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ABSTRACT

THE UPPER BOUND FOR THE LENGTH OF THE SHORTEST HOMING
SEQUENCES

BERK CIRISCI

COMPUTER SCIENCE AND ENGINEERING M.A. THESIS, MAY 2019

Thesis Supervisor: Assoc. Prof. Dr. Hüsnü Yenigün

Keywords: Finite State Machines, Homing Sequences, Isomorphic FSM, Hibbard’s
Upper Bound

Homing sequences are special input sequences that are used by various techniques
of finite state machine based testing. Using a shorter homing sequence is typically
preferred since it would yield a shorter test sequence. Finding a shortest homing
sequence is known to be an NP–hard problem. The upper bound of shortest homing
sequences is also a problem studied in the literature. A tight upper bound for the
length of shortest homing sequence for a finite state machine with n states is known
to be n(n−1)/2 . However, the known examples of finite state machines hitting to
this upper bound also use n− 1 input symbols, i.e. the size of the input alphabet
also grows with the number of states. Is this upper bound reachable for a finite state
machine with a constant number of inputs? In this work, we use an experimental
analysis and we answer this question negatively. By exhaustively enumerating all
finite state machines with two input symbols and two output symbols, we experi-
mentally compute the upper bound for the length of the shortest homing sequence
for finite state machines with 10 or less states. In order to make this computation
feasible in practice, we apply several techniques to eliminate from our search those
finite state machines which would not affect the result of the computation.
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ÖZET

EN KISA ÖZGÜDÜM DİZİLERİNİN UZUNLUĞUNUN ÜST SINIRI

BERK ÇİRİŞCİ

BİLGİSAYAR MÜHENDİSLİĞİ VE BİLİMİ YÜKSEK LİSANS TEZİ, TEMMUZ
2019

Tez Danışmanı: Doç. Dr. Hüsnü Yenigün

Anahtar Kelimeler: Sonlu Durum Makineleri, Özgüdüm Dizileri, Eşbiçimli Sonlu
Durum Makinesi, Hibbard’ın Üst Sınırı

Özgüdüm dizileri, çeşitli sonlu durum makinesi bazlı testlerde kullanılan ilginç girdi
dizilerindendir. Daha kısa özgüdüm dizileri kullanmak, daha kısa test dizileri sağlay-
acağı için genellikle tercih edilir. En kısa özgüdüm dizisini bulmanın NP-zor bir
problem olduğu bilinmektedir. En kısa özgüdüm dizisinin üst sınırı da literatürde
çalışılan bir problemdir. n durumlu bir sonlu durum makinesi için sıkı üst sınırın
n(n− 1)/2 olduğu bilinmektedir. Bununla birlikte, bu sınıra ulaşan sonlu durum
makinelerinin bilinen bütün örneklerinin hepsi n− 1 girdi sembolu kullanmaktadır
ve bu durum, girdi alfabesi durum sayısı ile birlike büyüyor demektir. Peki bu üst
sınıra sabit sayıda girdili bir sonlu durum makinesi ile ulaşılabilir mi? Bu çalış-
mada deneysel bir analiz yaptık ve soruya negatif bir şekilde cevap verdik. Bütün
2 girdili, 2 çıktılı sonlu durum makinelerini etraflıca sayıp, deneysel olarak 10 ya
daha az durumlu sonlu durum makineler için en kısa özgüdüm dizisinin üst sınırını
hesapladık. Bu hesaplamayı pratikte uygulanabilir kılmak adına sonucu etkilemeyen
sonlu durum makinelerini elemek için çeşitli teknikler uyguladık.
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1. INTRODUCTION

Testing is the most widely used method for system validation by the industry. In
practice, testing is usually applied manually in an ad hoc manner. Such an approach
is very expensive and it itself is open to errors. Therefore, many systematic and
automated methods are proposed in the literature for testing.

Model Based Testing (MBT) (Broy, Jonsson, Katoen, Leucker & Pretschner, 2005)
is one such approach, where the requirements of the system are specified by using a
model. When this specification model is given in a formal notation, it can be used
to generate test cases automatically. For the specification of interactive systems,
usually state–based models, such as State–Charts (Harel & Politi, 1998) or Finite
State Machines (FSM) (Kohavi, 1978), are used.

When the abstract behavior of an interactive system is modeled by using an FSM,
there are various methods to construct a test sequence from this FSM model (Chow,
1978; Gonenc, 1970; Hennine, 1964; Hierons & Ural, 2006; Lee & Yannakakis, 1996;
Moore, 1956; Simao & Petrenko, 2010; Ural, Wu & Zhang, 1997). These methods
construct a test sequence, called a checking sequence, which gives 100% fault cover-
age under certain assumptions, such as an upper bound on the number of states of
the implementation.

These methods construct checking sequences by using some special sequences. These
special sequences are typically used to identify the states of the implementation. For
instance, distinguishing sequences or characterizing sets used in a checking sequence
identify the initial state. In other words, when a distinguishing sequence is applied
in a checking sequence, by looking at the output sequence produced by the imple-
mentation as a response to the application of the distinguishing sequence, one can
tell the state of the implementation before the application of the sequence.

On the other hand, synchronizing sequences and homing sequences are used to iden-
tify the final state of the implementation. In other words, when a homing sequence
is applied, by looking at the output sequence produced by the implementation as
a response to this homing sequence, one can tell the state of the implementation
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reached after the application of the sequence.

The checking sequence construction methods make use of these special sequences.
Therefore, the existence of these special sequences and the length of these special
sequences are important for the applicability and the scalability of the checking
sequence construction methods. The following results are known for these special
sequences1.

Both preset and adaptive distinguishing sequences are considered in the litera-
ture. For preset distinguishing sequence, the existence check problem is PSPACE–
complete (Lee & Yannakakis, 1994), whereas the existence check for an adaptive
distinguishing sequence can be handled in time O(pn logn) time. Here n and p

are the number of states and the number of input symbols of the FSM, respec-
tively. Upper bounds are also known for the length of preset and adaptive dis-
tinguishing sequences. For preset distinguishing sequences, this upper bound is
exponential. There are FSMs where the length of the shortest preset distinguishing
sequence is exponential (e.g. see Theorem 2.1 of (Lee & Yannakakis, 1994) and
Theorem 2.11 of (Krichen, 2005)).

There is a wide literature for synchronizing sequences, possibly because of the ex-
istence of an interesting open problem in the field. Firstly, checking the existence
of a synchronizing sequence can be handled in time O(pn2) (Eppstein, 1990). Al-
though finding shortest synchronizing sequence is an NP–hard problem (Eppstein,
1990), computing a synchronizing sequence is a polynomial time problem, for which
several algorithms exist (see e.g. (Eppstein, 1990; Kudłacik, Roman & Wagner,
2012; Roman, 2009; Roman & Szykuła, 2015; Trahtman, 2004)). The interesting
open problem about synchronizing sequences is related to the upper bound of the
shortest synchronizing sequences. The well–known Černý conjecture claims that the
length of a shortest synchronizing sequence is at most (n− 1)2 for an FSM with n
states (Černỳ, 1964; Černỳ, Pirická & Rosenauerová, 1971). If this conjectured up-
per bound is correct, it is also known to be tight since there are FSMs with shortest
synchronizing sequence of length (n−1)2.

For the class of FSMs1 considered in this work, there always exists a homing se-
quence. Finding a shortest homing sequence is known to be NP–hard (Eppstein,
1990; Sandberg, 2005). Unlike synchronizing sequences, there is not much work on
the computation of homing sequences. There is only a recent work (Çirisci, Emek,
Sorguç, Kaya & Yenigün, 2019) where the authors actually use/adapt synchronizing
sequence construction algorithms for computing homing sequences.

1These results given here apply to the class of deterministic, complete, and minimal FSMs. Please refer to
Section 2 for the formal definition of these terms.
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The upper bound for the length of shortest homing sequences, which is the main
topic of this work, is also known. (Hibbard, 1961) showed that, for an FSM with n
states, the length of the shortest homing sequence can be at most n(n− 1)/2. We
will call this upper bound as the Hibbard bound. The Hibbard bound is also known
to be tight. Hence there are FSMs hitting to the Hibbard bound, i.e. FSMs where
the length of the shortest homing sequence is equal to n(n−1)/2. You can find the
corresponding FSM in the Figure 1.1.

Figure 1.1 An FSM M hits to Hibbard’s Bound

0

2

1

. . .

