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Abstract - The high penetration of intermittent renewable gen-
eration has prompted the development of Stochastic Hydrother-
mal Unit Commitment (SHUC) models, which are more difficult 
to be solved than their thermal-based counterparts due to hydro 
generation constraints and inflow uncertainties. This work pre-
sents a SHUC model applied in centralized cost-based dispatch, 
where the uncertainty is related to the water availability in reser-
voirs and demand. The SHUC is represented by a two-stage sto-
chastic model, formulated as a large-scale mixed-binary linear 
programming problem. The solution strategy is divided into two 
steps, performed sequentially, with intercalated iterations to find 
the optimal generation schedule. The first step is the Lagrangian 
Relaxation (LR) approach. The second step is given by a Primal 
Recovery based on LR solutions and a heuristic based on Bend-
ers’ Decomposition. Both steps benefit from each other, exchang-
ing information over the iterative process. We assess our ap-
proach in terms of the quality of the solutions and running times 
on space and scenario LR decompositions. The results show the 
advantage of our primal recovery technique compared to solving 
the problem via MILP solver. This is true already for the deter-
ministic case, and the advantage grows as the problem’s size 
(number of plants and/or scenarios) does. 

Index Terms - Stochastic Hydrothermal Unit Commitment, 
Lagrangian Relaxation, Primal Recovery Technique. 

I. NOMENCLATURE 
N number of nodes in the scenario tree; 
NS1 number of nodes in the first stage of the scenario tree; 
pn probability of node n; 
I number of thermal plants, such that i=1, I; 
Ib number of thermal plants connected to bus b; 
R number of hydro plants, such that r=1, R; 
Rb number of hydro plants connected to bus b; 
CA number of cascades, such that ca=1, CA; 
Jr number of groups (with identical units) in the hydro r, 

with j=1, Jr; 
B number of buses in the power system, such that b=1, B; 
tupi, minimum uptime of the thermal plant i (after start 

period) [h]; 
tdowni minimum downtime of the thermal plant i (after shut-

down period) [h]; 
Δupi maximum ramp-up rate of the thermal plant i [MW/h]; 
Δdowni minimum ramp-down rate of the thermal plant i 

[MW/h]; 
Ω number of scenarios, such that ω = 1, Ω; 
Resn spinning reserve requirement related to node n [MW]; 
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SCi startup cost of the thermal plant i [R$]; 
yr incremental inflow of the hydro plant r [m3/s]; 
vrtarget volume target of the hydro plant r at the end of the 

horizon [hm3]; 
Db demand requirement at bus b [MW]; 
fllmax power flow limit of the line l [MW]; 
Γ power transfer distribution factor; 
μ1 weight parameter related to operational cost and prox-

imal terms; 
μ2 weight parameter related to pseudo-schedule and LR-

subproblems solution; 
μ3 weight parameter related to the proximal term between 

the continuous and binary variables. 
ch index related to the piecewise linear approximation of 

the hydro production function; 
CHjr set of linear approximations of the group j in the hydro 

plant r; 
cf index related to the linear approximation of the thermal 

cost function; 
CFi set of linear approximations related to the cost function 

of thermal plant i; 
n index related to the nodes of the scenario tree; 
n-t ascendant node related to the node n at t previous 

immediately periods in the same scenario; 
n+t descendant node related to the node n at t periods 

forward in time in the same scenario; 
R+r set of upstream reservoirs of the hydro plant r; 
Rca set of hydro plants in the cascade ca; 
N(ω) set of all nodes of scenario ω. 
ptin power generation of thermal plant i at node n [MW]; 
uin binary variable that represents the commitment status 

of the thermal plant i at node n; 
upin binary variable that represents the startup status of 

thermal plant i at node n; 
udin binary variable that represents the shutdown status of 

thermal plant i at node n; 
Fin generation cost of thermal plant i at node n [R$]; 
phrn power generation of hydro plant r at node n [MW]; 
vrn volume of reservoir r at node n [hm3]; 
drn outflow of hydro r at node n, i.e., the sum of turbined 

outflow and the spillage [m3/s]; 
srn spillage of hydro plant r at node n [m3/s]; 
phgjrn power generation of the group j in the hydro plant r at 

