b+ a)w−xxx

]]
(4.18)

where we find F− by just replacing t by −t in (3.32). 2
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Chapter 5

The Hunter-Saxton equation as high frequency limit of the
Camassa-Holm equation

The Hunter-Saxton (HS) equation is given by

utxx + 2uxuxx + uuxxx = 0 (5.1)

where u(x, t) is a real-valued function and subscripts x and t denote partial differ-
entiations. The equation (5.1) arises as high frequency (or short wave) limit of the
CH equation in the case of water waves [17] and elastic waves [7]. This asymptotic re-
lation between the CH equation and the HS equation also provided by Matsuno in [22].

In Section 5.1, we present the derivation of the HS equation from the CH equation
given in [22] for the convenience of the reader. Then, in Section 5.2, we first state the
main result, Theorem 5.2.1, for convergence of the solutions of the HS and the CH
equations. To this end, we state local well-posedness results for the CH equation [23]
and the HS equation [29], estimate the residual term, and finally show that the error
term in the approximation remains small and complete the proof.

5.1 Derivation of the Hunter-Saxton equation from the Camassa-Holm
equation

Consider the CH equation

VT + 3V VX − VTXX = 2VXVXX + V VXXX . (5.2)

To obtain the high frequency limit of the CH equation, we introduce the short wave
scaling [22]

V (X,T ) = γ2W (ξ, τ) = γ2W (
X

γ
, γT )

where γ is a positive small parameter. Plug this into the CH equation to obtain

γ2Wτ + 3γ2WWξ −Wτξξ = 2WξWξξ +WWξξξ.
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Thus for W = W0 + γW1 + ... , we get at O(1)

Wτξξ + 2WξWξξ +WWξξξ = 0, (5.3)

where we replace W0 by W afterwards. Thus, high frequency limit of the CH equa-
tion satisfies the HS equation asymptotically. By this scaling, equation (5.1) may be
considered as short wave limit of the CH equation. This equation, called as the HS
equation, was already obtained by Hunter and Saxton in [16] as an asymptotic equation
for weakly nonlinear waves.

Since we will compare the solutions of the CH and HS equations rigorously, we carry
both equations into the same coordinate system. The solution V (X,T ) for the CH
equation (5.2)

vε,δ(x, t) =
1

ε
V (X,T ) =

1

ε
V (
x

δ
,
t

δ
), (5.4)

takes the form

vt + 3εvvx − δ2vtxx = εδ2(2vxvxx + vvxxx). (5.5)

Similarly, with the transformation

W (ξ, τ) = W (
x

δγ
,
γ

δ
t) = wγ,δ(x, t),

the HS equation (5.3) takes the form

wtxx + γ2(2wxwxx + wwxxx) = 0. (5.6)

Note that we drop the superscripts in (5.5) and (5.6) afterwards.

5.2 Convergence result in periodic setting

In the present section, we compare periodic solutions of the CH and HS equations,
rigorously, and provide an estimate for the error term in the HS approximation.
We consider the Cauchy problem for the CH equation

vt + 3εvvx − δ2vtxx = εδ2(2vxvxx + vvxxx) t > 0, x ∈ R

v(x, 0) = v0(x) x ∈ R

v(x, t) = v(x+ 2π, t) t ≥ 0, x ∈ R (5.7)

and the Cauchy problem for the HS equation

wtxx + γ2(2wxwxx + wwxxx) = 0 t > 0, x ∈ R

w(x, 0) = w0(x) x ∈ R

w(x, t) = w(x+ 2π, t) t ≥ 0, x ∈ R (5.8)
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where vε,δ0 (x) = γ2

ε
wγ,δ0 (x) and dependence of the parameter γ on ε and δ are to be

determined later.

Given the solution wγ,δ of the Cauchy problem for the HS equation (5.8), we prove
that it is possible to find a solution vε,δ of the Cauchy problem for the CH (5.7) such

that ||vε,δ − γ2

ε
wγ,δ|| is small over a long time in suitable function spaces. The main

result of this section is the following.

Theorem 5.2.1 Let s > 3/2. Assume w0 ∈ Hs+2(T). Suppose wγ,δ is the solution of
the Cauchy problem for the periodic HS equation (5.8). Then there exists T > 0 and
δ1 so that the solution vε,δ of the Cauchy problem for the periodic CH equation (5.7)
satisfies

||vε,δ(t)− γ2

ε
wγ,δ(t)||s ≤ C

γ4

ε
t

for all t ∈ [0, T
ε
] and sufficiently small positive parameters ε, δ and γ.