. . .

i

n−1

n

x1/0, x2/0 ... xn/0

x2/0, x3/0, ... xn/0

x3/0, x4/0, ... xn/0

x1/0 x1/0

x2/0 x2/0

xi−1/0 xi−1/0

xi/0 xi/0

x1/0, ..., xi−2/0, xi+1/0, ..., xn/0

x1/0, ..., xn−2/0, xn/1

x1/0, ..., xn−3/0, xn/0

xn−1/0xn−1/0

xn−2/0xn−2/0

The Hibbard bound expression does not depend on the number of input symbols of
the FSM. For the FSMs hitting to the Hibbard bound (see Figure 1.1), on the other
hand, the number of input symbols is the same as the number of states of the FSM.
It is possible to ask the following question at this point: Is there an FSM with a
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constant number of input symbols which hits to the Hibbard bound?

In this work, we attempt to answer this question and we start from the simplest
possible form of it, i.e. we ask the following question: Is there an FSM with two
input symbols and two output symbols (which we will call as binary FSMs), that
hits to the Hibbard bound?

We answer this question negatively, i.e. no binary FSM hits to the Hibbard bound.
In this case, the next question is then the following: What is the upper bound for
the length of the shortest homing sequence of binary FSMs? In this work we also
attempt to answer this question by using an experimental approach.

In order to compute the upper bound of the length of the shortest homing sequence
for binary FSMs with n states, we essentially enumerate all binary FSMs with n

states, and compute the shortest homing sequence of each FSM considered. For the
number of states 1,2,3,4,5,6,7,8,9,10 (respectively), we found the upper bound
for the length of the shortest homing sequences to be 0,1,3,6,9,13,18,24,31,38
(respectively), an integer sequence which does not exist in the OEIS library (OEIS,
2019).

Note that, this experimental study is computationally challenging. If we consider
FSMs with n states, p input symbols, and o output symbols, there are (no)(np)

FSMs, not considering the isomorphism. Even when we restrict ourselves to binary
FSMs with 10 states, two input symbols, and two output symbols (the largest FSM
size considered in our study), there are 2020 such FSMs! Several theoretical and
practical techniques are applied in our experimental study to reduce the number of
FSMs taken into account (without affecting the outcome of the computation for the
upper bound) and to speed up the computation.

Suppose that we simply rename the states and/or the input symbols and/or the
output symbols of an FSM M to get another FSM M ′. FSMs M and M ′ that
can be obtained from one another by such a renaming are called isomorphic. The
answer to the homing sequence related problems (such as the existence of a homing
sequence, the length of the shortest homing sequence, etc.) will be the same for
isomorphic FSMs. A great deal of FSMs can be eliminated in our search, if we can
guarantee to consider at least one FSM from each isomorphism class.

A similar experimental work (Kisielewicz & Szykuła, 2013) exists in the litera-
ture which enumerates all automata (not FSMs), by considering these isomor-
phism classes. (Kisielewicz & Szykuła, 2013) performs this experimental study
to verify/falsify the Černý conjecture mentioned above. We follow the approach
of (Kisielewicz & Szykuła, 2013) to generate non–isomorphic automata as much as
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possible, and we construct FSMs from the generated automata. We also employ a
multi–core parallel computation approach to speed–up the computation.

The rest of the thesis is organized as follows. Section 2 introduces the notation we use
throughout the thesis and gives background information. Section 3 explains how we
generate all non–isomorphic binary FSMs with a given number of states. We provide
the theoretical results yielding the conservative reductions in this section. The
experimental study that we performed is given in detail in Section 4. In Section 5,
we conclude the paper and provide some future directions for our work.
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2. PRELIMINARIES

A Deterministic Finite Automaton (DFA) (or simply an automaton) is a triple A=
(S,X,δ) where S is a finite set of states, X is a finite set of alphabet (or input)
symbols, and δ : S×X→ S is a transition function. When δ is a total (resp. partial)
function, A is called complete (resp. partial). In this work we only consider complete
DFAs unless stated otherwise.

A Deterministic Finite State Machine (FSM) is a tuple M = (S,X,Y,δ,λ) where S
is a finite set of states, X is a finite set of alphabet (or input) symbols, Y is a finite
set of output symbols, δ : S×X → S is a transition function, and λ : S×X → Y is
an output function. In this work, we always consider complete FSMs, which means
the functions δ and λ are total functions.

Note that given an automaton A = (S,X,δ), one can extend A by using a set of
output symbols Y and an output function λ : S×X → Y to obtain an FSM M =
(S,X,Y,δ,λ) and this extension is represented as M = A

⊎
λ. Reversely, each FSM

M has an underlying automaton. The automaton of an FSM M = (S,X,Y,δ,λ)
will be denoted as M |A where we simply have M |A = (S,X,δ). Hence, for an FSM
M = (S,X,Y,δ,λ) we have M =M |A

⊎
λ.

Two DFAs A = (S,X,δ) and A′ = (S′,X ′, δ′) are called isomorphic if there exist
bijections f : S → S′ and g : X → X ′ such that ∀x ∈ X and ∀s ∈ S,f(δ(s,x)) =
δ′(f(s),g(x)). Intuitively, A and A′ are isomorphic, if one can simply rename the
states and input symbols of A to obtain A′. A and A′ are called state–isomorphic
if A and A′ isomorphic when g is taken as the identity function, which implies A
and A′ share the same alphabet. In this case, renaming only the states of A (but
keeping the input symbols unchanged) is sufficient to get A′. A and A′ are called
input–isomorphic if A and A′ isomorphic when f is taken as the identity function,
which implies A and A′ share the set of states. In this case, renaming only the input
symbols of A (but keeping the state names unchanged) is sufficient to get A′.

Two FSMs M = (S,X,Y,δ,λ) and M ′ = (S′,X ′,Y ′, δ′,λ′) are called isomorphic if
there exist bijections f : S→ S′, g :X →X ′, and h : Y → Y ′ such that ∀x ∈X and
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∀s ∈ S,f(δ(s,x)) = δ′(f(s),g(x)) and h(λ(s,x)) = λ′(f(s),g(x)). Intuitively, M and
M ′ are isomorphic, if one can simply rename the states, input symbols, and output
symbols of M to obtain M ′. M and M ′ are called state–isomorphic if M and M ′

isomorphic when g and h are taken as the identity functions, which implies M and
M ′ share the same input alphabet and the same set of output symbols. In this
case, renaming only the states of M (but keeping the input symbols and the output
symbols unchanged) is sufficient to get M ′. M and M ′ are called input–isomorphic
if M and M ′ isomorphic when f and h are taken as the identity function, which
implies M and M ′ are defined over the same set of states and the same of output
symbols. In this case, renaming only the input symbols of M (but keeping the state
names and the output symbols unchanged) is sufficient to get M ′. Finally, M and
M ′ are called output–isomorphic if M and M ′ isomorphic when f and g are taken
as the identity function, which implies M and M ′ are defined over the same set of
states and the same input alphabet. In this case, renaming only the output symbols
of M (but keeping the state names and the input symbols unchanged) is sufficient
to get M ′.

An automaton and an FSM can be visualized as a graph, where the states correspond
to the nodes and the transitions correspond to the edges of the graph. For an
automaton the edges of the graph are labeled by input symbols, whereas for an
FSM the edges are labeled by an input and an output symbol. In Figure 2.1a and
Figure 2.1b, an example automaton and an example FSM are given.

|Z| expresses the number of the elements in a given set Z, i.e. the cardinality of
Z. For the cardinality of certain components of FSMs, we will use the following
symbols consistently throughout this thesis:

• The number of states |S| will be represented as n.

• The number of inputs |X| will be represented as p.

• The number of outputs |Y | will be represented as o.

In this work, we will consider FSMs with o= 2. We will typically consider the set of
output symbols as Y = {0,1}. In other words, the outputs labeling the transitions
will either be a 0 or a 1. Given a set of input symbols X ′ ⊆ X, we use CX ′ as
the number of 1s seen in the output labels of the transitions with input symbols in
X ′. More formally CX ′ ,= |{s ∈ S|λ(s,x) = 1,x ∈X ′}|. Now we will introduce some
special subsets of output functions as follows:

• If λ(s,x) = 0 for all s ∈ S, x ∈X ′ ⊆X (i.e. CX ′ = 0), we call such an output
function λ as all–zeroes for X ′. When it is clear from the context, we call an

7



Figure 2.1 An automaton A0 and two FSMs M0, M1
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b
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(a) A0

0
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b/1
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a/1

a/0
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0
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b/1
b/0

a/0

b/1

a/0

a/0

a/0

b/0

(c) M1

output function which is all–zeroes for X ′ simply as all–zeroes. In Figure 2.1c,
the output function of M1 is all–zeroes for {a} since C{a} = 0.

Note that, considering output–isomorphism, an all-zeroes for X ′ output func-
tion means every transition with input x ∈X ′ has the same output (not nec-
essarily the output 0).

• If λ(s,x) = 0 for all s ∈ S and x ∈X ′ ⊂X, except for just one pair (s′,x′) ∈
S ×X ′, λ(s′,x′) = 1 (i.e. CX ′ = 1), then λ is called as single–one for X ′.
Again, when it is clear from the context, we call an output function which is
single–one for X ′ simply as single–one.

