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ABSTRACT

BAYESIAN REINFORCEMENT LEARNING WITH MCMC TO MAXIMIZE

ENERGY OUTPUT OF VERTICAL AXIS WIND TURBINE

ARDA AĞABABAOĞLU

Mechatronics Engineering M.Sc. Thesis, June 2019

Thesis Supervisor: Assoc. Prof. Dr. Ahmet Onat

Keywords: Reinforcement Learning, Markov Chain Monte Carlo,

Radial Basis Function Neural Network, Wind Energy Conversation

Systems, Vertical Axis Wind Turbines

Optimization of energy output of small scale wind turbines requires a controller

which keeps the wind speed to rotor tip speed ratio at the optimum value. An

analytic solution can be obtained if the dynamic model of the complete system is

known and wind speed can be anticipated. However, not only aging but also errors

in modeling and wind speed prediction prevent a straightforward solution.

This thesis proposes to apply a reinforcement learning approach designed to optimize

dynamic systems with continuous state and action spaces, to the energy output

optimization of Vertical Axis Wind Turbines (VAWT). The dynamic modeling and

load control of the wind turbine are accomplished in the same process. The proposed

algorithm is a model-free Bayesian Reinforcement Learning using Markov Chain

Monte Carlo method (MCMC) to obtain the parameters of an optimal policy.

The proposed method learns wind speed profiles and system model, therefore, can

utilize all system states and observed wind speed profiles to calculate an optimal

control signal by using a Radial Basis Function Neural Network (RBFNN). The

proposed method is validated by performing simulation studies on a permanent

magnet synchronous generator-based VAWT Simulink model to compare with the

classical Maximum Power Point Tracking (MPPT). The results show significant

improvement over the classical method, especially during the wind speed transients,

promising a superior energy output in turbulent settings; which coincide with the

expected application areas of VAWTs.



ÖZET

DİKEY EKSENLİ RÜZĞAR TÜRBİNİNİN ENERJİ ÇIKTISINI BÜYÜTMEK

İÇİN MZMC İLE BAYESÇİ PEKİŞTİRMELİ ÖĞRENME

ARDA AĞABABAOĞLU

Mekatronik Mühendisliği Yüksek Lisans Tezi, Haziran 2019

Tez Danışmanı: Doç. Dr. Ahmet Onat

Anahtar Kelimeler: Pekiştirmeli Öğrenme, Markov Zincirli Monte

Carlo, Dairesel Tabanlı Fonksiyon Sinir Ağı, Rüzgar Enerjisi

Dönüştürme Sistemleri, Dikey Eksenli Rüzgar Türbini

Küçük ölçekli rüzgâr türbinlerinin (DERT) enerji çıkışının optimizasyonu, rüzgâr

hızını rotor uç hızı oranını optimum değerde tutan bir kontrolör gerektirmektedir.

Eğer dinamik model sistemin tamamı bilinir ve rüzgâr hızı tahmin edilebilirse, anali-

tik bir çözüm elde edilebilir. Ancak, sadece yaşlanma değil aynı zamanda modelleme

ve rüzgar hızı tahminindeki hatalar basit bir çözümü engeller.

Bu tezde, Dikey Eksenli Rüzgar Türbinlerinin enerji çıkış optimizasyonuna, sürekli

durum ve aksiyon uzaylarına sahip dinamik sistemleri optimize etmek için tasar-

lanmış bir Pekiştirmeli öğrenme yaklaşımı uygulaması önerilmektedir. Rüzgar türbininin

dinamik modellemesi ve yük kontrolü; tek süreç içinde ele alınmaktadır. Önerilen

algoritma bir optimal politikanın parametrelerini elde etmek için Markov Zincirli

Monte Carlo kullanarak modelden bağımsız Bayesçi Pekiştirmeli Öğrenmedir.

Önerilen yöntem rüzgar hızı profillerini ve sistem modelini öğrenir, bu nedenle,

Dairesel Tabanlı Fonksiyon Sinir Ağı (DTFSA) kullanarak optimal kontrol sinyalini

hesaplamak için tüm sistem durumlarını ve gözlenen rüzgar hızı profillerini kul-

lanabilir. Önerilen yöntem, klasik Maksimum Güç Noktası Takipçisi (MGNT) ile

karşılaştırmak üzere sabit mıknatıslı senkron jeneratör tabanlı DERT Simulink mod-

eli için simülasyon çalışmaları yapılarak doğrulanır. Sonuçlar klasik yöntem ile

kıyaslandığında, özellikle rüzgar hızı geçişlerinde, önemli bir gelişme göstermiştir,

ayrıca değişken hızlar için umut vadeden enerji çıktısı göstermiştir ki bu Dikey Ek-

senli Rüzgar Türbinlerini (DERT) için istenilen bir durumdur.
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Chapter 1

Introduction

The main objective of the machine learning (ML) algorithm in control is to ensure a

system that is optimally adapted to uncertain conditions. One of the most powerful

ML methods for control problems in literature is reinforcement learning (RL) [1].

In RL, sequentially, the agent provides a transition from the current state to a next

state by applying an action. The quality of this transition is defined by the reward

function which is used to find an optimal policy for performance criterion based on

the long-term goals. General scheme of RL is illustrated in Figure 1.1.

Figure 1.1: Reinforcement learning general scheme.
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The RL approaches such as Policy Gradient (PG) algorithms are qualified to cope

with continuous state spaces encountered in control problems [2, 3].

Due to growing environmental concerns, renewable energy systems have gained great

importance worldwide. The wind energy conversion systems have recently been got

attention among the renewable energy sources [4]. A wide variety of wind turbine

models are available which can be classified mainly as horizontal axis wind turbines

(HAWTs), in which the rotor axis is horizontal, in the direction of wind flow, and

vertical axis wind turbines (VAWTs), in which the rotor axis is vertical, perpendic-

ular to the direction of wind flow; the advantages of these have been examined in

these studies [5–7].

(a) VAWT. (b) HAWT.

Figure 1.2: Examples of WECSs.

VAWTs do not need to rotate in to the wind and have fixed aerodynamic structure

because they work independently from the wind direction. VAWTs are generally

small-scale wind turbines due to physical limitations. The small-scale wind turbines

have a power capacity of 1.4–20 kW according to [8]. Recently, the variable-speed
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control for the wind energy conversion systems (WECSs) allows capturing more en-

ergy from the wind thanks to better power electronic components and pitch control.

WECSs are mainly controlled by a electrical load and/or rotor blade pitch angle for

obtaining the variable-speed control.

Figure 1.3: The schematic of wind energy conversion system.

The control schematic diagram of a WECS is illustrated in Figure 1.3. The kinetic

energy of wind is converted to the mechanical energy by wind turbine aerodynamics.

The mechanical power is a function of Tw, torque of wind, and ωr, rotor angular

velocity. Then, generator converts wind power to electric power. Generally, the

torque of wind(Tw) and/or rotor angular velocity(ωr) are monitored by the control

system in order to calculate the control signal in the form of load current reference.

Wind turbine power generation is a function of rotor aerodynamics and wind speed.

The power extracted by the blades can be calculated by (1.1) as commonly referred

in literature [4].

