
Jurnal Kejuruteraan 32(1) 2020: 1-7
https://doi.org/10.17576/jkukm-2020-32(1)-01

Modelling and Verifying Dynamic Access Control Policies in Workflow-Based
Healthcare Systems

Rokan Uddin Faruqui *,a

aDepartment of Computer Science and Engineering, Faculty of Engineering, University of Chittagong, Bangladesh.
*Corresponding author: rufaruqui@cu.ac.bd

Received 16 January 2018, Received in revised form 5 September 2019
Accepted 21 November 2019, Available online 28 February 2020

ABSTRACT

Access control system is an important component to protect patients’ information from abuse in a health care system. It
is a major concern in the management, design, and development of healthcare systems. Designing access control policies
for healthcare systems is complicated due to the dynamic and inherent complexity of the tasks performed by the healthcare
personnel. Permissions in access control systems are usually granted on the basis of static policies. However, static
policies are not enough to cope with various situations such as emergencies. Most often, the Break-the-glass mechanism is
used to bypass static policies to handle emergency situations. Since healthcare systems are critical systems, where errors
can be very costly in terms of lives, quality of life, and/or dollars, it is crucial to identify discrepancies between policy
specifications and their intended function to implement correctly a flexible access control system. Formal verifications
are necessary for exhaustive verification and validation of policy specifications to ensure that the policy specifications
truly encapsulate the desires of the policy authors. We present a verifiable framework to enact a dynamic access control
model by integrating the ANSI/INCTIS RBAC Reference Model in a workflow and an approach for property verifications of
the access control model. Access control policies are expressed by the formal semantics of a model checker and properties
are verified by the DiVinE model checker.

Keywords: Model Checking; Formal Verifications; Access Control.

INTRODUCTION

An access control system regulates the operations that can
be executed on the data and resources to be protected. The
essence of access control is in determining what access
privileges a given user can exercise in a given context.
Access control decisions are driven by access control
policy. Popular access control models include the Chinese
Wall Access model, discretionary access control (DAC),
mandatory access control (MAC), and role-based access
control. Role-based access control (RBAC) is a preferred
model implemented in healthcare systems. The American
National Standard Institute (ANSI) and the National Institute
of Standards and Technology (NIST) developed the standard
RBAC Reference Model (ANSI 2004). Canada Health Infoway
also developed a conceptual model for access control using
RBAC (Infoway 2005).

The RBAC model is usually inflexible in making decisions
and provides only two output decisions: grant or deny. The
main drawback of the RBAC model is failing to provide the
flexibility required to deal with emergency situations which
are typical in healthcare applications. The Break-the-glass
concept is an approach to granting emergency access to
healthcare systems to overcome this problem (SPC 2004).
Most existing implementations use break-the-glass as an
exception-handling mechanism. The Rostard (2009) study

observed the use of the break-the-glass mechanism in
a system in which normal access control is enforced as
a combination of role and workplace. They found that
exception-handling requests exceed access requests and
concluded that static approaches to define access control
policies do not achieve reasonable outcomes in a dynamic
hospital setting and will not reduce the misuse of exception-
handling mechanisms. They also found that combining
norms and practices, medical guidelines, observational
data, and audit data to learn patterns of information used in
healthcare and then applying these patterns to create access
control rules will help to minimize the use of the break-the-
glass access. These resources also contain information about
workflow in healthcare. We present a verifiable framework
for dynamic access control model integrating with standard
RBAC that will work as an enactment service in healthcare
workflow. We also present an approach for verifying the
policies of access control.