node n [MW]; 
qjrn turbined outflow of the group j in the hydro plant r at 

node n [m3/s]; 
zjrn binary variable that represents the commitment status 

of the group j in the hydro plant r at node n; 
fpghjrn hydro production function of the group j and hydro 

plant r at node n [MW]; 
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foptin cost function of the thermal plant i at node n [MW]; 
oofn total operating cost at node n; 
pxtPS proximal term related to the pseudo-schedule; 
pxtLR proximal term related to the LR solutions; 
afcn approximation of the future cost at node n; 

 continuous (binary) variables related to node n; 

 continuous (binary) variables associated with pseudo-
schedule at node 𝑛; 

 continuous (binary) variables associated with LR-
subproblems at node 𝑛; 

 dual variables associated with node n; 
ΦX probability for method X; 
fm multiplying factor; 
ηX (pc) performance metric for method X to solve case pc; 
η*(pc) best performance metric found with any method; 
pc a computational case of the problem, where p belongs 

to a representative set of cases. 
II. INTRODUCTION 

HE power system generation scheduling is a crucial prob-
lem that evaluates the system future operation for pursuing 
the trade-off between economical and reliable use of pow-

er generation resources. Consequently, the scheduling model 
results from a mathematical representation of the system’s 
components (reservoirs, power plants, transmission lines) and 
forecast for the operational conditions (weather, equipment 
failures, water inflow, demand). Considering that power sys-
tems can have different configurations, complexities, and siz-
es, the generation scheduling problem is usually solved by a 
set of different optimization models. In centralized-dispatch 
electricity markets [1], this task is executed by an Independent 
System Operator (ISO), which conducts studies ranging from 
the long/medium-term to short-term scheduling problems. The 
short-term include the Unit Commitment (UC) problem, which 
aims at finding the optimal generation schedule while meeting 
operational and system-wide constraints over a short-term 
horizon (typically 24 to 168 hours). Due to a fast-growing 
demand and increasing use of intermittent (renewable) produc-
tion sources (wind and solar), ISOs are facing unprecedented 
challenges to maintain a reliable and economic operation; 
therefore, many works are focused on considering uncertain-
ties in the UC (e.g., [2]–[4]). However, for some hydrothermal 
systems, the huge number of reservoirs, power plants, and 
transmission lines, precludes the ISO from considering the 
uncertainties associated with the system’s operation. For in-
stance, in the Brazilian case [5], which has the largest capacity 
for water storage and one of the largest transmission networks 
in the world, does not consider uncertainties in the UC prob-
lem. In Brazil, the power demand may deviate from predicted 
values due to several factors, such as the weather, equipment 
failures, among others. Further, about 53% of the hydro plants 
are run-of-river ones [6]; hence, the day-ahead operation is 
significantly affected by the water inflow uncertainties as well. 
Also, Brazilian’s generation expansion planning predicts a 
high penetration of intermittent power plants [7] (wind, solar, 
and small hydroelectric), thereby further increasing the uncer-
tainties for the-day ahead scheduling. All this justifies the 
interest in a Stochastic Hydrothermal Unit Commitment 
(SHUC) problem where uncertainty is related to water availa-
bility and demand. Besides the uncertainties, the SHUC pre-

sents additional complexities such as nonlinear functions and 
binary variables to model a huge number of the system com-
ponents and their constraints. Consequently, efficient strategies 
must be used to efficiently solve the SHUC problem. The main 
ones are mixed-integer programming, Lagrangian relaxation, 
Benders’ decomposition, augmented Lagrangian, and heuristic 
approaches [2]. Due to the different characteristics, such as the 
hydro predominance, and the structure of the constraints, we 
apply decomposition approaches to managing the SHUC prob-
lem. Considering dualization approaches, the literature shows 
that for the stochastic UC the most common LR-based decom-
position schemes are Scenario Decomposition (SD) [8] - [9] 
and Unit (or space) Decomposition (UD) [10] - [11]. The for-
mer split the problem into many sets of deterministic subprob-
lems, while the latter decomposes the problem by physical 
characteristics (for instance, power plants). Some recent works 
present different techniques to solve the SHUC. The survey 
[12] describes the representation of uncertainty, different prob-
lem formulations, and the most common decomposition tech-
niques applied to solve stochastic UC problems. Reference 
[13] proposes a strategy for the non-convex SHUC problem 
based on multi-horizon trees solved by a generalized Benders’ 
decomposition. An extensive updated review [4] describes the 
main UC models and solution strategies, providing over 600 
citations, many of which in the three recent years. 