Pw =
1

2
CpρAswU

3
w (1.1)

Here, ρ is air density, Asw is swept area of the turbine and Uw is wind speed. The

swept area of the VAWT used in this thesis (Asw), is shown in Figure 1.4 and is

calculated with (1.2).

Asw = 2RL (1.2)

The power coefficient Cp defines conversation ratio of the wind energy to the me-

chanical energy through aerodynamic design. To obtain optimum power output, the
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wind speed to rotor tip speed ratio corresponding to a specific ωr must be main-

tained. This condition brings Cp to its optimum value. Most of the research in

energy or power output focuses on this goal.

Figure 1.4: Swept area of the studied VAWT.
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1.1 Motivation

The optimization of obtained energy is one of the most challenging issue for the

wind energy conversion system (WECS). The classic control methods (PID, LQR,

MPPT) and/or the more advanced control methods such as Model Predictive Con-

trol for wind turbine systems demonstrate optimality issue. For all of the mentioned

methods, in order to apply a satisfactory control method for the variable wind profile,

an online optimization approach is preferred. Furthermore, they demand lineariza-

tion of the system around some working points. These challenges have inspired us

to use an alternative approach which is based on data driven methods, which take

into account all nonlinearities of the plant as an implicit or explicit model. Our

proposed control strategy uses radial basis function neural network (RBFNN) as a

controller that adjusts the value of load coefficient CL as a control signal in order

to maximize the energy output of the VAWT. The plant is a small-scale VAWT

system that includes a three-straight-bladed rotor. The parameters of this nonlin-

ear controller itself are learned by Bayesian Reinforcement Learning with Markov

Chain Monte Carlo (MCMC) method. This control strategy enables us to learn the

model of VAWT to calculate the value of load coefficient CL as a control signal for

given wind speed, rotor speed, load voltage and load current. In addition, unpre-

dictable wind flows always become a significant challenge for wind energy systems;

therefore our proposed control strategy addresses this issue explicitly by learning un-

predictable wind profiles and the model of the VAWT. Furthermore, the proposed

learning method is capable of learning the changes to the VAWT dynamics, such as

rotor blade wear, friction coefficient change, aging of components and so on.
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1.2 Outline of The Thesis

Chapter 2 presents a literature survey on control approaches for WECS and theoret-

ical background of this research. Chapter 3 presents mathematical model of studied

plant. This model consists of the aerodynamics of the VAWT, the generator and

the load of VAWT. Chapter 4 presents the state-of-art of Bayesian Reinforcement

Learning via MCMC and the RBFNN structure. Chapter 6 presents the parameters

and simulation results for proposed Bayesian Reinforcement Learning via MCMC

learning control strategy. Chapter 7 is the conclusion of this thesis and future works.
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Chapter 2

Literature Survey and Background

In this chapter, control methodologies for VAWT systems in literature are investi-

gated in terms of control performance, weakness, strength and robustness. Different

applications of related reinforcement learning algorithms will be presented.

2.1 Control Approaches for Vertical Axis Wind

Turbine Systems

The variable-speed control for wind turbine has recently gained attention, because

it provides more energy output compared to the fix-speed control. There are several

control approaches commonly used for the variable-speed control for wind turbines:

Maximum Power Point Tracking (MPPT), model predictive control (MPC) and

Reinforcement Learning methods to name a few. Especially, the variable-speed

control is favored for VAWTs due to their simple fixed aerodynamic structure.
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The first well-known control technique for vertical axis wind turbine systems is

Maximum Power Point Tracking (MPPT). There is an optimal tip - speed ratio cor-

responding to a given generator rotor speed (ωr) for each turbine for a specific wind

speed, which provides the maximum power to be obtained. MPPT algorithms aim

to maximize power output along the gradient of this ratio. MPPT is verified to be

efficient in maximizing the instantaneous power; however, this is not equivalent to

the maximization of the total energy output. There are three types of a MPPT al-

gorithms, namely, Power Signal Feedback control, Tip Speed Ratio control, Perturb

and Observe control as given in [9]. Moreover, there are two main control algo-

rithms for controlling a small scale wind turbine by MPPT as outlined in [10]. First

calculates the operating point based on preceding knowledge of turbine parameters.

Second group’s algorithms use iterative methods to explore the optimum control

values. There are diverse MPPT approaches and implementations in literature such

as adaptive MPPT algorithms [11], fuzzy logic MPPT algorithms [12], sensor-less

MPPT algorithms [13–15], and standard MPPT algorithms [16, 17].

The other well-known control technique for VAWT in literature is model predictive

control (MPC). MPC is useful when a precise model of the system is at hand and

the objective function is convex [18]. This technique applies an on-line optimization

approach with predictive look-ahead in order to obtain a satisfactory control signal

for the variable wind profile. Since MPC must solve the optimization problem in a

limited time, in some cases the objective function may not properly be maximized

or minimized. Also, MPC requires the knowledge of future wind velocity that must

be collected, and conveyed separately to the wind turbine. In general, drastically

changing wind speeds may make the method inefficient, as MPC is a relatively

slow control method. There are several implementations of MPC for wind energy

conversation systems (WECS) given in [19–24]. Moreover, there are two examples

of nonlinear model predictive control applications [25, 26].
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Recently, Artificial Intelligence (AI) methods, especially Machine Learning (ML),

are applied to dynamic systems such as control and robotic systems [27–29] for

maximizing control performance. On the other hand, there are limited numbers of

research on controlling wind energy conversation systems (WECS) by ML meth-

ods. In [30], the classic control approach MPPT is utilized by using Continuous

Actor-Critic method. Reinforcement learning has been used for improving MPPT

controller performance [31–33]. Besides, artificial neural-networks are used in WECS

control by diverse approaches [34–37], and artificial neural-networks are used for sys-

tem identification [38]. Furthermore, [39] and [40] practice deep machine learning

methods to predict wind speed or wave speed.

Bayesian Reinforcement Learning is an extremely powerful technique for determining

the optimal policy in stochastic dynamical systems regardless of system dynamics.

This model-free RL approach works under the existence of some prior knowledge

that is assumed to be in the form of a Markov decision processes (MDP). Bayesian

Reinforcement Learning is a favorable approach for robotic and control problems,

since it provides optimal policy without the exact knowledge of system model. The

examples of Bayesian reinforcement learning application in robotics are given [28, 29,

41, 42]. The other approaches [43, 44] use Bayesian learning to optimize a controller.

WECS can be modeled as MDP similar to robotics systems. However there are no

published results for controlling WECS via Bayesian reinforcement learning to the

knowledge of the author.

Radial basis function neural network (RBFNN) is a type of the three-layer feed-

forward neural network, consisting of an input layer, a hidden layer and an output

layer. RBFNN is commonly used for regression problems, pattern recognition, clas-

sification problems, and time series predictions. Recently, RBFNN is applied to

control problems as a controller or to optimize diverse controllers. Different appli-

cations of RBFNN can be listed as; the robotic application shown in[45], [46] uses

RBFNN to solve regression problems, [47] and [48] utilize RBFNN as controller for

9



proses control systems, power system controller implementations can be found in

[49] and [50], the electro-mechanical systems are controlled by RBFNN controller

in[51, 52].