In other words, for an output function which is single–one for X ′, every tran-
sition with input x ∈ X ′ has the same output except for one of them. In
Figure 2.1b, the output function of M0 is a single–one for {a} since C{a} = 1.

• If an output function is not all–zeroes for X ′ and it is not single–one for X ′,
then it will be called as multi–one for X ′ (or simply multi–one when X ′ is
clear from the context).

In Figure 2.1c, output function of M1 is multi–one for {b} since C{b} = 2.
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An input sequence (or a word) x̄ ∈X? is a concatenation of zero or more input sym-
bols. More formally, an input sequence x̄ is a sequence of input symbols x1x2 . . .xk

for some k ≥ 0 where x1,x2, . . . ,xk ∈ X. As can be seen from the definition, an
input sequence may have no symbols; in this case it is called the empty sequence
and denoted by ε. We use the notation x` = xx. . .x to denote an input sequence
consisting of ` copies of the input symbol x ∈X.

For both automata and FSMs, the transition function δ is extended to input se-
quences as follows. For a state s ∈ S, an input sequence x̄ ∈ X? and an in-
put symbol x ∈ X, we let δ̄(s,ε) = s, δ̄(s,xx̄) = δ̄(δ(s,x), x̄). Similarly, the out-
put function of FSMs is extended to input sequences as follows: λ̄(s,ε) = ε,
λ̄(s,xx̄) = λ(s,x)λ̄(δ(s,x), x̄). By abusing the notation we will continue using the
symbols δ and λ for δ̄ and λ̄, respectively.

Finally for both automata and FSMs, the transition function δ is extended to a
set of states as follows. For a set of states S′ ⊆ S and an input sequence x̄ ∈ X?,
δ(S′, x̄) = {δ(s, x̄) | s ∈ S′}.

Given an FSMM = (S,X,Y,δ,λ) and two states si, sj ∈ S, an input sequence x̄∈X?

is said to separate si and sj if λ(si, x̄) 6= λ(sj , x̄). In this case, x̄ is called a separating
sequence for si and sj .

Given an FSM M = (S,X,Y,δ,λ) and a subset of states S′ ⊆ S, an input sequence
x̄∈X? is said to separate S′, if there exist two states si, sj ∈ S′ such that x̄ separates
si and sj .

An FSM M = (S,X,Y,δ,λ) is said to be minimal if for any two different states
si, sj ∈ S, there exists a separating sequence for si and sj .

Definition 1. For an FSM M = (S,X,Y,δ,λ) and a subset of states S′ ⊆ S, a
Homing Sequence (HS) for S′ is an input sequence x̄ ∈X? such that for all states
si, sj ∈ S′, λ(si, x̄) = λ(sj , x̄) =⇒ δ(si, x̄) = δ(sj , x̄). An HS for S is called an HS for
M .

Intuitively, an HS x̄ is an input sequence such that for all states output sequence
to x̄ uniquely identifies the final state. In other words, if the current state of an
FSM is not known, then a homing sequence can be applied to the FSM and the
output sequence produced by the FSM will tell us the final state reached. A homing
sequence is also called a homing word in the literature. For FSM M0 given in
Figure 2.1b, the input sequence aa is an HS.

If M is minimal, then there certainly exists an HS for M (Kohavi, 1978). However,
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there can be more than one HS for an FSM M . An input sequence x̄ is a shortest
HS for M if there does not exist a shorter HS than x̄ for M . There can be multiple
shortest HS for M as well.

In this work, we are interested in the upper bound for the length of the shortest
homing sequences. For a minimal, complete, deterministic FSM M , let |M | denote
the length of the shortest HS for M and let Q(n,p,o) be the set of all minimal,
complete, deterministic FSMs with n states, p input symbols and o output symbols.
We use the notationH(n,p,o) to denote the upper bound of the length of the shortest
HS of all FSMs in Q(n,p,o). Formally, we define

H(n,p,o) = max{|M | :M ∈Q(n,p,o)}

Note that, by definition, H(n,p,o) is a tight bound, i.e. there exists an FSM hitting
to this bound.

As mentioned above, an HS x̄ is used to identify the final state of an FSM M . In
other words, if we do not know the current state of M , we can apply the sequence
x̄ to M and by looking at the output sequence by M as a repsonse to x̄, we can
tell the final state reached. An automaton does not have the notion of an output
symbol. Hence, nothing is observed as a reaction when an input sequence is applied
to an automaton. However, in some cases, it is still possible to find an input
sequence that can be used to identify the final state of an automaton. We now
define input sequences that can be used for this purpose.

Definition 2. For an automaton A = (S,X,δ), a Synchronizing Sequence (SS) of
A is an input sequence R̄ ∈X? such that |δ(S,R̄)|= 1.

A synchronizing sequence is also called a reset sequence in the literature. An au-
tomaton does not necessarily have an SS. It is known that the existence of an SS
for an automaton can be checked in polynomial time (Eppstein, 1990).

The algorithms and our explanations will use the concept of uncertainty vector.
Intuitively, an uncertainty vector of an FSM M is a collection of set of states of the
FSM M . If one does not know anything about the current state of M , based on
the application of an input sequence applied to M , we can infer some information,
while still being uncertain about the current state. Basically, an uncertainty vector
keeps such information.

Formally, an initial state uncertainty vector for an input sequence x̄ ∈X? is a par-
titioning π(x̄) = {p1,p2, . . . ,pm} of the states of M such that two states s,s′ of M

10



Figure 2.2 An FSM M ′
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will belong to the same partition pi in π(x̄) iff λ̄(s, x̄) = λ̄(s′, x̄). The states in the
same block pi give the same output to x̄ and hence cannot be distinguished by x̄.
On the other hand, a current state uncertainty vector (or simply uncertainty vector)
for an input sequence x̄ is defined as σ(x̄) = {δ̄(pi, x̄)|pi ∈ π(x̄)}. Intuitively, the
states in the same block of σ(x̄) are the current states of the states that could not
be distinguished from each other by x̄.

The successor tree of an FSMM = (S,X,Y,δ,λ) is a tree where the nodes are labeled
by the uncertainty vectors and the edges are labeled by the input symbols from X.
The root of the successor tree is labeled by the uncertainty vector {S}. From each
node of the successor tree there is an outgoing edge labeled by each of the input
symbols x ∈ X. If the path from the root to a node is labeled by the sequence of
input symbols x̄, then the label of this node is σ(x̄).

Homing Tree is a special case of successor tree, where certain nodes are pruned.
There are two conditions to prune subtree at a certain node.

1. Let N be a node in the successor tree at level lN , and N ′ be another node
at level lN ′ . Let uncertainty vector P = {p1,p2, . . . ,pm} be the label of N ,
P ′ = {p′1,p′2, . . . ,p′m′} be the label of N ′. If for each pi ∈ P , there exists a
p′j ∈ P ′ such that pi ⊆ p′j and LN ≤ L′N , then the subtree at node N ′ can be
pruned. (dead end)

2. Let N be a node with an uncertainty vector P = {p1,p2, . . . ,pm} such that
|pi|= 1, for all pi ∈ P . The subtree at node N can be pruned. (goal)

Note that, when a node is pruned by the condition (2) given above, that node gives
us an HS. The label of the path from the root to that node is an HS for the FSM.

In Figure 2.3, the Homing tree for FSM M ′ in Figure 2.2 is given. As can be seen
from the tree, aba is an HS for FSM M ′.
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Figure 2.3 The Homing tree of M ′ given in Figure 2.2
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Recall that the problem of finding a shortest HS of an FSM is NP–hard. Therefore,
unless P = NP , we have to use exponential time algorithms to compute a shortest
HS. An easy brute–force algorithm to find a shortest HS is to construct the Homing
Tree of an FSM in a breadth–first manner. The first goal node constructed by the
algorithm will give us a shortest HS. Although this is an exponential time algorithm,
this is the algorithm we use to compute the length of the shortest HS of an FSM.

In this work, we essentially consider all FSMs M ∈Q(n,2,2) to compute H(n,2,2).
However, this does not mean that we really take each and every FSMM ∈Q(n,2,2),
and compute the length of the shortest HS of FSM M . This would be practically
infeasible, even for small state sizes we used in our work. Furthermore, we are not
aware of any direct method of enumerating the FSMs in Q(n,2,2), which consists
of only minimal FSMs. Hence, the only way to generate FSMs in Q(n,2,2) is to
generate FSMs with n states, 2 input symbols and 2 output symbols, and check
if they are minimal. Of course, this makes the required computation even more
expensive.