The main contributions of this paper are two-fold. On one 
hand, we propose a primal recovery (PR) strategy, based on a 
novel combination of Lagrangian Heuristics and Benders’ 
decomposition approach [14] to generate primal feasible solu-
tions. The PR is composed of the forward and backward steps 
in Benders’ decomposition framework: the former uses the 
“convexified” primal solution [15] provided by the LR ap-
proach, while the latter iteratively improves the cost-to-go 
functions that evaluate the SUCH decisions in the next forward 
iteration. On the other hand, we assess the impact of the differ-
ent decomposition strategies on the proposed PR strategy. 
Indeed, this paper provides improvements in the findings in 
[16], where four decompositions for the SHUC problem were 
compared in terms of computing time and quality of the lower 
bound. Here we analyze the performance of the two most 
promising decompositions (UD and SD) in terms of optimality 
gap, applying the (novel) PR technique for both schemes to 
perform a fair comparison. 

This paper is organized as follows: in sections III and IV 
we describe the mathematical representation of the SHUC, and 
the two LR decomposition strategies employed to solve the 
problem. The proposed PR technique is presented in section V. 
Finally, in sections VI and VII, we show the computational 
results and state our conclusions, respectively. 

III. TWO-STAGE STOCHASTIC PROGRAMMING PROBLEM 
We tackle the SHTUC problem of a risk-neutral Independ-

ent System Operator (ISO) in a tight-pool electricity market. 
Since there are several variants of this type of market, we use 
the Brazilian case, where the generating companies submit 
operating costs1 and availability data for the ISO, which then 
optimizes the day-ahead dispatch to meet the load at the mini-
mum cost. The power load for each bus (Db) and inflows for 
 

1 In fact, only thermal plants submit fixed and variable costs. The hydro 
costs, given by an expected future cost function, is calculated also by ISO, 
which uses medium and long-term generation scheduling optimization models. 
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each reservoir (yr) are discrete random parameters, and we use 
the well-known two-stage scenario-based approach for han-
dling this uncertainty by a finite number of scenarios. Figure 1 
illustrates a two-stage scenario tree with two realizations of 
inflow and load in the second stage. Each stage refers to three 
periods of time, representing decision nodes for the system 
operation. Consequently, the corresponding scenario tree has a 
total of 9 nodes. 

 
Figure 1. Illustration of the uncertain data. 

The root node n = 1 corresponds to the first period of the 
horizon. All the remaining nodes have an ascendant node and a 
set of descendant nodes. The ascending of node n is termed n-1 
with the transition probability pn/n-1. The probabilities of the 
nodes are given recursively by p1=1 and pn = pn/n-1∙pn-1, n>1. 
The ascendant node of node n at t periods back in time is n-t. 
The immediate descendants of node n are N+1(n) and nodes 
with N+1(n) = Ø are called leaves. Moreover, the set of all the 
leaves of the tree is called NL and the set of all nodes of stage h 
is denoted by Nh. The path from the root node to any leaf rep-
resents a scenario, indexed by ω and represented by the set Nω. 
The probability of each scenario is equal to the probability of 
the last node of the path, i.e., the leaf node. In the first stage, 
the realization ξ1 is unique, while the second stage has many 
realizations of the random variables representing the uncertain 
demands. Since random variables are included via a scenario 
tree, it is possible to solve a deterministic equivalent (DE) 
program [17]. Then our two-stage SHTUC problem formulated 
via the DE program is stated by equations (1)-(14). 

 (1) 

 
(2) 

 (3) 

 (4) 

 (5) 

 (6) 

 (7) 

,  (8) 

 (9) 

 (10) 

 (11) 

 (12) 

 (13) 

 (14) 

The objective function (1) is given by the expected value of 
two terms: the piecewise linear cost occurred in nominal oper-
ation, and a fixed start-up cost. The constraints (2)-(7) describe 
the reservoir and the hydro plants' operation. The operation of 
the thermal plants is represented by (8)-(12), while (13)-(14) 
are the classical DC transmission network constraints. Solving 
problem (1)-(14) directly with an off-the-shelf optimization 
solver is prohibitive due to its high complexity and the tight 
running-time requirements. Hence, decomposition techniques 
come into play to break (1)-(14) into smaller subproblems. The 
literature provides a range of decomposition approaches [4] 
and, in this work, as previously mentioned, we use LR. The 
LR solution strategy is based on decomposition schemes where 
the problem is divided into subproblems. For illustrate these 
subproblems, the constraints are structured as follows: con-
straints (2)-(3) compose the set ; (4)-(7) compose the set 