10



Chapter 3

Vertical Axis Wind Turbine

System Model

This chapter presents the used vertical axis wind turbine (VAWT) models, which

consist of the aerodynamics of the VAWT, the generator, the power electronic part,

and the load.

3.1 Vertical Axis Wind Turbine

The general schematic block diagram of the studied vertical axis wind turbine is

illustrated in Figure 3.1. The studied vertical axis wind turbine system model is

obtained from [6]; where all system parameters and all system equations are directly

taken from.

11



Figure 3.1: Block diagram of the studied system

3.1.1 The model of the vertical axis wind turbine

The power coefficient Cp defines conversation ratio of the wind energy to the me-

chanical energy through aerodynamic design, is generally expressed as a function

of the tip-speed-ratio (TSR), λ, illustrated in equations 3.1, to the upstream wind

speed.

λ =
ωrR

Uw
(3.1)

where ωr is the generator rotor speed, R is radius of VAWT and Uw is wind speed.

Betz Limit, which indicates the maximum available power from the wind, is equal

to 0.59259 [4]. This Betz Limit is also the maximum theoretical value of the power

coefficient Cp which is used in (1.1). However, typically, the maximum amount of Cp

is lower than Betz limit. Equation (3.2) is constructed in order to use in simulations

for mimicking the actual aero-dynamical effects of wind and wind turbine design.

Pw = Cp (λ) ρRLU3
w (3.2)

where ρ, Cp and L is described in Table 3.1. Moreover, all parameters of the studied

VAWT system are given in Table 3.1, which is obtained from [6].

12



Table 3.1: VAWT system parameters.

Parameter Name Description Value Unit
Jr Moment of inertia of the rotor 2 kg −m2

R Radius of the rotor 0.5 m
L Length of a blade 1 m
br Friction coefficient 0.02 Ns/rad
ρ Air density 1.2 kg/m3

0 0.5 1 1.5 2 2.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 3.2: λ− Cp curve of studied system

Pw is available in (3.2), so this equation can be used for calculating Tw (3.4). How-

ever, ωr is not available yet, the generator (3.5) provides ωr. Moreover, Cp is non-

linear equation of λ that is given in (3.3).

Cp (λ) = p1λ
6 + p2λ

5 + p3λ
4 + p4λ

3 + p5λ
2 + p6λ (3.3)

Tw =
Pw
ωr

=
Cp (λ) ρRLU3

w

ωr
(3.4)

The coefficients of Cp (λ), which are ilustrated in Table 3.2, are taken from [6]. The

plot of Cp (λ)(3.3) versus λ is illustrated in Figure 3.2 by using coefficients are given

in Table 3.2.
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Table 3.2: The coefficient values used in Cp model.

Coefficient Value
p1 -0.3015
p2 1.9004
p3 -4.3520
p4 4.1121
p5 -1.2969
p6 0.2954

3.1.2 The permanent magnet synchronous generator and

simplified rectifier model of the vertical axis wind tur-

bine

Figure 3.3: PMSG-Rectifier schematic.

The permanent magnet synchronous generator (PMSG) equation of motion for the

rotor is given by:

Jr
dωr
dt

= Tw − Tg − Trf (3.5)

where Jr is the equivalent inertia of the rotor, Tg is the generator torque on the

rotor, Trf is the viscous friction torque, which is assumed to be proportional to ωr

by a coefficient br as:

Trf = brωr (3.6)
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The permanent magnet synchronous generator (PMSG) and passive rectifier electric

schematic diagram is illustrated in Figure 3.3 where Es is electromotive force (EMF),

Ls is phase inductance and Rs is the phase resistance of the PMSG. According to

[6], the load voltage (VL) is determined by the generator rotor angular speed (ωr)

and current draw [53]. VL is maximum when the load current (IL) is zero. The

load voltage (VL) deceases when IL increases due to the generator torque (Tg) in

(3.5). The generator torque (Tg), which is proportional to IL by a coefficient torque

constant Kt, can be expressed as follows;

Tg = KtIl (3.7)

Figure 3.4: Simplified DC model of PMSG-Rectifier.

On the other hand, transformation of the 3-phase model to an equivalent DC model

with the voltage drops for a given current and the generator rotor speed(ωr) by ig-

noring fast dynamics of PMSG and the rectifier models is explained in [54, 55]. The

PMSG-rectifier model and the simplified equivalent DC model are shown in Figure

3.4. The voltage drop (Rdc) represents PMSG and the rectifier resistive voltage

drops. In addition to the resistive voltage drop, to obtain a realistic simplified DC

model, Rover needs to be included to represent the average voltage drop due to the

current commutation in the 3-phase passive diode bridge rectifier, armature reac-

tion in the generator and overlapping currents in the rectifier during commutation

intervals.

Rover =
3Lspωr
π

(3.8)
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Esdc, Ldc, Rdc values in Figure 3.4, which represent the corresponding values between

the 3-phase AC model and the equivalent DC model, can be calculated via the values

in Table 3.3. Finally, according to [6], VL is;

VL =

√
E2
sdc + (pωrLdcIL)2 − (Rdc +Rover)IL (3.9)

Table 3.3: PMSG and DC model values.

Variable PMSG DC Model

Flux φs φdc = 3
√

6φs/π

EMF Es = φspωr Esdc = 3
√

6Es/π
Inductance Ls Ldc = 18Ls/π

2

Resistance Rs Rdc = 18Rs/π
2

φs = 0.106V s/rad, p = 6, Ls = 3.3mH, Rs = 1.7Ω
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3.1.3 The load model of the vertical axis wind turbine

In a real application of VAWT, the load consists of high efficiency power electronic

elements such as the MOSFET, IGBT, low ESR capacitors and micro-controller for

controlling power electronic elements. In this study, the load is represented by a

simplified circuit. The load model is illustrated in Figure 3.5. RL represents the

input resistance of power converter or similarly its duty ratio.

Figure 3.5: Simplified load model of VAWT.
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Chapter 4

Reinforcement Learning

In general, Reinforcement Learning (RL) problems can be defined as a Markov

Decision Process (MDP) that is constructed by the tuple

(S,A, g, η, r) (4.1)

where S and A stand for continuous state and action spaces, respectively. The

state transition function g with an initial state function η is a probability distri-

bution which determines the latent state of the agent in each time step given the

current state and action g(st+1|st, at). During the interaction of the state with its

corresponding environment resulting in a transition from the current state st to

new state st+1 after executing action at, a scalar reward r is assigned for evaluat-

ing the quality of each individual state transition. This is demonstrated in Figure

1.1 schematically. A parameterized control policy denoted as hθ(at|st) which plays

the role of action selection scheme, is defined through a parameter vector θ which

belongs to a parameter space Θ. Letting Xt = (St, At) forms a Markov chain for

{Xt}t≥1 with the following transition law

fθ(xt+1|xt) := g(st+1|st, at)hθ(at|st). (4.2)
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4.1 Policy Gradient RL

Policy Search (PS) algorithms, which is a favorable RL approach for control prob-

lems, focus on finding parameters of policy for a given problem (4.1). The policy

gradient algorithms as a PS RL method, which have recently drawn remarkable at-

tention for control and robotic problems, can be implemented in high-dimensional

state-action spaces. Because the robotic and control problems usually require deal-

ing with large-dimensional spaces. The discounted sum of the immediate rewards

up to time n is defined as

Rn(x1:n) :=
n−1∑
t=1

γt−1r(at, st, st+1). (4.3)

where γ ∈ (0, 1] is a discount factor and r(at, st, st+1) is reward function. The joint

probability density of a trajectory x1:n until time n− 1 is

pθ(x1:n) := fθ(x1)
n−1∏
t=1

fθ(xt+1|xt). (4.4)

where fθ(x1) = η(s1)hθ(a1|s1) and xt = (st, at), is the initial distribution for X1.