In order to be able to complete the required computation, we use several theoret-
ical and practical improvements. These improvements are explained in Section 3
in detail. The theoretical methods employed to speed–up the search are based on
skipping an FSM M (or sometimes a set of FSMs all together), whenever we under-
stand that the shortest HS of M cannot hit to the upper bound H(n,2,2). Since
we do not know H(n,2,2) in the beginning of the search, we start by a conservative
estimate/conjecture Hn for which we know Hn ≤H(n,2,2). During the search if we
ever come across an FSM M ∈Q(n,2,2) such that |M |>Hn, we simply update the
current conjecture Hn as |M |. During our search, if for an FSM M (or for a set
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of FSMs) we understand that |M | < Hn, we skip M . Note that, it is sometimes
possible to understand that |M |<Hn, without actually computing the shortest HS
for M . For example, if we can find an upper bound for |M | which is smaller than
Hn, we surely have |M |<Hn.

Above, we defined an SS over an automaton. We can also define an SS for an FSM
as well in the following way. An input sequence is an SS for an FSM M , if it is
an SS for the automaton M |A of M . Note that, if an input sequence x̄ is an SS
for an FSM M , it is also an HS for M . Therefore, if an SS x̄ has length strictly
shorter than Hn, then M can be skipped, i.e. M does not have a chance of hitting
H(n,2,2), and it does not even have chance of improving the current conjecture, In
fact, not only M , but any M ′ such that M ′|A = M |A can be skipped. The way we
generate FSMs allows an easy way of skipping such FSMs all together. As we will
explain in Section 3, we generate FSMs by considering an automaton augmenting it
with several output functions. Hence, when we see that an automaton A has an SS
shorter than the current conjecture Hn, we skip all possible FSMs that could have
been generated from A by augmenting it with different output functions.

Note that knowing an upper bound for the length of an SS for an FSMM , also gives
us an upper bound for the length of an HS forM as well. We will apply several ideas
along this line. One of them is based on the smallest subset of states that one can
reach by simply applying a sequence of inputs consisting of the same input symbol.
The details will be explained later, but here we only introduce the terminology used
for this purpose. Let M = (S,X,Y,δ,λ) be an FSM with only one input symbol,
i.e. X = {a}. Consider the sequence of set of states δ(S,a1), δ(S,a2), δ(S,a3), . . ..
It is easy to see that δ(S,ai) ⊆ δ(S,ai+1). However, there exists an integer ` such
that for any k ≥ `, δ(S,ak) = δ(S,ak+1). We call the smallest such integer ` the
reduction–threshold of M and δ(S,x`) is called the reduction–set of M .
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3. EXHAUSTIVE NON-ISOMORPHIC FSM GENERATION

Hibbard (1961) states the upper bound for the length of shortest homing sequences
as n(n−1)/2, and shows that this bound is tight by providing a class of FSMs (see
Figure 1.1) hitting to this upper bound. As can be seen in Figure 1.1, these FSMs
have two output symbols but the number of input symbols grows linearly with the
number of states. Hence, using our notation, we can state Hibbard’s upper bound
as H(n,n−1,2) = n(n−1)/2.

It is easy to see that H(n,p,2) =H(n,n−1,2) = n(n−1)/2 for any p≥ n (just con-
sider adding new input symbols to the FSM in Figure 1.1 as self looping transitions
with output 0).

On the hand it is not immediately clear if we have H(n,p,2) = H(n,n− 1,2) =
n(n−1)/2 when p < n−1. Our claim is that H(n,p,2)<n(n−1)/2 when p < n−1.
To support this claim, we generate all the FSMs with n states, two input symbols
and two output symbols.

Note that, the number of FSMs with n states, p input symbols and o output symbols
is (n× o)(n×p). Even for the small FSM sizes that we consider in our work, the
number of FSMs that needs to be considered reaches to 2020 for the largest FSM
size of 10 states, 2 input symbols, 2 output symbols in our study. This is too big
of a number of FSMs to be enumerated in practice. Therefore, we employ several
techniques to reduce the number of FSMs considered, without affecting the outcome
of the analysis. We explain the details of all these techniques in the section.

Even after eliminating some class of FSMs, there will be some FSMs for which we
explicitly have to compute a shortest HS. We compute such shortest HS by using
the exponential brute–force algorithm explained in Section 2. This is acceptable
for our purposes, since the size of the FSM considered are quite small, and we can
afford an exponential time algorithm for such small FSMs.

To support our claim we need to generate all the binary FSMs with n states and
2 output symbols. We can produce a binary FSM by just superimposing 2 unary
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FSMs with n states and 2 output symbols. For creating all non–isomorphic binary
FSMs, we also need to use the methods described in Kisielewicz & Szykuła (2013)
beside superimposition. As we can form a binary FSM by just superimposing 2
unary FSMs, we need a set of unary FSMs. We can obtain this set of unary FSMs
by extending unary automata with additional set of output symbols and output
function. Therefore, we need the set of unary automata which we had already from
one of the previous works. The generation phase of unary automata set is out of
our scope and we are getting that set as an input at beginning of our program.
During this entire generation process, we have some opportunities to not consider
some automata or FSMs and since we are generating binary FSMs by using unary
automata as building blocks, each elimination in one stage means, there won’t be any
elements generated from the corresponding eliminated element in next stages. As
an example if a unary automaton is eliminated, there won’t be any unary or binary
FSM generated using this corresponding automaton. In the following subsections, we
describe how we use the opportunities for elimination more detailed by introducing
theorems.

3.1 Non-isomorphic Unary Automaton Selection

Here in this section, the techniques that we used to eliminate some set of unary
automata, will be explained with showing the according theorems. To eliminate,
we need a set of unary automaton which we are getting it as an input. This set is
generated with brute force and the isomorphic ones eliminated before we use it. We
will not go into details about the generation of corresponding non-isomorphic unary
automaton set since it is out of our scope but the details of elimination process will
be seen in the upcoming parts of this paper.

Theorem 1. Let M = (S,X,Y,δ,λ) be an FSM and M |A = (S,X,δ). If a sequence
x̄ is a synchronizing sequence for M |A then x̄ ∈X? is a homing sequence for FSM
M .

Proof. Since δ(s, x̄) = s′ for all s ∈ S and for some s′ ∈ S, for all states si, sj ∈
S, λ(si, x̄) = λ(sj , x̄) =⇒ δ(si, x̄) = δ(sj , x̄) = s′

Using Theorem 1, we eliminated every automaton with a shorter synchronizing
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sequence than the current conjecture of H(n,p,o) by finding their shortest syn-
chronizing sequence which is NP-hard. As the goal is finding H(n,p,o), the homing
sequences that can be found for the possible FSMs generated by adding output to an
automaton which has shorter synchronizing sequence then the current conjecture of
H(n,p,o) can only decrease the length of shortest homing sequence for correspond-
ing FSM if length of corresponding homing sequence is less than the synchronizing
sequence of that automaton. This technique can also be applied when generating
binary automatons.

But to eliminate some of the unary automata, those automata don’t need to have a
synchronizing sequence. We can still find a limit for the possible homing sequence
length after reaching the reduction–set of corresponding automaton according to
the following theorems.

Theorem 2. (Hibbard, 1961) For an FSM with n states and a subset S′ of k states,
there exists an input sequence x̄ with length at most n−k+1 such that x̄ separates S′.

Corollary 1. For an FSM with n states, to separate two states, an input sequence
with length at most n−1 is enough.

Proof. Consider Theorem 2 when k = 2.

Theorem 3. For an FSM M with n states, and a subset S′ of k states of M ,
there always exists an HS for S′ with length at most (((k−1)× (n+1))− ((k× (k+
1))/2) + 1).

Proof. After every sequence of inputs which separates a single state from the others
makes the number of elements in partition decrease. So for the first state can be
separated after applying a sequence with length at most n−k+1. The second state
can be homed after applying a sequence with length at most n−(k−1)+1 =n−k+2
and so on. Finally, the last two states in a partition will be separated with an input
sequence with length at most n− 2 + 1. Hence the sum of the length of all these
sequences is

2∑
i=k

(n− i+ 1) = (((k−1)× (n+ 1))− ((k× (k+ 1))/2) + 1)

Note that, Theorem 3 gives the Hibbard’s bound when k = n. However, when
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k < n, we can obtain a better upper bound for the length of the shortest HS of
the given FSM. In other words, suppose that we are given a unary automaton with
input alphabet X = {x}, where ` is the reduction–threshold. Hence, we reach to
the reduction–set of the automaton by using the sequence x`. Assume that the
cardinality of the reduction–set of the automaton is k. Then it is easy to see that,
any minimal FSM which is generated using this automaton will have a homing
sequence of length at most `+(((k−1)× (n+1))− ((k× (k+1))/2)+1). Therefore,
if this number is less than the current conjecture for H(n,p,o), we can eliminate the
given automaton, without considering any FSM that could be generated using this
automaton.