; (8)-(12) compose the set ; (13)-(14) compose the set 
; and (2)-(14) for  composing , a set with 

all the constraints for a given scenario ω. In this structure, the 
hydro modeling is more explored in the splitting approach, 
since, as presented in [16], its detailed representation requires 
more processing time when it is not properly divided. The 
problem (1)-(14) is solved in an LR fashion together with a PR 
heuristic, as depicted in Figure 2. 

 
Figure 2. Strategy to solve the problem. 
The strategy starts with an initial solution, which can be ob-

tained by solving a simplified version of the problem or by the 
experience of the ISO. In our case, we use the primal and dual 
solution of the continuous relaxation of (1)-(14) that is rela-
tively easy to obtain. At each iteration, an LR and a PR are 
executed simultaneously. The LR results (primal solution and 
pseudo-schedule2) of iteration k are used as input for the PR 
strategy, whose primal feasible solution is used as a flat (all-0) 
eps-subgradient for the LR at iteration k+1. The LR is solved 
using a Bundle-type method [18], where the details can be 
 

2 A convex combination of the subproblems’ solutions that is generated by the 
solution process in the LR. 
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seen in [19] - [20]. 
On the other hand, the solution employed by the PR is based 

on heuristics that combine the solution of the subproblems 
with approximations of the cost-to-go function, typically em-
ployed in the context of Benders’ decomposition. It is worth 
mentioning that the solution given by the LR step is a signifi-
cant part of the algorithm and the kind of decomposition 
scheme applied influences the quality of its results. Then, the 
different decomposition schemes applied are described in 
Section 4, and the technique used in the PR is detailed in Sec-
tion 5. 

IV. LR DECOMPOSITION STRATEGIES 
The problem (1)-(14) can be decomposed in different ways 

employing the LR technique. The most common approaches 
are the unit decomposition (UD) and the scenario decomposi-
tion (SD). In the former, the whole problem is separated by its 
physical characteristics, and in the latter, the problem is divid-
ed into many deterministic UC subproblems. The different 
strategies are illustrated in Figure 3. 

 
Figure 3. Illustration of unit and scenario decomposition schemes. 
The strategies are briefly described in the next Sections. For 

further details on the decomposition schemes and the tech-
nique used in the LR step see reference [16]. 
A. Unit Decomposition 

This decomposition scheme separates the problem by its 
component characteristics: one subproblem per thermal plant, 
one subproblem for each node related to the transmission net-
work, one subproblem with the reservoirs in the same chain, 
and one subproblem for each hydro plant in each node. Figure 
4 illustrates the variable coupling between the subproblems of 
the UD, each circle represents a group of subproblems. 

 
Figure 4. Illustration of the relationship between variables for UD. 
To decompose the problem, we apply the variable splitting 

technique [21] and relax the spinning reserve constraints. The 
rationale of this strategy is to decompose as much as possible 
the constraints regarding reservoirs and hydro plants problems 
given its particular characteristics and considering the ad-
vantages presented in [16]. This strategy results in four groups 
of subproblems and a dual problem with N×(I + 3×R + 1) varia-
bles. The subsets  and  result in CA and N Linear 
Programming (LP) problems, respectively. Furthermore,  
and  produce N×R and I MILP problems, respectively. 
B. Scenario Decomposition 

In this scheme, all the constraints belonging to nodes of the 
scenario ω, , make up the set of constraints Cω

C. 

Figure 5 illustrates the sets of constraints for the problem of 
Figure 3, representing the variables that couples the subprob-
lems. The set N1 represents all the nodes of stage 1. 

 
Figure 5. Illustration of the relationship between variables for SD. 
Consequently, to decouple the problem we apply the varia-

ble splitting technique in the linking variables of the first stage 
(non-anticipativity constraints), separating it in single-scenario 
deterministic subproblems. This strategy results in Ω MILP 
subproblems and a dual problem with NS1×Ω×(2×I + R), where 
NS1 is the number of nodes in the first stage. 