Access control system is the critical component of an
information systems. It is common that a system’s privacy and
security are compromised due to the wrong configuration of
access control policies. This problem becomes increasingly
severe in healthcare systems because healthcare systems
are large scale systems involving complex and distributive
processes which are deployed to manage a huge amount
of sensitive information and resources. Moreover, the

J Kejuruteraan Artikel 1.indd 1 2/20/2020 3:31:12 PM

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UKM Journal Article Repository

https://core.ac.uk/display/328811535?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

information and resources are organized into sophisticated
structures with a high degree of variability. Healthcare
systems are also critical systems, where errors can be very
costly in terms of lives, quality of life, and/or dollars. It is
crucial to identify discrepancies between policy specifications
and their intended function to implement correctly a flexible
access control system. Formal verifications are necessary for
exhaustive verification and validation of policy specifications
to ensure that the policy specifications truly encapsulate the
desires of the policy authors. We present a model checking
based approach for automated verifications of access control
policies. Access control policies are expressed by the formal
semantics of the model checker and properties are verified
by the model checker.

Our contributions are twofold: first, we present a
workflow-based access control model based on standard
RBAC for healthcare systems with an exception handling
mechanism. Second, we present formal verifications for
security analysis of the access control policies. We used
the distributed and high performance model checker
DiVinE (Verstoep et al., 2009; Barnat et al., 2009) to verify
the access control policies of our proposed model for a
healthcare workflow.

The remainder of the paper is organized as follow:
firstly, we present background information; then we
introduce the core RBAC reference model and our proposed
workflow-based access control model. Thirdly, we present
a brief discussion of how the proposed model. Finally,
properties are specified and verified by the model checker
and related works are presented.

PRELIMINERIES

CORE RBAC

Role Base Access Control (RBAC) is the state-of-the-art
access control model proposed in (Sandhu 1996). In this
section, we present the ANSI/INCITS core RBAC model.

The Core RBAC Reference Model defines the set of basic
elements: users, roles, operations, sessions, permissions, and
objects. It consists of the following relations:
1. User-Assignment: UA ⊆ USERS × ROLES, a many to many

mapping user-to-role assignment.
2. Permission-Assignment: PA ⊆ PRMS × ROLES, a many

to many mapping permission-to-role assignment. PRMS
= 2(OPS×OBS), the set of permissions.

3. The set of operations associated with permission p is
Op(p ∈ PRMS) →{op ∈ OPS}.

4. The set of objects associated with permission p is Ob (p
∈ PRMS) →{ob ∈ OBS}.

5. SESSIONS is the set of sessions. User-Session: US (s ∈
SESSIONS) → USERS, the mapping of user u onto a set
of sessions. Session-Roles: SR(s ∈ SESSIONS) → 2ROLES,
the mapping of session s onto set of roles.

The core RBAC model makes authorization the
decisions grant/deny by taking user information, intended

operations, and the target object as inputs. It can be expressed
as follows:follows:

!"#$%&'(!!"#$"!!!!"#!!!!"# ! !!"#$%!!"#$!

The core RBAC module identifies the role r for the user
u then check the permissions for role r to perform operations
Ops on object obj.

MODEL CHECKINg

Model checking is an automated technique that, given a finite-
state model of a system and a logical property, systematically
checks that this property holds for a given initial state in that
model (Clarke 1986). Model checking requires an exhaustive
search through all possible configurations, or states, of a
system. We use liner temporal logic (LTL) to specify the
properties of our access control model. Temporal logic is a
formalism for describing sequences of transitions between
states in a reactive system like workflow. In temporal logic,
time is not specified explicitly; instead, temporal operators
are used to specify properties such as: eventually some
designated states are reached, or an error state is never
reached. LTL is a temporal logic, with connectives that
allow us to refer to the future. It models time as a sequence
of states, extending infinitely into the future. LTL formulas
are built from predicates, logical connectives, universal and
existential quantifiers, and modalities G (globally in the
future), F (eventually in the future), X (in the next step) and
U (until).

We use automata-based model checking (Kupferman
2000) to verify access control policies. In automata-based
model checking, the modeled system is converted into
a corresponding Buchi automaton and the negation of
property specification to be checked is converted into another
automaton which is known as never-claim automaton. Then,
the emptiness of the intersection of the system and the negated
specification automaton is checked. If the system holds the
property then the intersection is empty. If the intersection is
not empty, a counter example is reported.