3.2 Non-isomorphic Binary Automaton Generation

A binary automaton is generated by superimposing two unary automata as follows.
Let A = (S,Xa, δa) and B = (S,Xb, δb) two unary automata. A binary automaton
C = (S,Xa∪Xb, δ) can be constructed as

• δ(s,x) = δa(s,x) for every s ∈ S,x ∈Xa

• δ(s,x) = δb(s,x) for every s ∈ S,x ∈Xb

We will show this superimposition as C = A
⊕
B. In Figure 3.1, an example super-

imposition is given.

In order to create all possible binary automata, we use the unary automata collection
U we have. As explained in Section 3.1, some of the unary automata are eliminated,
because they do not stand a chance to be used as the underlying automaton of an
FSM which hits to the upper bound we are after. Let U be the all non–isomorphic
unary automata with n states and let U ′ be the subset of U consisting of those
automaton that could not be eliminated by using the techniques given in Section 3.1.

In order to form a binary automaton, we will consider pairs A,B of unary automata
in U ′ and superimpose them. However, it is not sufficient to generate every possible
binary automaton by simply considering the superimposition of every unary automa-
ton pair A,B ∈U ′. In other words, if we just consider automata C =A

⊕
B automata

for all A,B ∈ U , there will be some binary automaton not formed/generated using
this approach. Instead, one has two consider the permutations of the states of
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Figure 3.1 Two unary automata A,B ∈ U and a binary automaton C = A
⊕
B
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the unary automata as well. However, permuting the states of one of the unary
automaton is sufficient for this purpose. Therefore, we consider the states of the
unary automaton A as fixed, and we rename the names of the states of the unary
automaton B. This corresponds to creating all isomorphic unary automata for B,
and pairing it with the unary automaton A for superimposition as explained below.

Given a unary automaton A = (S,X,δ) with n state, and a bijection π from S

to S (i.e. a permutation on S), we can create an isomorphic unary automaton
Aπ = (S,X,δπ) by taking δπ(π(s),x) = π(δ(s,x)), for all s ∈ S,x ∈X. Note that one
can get n! different isomorphic automata Aπ in this way.

In Figure 3.2a and Figure 3.2b, you can find an example unary automaton A and
an isomorphic automaton Aπ which is generated by renaming the states of A.

The following theorem states that this approach is sufficient to generate at least
one binary automaton from every isomorphism class.

Theorem 4. For every binary automaton C, there is an isomorphic binary automa-
ton which can be created as A⊕

Bπ where A= (S,Xa, δa) and B = (S,Xb, δb) are two
unary automata and Bπ is the permutation of B with bijection π :S→S′ (Kisielewicz
& Szykuła, 2013).
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Figure 3.2 A unary automaton A and an isomorphic automaton Aπ where π(0) =
2,π(1) = 0,π(2) = 1
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Using Theorem 4, we generate binary automaton by getting automata pairs from
our non-isomorphic unary automata set if they are not eliminated with theorems in
previous subsection.

As in non-isomorphic unary automaton generation phase, we eliminate binary au-
tomatons from our constructed binary automaton set if their synchronizing sequence
length is less than the current conjecture of H(n,p,o) by using Theorem 1.

We are also eliminating some of the isomorphic binary automata which is generated
according to Theorem 4, using symmetry properties of automata. You can find the
details in the paper of Kisielewicz & Szykuła (2013).

3.3 Non-isomorphic FSM Generation

In non-isomorphic FSM generation part, similarly to the automaton generation part,
first we are generating unary FSMs, eliminate some of them according to some
techniques described lbelow and create binary FSMs with remaining unary FSMs.

We are generating binary FSMs using similar methods with binary automata gen-
eration. A binary FSM is generated by superimposing two unary FSMs from our
unary FSM setM as follows. Let MA = (S,Xa,Y,δa,λa) and MB = (S,Xb,Y,δb,λb)
two unary FSMs. A binary FSM MC = (S,Xa∪Xb,Y,δ,λ) can be constructed as

• δ(s,x) = δa(s,x) for every s ∈ S,x ∈Xa

• δ(s,x) = δb(s,x) for every s ∈ S,x ∈Xb
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• λ(s,x) = λa(s,x) for every s ∈ S,x ∈Xa

• λ(s,x) = λb(s,x) for every s ∈ S,x ∈Xb

We will show this superimposition as MC = MA⊕MB. In Figure 3.3, an example
superimposition is given.

Figure 3.3 Two unary FSMs MA,MB ∈M and a binary FSM MC =MA⊕MB
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(c) MC =MA⊕MB

Given a unary FSMM = (S,X,Y,δ,λ) with n state, and a bijection π from S to S (i.e.
a permutation on S), we can create an isomorphic unary FSMMπ = (S,X,Y,δπ,λπ)
by taking δπ(π(s),x) = π(δ(s,x)) and λπ(π(s),x) = λ(s,x) for all s ∈ S,x ∈X. Note
that one can get n! different isomorphic FSM Mπ in this way.

In Figure 3.4a and Figure 3.4b, you can find an example unary FSM M and an
isomorphic FSMMπ which is generated by renaming the states ofM and the outputs
accordingly.

Before starting to elimination of process, we know that if the possible shortest hom-
ing sequence of a unary FSM is less than our current conjecture, we are eliminating
this FSM from our set to generate binary FSMs. Also from the remaining unary
FSMs with no homing sequences, a subset of them can be eliminated since some
output functions are unnecessary according to the theorems described below.

20



Figure 3.4 A unary FSM M and an isomorphic FSM Mπ where π(0) = 2,π(1) =
0,π(2) = 1
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In the binary FSM generation part, outputs will be added to transitions. Our first
claim is that while adding these outputs we don’t need to make experiments with
o= 1

Theorem 5. Let M = (S,X,Y,δ,λ) be an FSM. There doesn’t exist any minimal
FSM M when o= 1.

Proof. Since o = 1, λ(si,x) = λ(sj ,x) for any input symbol x ∈X and for any two
different states si, sj ∈ S. Therefore, for any input sequence x̄ ∈ X?, λ(si, x̄) =
λ(sj , x̄). Hence there doesn’t exist any input sequence x̄ ∈X?, λ(si, x̄) 6= λ(sj , x̄).

Then half of the FSMs can be eliminated if there was no other elimination
method by using the Theorem 6 below. You can find the experimental numbers of
eliminated FSMs using Theorem 6 in Section 4 in Table 4.2.

Theorem 6. Let M1 = (S,X,Y1, δ,λ1) and M2 = (S,X,Y2, δ,λ2) be two output–
isomorphic FSMs. Then a sequence x̄ ∈ X? is an HS for FSM M1 if and only
if x̄ is an HS for M2.

Proof. Let x̄ ∈X? be an HS for M1. This means ∀s1, s2 ∈ S, if λ1(s1, x̄) = λ1(s2, x̄)
then δ(s1, x̄) = δ(s2, x̄). Since there is a bijection g : Y1→ Y2 such that ∀x ∈X and
∀s ∈ S,g(λ1(s,x)) = λ2(s,x), λ1(s1, x̄) = λ1(s2, x̄) if and only if λ2(s1, x̄) = λ2(s2, x̄).
As the transition function δ is the same for bothM1 andM2, if λ2(s1, x̄) = λ2(s2, x̄),
then δ(s1, x̄) = δ(s2, x̄). Hence, x̄ is an HS for M2.

Theorem 7. LetM1 = (S,X,Y1, δ,λ1) andM2 = (S,X,Y2, δ,λ2) are two FSMs where
Y = {0,1} and λ1(s,x) = 1−λ2(s,x) for every s∈ S,x∈X. Then a sequence x̄∈X?

is a homing sequence for FSM M1 if and only if x̄ is a homing sequence for M2.
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Proof. Having λ1(s,x) = 1−λ2(s,x) means that, we have g(λ1(s,x)) = λ2(s,x) for
the bijection g : {0,1}→ {0,1}, where g(0) = 1 and g(1) = 0. Therefore, M1 and M2

are output–isomorphic FSMs. Then the result follows by using Theorem 6.

Using Theorem 7, it can be concluded that, for Y = {0,1}, there is no need to
create FSMs |(s,x)|λ(s,x) = 0|> |(s,x)|λ(s,x) = 1| for all x∈X and s∈ S or simply
considering FSMs with more 0 than 1 in total as a result of λ(s,x) for all x ∈X and
s ∈ S is unnecessary.

Some large amount of FSMs can be excluded according to the following Theorem 8.

Theorem 8. Let X ′ ⊆ X be a subset inputs and M1 = (S,X,Y,δ,λ1), M2 =
(S,X,Y,δ,λ2) be two FSMs such that:

• λ2(si,x) = λ2(sj ,x) for all si, sj ∈ S, x ∈ X ′, i.e. all output symbols are the
same for the transitions in M2 with input symbols in X ′. Note that, this would
be the case if λ2 is all–zeroes for X ′.