V. PRIMAL RECOVERY TECHNIQUE 
The application of the LR in nonconvex problems usually 

does not result in a feasible solution. However, it gives a dual 
solution and a lower bound for the optimal solution. The LR 
does not solve a nonconvex problem; instead, it solves a con-
vexified version of the problem [22]–[24]. For MILP prob-
lems, it means the solution is feasible for all the constraints, 
less the integrality ones, resulting in a solution called pseudo-
schedule, which is a convex combination of the subproblems’ 
solutions. The pseudo-schedule solution can be used with the 
results of the LR-subproblems as heuristic [25] - [26] to recov-
er a primal feasible solution. Note that the Bundle method can 
exploit the primal feasible solution found by the heuristic as 
part of the model: indeed, the value of any feasible solution is 
an upper bound on the maximum of the Lagrangian dual, that 
can be incorporated in the model (as a “flat”, all-0, epsilon-
subgradient) used to determine the next iterate, thereby im-
proving the LR performances. 
A. Forward step 

The forward step follows a strategy successfully used in the 
different contexts of the mostly-thermal deterministic UC [25]: 
exploiting both the continuous feasible pseudo-schedule and 
integer unfeasible solution of the LR-subproblems at each 
iteration. Although the solution given by the LR-subproblems 
is feasible for its subproblem, they are not for the original 
problem. While in the simpler context of [25] this was done by 
a simple constructive heuristic, here proximal terms are added 
to the original objective function in the PR step. However, 
similarly to [25], the idea is to perform a sliding window ap-
proach as illustrated in Figure 6. 

 
Figure 6. Illustration of the decomposition in the PR step. 

As illustrated instead of solving one multi-period problem, 
a sequence of single-period smaller subproblems (PR-
subproblems) are solved in sequence, from the first period to 
the last one, using the solution of the previous subproblem as 
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input to the current one. The typical issue with these approach-
es is their myopic nature: decisions taken in the initial steps do 
not consider the constraints in later ones. In our SHUC, this 
would easily yield infeasibilities due to, mainly, too little water 
being left for the last periods. To improve on this, we use the 
LR solutions (both the convexified and the integer one) as 
reference points that the subproblems should aim at reaching. 
That is, in each subproblem related to the node n, the original 
objective function, oof, is modified with the introduction of a 
proximal term, pxt, weighted by a parameter, as follows: 

 
(15) 

 subject to: (2)-(14) for a specific node n. 
The role of the proximal term is to reduce the distance to the 

available solutions (pseudo-schedule and LR solution). In 
particular, the proximal term has two components, one related 
to the pseudo-schedule and another regarding the LR solution, 
as shown below. 

 (16) 

All the terms in (16) are scaled by an estimate of the maxi-
mum values that they can take, to avoid numerical difficulties 
and to put all the terms at the same magnitude (save for the 
appropriate choice of the weight parameters that are performed 
experimentally). While the original approach in [25] was 
enough to obtain good solutions for a mainly thermal UC, this 
was not always the case here. The issues are the higher com-
plexity of the system due to the stochastic nature of the prob-
lem, and the reliance on hydro production that made it crucial 
to store enough water for the last stages. The “memory” pro-
vided by the LR solutions is not always sufficient to attain this. 
For this reason, the heuristic has been improved by adding 
another step em the PR strategy, where we consider approxi-
mations of the Benders’ optimality cuts to the subproblems, as 
described next. 
B. Backward step 

The PR strategy can be improved using a backward recur-
sion, where an approximation of the cost-to-go function is 
added to each RP-subproblem. This function measures the 
consequence of the decisions in future periods, and are build 
based on Benders’ decomposition method [14]. We remark 
that Benders’ decomposition requires convexity to assure the 
convergence of the approach; however, in our case, this is 
automatically obtained because the LR solves a convexified 
version of the original problem. This approximation does not 
guarantee the optimality of the decision, but still provide use-
ful information (a lower bound) on the future cost of each 
decision, significantly improving the performances of the heu-
ristic in practice. We present below the formulation of the 
node n subproblem related to the backward in the PR strategy. 
Note that the proximal terms are not considered (μ1=1); fur-
thermore, an approximation of the cost-to-go-function, afc, is 
added to the objective function. 