As in the previous chapters, we will follow the same methodology for the conver-
gence. To this end, we first recall well-posedness results for both Cauchy problems in
parameters-free forms in Section 5.2.1. In the same section, we rewrite the theorems
for the Cauchy problems (5.7) and (5.8). In Section 5.2.2, we find an estimate for the
residual term in suitable Sobolev Spaces, and finally we find an estimate for the energy
of the equation satisfied by the error term, and complete the proof.

5.2.1 Well-posedness results for the periodic Hunter Saxton and
Camassa-Holm equations

The initial value problem for the Hunter-Saxton equation

(ut + uux)x =
u2
x

2
t > 0, x ∈ R (5.9)

u(x, 0) = u0 x ∈ R (5.10)

was studied over the real line by Hunter and Saxton in [16]. Using the method of
characteristics, a formula for the solution is provided. However, it is not possible to
work with Hs(R) spaces, as the formula involves a term that is not an L2(R) function.
Thus, most of the problems for the HS equation are considered in periodic setting.
The Cauchy problem for the periodic Hunter-Saxton equation was first studied by Yin
in 2004 [29]:

ut + uux = D−1
x

(
u2
x

2
+ d(t)

)
+ h(t), t > 0, x ∈ R

u(x, 0) = u0 x ∈ R

u(x, t) = u(x+ 2π, t) t ≥ 0, x ∈ R (5.11)
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where d and h are continuous functions. Using the Kato semigroup method, it is shown
that strong solutions to the periodic HS equation exist locally in time in Hs for s > 3/2.
Following is the well-posedness result for the Cauchy problem of the periodic HS equa-
tion (5.11) given in [29]:

Theorem 5.2.2 ( [29]) Given h, a continuous function, and u0 ∈ Hs(T), s > 3/2 .
Then there exists a maximal T = T (d, h(t), u0) > 0, and a unique solution u to (5.11),
such that u ∈ C([0, T ), Hs(T)) ∩ C1([0, T ), Hs−1(T)). Moreover, the solution depends
continuously on the initial data.

If we take t = 1
γ2 τ , then (5.8) reduces to

ūτxx + 2ūxūxx + ūūxxx = 0 (5.12)

with a relation
wγ,δ(x, t) = ū(x, τ) = ū(x, γ2t)

between the solution wγ,δ(x, t) of (5.8) and the solution ū(x, τ) of (5.12).

According to Theorem 2.12 in [29] and the discussion in [15], solutions to the Cauchy
problem for the HS equation (5.11) are also solutions to the twice differentiated form
of the HS equation (5.12). Thus, solution ū exists and lives in C([0, T ), Hs+2(T)) for
0 < τ ≤ T and we can rephrase Theorem 5.2.2 for (5.8) as follows:

Theorem 5.2.3 Let w0 ∈ Hs+2(T), s > 3/2 . Then there exists T = T (w0) > 0
such that the Cauchy problem (5.6) has a family of solutions wγ,δ ∈ C([0, T

γ2 ), Hs(T))∩
C1([0, T

γ2 ), Hs−1(T)). Moreover, the solution wγ,δ is uniformly bounded in C([0, T
γ2 ), Hs(T)).

Thus we have not only long time existence-uniquness of the solutions (5.8) but also
uniform bounds over a long time interval.

As we are working on periodic problems, we need the well-posedness result for the
periodic CH equation (5.7) as well. For this reason, we will recall well-posedness result
for the Cauchy problem for periodic Camassa-Holm equation

vt + 3εvvx − δ2vtxx − εδ2(2vxvxx + vvxxx) = 0, x ∈ R, t > 0

v(x, 0) = v0(x) x ∈ R

v(x, t) = v(x+ 2π, t) t > 0 (5.13)

provided in [23].

Theorem 5.2.4 ( [23]) If s > 3/2, then given any v0 ∈ Hs(T) there exists a T ε,δ > 0
and a unique solution vε,δ to the Cauchy problem (5.13) such that vε,δ ∈ C([0, T ε,δ), Hs(T))
∩ C1([0, T ε,δ), Hs−1(T)) and which depends continuously on the initial data v0.