Furthermore, the general distribution of trajectory function is given in (4.5)

pθ(x1:n|θ) = f(s1)
n−1∏
t=1

fθ(st+1|st, at)hθ(at|st, θ) (4.5)

where pθ(x1:n) is the trajectory density function with an initial state f(s1). In a

finite horizon RL setting, the performance of a certain policy, J(θ) is given by:

Jn(θ) = Eθ[U(Rn(X1:n))] =

∫
pθ(x1:n)U(Rn(x1:n))dx1:n. (4.6)

The integral in (4.6) is intractable due to the fact that the distribution of the tra-

jectory pθ(x1:n) is either unknown or complex; thus calculation of ∇θJn(θ) in (4.10)

19



is prohibitively hard. In order to deal with this problem, state-of-the-art policy

gradient RL methods have been proposed by optimization techniques [2, 56–62], or

exploring admissible regions of Jn(θ) via Bayesian approach [63, 64]. One of the

very first methods in estimating ∇θJn(θ)in (4.10) is based on the idea of likelihood

ratio methods. By taking the gradient in (4.6) we can formulate the gradient of the

performance with respect to the parameter vector as:

∇Jn(θ) =

∫
∇pθ(x1:n)Rn(x1:n)dx1:n. (4.7)

Next, by using (4.4) as well as the ‘likelihood trick’ identified by ∇pθ(x1:n) =

pθ(x1:n)∇ log pθ(x1:n), where the product converted to summation according to log-

arithm’s specifications, we can rewrite (4.7) as

∇Jn(θ) =

∫
pθ(x1:n)

[
n∑
t=1

∇ log hθ(at|st)

]
Rn(x1:n)dx1:n. (4.8)

Specifically, the goal of policy optimization in RL is to find optimal policy parameters

θ∗ that maximizes the expected value of some objective function of total reward Rn

θ̂ = arg max
θ∈Θ

J(θ) (4.9)

Although it is hardly ever possible to evaluate θ∗ directly with this choice of Rn ,

maximization of J(θ) can be accomplished by policy gradient (PG) methods that

utilize the steepest ascent rule to update their parameters at iteration i as:

θ(i+1) = θ(i) + β∇Jn(θ(i)). (4.10)

where xt = (st, at). The objective of policy search in RL is to seek optimal policy

parameters θ with respect to some expected performance of the trajectory X1:n.

The RL methodology proposes to sample N trajectories from pθ(x1:n) and then
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performing Monte Carlo approximation over these N trajectories in order to approx-

imate ∇θJ(θ).

∇Jn(θ) ≈ 1

N

N∑
i=1

[
n∑
t=1

∇ log hθ(a
(i)
t |s

(i)
t )

]
Rn(x

(i)
1:n). (4.11)

One of the RL methods that has successfully been applied in the domain of robotics

which suit for the large-dimensional continuous state spaces, is a gradient based

method called Episodic Natural Actor Critic (eNAC) which is extensively discussed

in [65]. In this method ∇θJ(θ) is calculated by solving a regression problem as:

∇θJ(θ) =
(
ψTψ

)−1
ψTR (x1:n) (4.12)

where ψ is the gradient of the logarithm of the parameterized policy and is calculated

for each iteration of the algorithm as:

ψ(i) =
N∑
t=1

∇ log hθ

(
a

(i)
t |s

(i)
t

)
(4.13)

A control policy which best represents the action selection strategy (calculation of

the control signal) in robotics problems is usually a Gaussian probability distribution

which takes into account the stochasticity of the system:

hθ(a|s) =
1√

2πσ2
exp

{
−(a− θT s)2

2σ2

}
. (4.14)

where µ is the vector of parameters to be learned. As a result, the gradient of this

policy can easily be calculated as:

∇θ log π (a|s, θ) =
a− s
σ2

s (4.15)

The resulting strategy for the gradient based policy search then can be illustrated

schematically in Figure 4.1 If the policy generates a reference trajectory, a controller
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Figure 4.1: Gradient based policy search strategy

is required to map this trajectory (and the current state) to robot control commands

(typically torques or joint angle velocity commands). This can be done for instance

with a proportional-integral-derivative (PID) controller or a linear quadratic tracking

(LQT) controller. The parameters of this controller can also be included in θ, so

that both the reference trajectory and controller parameters are learned at the same

time. By doing so, appropriate gains or forces for the task can be learned together

with the movement required to reproduce the task.

4.2 Bayesian Learning via MCMC

In this section, we will discuss the benefits of the Bayesian method which concen-

trates on the control problem in Markov decision processes (MDP) with continuous

state and action spaces in finite time horizon. The proposed method is a RL based

policy search algorithm which uses Markov Chain Monte Carlo (MCMC) approaches.

These methods are best applicable for complex distributions where sampling are

difficult to achieve. The scenario here is to use risk-sensitivity notion, where a mul-

tiplicative expected total reward is employed to measure the performance, rather
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than the more common additive one [28]. Using a multiplicative reward structure

facilitates the utilization of Sequential Monte Carlo methods which are able to esti-

mate any sequence of distributions besides being easy to implement. The advantage

of the proposed method over PG algorithms, is to be independent of gradient com-

putations. Consequently, it is safe from being trapped in local optima. Compared

to PG when it comes to calculation of the performance measure J(θ), in Bayesian

approach by considering the fact that J(θ) is hard to calculate due to intractability

of the integral in (4.6), we establish an instrumental probability distribution π(θ)

which is easy to take samples from and try to draw samples from this distribution

without any need to calculate gradient information, as we did in PG RL algorithms.