 
(17) s.t.: (2)-(5), (7)-(11), (13)-(14), 

 

In turn, afc is a convex polyhedral function represented by 
linear constraints as standard in Benders’ decomposition. Sub-
problems in the backward step use the state variables obtained 
in the forward step to recursively build the linear approxima-
tions. On the other hand, the set of linear approximations of 
the cost to go function are used in all the next iteration of the 
forward step, as illustrated in Figure 7. 

 
Figure 7. Interaction of the forward and backward steps in the PR strategy. 

C. Algorithm 
Besides the two aforementioned steps, at the end of each it-

eration, a full economic dispatch (LP problem (1)-(5), (7)-(11), 
(13) and (14) with binary variables z, u, up and ud fixed by the 
forward step) is solved. A complete iteration of the PR phase is 
illustrated in Figure 8. 

 
Figure 8. One iteration of the PR strategy. 
All the cost-to-go approximations added in one iteration are 

kept for all the next iterations since they are valid lower 
bounds for all the subproblem solutions. As illustrated in Fig-
ure 1, both LR and PR are performed at each iteration, and this 
procedure finishes by Bundle's stopping criteria or the time 
limit. The best primal solution found by the algorithm is the 
solution of the SHTUC problem. 

VI. RESULTS 
The results have been obtained on an Intel Xeon CPU 

X5690 (3.47 GHz) computer with 32 GigaBytes of RAM. The 
LP and MILP problems are solved using a general-purpose 
optimization solver. The different approaches are compared 
utilizing usual statistical metrics (average values and standard 
deviation), as well as employing the performance profile tech-
nique [27]. The performance profiles are cumulative distribu-
tion functions for a given metric (number of iterations, pro-
cessing time, objective function, etc.), which depend on the 
multiplying factor, i.e., is the relation between the current 
method and the best one. The expression of the performance 
profile is given by: 

 (18) 

The solution strategy is assessed for the hydrothermal sys-
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tems showed in Table 1. The systems have different initial 
conditions and scenarios trees to produce a wide range of re-
sults. 

Table 1. Test Systems for Hydrothermal SHUC Problems. 

System 
Number of 

plants 
Generation 

capacity (%) 
Generation 

capacity (MW) 
Storage 

capacity (hm3) 
 H T H T   

A 7 14 25.0 75.0 21,297.5 5,635.1 
B 7 14 75.0 25.0 9,224.0 9,309.0 
C 10 10 50.0 50.0 16,132.2 10,737.5 
D 14 7 76.3 23.7 16,046.5 14,944.1 
E 14 7 25.2 74.8 9,671.0 5,507.2 

DD 28 15 74.8 25.2 29,922.6 44,043.99 
H stands for hydro and T for thermal power plants. 
Furthermore, the UD and SD schemes used in LR are com-

pared using the optimality gap = ( UB – BUB ) / BUB, where 
the upper bound UB is the solution given by some strategy and 
BUB is the best known upper bound for all the strategies test-
ed. Among the strategies, we also have solved the determinis-
tic equivalent through the same general-purpose MILP solver 
used in the decomposition schemes. 
A. Systems A to E 

Test systems A to E have the same power system (46 buses 
and 95 transmission lines), but the location in the electrical 
network and the number of power plants are different. The 
electrical system A is illustrated in Figure 9. 

 
Figure 9. The power system of test systems A to E. 
The five test systems are assessed with four scenario tree 

sizes and three initial conditions, which results in 60 instances. 
The results are first presented in Figure 10 and Figure 11, 
using the performance profile approach for processing time 
and optimal solution, respectively. 

Table 2 complements the result, where we present the aver-
age values (and standard deviation, in brackets) of the gap, 
processing time, oracle time (time to solve the LR subprob-
lems), PR time (total time spend solving the PR strategy) and 
the number of iterations for all approaches. All the 60 instanc-
es for the MILP (i.e., DE approach) stopped by the time limit3 
(40 minutes). Also, 75% of the LR decomposition schemes did 
not reach the convergence within this time. Only 12 and 11 
instances stopped before 40 minutes for the UD and SD, re-
spectively. For the SD scheme the instances stopped pretty 
close to the time limit, meanwhile for the former (UD), we 
have some variability of the processing time, as shown in Ta-
ble 2. 
 