DIVINE MODEL CHECKER

DiVinE is a distributed and high performance explicit-state
model checker that follows the automata-based approach.
It has several platform dependent versions such as the

FIgURE 1. The core RBAC model

J Kejuruteraan Artikel 1.indd 2 2/20/2020 3:31:13 PM

3

distributed-memory DiVinE Cluster (Barnat et al. 2005),
and the shared-memory DiVinE Multi core (Barnat et al.
2008). DiVinE offers model checking of finite state systems
against specification formulated in LTL.

State-space explosion is the main concern of the
model checking. DiVinE utilizes high performance cluster
computing to overcome this problem. Due to the looping and
inherent complexity of workflow, we use DiVinE to verify
WfAC module integrated with workflow. The finite state
machine (FSM) specifications of Workflow-based Access
Control Model (WfACM) are translated into DVE , the formal
semantics of DiVinE that use the standard notation of the
Communicating Sequential Processes (CSP) (Hoare, 1983).
Therefore, it can be translated into the formal semantics of
any classical finite-state model checker such as SPIN.

PROPOSED MODEL

 WORKFLOW-BASED ACCESS CONTROL MODULE

We propose the Workflow-based Access Control Model
(WfACM) as a part of a workflow engine to enact access
control policy. The WfACM enforces the dynamic access
policies which vary some process to process. WfACM
is interfaced with standard ANSI/INCITS RBAC with
modifications for exception-handling and reducing misuse.
WfACM is shown in Figure 1.

The Workflow-based Access Control model first checks
the mode of operations. There are two possible modes: normal
mode and emergency/exception-handling mode. If normal
mode is selected, it invokes core RBAC module which is part
of the main model in which core RBAC is implemented. In case
of emergency/exception-handling modes, it performs some
additional tasks that include: re-validating user credentials,
triggering for audit logging, asking user to provide reasons
for using emergency mode, and notifying the resource owner;
and finally, changing user role. An exception-handling role is
assigned to the current user. This role is not a flat exception-
handling role; it varies from process to process and grants the
least privileges i.e., necessary permissions to complete the
assigned task. The standard RBAC procedure is then invoked
with following arguments: user, temporarily assigned role,
operations and objects.

The workflow-based access control model makes
authorization decisions by taking all the information
necessary for core RBAC module with additional mode
information as input. It provides grant decision if the user
is adequate to perform the actions on the targeted object in
the current mode, or deny if access is not granted. It can be
expressed as follows:

!"#$!!"#$!!!!"#$"!!!!"#!!!"#! ! !!"#$%!!"#$!

The WfAC module identifies the role r for the user u
then checks the permissions for role r to perform operations
Ops on object obj for the specified mode.

FINITE STATE MACHINES (FSMS) SPECIFICATION OF WFACM

Dynamic constraints that regulate the access permissions
in the workflow can be specified with asynchronous
specification expressions of FSM. Hu et al. (2008) developed a
FSM specification to model the generic access control policies
for verifications. They specified an authorization process for
a user with four states: idle, entering, critical, and exiting for
a particular dynamic constraint.

A user is normally in the idle state. He will move to the
entering state when he wants to access the critical object. If
it is in the access limit, he will move to the critical state, and
the number of the current access is increased by 1. When the
user finishes accessing the critical object, he will return back
to the exiting state, and the number of the current access is
decreased by 1. The user is then move from the exiting state
to the idle state again. We use the similar specifications with
the extensions for exceptions handling.

FIgURE 2. Workflow-based Access Control Model

We introduce a mode variable to enforce different
access policies. In normal mode, it follows the similar RBAC
reference model and in emergency mode, it performs the tasks
recommended for exceptions handling. In our framework,

ALgORITHM 1. FSM Specifications

J Kejuruteraan Artikel 1.indd 3 2/20/2020 3:31:16 PM

4

we convert this FSM specification into a Kripke Structure
and translate the Kripke Structure into the formal semantics
of model checker. The FSM specifications for WfACM
are given in Algorithm 1 and its procedure is shown in
Procedure 1.