The novelty of the presented approach is due to a formulation of the policy search

problem in a Bayesian inference where the expected multiplicative reward, is treated

as a pseudo-likelihood function. The reason for taking J(θ) as an expectation of

a multiplicative reward function is the ability to employ unbiased lower variance

estimators of J(θ) compare to methods that utilize a cumulative rewards formulation

which lead in estimates with high variance. Instead of trying to come up with a single

optimal policy, we cast the problem into a Bayesian framework where we treat J(θ)

as if it is the likelihood function of θ. Combined with an uninformative prior µ(θ)

this leads to a pseudo-posterior distribution for the policy parameter. We then aim

to target a quasi-posterior distribution and draw samples from via applying MCMC

which is constructed as

πn(θ) ∝ µ(θ)Jn(θ)

MCMC methods are a popular family of methods used to obtain samples from com-

plex distributions. Here, the distribution of our interest is π(θ), which is indeed hard

to calculate expectations with respect to or generate exact samples from. MCMC

methods are based on generating an ergodic Markov chain {θ(k)}k≥0, starting from
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the initial θ(0)¡, which has the desired distribution, in our case π(θ), as its invari-

ant distribution. Arguably the most widely used MCMC method is the Metropo-

lis–Hastings (MH) method where a parameter is recommended as a candidate value

which is being derived from a proposal density as θ′ ∼ q(θ′|θ) Afterwards, the pro-

posed θ′ value is either accepted with a probability of α(θ, θ′) = min{1, ρ(θ, θ′)} and

the new parameter is updated as θ(k) = θ′ or the proposed θ′ is rejected and the value

of new parameter does not change i.e. θ(k) = θk−1. Here ρ(θ, θ′) is an acceptance

ratio defined as:

ρ(θ, θ′) =
q(θ|θ′)
q(θ′|θ)

π(θ′)

π(θ)
=
q(θ|θ′)
q(θ′|θ)

µ(θ′)J(θ′)

µ(θ)J(θ)
(4.16)

Because of difficulty in calculation of J(θ), computing this ratio is prohibitively

hard. Despite this fact, one can select samples from π(θ) by applying SMC method

to get an unbiased and non-negative estimate of J(θ) as demonstrated in Algorithm

2. The proposed method is summarized in Algorithm 1. Moreover, the detailed

information of the proposed algorithm can be found in [28]. The other application of

this Bayesian learning via MCMC is given [29], where estimates of the proportional

and derivative(PD) controller coefficients using the proposed method for 2-DOF

robotic system is determined.
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Algorithm 1: Pseudo-marginal Metropolis-Hastings for RL

Input: Number of time steps n, initial parameter and estimate of expected
performance (θ(0), Ĵ (0)), proposal distribution q(θ′|θ)

Output: Samples θ(k), k = 1, 2, . . .
for k = 1, 2, . . . do

Given θ(k−1) = θ and Ĵ (k−1) = Ĵ , sample a proposal value θ′ ∼ q(θ′|θ).
Obtain an unbiased estimate Ĵ ′ of J(θ′) by using Algorithm 2
Accept the proposal and set θ(k) = θ′ and Ĵ (k) = Ĵ ′ with probability
min{1, ρ̂(θ, θ′)} where

ρ̂(θ, θ′) =
q(θ|θ′)
q(θ′|θ)

µ(θ′)

µ(θ)

Ĵ ′

Ĵ
,

otherwise reject the proposal and set θ(k) = θ and Ĵ (k) = Ĵ .
end

Algorithm 2: Simplified SMC algorithm for an unbiased estimate of J(θ)

Input: Policy θ, number of time steps n, discount factor γ
Output: Unbiased estimate of Ĵ
Start with Ĵ0 = 1.
for t = 1, . . . , n do

Sample xt ∼ p(xt|θ) using (4.5)
Calculate Wt = eγ

t−1r(xt).
Update the estimate: Ĵt = Ĵt−1 ×Wt return Ĵ .

end
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Chapter 5

Control Methodology

We aim to build a structure that can learn the internal system dynamics of the

VAWT with all nonlinearities and observed wind speed profiles. This chapter presents

the required Reinforcement Learning (RL) states and actions, radial basis function

neural network (RBFNN) controller structure and explanation of the training stages

of an MCMC Bayesian learning algorithm to obtain a proper MCMC controller for

dealing with real wind profiles.

The proposed application of Reinforcement Learning is the optimization the instan-

taneous generator load current IL to maximize the energy output and satisfy the

conditions of the electrical constraints over a time horizon. In order to achieve this

in the simplest form, we use RBFNN as a controller in order to calculate reference

load current (ILref
).

The energy output (E) that we want to maximize can be computed by integrating

power output (P) over a specific time period as:

E =

∫ t

0

Pdt (5.1)
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The reference maximum energy output is obtained from the integration of the opti-

mal aerodynamic power, P ∗, which is the power that can be generated by the rotor

when the power coefficient is kept at its maximum value, C∗p , continuously:

E∗ =

∫ t

0

P ∗dt (5.2)

where E∗ is optimal energy output amount. Finally, we can calculate error for the

energy which is defined as the difference between the energy output and the reference

one as:

e = E∗ − E (5.3)

Furthermore, the derivative of error (ė) is defined as:

ė = e
d

dt
(5.4)

The state space of the learning agent, S, of wind turbine model is comprised of one

continuous component which is error dot, st = (ė). The action space A, which is

reference load current (IL), is one-dimensional and continuous, as well. The current

state of the agent is defined according to the previous state and the current action as

St = G(St−1, At) where the corresponding relation G : S ×A→ S is a deterministic

function. In addition, we must add VL and IL constrains for actual system power

electronic parts. The output voltage and current of generator is bounded by the

minimum and maximum limits

Vmin ≤ VL ≤ Vmax (5.5)

Imin ≤ IL ≤ Imax (5.6)
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5.1 Radial basis function neural network

The control policy here is provided by a Radial Basis Function Neural Network

(RBFNN) which is used for implementing the controller to calculate the reference

load current (ILref
). An RBFNN is shown in Figure 5.1 where inputs are xi, i =

1, 2, . . . , n and output is y = F (x, θ), and m is the number of hidden nodes.

Figure 5.1: Radial basis function neural network

The output equation of the RBFNN in Figure 5.1 is denoted as:

y = F (x, θ) =
nr∑
i=0

wiRi (x) + bias (5.7)
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where Ri (x) is the output of ith hidden node, bias is a scale parameter and weights

are represented by w = [w1w2 . . . wm] . The receptive field Ri (x) is defined as:

Ri (x) = exp

(
−‖(x− ci)‖

2

2b2
i

)
(5.8)

where c is the center of each RBF and b is the corresponding standard deviation for

each RBF.

c =


c11 . . . c1m

...
. . .

...

cn1 . . . cnm

 (5.9)

b =
[
b1 b2 . . . bm

]T
(5.10)

Detailed information about RBFNN can be found in [66]. cii parameters are pre-

defined coefficients for the simplicity of reinforcement learning model. The center

matrix of RBFNN hidden nodes c is given as follow:

c =



4.66 5.99 7.32 8.65 9.98 11.31

−8.33 −5 −1.67 1.66 4.99 8.32

0.83 02.49 4.15 5.81 7.47 9.13

3.32 9.96 16.6 23.24 29.88 36.52

5 11 17 23 29 35

−4.998 −3 −1.002 0.996 2.994 4.992


(5.11)

where those center parameters are extracted from every RBFNN input signal work-

ing interval. Moreover, the bias is selected as 3.5, because it is meaningful for

reasonable wind speed interval(6m/s - 12m/s) even if hidden nodes stay zero.

In order to achieve learning system dynamics of VAWT and all possible wind speed

profiles, RBFNN inputs are defined as in Table 5.1. Wind speed(Uw) and derivative

of wind speed( U̇w) are selected for perceiving wind speed and/or change of wind
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speed. Load current(IL), load voltage(VL), PMSG rotor angular speed(ωr) and

derivative of PMSG rotor angular speed(ω̇r) are added RBFNN input space in order

to give network VAWT internal states.