• λ1(s,x) = λ2(s,x) for all x ∈X \X ′ and for all s ∈ S. In other words, M1 and
M2 have the same output function for the transitions with the input symbols
in X \X ′.

If a sequence x̄ ∈X? is a homing sequence for M2, then x̄ is a homing sequence for
FSM M1.

Proof. If x̄ is an HS for M1, following properties should be satisfied.

• λ1(si, x̄) 6= λ1(sj , x̄) for any si, sj ∈ S or

• if λ1(si, x̄) = λ1(sj , x̄) for any si, sj ∈ S then δ(si, x̄) = δ(sj , x̄)

Let x̄ is an HS for M2. Then x̄ satisfies the first property above since for any input
sequence x̄′ ∈ X? and for any two states si, sj ∈ S, if λ2(si, x̄′) 6= λ2(sj , x̄′) then
λ1(si, x̄′) 6= λ1(sj , x̄′). That’s because, for some input symbols and for all states
M1 and M2 have the same output functions and for all remaining transitions M2

produce the same output symbol (properties of M1 and M2 in Theorem 8). Also, x̄
satisfies the second property as both M1 and M2 uses the same transition function
δ, which implies if λ1(si, x̄) = λ1(sj , x̄) then δ(si, x̄) = δ(sj , x̄). Hence x̄ is an HS for
M1.

We use Theorem 8 in our process as follows. If we have two FSMs M1 =
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(S,X,Y,δ,λ1), M2 = (S,X,Y,δ,λ2) satisfying the premises of Theorem 8, we only
need to consider M2 if M2 is minimal since M1 does not have the chance of having
a longer shortest HS than M2. If M2 is not minimal, we have to generate all binary
FSMs which can be created by changing all–zero output of M2 with all the other
allowed output functions. By this method, if all of the generated FSMs are mini-
mal, we just need to consider 2× ((n×o)n−nn)×nn FSMs rather than (n×o)(n×p)

FSMs for our experiments with using no other elimination method. You can find
the experimental numbers of eliminated FSMs using Theorem 8 in Section 4 in
Table 4.2..

You can find the types of used or eliminated output functions while superimposing
two unary FSMs to generate binary FSM by using Theorem 8 in Table 3.1.

Table 3.1 Usage of output functions in experiments according to their types to
generate binary FSMs

Types all–zeroes single–one multi–one
all–zeroes Not Used Used Used

Theorem 5 implied Round 1 Round 2

single–one Used Only the ones that are not Only the ones that are not eliminated
Round 1 eliminated by Theorem 8 - Round 1 by Theorem 8 - Round 1 and Round 2

multi–one Used Only the ones that are not eliminated Only the ones that are not
Round 2 by Theorem 8 - Round 1 and Round 2 eliminated by Theorem 8 - Round 2

As a note, we didn’t do any experiment for p= 1 because of the Theorem 9.

Theorem 9. H(n,1,2) = n−1

Proof. According to Corollary 1, for 2 states in an FSM, an input sequence with
length at most n− 1 is enough to separate them and it is true for every s,s′ ∈ S.
The input sequence with length n− 1 can only be xn−1 since X = {x} in a unary
FSM. Therefore one of the prefixes of xn−1 must be enough to separate each and
every state in a unary FSM, so H(n,1,2) = n−1.

The bound H(n,1,2) = n−1 is actually tight. You can find the structure of FSMs
that are hitting to this upper bound when X = {a} and Y = {0,1} in Figure 3.5.
One of the dashed transitions is enough for the setting. The dotted transition can
be connected to any state of the FSM.
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Figure 3.5 Structure of FSM hits to upper bound when p= 1

0 1 2 . . . n
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When we first start to experiments for a given n, we are setting current conjecture
of H(n,2,2) as H(n−1,2,2) using Theorem 10.

Theorem 10. H(n,p,2)≤H(n+ 1,p,2)

Proof. For p = 1, it can be proven by using Theorem 9. For p > 1, let M =
(S,X,Y,δ,λ) be an FSM when shortest homing sequence of M is x̄, |x̄|=H(n,p,o).
Construct M ′ = (S∪{sn+1},X,Y,δ′,λ′) where for every s ∈ S,x ∈X:

• δ′(s,x) = δ(s,x)

• λ′(s,x) = λ(s,x)

Let x̄ = xx̄′ be an HS for M such that |x̄| = H(n,p,2). For some s ∈ S, we set
δ′(sn+1,x) = δ′(s,x). This makes sure that x̄ will also be an HS for M ′.

However, we also need to have M ′ as a minimal FSM. To this end, let x′ ∈X \{x}
an input symbol other than x and set the transition and the output of sn+1 for x′

such that for all s ∈ S, (δ′(sn+1,x′),λ′(sn+1,x′)) 6= (δ′(s,x′),λ′(s,x′)). In this way,
sn+1 will either produce a different output or it will go into a different state with
any s ∈ S under input x′. Hence, we will be able to distinguish sn+1 from any other
state, which makes sure that M ′ is minimal, since M is minimal.

Note that setting the transition and the output of sn+1 for x′ such that for all s∈ S,
(δ′(sn+1,x′),λ′(sn+1,x′)) 6= (δ′(s,x′),λ′(s,x′)) is possible for any x′, because there
are n× o options but there is only n transitions in M with input x′. Therefore
non–existing pair (δ′(sn+1,x′),λ′(sn+1,x′)) can always be found.

Since M ′ constructed as above is minimal and x̄ is an HS for M ′, we conclude that
H(n,p,2) = |x̄| ≤H(n+ 1,p,2).

Theorem 11. Consider an FSM with n states, and let x̄ be an input sequence
and σ(x̄) = {p1,p2, . . . ,pm} be the uncertainty vector for x̄. Let k1,k2, . . . ,km be the
cardinalities of p1,p2, . . . ,pm, respectively. The length of a shortest homing sequence
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for M is at most

|x̄|+
m∑
`=1

2∑
i=k`

(n− i+ 1) = |x̄|+
m∑
`=1

(((k`−1)× (n+ 1))− ((k`× (k`+ 1))/2) + 1)

Proof. Maximum length of a homing sequence for a given partition is given in Theo-
rem 3. Summation of these lengths for each partition will be resulted as the formula
above. If we try to prove by induction, for m= 1, it can be proved using Theorem 3.
If we assume that formula is correct for m−1, then we have:

|x̄|+
m−1∑
`=1

2∑
i=k`

(n− i+ 1)
︸ ︷︷ ︸
by induction hypothesis

+
2∑

i=km

(n− i+ 1)
︸ ︷︷ ︸

upper bound for the length
of an HS for a single partition

pm by Theorem 3

= |x̄|+
m∑
`=1

2∑
i=k`

(n− i+ 1)

Since for any sequence x̄∈X?, for every pi ∈ σ(x̄), |pi| ≥ |δ(pi, x̄)|, summation above
is correct for worst case.

For an uncertainty vector, adding the length given by Theorem 11 to the length of
the input sequence in the path to that uncertainty vector would provide an upper
bound for the shortest homing sequence of the FSM.

When constructing the homing tree of a unary FSM M , we obtain a unary tree as
expected. While trying to find a homing sequence forM by constructing the homing
tree, let us assume that we come across to a uncertainty vector which is seen before,
which means there is no need to check the rest of the homing tree (pruned) since
there is no homing sequence of this unary FSM which is also known as dead end.
However, for unary FSM M , if we consider the uncertainty vector obtained by the
input sequence takingM to the reduction–set, the reduction–threshold added to the
length given in Theorem 11 can be used as an upper bound for the length of the HS
of M . In case this upper bound is lower than the current conjecture for H(n,p,o),
one can skip further analysis of M .
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4. EXPERIMENTS

In this section, We will explain the experimental study we have conducted to find
an upper for the shortest homing sequence for an FSM with given states and inputs
when the number of inputs is the less than number of states of corresponding FSM.s

The experiments were performed on a machine with Intel(R) Xeon(R) CPU E7-4870
CPU and 50GB of memory, using Ubuntu 16.04.2. The code was written in C/C++
and compiled using gcc with -o3 option enabled and the times elapsed are measured
in terms of microseconds.

In our program, first we get non-isomorphic unary automata set as input. In unary
automata generation phase we eliminate some of those automata using the help of
Theorem 3. After unary automata generation phase, we generate unary FSMs to use
Theorem 3 more efficiently as Theorem 11. Then we produce binary automata to
find their synchronizing sequences and compare their length with current conjecture
of H(n,p,o). The remaining binary automata generates FSMs with non–eliminated
additional outputs by theorems in FSM generation phase and we are done with
the generation. Finally, we find shortest homing sequence of each FSM by using
a homing tree if they are minimal and updating the current H(n,p,o) accordingly.
You can find the general algorithm as pseudocode at the end of this section.