3 Some instances take some extra time since the time limit was reached in 
the middle of the solver processing. 

 
Figure 10. Performance profile for the processing time. 

 
Figure 11. Performance profile for the optimal solution. 

Table 2. Results for Test Systems A-E. 
Strategy Gap [%] Time Oracle time [%] PR time [%] Iterations 

MILP 1,134.50 
(2,194.87) 

1.05 
(0.0) 

- 
- 

- 
- 

- 
- 

UD 20.11 
(58.41) 

1 
(0.19) 

11.48 
(8.74) 

18.87 
(11.63) 

3.58 
(4.33) 

SD 188.89 
(1,011.49) 

1.08 
(0.06) 

94.23 
(4.36) 

5.39 
(4.07) 

1.0 
(1.08) 

The time and the number of iterations is relative to the smaller values, i.e., 
UD for the time and SD for the iterations: Time = 1 corresponds to 38.1 min, 
Iteration = 1 corresponds to 13.2 iterations. 

As can be seen, the primal recovery strategy with UD and 
SD schemes have better performance than solving via a single 
MILP model. UD scheme has a smaller average processing 
time compared to the other strategies, followed by MILP and 
SD, as presented in Table 2. Considering a tolerance of 5% in 
the optimal solution (fm = 1.05), we have about 82% of the 
cases solved by UD, 58% solved by SD and 43% solved by 
MILP. Table II also reports a substantial difference in the 
average gap between the strategies. We also compare the strat-
egies regarding the size of the scenario tree. The idea is to 
observe the performance of the approaches comparing the 
upper and lower bounds given by each method. We perform 
this comparison using the optimality gap and the lower bound 
lb_gap = ( LB – BLB ) / BLB, where LB is the lower bound 
given by some strategy and BLB is the best known lower 
bound for all the strategies tested. Figures Figure 12 and 
Figure 13 show the gap and lb_gap for the solution strategies, 
respectively. 

 
Figure 12. Performance of upper bounds versus the number of scenarios. 

 
Figure 13. Performance of lower bounds versus the number of scenarios. 
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In general, the UD scheme presents a smaller optimality 
gap, but with the poorest lower bounds. SD provides much 
better lower bounds, but a solution of somewhat lesser quality. 
However, our PR strategy dramatically outperforms solving 
the entire problem as a MILP with 16 scenarios or more. 

Finally, we can examine in detail some primal results to 
compare the different configurations of power plants. Figure 
14 shows the results for test systems A (firsts graphs), B (sec-
ond graphs), and C (last graphs) for the problem with 25 sce-
narios solved by the three strategies. The curves on the left 
(red ones) represent the solution with MILP, the curves on the 
middle (green ones) the solution with UD, and the curves on 
the right (blue ones) the solution given by the SD scheme. We 
remark that there is a deficit of energy in the MILP solution, 
meaning it is more way expensive than the others; in other 
words, the solver could not deliver a reasonable solution in the 
given time. Furthermore, in system A, the thermal power 
plants follow the variations of the demand. This happens also 
in system E since thermal plants are predominant. On the other 
hand, in test systems with a hydro predominance (B and D), 
thermal generators behave as base-load power plants. 

 
Figure 14. Power production and demand over two days for a problem with 

25 scenarios (Gt, Gh, and D stand for thermal generation, hydro generation, 
and power demand, respectively). 

B. System DD 
In this section, it is compared the strategies for system DD, 

which is an expansion of test system D to an 82-buses power 
system with 143 transmission lines. We consider three initial 
conditions and six different scenario trees (with four and nine 
scenarios and three different realizations for each one), result-
ing in 18 cases for the same system. Figure 15 shows the per-
formance profiles for the optimal solution for a given time 
limit of 120 minutes; all the strategies always hit the time 
limit, which is expected considering the size of the problem. 

 
Figure 15. Performance profile for the optimal solution – system DD. 

The performance profile shows that our primal recovery 
strategy with UD scheme has a better performance in most of 
the instances. Considering a tolerance of 20% in the optimal 
value, fm = 1.2, about 78% of the instances are solved by UD, 
50% by the MILP, and 44% by the SD. We present the average 
values (and standard deviation) in Table 3. 