MODELINg WFACM WITH DICINE

The workflow access control properties to be verified are
specified in LTL. Then we translate the Kripke structure
and LTL property into DVE language. DVE specification and
defined properties are similar to finite state automata. Each
automaton is translated as a process in DVE and processes
interact through channels. Process can read from (designated
by ”?”) or write to (designated by ”!”) channels. We use the
same mapping relations defined in RBAC reference model.
Numerical values are assigned to each entity of USERS,
PRMS, OBS, OPS for unique identifications. Roles: Manager
= 0, CareNavigator = 1, CaseManager = 2, Pharmacist = 3,
SocialWorker = 4, SystemNavigator = 5, Users: MacIsac =
0, Kmiller = 1 etc. Ops: Read = 1,Write = 2. Obs: PatientInfo
= 0. PrescribedDrug∕Therapy = 1. ExtraSensitiveInfo = 2.
Prms: grant = 1, Deny = 0.

Two-dimensional mapping relations are represented
by one dimensional variable because DiVinE does not
support multidimensional array variable. A vector variable
UA′ is used to represent many to many mapping user-to-role
assignment UA ⊆ USERS × ROLES. The first index of UA′
indicates the user information then followed by the Boolean
information of all roles. If a user is assigned to a role then its
value is 1 otherwise 0. In similar way, all users’ information
is stored linearly. For example, if USERS = 2, ROLE = 3, then
UA [8] = {u1, r1, r2, r3, u2, r1, r2, r3}.

Another vector variable PA′ is used to represent many
to many mapping permission-to-role assignment PA ⊆
PRMS × ROLES. The first index of PA′ indicates the object
followed by the role information followed by the access
rights information. For example, if OBJECTS = 3, ROLE = 3,
then PA[30] = {obj1, r1, R, W, r2, R, W, r3, R, W, obj2, r1, R,
W, r2, R, W, r3, R, W, obj3, r1, R, W, r2, R, W, r3, R, W}.
R/W stands for Boolean read/write permissions.

There are five processes for WfACM: checkaccess,
normal Mode Operation, emergency Mode Operation,
check-Permission, and decisions. The CheckAccess process
is invoked by any other processes in workflow that needs
to use access control service. It accepts user information,
objects information and actions intended to perform. Then
it also considers the mode of operations whether it is normal
mode or emergency / exception handling mode. The DVE
code for the Check Access process is given in Figure 3.

AC POLICIES VERIFICATIONS

We outlined the workflow access control model in DVE
language. In this section, we will show how access control
policies for healthcare systems can be checked by DiVinE.
Li and Tripunitara (2006) introduced a family of security

analysis problems in RBAC. We only verified the restrictions
property. In a healthcare system, a restriction property can
be formulate as: Does a pharmacist have the access to
the patient personal information? In our workflow, a user
whose role is pharmacist doses not have the access to the
patient information but in emergency, the pharmacist may
need to know a patient’s allergy information to execute
prescribed drug or therapy. If we check the property for
pharmacist p, and it returns accepting cycle then we can
check the property which will return no accepting cycle.
Verifications result is shown in Table 1.

RELATED WORK

Research on the rise is to design dynamic access control
model with exception handling features for healthcare
system. RBAC model is a widely-accepted access control
model, but due to rigidness in making decisions, it is not
suitable for healthcare systems. To overcome this problem,
numerous methodologies are proposed. Povey introduced
the idea of optimistic security in (Povey, 1999) which is a
rollback concept in case of misuse and information from
the audit logs are traces to identify the misuse. They claim
that this idea is suitable for healthcare system to compensate
misuse. Optimistic security exists in many healthcare
systems as a break-the-glass mechanism which is intended
to be used in emergency situations.

Russello et al. argues that such property does not
always hold. In many situations, all information is not
recoverable such as the disclosed confidentiality of the
patient (Russello et al. 2008). Etalle and Winsborough
(2007) presented Posteriori compliance control which
delays the access control after gaining access decisions by
providing an infrastructure which allows securely auditing
and rolling back in case of a denied access, focusing on risks
of not granting privileges. We used the notion of workflow
to specify and implement the fine-grained access control
policies.