We generated all the non-isomorphic FSMs with number of states n ∈
{3,4,5,6,7,8,9,10}, the number of input symbols p = 2 and the number of out-
put symbols o = 2 if they were not eliminated with the techniques mentioned in
Section 3. Some isomorphic FSMs to previous one with same preferences are also
generated as our algorithm doesn’t eliminate some of isomorphic FSMs but they
didn’t change the H(n,2,2) values as expected.

Table 4.1 gives the number of all possible FSMs and number of non–isomorphic
FSMs for each n ∈ {3,4,5,6,7,8,9,10} and p= {1,2}.

When we add outputs to FSMs, by the help of Theorem 6, we don’t assign more
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Table 4.1 Number of all and non–isomorphic FSMs according to their number of
states and inputs (Harary & Palmer, 2014)

p= 1 p= 2
# of States (n) All (nn) Non-isomorphic All (n2n) Non–isomorphic
3 27 7 729 74
4 256 19 65,536 1,474
5 3125 47 9,76 ×106 41,876
6 46,656 130 2.17 ×109 1.54 ×106

7 823,543 343 6.78 ×1011 6.83 ×107

8 1.67 ×107 951 2.81 ×1014 3.54 ×109

9 3.87 ×108 2,615 1.50 ×1017 2.09 ×1011

10 1.00 ×1010 7,318 1.00 ×1020 1.39 ×1013

1’s than 0’s in total when the set of outputs Y = {0,1}. And for all the n,p values,
the FSMs hits to the bound have n−1 0’s and single 1 as the result of the output
function which makes sense as intuitively it makes harder to identify the final states
from the outputs produced with the high percentage of same output symbol in
transitions.

As a summary, we are doing all our eliminations according to rules below.

• Rule 1: For all unary automata, add the length of an input sequence x̄ which
reaches to reduction–threshold and the result of the formula in Theorem 3 for
the partition reached after applying x̄ and check if the summation is less than
current conjecture of H(n,2,2). If it so eliminate that automaton.

• Rule 2: For all unary FSMs with allowed outputs using Theorem 7, add the
length of an input sequence x̄ which reaches to reduction–threshold and the
result of the formula in Theorem 11 for the partition reached after apply-
ing x̄. Then eliminate that automaton if the summation is less than current
conjecture of H(n,2,2).

• Rule 3: For all binary automata that are generated by superimposition of
2 not eliminated unary automata (one of them is permuted), check if there
is already an another automaton which is isomorphic to one that recently
generated.

• Rule 4: For all binary automata that are not eliminated by Rule3, find their
shortest synchronizing sequence and eliminate that automaton if the length
of shortest synchronizing sequence of corresponding automaton is less than
current conjecture of H(n,2,2).

• Rule 5: Before generating binary FSMs that are generated by superimposition
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of 2 not eliminated unary FSM (one of them is permuted), check each unary
FSM whether their bound obtained by Theorem 11 is still greater than or
equal to current conjecture of H(n,2,2), else eliminate them.

• Rule 6: For each binary FSM M1 = (S,X,Y,δ,λ1), don’t generate the binary
FSMM2 = (S,X,Y,δ,λ2) where λ1(s,x) = 1−λ2(s,x) by implying Theorem 7.

• Rule 7: With remaining unary FSMs, generate binary FSMs according to
Table 3.1.

You can find the number of eliminated automata and FSMs for each n ∈
{3,4,5,6,7,8,9,10} in Table 4.2 according to rules above.

Table 4.2 Experimental results for number of eliminated automata and FSMs ac-
cording to their number of states

# of unary # of unary FSMs # of binary automata # of binary FSMs
automata

# of States(n) Rule 1 Rule 2 Rule 5 Rule 4 Rule 3 Rule 6 Rule 7
3 0 0 149 96 144 72 116
4 3 43 1343 2155 2376 1741 1869
5 13 266 26587 47677 40206 43111 81015
6 50 1530 1090836 1135638 1206120 875240 2636457
7 140 9137 21251273 51505987 44478974 28622016 108953271
8 515 45712 542721008 1354592452 1409695814 565719206 3006556852
9 1645 205999 16071514863 52717190332 32430768070 8676554491 78029236785
10 4877 1144946 372846887604 2595548013299 1454954966204 607306831891 7816703036086

For each n value, when we start to experiments, we knew the bound for FSMs
with n−1 states (H(n−1,2,2)) so we set that bound as our current conjecture of
H(n,2,2) using Theorem 10 to eliminate the automata or FSMs accordingly. As
we update current conjecture of H(n,p,o) faster, we eliminate more automata and
FSMs. Therefore, we selected a group of FSMs which have n−1 0’s and single 1 in
their output function to find their shortest homing sequences first since all the FSMs
that hit to bound are from this set yet. Still we couldn’t prove that the FSMs that
hit to bound should be always from the set with single 1’s in their output function.

Table 4.3 gives the number of FSMs that are generated, elapsed time and the
H(n,2,2) for each n ∈ {3,4,5,6,7,8,9,10}.
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Table 4.3 Experimental results for shortest homing sequences according to number
of states

# of States(n) # of generated Elapsed Time H(n,2,2) # of FSMs Hits # of Non–Isomorphic
binary FSMs to H(n,2,2) FSMs Hits to H(n,2,2)

3 72 0m 0.046s 3 19 12
4 364 0m 0.06s 6 21 11
5 8877 0m 0.094s 9 140 74
6 175336 0m 0.566s 13 132 96
7 2396409 0m 12.374s 18 58 40
8 67528615 4m 59.910s 24 68 40
9 8676554491 142m 22.719s 31 18 8
10 607306831891 12210m 30.236s 38 62 18

In the following figures, you will see some example FSM structures which hits to
H(n,2,2).

Figure 4.1 Two unary FSMsMA,MB ∈M and a binary FSMMC =MA⊕MB which
hits to H(4,2,2)

0 1

23

a/1

a/0

a/0

a/0

(a) MA

0 1

2 3

b/0

b/0

b/0

b/0

(b) MB

0 1

2 3

a/1, b/0

b/0

b/0

b/0 a/0

a/0

a/0

(c) MC =MA⊕MB

29



Figure 4.2 Two unary FSMsMA,MB ∈M and a binary FSMMC =MA⊕MB which
hits to H(5,2,2)
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Figure 4.3 Two unary FSMsMA,MB ∈M and a binary FSMMC =MA⊕MB which
hits to H(6,2,2)
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Figure 4.4 Two unary FSMsMA,MB ∈M and a binary FSMMC =MA⊕MB which
hits to H(7,2,2)
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Figure 4.5 Two unary FSMsMA,MB ∈M and a binary FSMMC =MA⊕MB which
hits to H(8,2,2)
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You can find the pseudocode of our algorithm below.
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Algorithm 1: Phase 1 of General Algorithm
input : U . U is set of all non-isomorphic unary automata with n states
input : H(n−1,2,2) . upper bound for shortest homing sequence of all FSMs

with n−1 states, 2 inputs and 2 outputs
output: U ′ . U ′ will be the set of non-isomorphic unary automata which can

possibly hit to H(n,2,2) with some output function
output: ΛS1 . ΛS1 will be the set of single–one output functions which can

possibly hit to H(n,2,2) with according automata
output: ΛM1 . ΛM1 will be the set of multi–one output functions which can

possibly hit to H(n,2,2) with according automata
output: Hn . Hn is the current conjecture of H(n,2,2)

1 Hn =H(n−1,2,2)
2 U ′ = ∅, ΛS1 = ∅, ΛM1 = ∅
3 forall A ∈ U do
4 if A can not be eliminated by Theorem 3 after possible synchronization then
5 U ′ = U ′∪{A}
6 ΛS1

A = ∅
7 ΛM1

A = ∅
8 forall λ ∈ Λ . Λ is set of allowed output functions for unary automata do
9 M = A

⊎
λ . Addition means adding outputs to transitions according to

selected unary automaton and output function
10 if M can not be eliminated by Theorem 3 after possible homing then
11 if λ is a single–one then
12 ΛS1

A = ΛS1
A ∪{λ}

13 if λ is a multi–one then
14 ΛM1

A = ΛM1
A ∪{λ}

15 ΛS1 = ΛS1∪{(A,ΛS1
A )}

16 ΛM1 = ΛM1∪{(A,ΛM1
A )}

34



Algorithm 2: Phase 2 of General Algorithm (Round 1)
input : U ′

input : ΛS1

input : Hn

output: Updated Hn

1 forall A,A′ ∈ U ′ do
2 forall permutations π do
3 A2 =A

⊕
A′
π . Unary automata superimposition to generate binary automaton.