Table 3. Results for Test System DD. 
Strategy Gap [%] Oracle Time [%] PR Time [%] Iterations 

4 Scenarios 
MILP 0.47 (1.34) - - - 

UD 20.55 (20.23) 29.22 (14.22) 27.74 (3.62) 30.0 (17.1) 
SD 57.47 (55.93) 97.98 (0.66) 2.01 (0.65) 1.0 (0.4) 

9 Scenarios 

MILP 13,164.1 
(11,369.2) - - - 

UD 0.69 (1.96) 19.84 (14.81) 25.42 (3.53) 24.6 (24.3) 
SD 14.58 (12.60) 98.10 (0.56) 1.89 (0.56) 1.0 (0.3) 

The value within brackets represents the standard deviation. The number of 
iterations is relative to the smaller values, i.e., these for SD: Iteration = 1 
corresponds to 4.9 and 3.6 iterations for 4 and 9 scenarios, respectively. 

As in the previous section, the decomposition schemes are 
more and more competitive to the MILP as the size of the 
scenario tree grows. Regarding the comparison between the 
two decomposition schemes, in UD the PR and LR subprob-
lems take the same relative time, while in SD most of the time 
is spent to solve LR subproblems. The number of iterations in 
SD is smaller, which may be a factor in the poorer perfor-
mance of the PR approach: fewer iterations mean fewer ap-
proximations of the cost-to-go function, and hence possibly 
poorer information for the PR strategy. Nevertheless, even the 
SD scheme results in better gaps than the problem solved as a 
MILP model. 
C. Deterministic Results 

Currently, the day-ahead model used to obtain the genera-
tion scheduling in Brazil is deterministic and solved using a 
single MILP problem. Hence, we found it useful to test the 
performance of decomposition strategies (clearly UD, since 
there are no scenarios to decompose by). For this purpose, we 
developed and solved a very large deterministic UC. The pow-
er system solved has 164 hydroelectric and 412 thermoelectric 
power plants; due to memory limitations, the transmission 
system constraints were disregarded. The results for five dif-
ferent cases (different curves of demand and water inflow) are 
shown in Table 4. 

Table 4. Results for a Bigger System. 
Strategy Case LB (R$) UB (R$) Gap4 [%] Time [min.] 

MILP 

1 6,048,832 40,197,464,370 136,036 60 
2 5,542,550 34,757,581,818 139,358 60 
3 7,228,961 39,378,674,530 144,199 60 
4 6,512,480 62,741,817,027 323,724 60 
5 3,889,464 17,239,231,489 174,507 60 

UD 

1 3,950,691 29,642,903 0.0 60 
2 3,647,832 25,086,238 0.0 60 
3 4,709,265 27,383,828 0.0 60 
4 4,118,128 19,497,174 0.0 60 
5 3,173,259 9,978,269 0.0 60 

The table shows that even in a deterministic problem (close 
to the Brazilian electrical system) decomposition strategies 
with our new PR scheme are highly competitive with directly 
solving the problem with a MILP solver. 

 

4 This value is not the relative difference between LB and UB for each 
strategy, but the optimality gap as defined in section VI. 
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VII. CONCLUSIONS 
Lagrangian Relaxation is a known decomposition technique 

that exploits the structure of the problem, splitting it into many 
subproblems. Its main drawback is its inability to produce 
feasible solutions to nonconvex problems. Therefore, it has to 
be complemented by other strategies to recover the primal 
feasibility, like inexact augmented Lagrangian [28] and heuris-
tics [29]–[34]. In this work, we have proposed a novel PR 
scheme based on a combination of the solutions (both integer 
and continuous) given by LR-subproblems and Benders’ ap-
proach. Our PR scheme is general and can be applied to the 
many different decompositions that SHUC can have. We test-
ed it on the two main ones, unit and scenarios schemes, as-
sessing its performances for a plurality of hydrothermal sys-
tems, up to a very large one based on the Brazilian power 
system. Our results show that decomposition strategies are 
competitive with solving the problem through a MILP solver. 
This is true already for the deterministic case, and the ad-
vantage grows as the problem’s size (number of power plants 
or scenarios) does. Among the decomposition strategies, UD 
provides better solutions in less time, although SD provides 
better lower bounds. The latter result was already known [16], 
but this work shows the importance of considering all elements 
of a decomposition technique (LR and PR) together to choose 
the right decomposition approach. 
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