In workflow, specific tasks are assigned to the
designated entities and this feature will help to reduce the
misuse of the exception handling mechanisms. A framework
is proposed in (Russello et al. 2008) where access rights are
provided to entities on the basis of the actual task so that
the assigned tasks must be fulfilled by the entities as a part
of their duties. For capturing the requirements of entities’
duties, the notion of workflow is used. They argued that
RBAC is not flexible enough for coping with the dynamic
working environment. They used YAWL for specifying
workflow which is similar to our approach. However, they
proposed a new policy based access control module using
Ponder2 policy language and interpreter developed at
Imperial College London (Twidle et al. 2009). But we are
motivated to use standard RBAC model due to its broadly
recognition. Ferreira et al. (2009) proposed a framework
that integrates break-the-glass mechanism within the NIST/
ANSI RBAC model to adopt generically in any domain

J Kejuruteraan Artikel 1.indd 4 2/20/2020 3:31:16 PM

5

finite state specifications. They used the well-known SMV
model checker to verify access control policies specified
in computation tree logic (CTL). There are other model
checking based verifications approach for verifying access
control policy such as (Zhang et al. 2008). They modeled
rule-based policies in their Read/Write (RW) language based
on propositional logic and conduct model checking on
the policies. However, our approach is specifically in the
context of workflows. The RW language is not primarily
designed towards such needs.

Schaad et al. (2006) used model checking techniques
for automated analysis of revocation and delegation
functionalities in organizational workflow. They used the
symbolic model checker NuSMV (Cimatti et al. 2002) to
verify the properties specified in liner temporal logic (LTL).
We use an automata-based distributed and parallel model
checker to verify the access control policies integrated with
workflow.

PROCEDURE 1. WfAC(access-limit)

where unanticipated or emergency situations may occur.
The model provides a third decision option break the glass
along with two decisions by RBAC. However, they proposed
a new model apart from the standard model for exception
handling.

Due to the complexity and importance of access
control models, formal methods have been applied to
verify the required properties. Vincent et al. [13] provides
a method for specifying generic access control policies by

FIgURE 3. checkAccess Process

CONCLUSION AND FUTURE WORK

In this paper, we have presented a Workflow-based Access
Control Model that incorporates the standard RBAC with
exception handling mechanism which is especially suitable
for healthcare system. Our model suggests the dynamic

FIgURE 4. identifyRole Process

J Kejuruteraan Artikel 1.indd 5 2/20/2020 3:31:20 PM

6

access control policies will be extracted from the sources
of information necessary to develop the workflow and
therefore, the medical guidelines, best practices and
observational information will be used to design and verify
the access control policies. In this paper, we have not
considered the role hierarchy.

Conference on Computer-Aided Verification, LNCS
2404: 359-364.

Clarke, E.M., Emerson, E.A., Sistla, A.P, M. 1986. Automatic
verification of finite-state concurrent systems using
temporal logic specification. Association for Computing
Machinery Transactions on Programming Languages
and Systems (TOPLAS) 8(2): 244-263.

Etalle, S., Winsborough, W.H. 2007. A workflow-based
access control framework for e-health applications.
Proceedings of the 12th Association for Computing
Machinery symposium on Access control models and
technologies, New York, NY, USA, ACM, 11-20.

Ferreira, A., Chadwick, D.W., Farinha, P., Correia, R.J.C.,
Zhao, g., Chilro, R., Antunes, L. 2009. How to securely
break into rbac: The btg-rbac model. Proceedings
of the 2009 Annual Computer Security Applications
Conference, IEEE Computer Society, 23-31.

Hoare, C.A.R. 1983. Role-based access control models.
Association for Computing Machinery Communications,
26(1): 100-106.