4 if not (A2 has synchronizing sequence with length less than Hn) then
5 Let ΛS1

A be the set of single–one output functions for automaton A that could
not be eliminated by Theorem 6 and Theorem 8, i.e. (A,ΛS1

A ) ∈ ΛS1

6 forall λ ∈ ΛS1
A . for each such single–one output function λ do

7 M =A
⊎
λ . Extending A with outputs to generate unary FSM M

8 M ′ =A′
π

⊎
λZ . λZ is all–zeroes

9 M2 =M ⊕M ′

10 if M2 is minimal then
11 Find shortest homing sequence x̄ of M2

12 if |x̄| of M2 is greater than Hn then
13 Hn = |x̄|
14

Here, we create binary FSMs
by superimposing 2 unary FSMs
M,M ′ which are generated by

extending all the permutations of
an automaton A′ with all–zeroes
outputs an an another automaton

A with single–one outputs
respectively for all A,A′ ∈ U ′ to

find their shortest homing sequence.

15 else
16 forall λ ∈ ΛS1

A ∪ΛM1
A do

17 M ′ =A′
π

⊎
λπ

18 M2 =M ⊕M ′

19 if M2 is minimal then
20 Find shortest homing sequence x̄ of M2

21 if |x̄| of M2 is greater than Hn then
22 Hn = |x̄|
23

For all non-minimal binary
FSMs that are generated
by process explained
above, we change

all–zeroes outputs of A′

with remaining output
functions and repeat the
same process above by
superimposing unary

FSMs and finding their
shortest homing sequence.

24 forall λ ∈ ΛS1
A′ . for each such single–one output function λ do

25 M =A
⊎
λZ . λZ is all–zeroes

26 M ′ =A′
π

⊎
λπ

27 M2 =M ⊕M ′

28 if M2 is minimal then
29 Find shortest homing sequence x̄ of M2

30 if |x̄| of M2 is greater than Hn then
31 Hn = |x̄|
32

Here, we create binary FSMs
by superimposing 2 unary FSMs
M,M ′ which are generated by

extending all the permutations of
an automaton A′ with single–one
outputs an an another automaton

A with all–zeroes outputs
respectively for all A,A′ ∈ U ′ to

find their shortest homing sequence.

33 else
34 forall λ ∈ ΛS1

A ∪ΛM1
A do

35 M =A
⊎
λ

36 M2 =M ⊕M ′

37 if M2 is minimal then
38 Find shortest homing sequence x̄ of M2

39 if |x̄| of M2 is greater than Hn then
40 Hn = |x̄|
41

For all non-minimal binary
FSMs that are generated
by process explained
above, we change

all–zeroes outputs of A
with remaining output
functions and repeat the
same process above by
superimposing unary

FSMs and finding their
shortest homing sequence.
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Algorithm 3: Phase 2 of General Algorithm (Round 2)
input : U ′

input : ΛS1

input : Hn

output: Updated Hn

1 forall A,A′ ∈ U ′ do
2 forall permutations π do
3 A2 =A

⊕
A′
π . Unary automata superimposition to generate binary automaton.

4 if not (A2 has synchronizing sequence with length less than Hn) then
5 Let ΛM1

A be the set of multi–one output functions for automaton A that
could not be eliminated by Theorem 6 and Theorem 8, i.e. (A,ΛM1

A ) ∈ ΛM1

6 forall λ ∈ ΛM1
A . for each such multi–one output function λ do

7 M =A
⊎
λ . Extending A with outputs to generate unary FSM M

8 M ′ =A′
π

⊎
λZ . λZ is all–zeroes

9 M2 =M ⊕M ′

10 if M2 is minimal then
11 Find shortest homing sequence x̄ of M2

12 if |x̄| of M2 is greater than Hn then
13 Hn = |x̄|
14

Here, we create binary FSMs
by superimposing 2 unary FSMs
M,M ′ which are generated by

extending all the permutations of
an automaton A′ with all–zeroes
outputs an an another automaton

A with multi–one outputs
respectively for all A,A′ ∈ U ′ to

find their shortest homing sequence.

15 else
16 forall λ ∈ ΛS1

A ∪ΛM1
A do

17 M ′ =A′
π

⊎
λπ

18 M2 =M ⊕M ′

19 if M2 is minimal then
20 Find shortest homing sequence x̄ of M2

21 if |x̄| of M2 is greater than Hn then
22 Hn = |x̄|
23

For all non-minimal binary
FSMs that are generated
by process explained
above, we change

all–zeroes outputs of A′

with remaining output
functions and repeat the
same process above by
superimposing unary

FSMs and finding their
shortest homing sequence.

24 forall λ ∈ ΛM1
A′ . for each such multi–one output function λ do

25 M =A
⊎
λZ . λZ is all–zeroes

26 M ′ =A′
π

⊎
λπ

27 M2 =M ⊕M ′

28 if M2 is minimal then
29 Find shortest homing sequence x̄ of M2

30 if |x̄| of M2 is greater than Hn then
31 Hn = |x̄|
32

Here, we create binary FSMs
by superimposing 2 unary FSMs
M,M ′ which are generated by

extending all the permutations of
an automaton A′ with multi–one
outputs an an another automaton

A with all–zeroes outputs
respectively for all A,A′ ∈ U ′ to

find their shortest homing sequence.

33 else
34 forall λ ∈ ΛS1

A ∪ΛM1
A do

35 M =A
⊎
λ

36 M2 =M ⊕M ′

37 if M2 is minimal then
38 Find shortest homing sequence x̄ of M2

39 if |x̄| of M2 is greater than Hn then
40 Hn = |x̄|
41

For all non-minimal binary
FSMs that are generated
by process explained
above, we change

all–zeroes outputs of A
with remaining output
functions and repeat the
same process above by
superimposing unary

FSMs and finding their
shortest homing sequence.
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5. CONCLUSION & FUTURE WORK

We know that upper bound for the length of a shortest homing sequence for minimal
FSMs with n states is n(n−1)/2 which was found by Hibbard (1961). This bound
is actually a tight bound but all the examples that hits to this bound have n− 1
input symbols. Therefore, we were curious about the upper bound for the FSMs
with number of input symbols less than n−1 (p < n−1s). We did an experimental
research as we generated all the FSMs that can hit to bound, eliminate some of them
with the explained theorems in the paper and find the shortest homing sequences
of remaining ones for n ∈ {3,4,5,6,7,8,9,10}, p = 2 and o = 2. As a result of the
research, it is certain that Hibbard’s bound is not a tight bound for FSMs with
p < n−1. Although such an experimental work does not show this claim for all n, it
at least shows that n(n−1)/2 is not a tight bound for all number of states n, when
the number of inputs is less than n−1.

In the experiments we could consider small state sizes only, since there are (n×
o)(n×p) FSMs for given number of states n, input symbols p and output symbols o.
In addition, finding shortest homing sequence for a given FSM is known to be an
NP–hard problem. Even tough for the state sizes we consider, finding the shortest
homing sequences for one FSM can easily be handled using an exponential time
algorithm, this algorithm is still at a critical point in our code, both performance and
correctness purposes. That’s why we double checked the shortest homing sequences
of FSMs with 2 different algorithms for FSMs up to 7 states. After increasing our
confidence in the implementation of the shortest homing sequence algorithm in this
way, we omit this double–check for the experiments in FSMs with 8 or more states,
due to the huge FSM set size for these number of states.

Currently, we do not know the generating function for the sequence H(n,2,2) we
obtained by our experiments. The sequence H(n,2,2) is an interesting sequence
since there was no such sequence in OEIS (2019). Another interesting finding is the
structure of the FSMs that hit to this bound. When Hibbard stated his n(n−1)/2)
bound, he also provided a class of FSMs with a certain structure (see Figure 1.1)
that hits to this bound. Unfortunately, we could not identify such a class of FSMs
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with a regular structure hits to the bounds for H(n,2,2).

We believe that H(n,p,o′) <H(n,p,2) where o′ > 2. Intuitively it makes harder to
separate states with less output symbols. Hence, we can conclude that H(n,2,o) =
n− 1 by using Theorem 9 if we accept H(n,p,o′) < H(n,p,2). However, we don’t
have a formal proof for this claim. Similarly, we also believe that all the FSMs that
hit H(n,p,o) have single–one output function for entire set of input symbols X or
more formally CX = 1. Although the experiments that we have done so far shows
this claim to be true, we don’t have a proof for this idea either.

For future work, one can find more elimination methods for FSMs to check FSMs
with larger number of states, make a deeper analysis for the FSMs that hit to
the bound. Trying to prove the ideas explained in the previous paragraph would
be a great improvement since the number of FSMs will be eliminated after those
assumptions will be huge. Obviously, an ultimate solution to the problem would be a
mathematical proof for the upper bound on the length of shortest homing sequences
for FSMs with a constant number of inputs.
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