Remark 5.2.1 The proof in (5.13) is actually parameter-free form of (5.7). However,
coefficients do not affect the proof of well-posedness. We note that the existence time
T ε,δ may be different for each value of the parameter. Moreover Theorem 5.2.4 does not
say anything about uniform bounds for vε,δ. However, this is not crucial since uniform
bounds for the solutions are necessary only for the model equation, namely for equation
(5.8).
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5.2.2 Estimate for the residual term

Assume vε,δ be the solution of (5.7) and wγ,δ be the solution of (5.8). Let r = vε,δ −
γ2

ε
wγ,δ. Then we have

(r +
γ2

ε
w)t+3ε(r +

γ2

ε
w)(r +

γ2

ε
w)x − δ2(r +

γ2

ε
w)txx

− εδ2

(
2(r +

γ2

ε
w)x(r +

γ2

ε
w)xx + (r +

γ2

ε
w)(r +

γ2

ε
w)xxx

)
= 0.

Straightforward calculations imply that the error term r satisfies the differential equa-
tion

rt + 3εrrx − δ2rtxx−εδ2(2rxrxx + rrxxx) + 3γ2(rw)x

− δ2γ2(2rxwxx + 2wxrxx + rwxxx + wrxxx) = −f,

where

f =
γ2

ε
wt + 3

γ4

ε
wwx − δ2γ

2

ε
wtxx −

γ4

ε
δ2(2wxwxx + wwxxx)

=
γ2

ε
wt + 3

γ4

ε
wwx

is the residual term. Note that the last two terms in the above expression disappear
as w is the solution of (5.8):

wtxx + γ2(2wxwxxx + wwxxx) = 0.

The following lemma gives an estimate for Hs norm of the residual term.

Lemma 5.2.5 Let w0 ∈ Hs+2(R), s > 3/2. Then there is some C > 0 so that the
family of solutions wγ,δ to the periodic HS equation (5.6) with initial value wγ,δ(x, 0) =
w0(x), satisfy

f =
γ2

ε
wt + 3

γ4

ε
wwx

with

||f(t)||Hs(T) ≤ C
γ4

ε

for t ∈
[
0, T

γ2

]
and sufficiently small positive parameters ε, δ and γ.

48



Proof : We need an expression for wt. We observe that

(wtx)x = −γ2

(
w2
x

2
+ wwxx

)
x

.

We integrate with respect to x

wtx = −γ2

(
w2
x

2
+ wwxx + d(t)

)
= −γ2

(
w2
x

2
+ (wwx)x − w2

x + d(t)

)
.

where use the fact that wwxx = (wwx)x − w2
x and d is to be determined later. Thus,

(wt + γ2wwx)x = γ2

(
w2
x

2
− d(t)

)
.

We integrate once more

wt + γ2wwx = γ2

(
D−1
x

(
w2
x

2
− d(t)

)
+ h(t)

)
where h(t) is a continuous function. Then residual term f can be expressed as

f =
γ2

ε

(
−γ2wwx + γ2

(
D−1
x

(
w2
x

2
− d(t)

)
+ h(t)

))
+ 3

γ4

ε
wwx

=
γ4

ε
D−1
x

(
w2
x

2
− d(t)

)
+
γ4

ε
h(t) + 2

γ4

ε
wwx. (5.14)

In order for D−1
x

(
w2

x

2
− d(t)

)
to be defined w2

x

2
− d(t) must have mean zero. To do so,

we choose d(t) = 1
4π

∫ 2π

0
w2
x dx. As shown in Lemma 3.2 of Yin [29], when w0 ∈ Hs,

s ≥ 3, then w(x, t) satisfies ∫ 2π

0

w2
x dx =

∫ 2π

0

(w0)2
x dx

and d(t) = 1
4π

∫ 2π

0
(w0)2

x dx = d becomes a constant. Thus w2
x

2
− d has mean zero:

1

2π

∫ 2π

0

(
w2
x

2
− d
)
dx =

1

2π

∫ 2π

0

w2
x

2
dx− d

=
1

2π

∫ 2π

0

w2
x

2
dx− 1

4π

∫ 2π

0

w2
0 dx = 0.