Hu, V.C., Kuhn, D.R., Xie, T. 2008. Property verification for
generic access control models. Proceedings of the 2008
IEEE/IFIP International Conference on Embedded and
Ubiquitous Computing, Washington, DC, USA, IEEE
Computer Society, 243-250.

Joint NEMA/COCIR/JIRA Security and Privacy Committee
(SPC). 2004. Break-glass: An approach to granting
emergency access to Healthcare Systems. Rosslyn, VA,
USA

Kupferman, O., Vardi, M.Y. 2000. An automata-theoretic
approach to modular model checking. Association for
Computing Machinery Transactions on Programming
Languages and Systems (TOPLAS) 22(1): 87-128.

Li, N., Tripunitara, M.V. 2006. Security analysis in role-based
access control. Association for Computing Machinery
Transactions on Information and System Security
(TISSEC) 9(4): 391-420.

Povey, D. 1999. Optimistic security: a new access control
paradigm. Proceedings of the 1999 workshop on New
security paradigms, New York, NY, USA, ACM, 44-45.

Russello, g., Dong, C., Dulay, N. 2008. A workflow-based
access control framework for e-health applications.
Proceedings of the AINA Workshops, 111-120.

Rostard, L. 2009. Access Control in Healthcare Information
Systems. PhD thesis, Norwegian University of
Science and Technology, Department of Computer and
Information.

Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman,
C.E. 1996. Role-based access control models. IEEE
Computer, 29(2): 38-47.

TABLE 1. Verifications Result

 Property Mode Accepting Cycle States (MB) Memory (MB) Time (Seconds)

 Restrictions Normal No 62133 1371.98 5.644
 Restrictions Emergency Yes 99256 1577.79 22.231

REFERENCES

 American National Standards Institute, Inc. 2004. American
National Standard for Information Technology – Role
Based Access Control (ANSI/INCITS 359-2004).

Barnat, J., Brim, L., Černá, I. 2005. Cluster-based LTL
model checking of large systems. Formal Methods
for Components and Object (FMCO) Lecture Notes in
Computer Science 4111: 259-279.

Barnat, J., Brim, L., Ročkai, P. 2008. Divine multi-core – a
parallel ltl model-checker. Automated Technology for
Verification and Analysis Lecture Notes in Computer
Science 5311: 234-239.

Barnat, J., Brim, L., Ročkai. 2009. Divine 2.0: High-
performance model checking. Proceedings of the
2009 International Workshop on High Performance
Computational Systems Biology, 31-32.

Canada Health Infoway Inc. 2005. Electronic Health Record
Infostructure (EHRi) Privacy and Security Conceptual
Architecture (Version 1.1).

Cimatti, A., Clarke, E., giunchiglia, E., giunchiglia, F.,
Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.
2002. NuSMV 2: An OpenSource Tool for Symbolic
Model Checking. Proceedings of the 14th International

FIgURE 5. checkPermission Process

J Kejuruteraan Artikel 1.indd 6 2/20/2020 3:31:21 PM

7

Schaad, A., Lotz, V., Sohr, K. 2006. A model-checking
approach to analysing organisational controls in a loan
origination process. Proceedings of the ACM Symposium
on Access Control Models and Technologies (SACMAT),
139-149.

Twidle, K., Dulay, N., Lupu, E. and Sloman, M. 2009.
Ponder2: A Policy System for Autonomous Pervasive
Environments. Proceedings of the Fifth International
Conference on Autonomic and Autonomous Systems,
Valencia, 330-335.

Verstoep, K., Bal, H.E., Barnat, J., Brim, L. 2009. Efficient
large-scale model checking. Proceedings of the
2009 IEEE International Symposium on Parallel &
Distributed Processing,1-12.

Zhang, N., Ryan, M., guelev, D.P. 2008. Synthesising
verified access control systems through model checking.
Journal of Computer Security 16(1): 1-61.

J Kejuruteraan Artikel 1.indd 7 2/20/2020 3:31:21 PM

J Kejuruteraan Artikel 1.indd 8 2/20/2020 3:31:21 PM