Table 5.1: Description of RBFNN Inputs.

RBFNN Input Number Input Symbol Input Description
x1 Uw Wind Speed

x2 U̇w Derivative of Wind Speed
x3 IL Load Current
x4 VL Load Voltage
x5 ωr PMSG Rotor Speed
x6 ω̇r Derivative of PMSG Rotor Speed

Figure 5.2: Radial basis function neural network control block diagram

The parameters of this nonlinear controller(RBFNN) itself will be learned by using

Bayesian learning via MCMC method. This learning method will facilitate not only

response to realistic wind profiles, but also the whole model of the system.
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Therefore, our proposed method will be able to learn the optimal value of ILref
for

the probable wind conditions not just for a known wind profile. After establishing

the framework for RBFNN controller, by using Bayesian learning via MCMC method

methods, will learn the parameters of RBFNN controller. The block diagram of the

control methodology is depicted in Figure 5.2. The learned parameters θ, which

consists of weights and standard deviations of RBFNN controller, are updated in

each learning iteration.

5.2 MCMC Bayesian Learning Algorithm

Training Method

In this section, we describe how the policy parameters can be trained with progres-

sively more complex wind speed patterns. We start with the initial parameter set

θS0, the proposed learning system is trained with step wind profile, sinusoidal wind

and finally realistic wind profile to obtain parameter sets θS1, θS2.

The nature of Bayesian Reinforcement Learning via MCMC is that the learning

iterations start with a random parameter set θS0, which indicates initial policy pa-

rameters. For the first stage of training, step wind reference is selected as start

point of MCMC, because it is a basic pattern which requires rotor energy manage-

ment strategy. As a result of stage 1 of MCMC training pattern, we obtain the

MCMC controller, which can work under step wind profile, with θS1 parameters.

After learning step wind, the second stage of training aims to obtain a controller

that can respond to a variable speed wind pattern. Therefore, the reference signal

of training second stage is sinusoidal wind that has close frequency to realistic wind.

The second stage of MCMC training pattern start with θS1 parameters as a initial

policy parameters of MCMC learning iterations. As a result of stage 2 of MCMC
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training pattern, MCMC controller, which is trained by sinusoidal wind, has θS2 pol-

icy parameters as an outcome. Off-line part of MCMC training pattern finishes after

obtaining θS2 that can deal with realistic wind profiles. After off-line part of MCMC

training, we proposed on-line learning with real wind, which implies that MCMC

controller can continue learning in an actual VAWT installation, using only a small

microprocessor to improve its control performance under local wind conditions. The

MCMC training pattern is summarized in the schematic diagram in Figure 5.3.

Figure 5.3: MCMC training pattern schematic diagram.
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5.2.1 Parameters of The Learning Method

The initial parameters and the reward function structure of the MCMC algorithm

are determined precisely for initialization. The reward function of MCMC Bayesian

learning algorithm is defined as r(st) = −sTt Qst, where Q is 105 and st is ė. In this

study the reward structure is defined as average reward, so the discount factor for the

overall reward function Rn is γ = 1. Gaussian random walk is defined with q(θ′|θ) =

N (θ′; θ,Σq), where diagonal covariance matrix Σq is diagonal
([

1 . . . 1
]

1x12

)
.

The prior distribution of policy is N

(
0; diagonal

([
10000 . . . 10000

]T
1x12

)
,Σq

)
.

The essence of MCMC Bayesian learning algorithm is not knowing our prior µ(θ), it

is a challenging issue in finding optimal control policy. The sampling time of VAWT

dynamics is 1ms. Also, RBFNN structure has already been given in section 5.1.
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Chapter 6

Simulation Results

This chapter presents simulation results for the MCMC training parts and the com-

parison between the MCMC controller and a MPPT controller.

6.1 First stage of training

The reference signal of first training is step wind, is equals to 8 m/s, since the

studied VAWT works in the wind speed range of 6m/s to 12m/s. Then, simulation

time set to 150 second to observe transient behavior of VAWT. After this selection,

initial policy parameters (θS0) have to be determined to create initial distribution

of MCMC Bayesian learning algorithm. The policy parameters θ consist of RBFNN

hidden node standard deviations and weights. θS0 is defined as follows;

θS0 =
[
bS0 wS0

]
bS0 =

[
20 20 20 20 20 20

]
wS0 =

[
1 1 1 1 1 1

]
(6.1)
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where bS0 as initial standard deviation matrix of RBFNN and wS0 as initial weight

matrix of RBFNN. Initial weights are selected as close to zero and non-zero coefficient

and initial standard deviation parameters are chosen as (6.1); however they should

cover the vector space of hidden nodes.

(a) Generated Power (b) Generator Rotor Speed
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Figure 6.1: The MCMC controller, beginning of first stage training with θS0

parameters, simulation result P , ωr, VL, IL and RL.

The 1st iteration of MCMC first stage training simulation result with θS0 is illustrated

in Figure 6.1. As shown in Figure 6.1, the 1st iteration of MCMC first stage training

is not successful in terms of control. This is expected because of the random initial
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θS0. Figure 6.1 is intended as baseline and to represent the power of MCMC learning

algorithm at the end of first stage training.

(a) First stage of training standard deviation. (b) First stage of training weights.

(c) First stage of training total return.

Figure 6.2: Learning plots of MCMC first stage training.

The evaluation of policy parameters during stage 1 training are shown in Figure

6.2 (A) and (B). The total return of first stage training in Figure 6.2 (C) has not

converged to zero or steady state. It can be seen in Figure 6.2 (A) and (B) that

policy parameters of stage 1 training has not converged to a specific value either. We

stop learning early to prevent over-fitting, since we want to the MCMC controller to

36



learn dynamic wind speed as well. Therefore MCMC learning is interrupted at 200th

iteration. The resulting first stage training parameters θS1, which are a mean of the

policy parameter values obtained in last quarter of 200 iterations, can handle step

wind reference. The obtained first stage training parameters θS1 are given below;

θS1 =
[
bS1 wS1

]
bS1 =

[
14.917 20.089 16.421 8.097 33.399 21.958

]
wS1 =

[
31.989 39.962 5.227 −17.091 3.60 −22.349

]
(6.2)
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(c) Load Voltage and Load Current. (d) Load Resistance.

Figure 6.3: The MCMC controller, end of first stage training with θS1 parame-
ters, simulation result P , ωr, VL, IL and RL.
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The simulation result of the proposed MCMC controller with θS1 parameters is

shown in Figure 6.3. The rotor speed of generator for the obtained MCMC con-

troller, illustrated in Figure 6.3 (B), is close to optimal rotor speed of generator.

Furthermore, the load current increase of the proposed MCMC controller, that is

be shown in Figure 6.3 (C), is not aggressive which is better for achieving optimal

control performance. Because it allows the rotor to speed up quicker to optimal

value in the absence of load torque.

6.2 Second stage of training

The next step of training aims to obtain a controller which can cope with rapidly

changing wind pattern. For this purpose, the reference signal is selected to a sinu-

soidal wind (10 + 2sin(0.2t)) in order to cover the studied VAWT working wind

speed range is 6m/s to 12m/s. The reference signal illustrated in Figure 6.4.