Now, we are ready to find an estimate for the residual term:

||f(t)||s ≤
γ4

ε
||D−1

x

(
w2
x

2
− d
)
||s +

γ4

ε
||h(t)||s + 2

γ4

ε
||wwx||s

≤ C
γ4

ε

(
||w

2
x

2
− d||s−1 + ||w||s||w||s+1

)
≤ C

γ4

ε

(
||w||2s + ||w||s||w||s+1

)
≤ C

γ4

ε
,
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where we use the fact that Hs norms of w are uniformly bounded by Theorem 5.2.3.
2

5.2.3 Energy Estimate

The error term r satisfies

rt + 3εrrx − δ2rtxx − εδ2(2rxrxx + rrxxx) + 3γ2(rw)x

− δ2γ2(2rxwxx + 2wxrxx + rwxxx + wrxxx) = −f (5.15)

r(x, 0) = 0 (5.16)

Define the energy as in [6]:

E2
s (t) =

1

2

(
||r(t)||2s + δ2||rx(t)||2s

)
. (5.17)

Then we have the following estimate for the energy:

Lemma 5.2.6 Assume s > 3/2 and let wγ,δ and vε,δ be solutions of (5.8) and (5.7),

respectively and let r = vε,δ − γ2

ε
wγ,δ. Assume that ||r(t)||Hs < 1 for t ≤ T̄ . Then

there exists some C such that the energy (3.10) for the Cauchy Problem (5.15)-(5.16)
satisfies

Es(t) ≤ C

(
Es(0) + t sup

0≤t≤T̄
||f(t)||s

)
for 0 ≤ t ≤ T̄ ≤ min{T

ε
, T
γ2} and sufficiently small positive parameters ε, δ and γ.

Proof : Take derivative of the energy with respect to t

d

dt
E2
s (t) =〈Λsrt,Λ

sr〉+ δ2〈Λsrx,Λ
srxt〉

=− 3ε〈Λs(rrx),Λ
sr〉+ εδ2〈Λs(2rxrxx + rrxxx),Λ

sr〉

− 3γ2〈Λs(rw)x,Λ
sr〉+ γ2δ2〈Λs(2rxwxx + 2wxrxx,Λ

sr〉

+ γ2δ2〈Λs(rwxxx + wrxxx),Λ
sr〉 − 〈Λsf,Λsr〉. (5.18)

Now, we are going to find an estimate for Hs norm of each term in (5.18). Note that
whenever we have ||rx||s , we need δ as a multiplier. This is as same as to say we can
use ||rx||ks , if we have δk as a coefficient.

• We start with the last term of equation (5.18) and we obtained that

|〈Λsf,Λsr〉| ≤ ||f ||s||r||s. (5.19)
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• Now we estimate the first term of equation (5.18).

We use first property of Lemma 1.3.3 for the second term with h = r and u = r.

〈Λsrrx,Λ
sr〉 = 〈[Λs, r]rx,Λ

sr〉+ 〈rΛsrx,Λ
sr〉

= 〈[Λs, r]rx,Λ
sr〉 − 1

2
〈rxΛsr,Λsr〉.

Thus the condition s− 1 > 1/2 leads:

|〈Λs(rrx),Λ
sr〉| ≤ C

(
||r||s||rx||s−1||r||s + ||rx||∞||r||2s

)
≤ C

(
||r||3s + ||rx||s−1||r||2s

)
≤ C||r||3s. (5.20)

• Now we estimate third term of equation (5.18). We see that

〈Λs(rw)x,Λ
sr〉 = 〈Λsrwx,Λ

sr〉+ 〈Λsrxw,Λ
sr〉.

Note that
〈Λsrwx,Λ

sr〉 = 〈[Λs, wx]r,Λ
sr〉+ 〈wxΛsr,Λsr〉.

On the other hand

〈Λswrx,Λ
sr〉 = −1

2
〈wxΛsr,Λsr〉

with h = w and u = r in Lemma 1.3.3. Thus

|〈Λs(rw)x,Λ
sr〉| ≤ C

(
||wx||s||r||s−1||r||s + ||wx||∞||r||2s

)
≤ C

(
||w||s+1||r||2s + ||wx||s−1||r||2s

)
≤ C(||w||s+1 + ||w||s)||r||2s (5.21)

since s− 1 > 1/2 > 0.

• We estimate the second term of equation (5.18). Note that

〈Λs(2rxrxx + rrxxx),Λ
sr〉 = 〈Λs(

r2
x

2
+ rrxx)x,Λ

sr〉 = −〈Λs(
r2
x

2
+ rrxx),Λ

srx〉.