Figure 6.4: Stage 2 training wind speed reference.
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The simulation time is set to 500 seconds for capturing sinusoidal behavior of wind

speed reference. The initial policy parameter is set to first stage of training result

θS1 parameters.

In order to demonstrate the learning power of MCMC Bayesian learning algorithm,

we present the performance of the generator with θS1 policy parameters to the sinu-

soidal input speed in Figure 6.5 as a baseline to compare with MCMC controller with

θS2 that will be presented later. As shown in Figure 6.5 (D), the load resistance has

(a) Generated Power. (b) Generator Rotor Speed.
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(c) Load Voltage & Load Current. (d) Load Resistance.

Figure 6.5: The MCMC controller, beginning of second stage training with θS1

parameters, simulation result P , ωr, VL, IL and RL.

some noise peaks, which leads to the load voltage and the output power have same

peak structure, it is because MCMC controller with θS1 parameters has not been

trained sinusoidal reference. Significantly, derivative inputs of RBFNN parameters
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have not yet been trained properly to work under rapidly changing wind speeds.

Bayesian Reinforcement Learning via MCMC improves policy parameters of stage

2 training to obtain the optimal resulted parameter θS2, presented next.

The policy parameters of stage 2 training evolution is shown in Figure 6.6 (A) and

(B). The total return of second stage training, shown in Figure 6.6 (C), converges. It

can be seen in Figure 6.6 (A) and (B) that MCMC controller has learned sinusoidal

reference after approximately 40 iterations, since the policy parameters of stage 2

training do not change after approximately 40 iterations. This also implies that all

proposed parameter values are rejected by MCMC learning algorithm.

(a) Second stage of training standard
deviation.

(b) Second stage of training
weights.

(c) Second stage of training total return.

Figure 6.6: Learning plots of MCMC second stage training.
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The MCMC learning iterations are continued until 150 to ensure MCMC controller

performance. After MCMC stage 2 learning, the resulting θS2 parameters of MCMC

controller is given below;

θS2 =
[
bS2 wS2

]
bS2 =

[
17.84 20.31 18.9 8.59 33.26 21.18

]
wS2 =

[
29.19 43.73 9.28 −18.45 2.74 −20.82

]
(6.3)

(a) Generated Power. (b) Generator Rotor Speed.
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(c) Load Voltage and Load Current. (d) Load Resistance.

Figure 6.7: The MCMC controller, end of second stage training with θS2 pa-
rameters, simulation result P , ωr, VL, IL and RL.
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The simulation results θS2 for second stage training are shown in Figure 6.7. As

a result, MCMC controller with θS2 parameters follows optimal power output well,

especially compared to results in Figure 6.5. The performance of the VAWT at the

end of second stage training can be considered to be the state of generator as a

product shipped from factory.

6.3 Comparison of Proposed Method with MPPT

In this section, the proposed MCMC Controller trained by Bayesian learning algo-

rithm is compared to the commonly used maximum power point tracking (MPPT)

algorithm for WECS in terms of control performance and energy output. The com-

parison is done in two steps; first step is that MCMC controller is compared to

MPPT with step reference (10m/s) to illustrate start performance of control al-

gorithms, second step is the comparison with realistic wind speed profile to show

control performance and energy output. In a realistic setting, MCMC parameters

are taken as θS2.

To better understand the comparison, MPPT algorithm will be explained. MPPT

aims to maximize instantaneous power generation, which is a greedy approach for

WECT. The detailed explanation of MPPT algorithm can be found in [16, 17].

For this study, two different MPPT controllers, shown at Table 6.1, are defined for

comparison to MCMC controller. mppt2 has faster convergence speed to optimal

rotor speed than mppt1 under fixed wind speed, yet mppt1 is more successful under

realistic wind profiles due to variable wind speeds.

Table 6.1: The MPPT controllers description.

Sampling Time ∆Iref
mppt1 0.1s 0.02A
mppt2 0.1s 0.01A
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6.3.1 Step wind speed reference performance comparison

Our aim for this test is to compare starting performance of the control methods.

Drastic wind speed change is a major problem for WECS, step wind reference is an

easy way to mimic these drastic changes.

The magnitude of step wind speed is 10 m/s. The simulation time is set to 50 seconds

due to observe transient behavior of compared controllers. MCMC controller, which

uses θS2, is compared to mppt1 controller given in Table 6.1.

(a) Generator Rotor Speed. (b) Load Resistance.

(c) Load Voltage. (d) Load Current.

Figure 6.8: The MCMC controller with θS2 parameters and mppt1 simulation
results under step wind speed profile (10m/s).
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The simulation results ωr, RL, VL and IL comparison MCMC controller to MPPT

under step wind speed profile (10m/s) are shown in Figure 6.8. Correct ωr is the

most crucial parameter for reaching optimal Cp value. The optimal generator rotor

speed (ω∗r) is calculated by (3.1) where Uw is given. Figure 6.8 (A) illustrates ω∗r

response, MCMC controller ωr response (ωrMCMC
) and MPPT ωr response (ωrMPPT

).

It can be easily seen that ωrMCMC
is closer to ω∗r , although MCMC controller and

mppt1 controller have similar performance under 10m/s step wind. On the other

hand the most remarkable difference between these two controllers is that MCMC

controller has relatively smooth load current increase as shown in Figure 6.8 (D).

This increase contributes ωrMCMC
to reach the optimal ω∗r value in a fast way. MCMC

controller also maintains a power output that closer to optimal than MPPT.

(a) Power output. (b) Energy output and error of energy.

Figure 6.9: The MCMC controller with θS2 parameters and mppt1 power and
energy output under step wind speed profile (10m/s).

The proposed MCMC controller allows ωr to reach the optimal by initially keeping

the electrical load small. This allows the rotor to speed up to ω∗r quicker, thus

output more energy. On the other hand, MPPT controller immediately increases the

electrical load greedily then decreases as shown in Figure 6.8 (B). The load voltage

response of these two controllers are given in Figure 6.8 (C). ωrMPPT
is higher than

ω∗r value. It is consistent with Figure 6.8 (A) because VL is proportional to ωr.
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Figure 6.9 (A) demonstrates the power output for MCMC controller and mppt1.

The power outputs are approximately equal, yet the transient behaviors of these

two controller are different thanks to differences between RLMCMC
and RLMPPT

. The

generated total energy for given simulation time is shown in Figure 6.9 (B). EMCMC

and EMPPT have similar trends but EMCMC peforms better during the transient.

For rapidly and continuously changing wind patterns the difference will become

significant.

6.3.2 Real wind speed reference performance comparison

Our aim for this test is to demonstrate real wind profile performance of the proposed

control method. In real wind turbine applications, wind can be modeled by the sum

of a variable speed and noise element. Fluctuating wind speed change is a major

problem for WECS, the proposed method has to deal with this type of winds. It is

important to emphasize that realistic wind speed signal used for this test is obtained

by Simulink Aerospace Toolbox wind generator block. The reference wind speed

signal is illustrated in Figure 6.10.

Figure 6.10: Real Wind Speed References for Comparison of MCMC and
MPPT.
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The simulation time is set to 500 seconds to show energy output performance of

controllers. MCMC controller, which uses θS2, compares to mppt1 controller given

in Table 6.1.

Figure 6.11: The MCMC controller with θS2 parameters and mppt1 generator
rotor speed under realistic wind speed profile.

As mentioned before, correct ωr is the most crucial parameter for reaching optimal

Cp value. The optimal generator rotor speed (ω∗r) is calculated by (3.1) where Uw

is given by Figure 6.10. Figure 6.11 illustrates the responses of MCMC controller

(ωrMCMC
) and MPPT (ωrMPPT

). It can be easily seen in Figure 6.11 that MCMC

controller works closer to optimal generator rotor speed from around 8 s. However,

MPPT controller never reaches optimal rotor speed (ω∗r) according to Figure 6.11.
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The electrical load response for these two controllers can be found in Figure 6.12.

It can be seen that RLMCMC
reacts to wind speed changes better than RLMPPT

.

Figure 6.12: The MCMC controller with θS2 parameters and mppt1 load resis-
tance under realistic wind speed profile.

The load current and load voltage responses can be observed in Figure 6.13.

(a) Load voltage. (b) Load current.

Figure 6.13: The MCMC controller with θS2 parameters and mppt1 load voltage
and load current under realistic wind speed profile.
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Figure 6.14: The MCMC controller with θS2 parameters and mppt1 power out-
put under realistic wind speed profile.

MCMC controller follows the optimal power (P ∗) more closely than MPPT. The

total energy output for given simulation time is shown in Figure 6.15. It can be seen

that EMCMC is higher than EMPPT .

Figure 6.15: The MCMC controller with θS2 parameters and mppt1 energy
output under realistic wind speed profile.
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RL approaches have statistical background, the results must be statistically consis-

tent; Therefore this simulation has been done 10 times with 10 different realistic

wind profiles in order to demonstrate how consistent the two controllers react in re-

alistic wind performance. The results for 3 controllers, which are MCMC, mppt1 and

mppt2, are listed in Table 6.2. Corresponding mean values and standard deviation

values for these 3 controllers are calculated in Table 6.3.

Table 6.2: Experiment results difference of energy output from optimal (Joule).

Experiment No MCMC mppt1 mppt2
1 8117.7 19844.5 12511.7
2 8254.7 9933.5 32410.5
3 8671.9 9654.2 11929.7
4 5917.6 35108.9 8024.1
5 7726.5 33325.8 38513.7
6 7695.6 31365.4 45678.7
7 7757.4 45690.7 8003.5
8 7787.8 57123.1 7802.2
9 8114.1 22900.9 13489.9
10 8117.4 17834.3 10523.4

It must be noted that mppt1 and mppt2 have almost 4 times higher mean of energy

output error than MCMC controller. Furthermore, it can be seen in Table 6.3 that

mppt1 and mppt2 have large standard deviation values, it means that wind speed

changes affect MPPT controllers performance significantly, yet MCMC controller

has consistent control performance under diverse real wind profiles.

Table 6.3: Experiment results means and standard deviations of difference of
energy output from optimal (Joule).

Mean Standard Deviation
MCMC Controller 7816 732

mppt1 28278 15309
mppt2 23889 27411

49



Chapter 7

Conclusion and Future Works

This section presents conclusion and contribution of this thesis as well as possible

future research direction via this thesis.

7.1 Conclusion

In this thesis, it has been shown that the proposed Bayesian Reinforcement Learn-

ing via MCMC method is able to learn VAWT system dynamics and wind profiles.

Performance has been improved by progressing learning from step wind to sinusoidal

wind reference in order to deal with realistic wind profiles. It has been shown that

the proposed method has superior performance compared to the common MPPT

method in terms of total energy output. MCMC controller has shown 89% effi-

ciency while MPPT has shown 78% efficiency for realistic wind patterns. Also, real

wind simulations have been performed 10 times with 10 different wind speed profiles

to demonstrate the consistency of the MCMC controller. MCMC has similar per-

formance with respect to wind speed changes, while MPPT performance has more

variation as shown in Table 6.2.
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7.1.1 Contribution

Our proposed MCMC controller enables us to directly apply the control signal to

WECS via model learning of VAWT. Furthermore, the proposed MCMC method

use an approach, which is based on data driven methods, takes into account all

the nonlinearities of the plant as an implicit or explicit model. Bayesian learn-

ing algorithm with MCMC has powerful policy to represent instantaneous states of

VAWT in order to calculate control signal for maximizing energy output. Unpre-

dictable wind flows always become a significant challenge for wind energy systems;

therefore our proposed control strategy addresses this issue explicitly by learning

unpredictable wind profiles and the model of the VAWT. The simulation results jus-

tify this claim because MCMC controller outperforms the most well-known control

algorithm MPPT.

7.2 Future Works

The designed learning mechanism is not only off-line learning in factory but also on-

line learning in the field, after the commissioning of the VAWT, since wind speeds

vary according to location. Bayesian Reinforcement learning via MCMC provides

on-line learning option with local winds to maximize energy generation in installation

area of VAWT.
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[18] C. E. Garćıa, D. M. Prett, and M. Morari, “Model predictive control: Theory

and practice—a survey,” Automatica, vol. 25, no. 3, pp. 335 – 348, 1989.

[19] A. Körber and R. King, “Model predictive control for wind turbines,” European

Wind Energy Conference and Exhibition 2010, EWEC 2010, vol. 2, 01 2010.

[20] P. F. Odgaaard and T. G. Hovgaard, “Selection of references in wind turbine

model predictive control design,” IFAC-PapersOnLine, vol. 48, no. 30, pp. 333

– 338, 2015. 9th IFAC Symposium on Control of Power and Energy Systems

CPES 2015.

[21] A. Onol, U. Sancar, A. Onat, and S. Yesilyurt, “Model predictive control for

energy maximization of small vertical axis wind turbines,” 10 2015.

[22] C. Bottasso, P. Pizzinelli, C. Riboldi, and L. Tasca, “Lidar-enabled model pre-

dictive control of wind turbines with real-time capabilities,” Renewable Energy,

vol. 71, pp. 442 – 452, 2014.

54



[23] A. Jain, G. Schildbach, L. Fagiano, and M. Morari, “On the design and tuning

of linear model predictive control for wind turbines,” Renewable Energy, vol. 80,

pp. 664 – 673, 2015.

[24] D. Song, J. Yang, M. Dong, and Y. H. Joo, “Model predictive control with

finite control set for variable-speed wind turbines,” Energy, vol. 126, pp. 564 –

572, 2017.

[25] A. Bektache and B. Boukhezzar, “Nonlinear predictive control of a dfig-based

wind turbine for power capture optimization,” International Journal of Elec-

trical Power and Energy Systems, vol. 101, pp. 92 – 102, 2018.

[26] A. El Kachani, E. M. Chakir, A. A. Laachir, T. Jarou, and A. Hadjoudja,

“Nonlinear model predictive control applied to a dfig-based wind turbine with a

shunt apf,” in 2016 International Renewable and Sustainable Energy Conference

(IRSEC), pp. 369–375, Nov 2016.

[27] Y. P. Pane, S. P. Nageshrao, J. Kober, and R. Babuška, “Reinforcement learn-
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