We consider the sum separately. We see that

〈Λsrxrx,Λ
srx〉 = 〈[Λs, rx]rx〉+ 〈rxΛsrx,Λ

srx〉.

Thus

|〈Λs(r2
x),Λ

srx〉| ≤ C (||rx||s||rx||s−1||rx||s+ ||rx||∞||rx||s||rx||s)

≤ C
(
||r||s||rx||2s + ||rx||s−1||rx||2s

)
≤ C||r||s||rx||2s (5.22)
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where we use s− 1 > 1/2. For the second term, we use the second property of Lemma
1.3.3 with h = r and u = rx. It follows that

〈Λsrrxx,Λ
sr〉 = 〈[Λs, r]rxx,Λ

srx〉 −
1

2
〈rxΛsrx,Λ

srx〉.

Thus we get

|〈Λsrrxx,Λ
sr〉| ≤ C

(
||r||s||rxx||s−1||rx||s + ||rx||∞||rx||2s

)
≤ C

(
||r||s||rx||2s + ||rx||s−1||rx||2s

)
≤ C||r||s||rx||2s. (5.23)

• Lastly we estimate the forth and fifth term of equation (5.18) together. We
observe that

2rxwxx + 2wxrxx + rwxxx + wrxxx = (rwxx + wrxx + rxwx)x.

Therefore

〈Λs(2rxwxx + 2wxrxx + rwxxx + wrxxx),Λ
sr〉 = −〈Λs(rwxx + wrxx + rxwx),Λ

srx〉.

Now we estimate the three sum separately. For the first term we have

〈Λsrwxx,Λ
srx〉 = 〈[Λs, wxx]r,Λ

srx〉+ 〈wxxΛsr,Λsrx〉

and therefore

|〈Λsrwxx,Λ
srx〉| ≤ C (||wxx||s||r||s−1||rx||s + ||wxx||∞||r||s||rx||s)

≤ C (||w||s+2||r||s||rx||s + ||wxx||s−1||r||s||rx||s)

≤ C (||w||s+2 + ||w||s+1) ||r||s||rx||s. (5.24)

For the second term we use second property of Lemma 1.3.3 with h = w and u = rx:

〈Λswrxx,Λ
srx〉 = 〈[Λs, w]rxx,Λ

srx〉 −
1

2
〈wxΛsrx,Λ

srx〉.

Thus

|〈Λswrxx,Λ
srx〉| ≤ C

(
||w||s||rxx||s−1||rx||s + ||wx||∞||rx||2s

)
≤ C

(
||w||s||rx||2s + ||wx||s−1||rx||2s

)
≤ C||w||s||rx||2s (5.25)

where we use the fact s− 1 > 1/2 once again. For the last term we have

〈Λsrxwx,Λ
srx〉 = 〈[Λs, wx]rx,Λ

srx〉+ 〈wxΛsrx,Λ
srx〉

and hence

|〈Λsrxwx,Λ
srx〉| ≤ C

(
||wx||s||rx||s−1||rx||s + ||wx||∞||rx||2s

)
≤ C

(
||w||s+1||r||s||rx||s + ||wx||s−1||rx||2s

)
≤ C||w||s+1

(
||r||s||rx||s + ||rx||2s

)
. (5.26)
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Using inequalities (5.19),(5.20),(5.21),(5.22),(5.23),(5.24),(5.25) and (5.26) altogether
we get

d

dt
E2
s (t) =C

(
ε||r||3s + εδ2||r||s||rx||2s + γ2(||w||s+1 + ||w||s)||r||2s

)
+ Cγ2δ2 (||w||s+2 + ||w||s+1) ||r||s||rx||s

+ Cγ2δ2||w||s||rx||2s

+ Cγ2δ2||w||s+1

(
||r||s||rx||s + ||rx||2s

)
+ ||f ||s||r||s. (5.27)

We are given that ||r(t)||s < 1 for t ≤ T̄w ∈ Hs(T). Using the fact that ||r||s ≤ CEs(t)
and δ||rx||s ≤ CEs(t) for t ≤ T̄ , we get

d

dt
E2
s (t) = C

(
ε+ ε+ γ2 + γ2δ + γ2 + γ2δ + γ2

)
E2
s (t) + ||f ||sEs(t)

C
(
ε+ γ2 + γ2δ

)
E2
s (t) + ||f(t)||sEs(t) (5.28)

Thus

d

dt
Es(t) ≤ C

(
ε+ γ2 + γ2δ

)
Es(t) + ||f(t)||s

≤ C
(
ε+ γ2

)
Es(t) + ||f(t)||s.

We use Grönwall’s inequality to obtain

d

dt

(
Es(t)e

−C(ε+γ2)t
)
≤ e−C(ε+γ2)t) sup ||f(t)||s

Es(t) ≤ e−C(ε+γ2)t

[
Es(0) + sup ||f(t)||s

∫ t

0

e−C(ε+γ2)sds

]
Es(0) = 0 since r(x, 0) = 0. It follows that

Es(t) ≤ sup

[
eC(ε+γ2)t − 1

ε+ γ2

]
≤ t sup ||f(t)||s

for t ≤ T̄ ≤ min{T
ε
, T
γ2}.

5.2.4 Proof of Theorem 5.2.1

Let w0 ∈ Hs+2(T). Note that solution w of the HS equation (5.8) exists for all times
t ≤ T/γ2 by the discussion above. We consider the Cauchy problem for periodic CH
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equation with v(x, 0) = aw(x, 0) = v0(x). Therefore r = v − aw will exist over the
same interval as long as the solution v of CH equation does not blow up in shorter
time. Moreover, we have r(x, 0) = 0. Therefore, by continuity there exists some t̄ such
that ||r(t)||Hs ≤ 1 for all 0 ≤ t ≤ t̄ ≤ T/γ2. We define

T γ,δ0 = sup{t ≤ T

γ2
: ||r(t)||Hs ≤ 1 for all t ∈ [0, t̄ ]} (5.29)

Note that the error r satisfies (5.15)-(5.16) with f in Lemma 5.2.5. Consider the energy
(5.17). We observe that Es(0) = 0. Then by Lemma 5.2.6 the energy satisfies

Es(t) ≤ C
γ4

ε
t for t ≤ t̄ ≤ min{T

ε
,
T

γ2
}

for some generic constant C. We choose parameters small enough then

||vε,δ(t)− γ2

ε
wγ,δ(t)||s = ||r(t)||s ≤ CEs(t) ≤ C

γ4

ε
t << 1.

Therefore existence time T ε,δ of v becomes min{T
ε
, T
γ2}.

Remark 5.2.2 Initially we know that vε,δ exists locally in time for some t ≤ T ε,δ. How-
ever, the estimate above shows that vε,δ stays bounded and so exists for t ≤ min{T

ε
, T
γ2}.

Remark 5.2.3 Assume γ = ε and consider Cauchy problem for the periodic CH equa-
tion

vt + 3εvvx − δ2vtxx = εδ2(2vxvxx + vvxxx) t > 0, x ∈ R

v(x, 0) = εv0(x), x ∈ R

v(x, t) = v(x+ 2π, t) t ≥ 0, x ∈ R (5.30)

and Cauchy problem for the periodic HS equation

wtxx = ε2(2wxwxx + wwxxx) t > 0, x ∈ R

w(x, 0) = w0(x) x ∈ R

w(x, t) = w(x+ 2π, t) t ≥ 0, x ∈ R (5.31)

and
||vε,δ(t)− εwε,δ(t)||s ≤ Cε3t.

Note that the order of the error is related to the order of the residual term and the
residual term is the combination of the solutions of the model equation (5.31). We
observe that this estimation is good since the order of the error term is greater than
the order of the parameters appearing in the equation (5.31).

Remark 5.2.4 Assume γ =
√
ε and consider Cauchy problem for the periodic CH

equation

vt + 3εvvx − δ2vtxx = εδ2(2vxvxx + vvxxx) t > 0, x ∈ R

v(x, 0) = εv0(x), x ∈ R

v(x, t) = v(x+ 2π, t) t ≥ 0, x ∈ R (5.32)
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and Cauchy problem for the periodic HS equation

wtxx = ε(2wxwxx + wwxxx) t > 0, x ∈ R

w(x, 0) = w0(x) x ∈ R

w(x, t) = w(x+ 2π, t) t ≥ 0, x ∈ R (5.33)

||vε,δ(t)− wγ,δ(t)||s ≤ Cεt.

We observe that the order of parameters in the equation (5.33) and the order of the
error are the same. However, we need higher orders in the error. However, it is not
possible to use the HS iteratively in derivation of the residual term (5.14). Thus this
estimation is not good for γ =

√
ε.
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