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A warmer world could extend growing seasons for plants. Changes in spring 20 

phenology have been studied, yet autumn phenology remains poorly understood .  21 

Using >500,000 phenological records of four temperate tree species between 1951 and 2013 22 

in Europe, we show that leaf senescence in warm autumns exhibits significantly 23 

stronger climate responses, with a higher phenological plasticity, than in cold autumns, 24 

indicating a nonlinear response to climate. The onset of leaf senescence in warm autumns was 25 

delayed due to the stronger climate response, primarily caused by nighttime warming. 26 

However, daytime warming, especially during warm autumns, imposes a drought stress 27 

which advances leaf senescence. This may counteract the extension of growing season under 28 

global warming. These findings provide guidance for more reliable predictions of plant 29 

phenology and biosphere-atmosphere feedbacks in the context of global warming.   30 

Plant phenology, the timing of periodic developmental events, influences carbon, water, nutrient 31 

cycling, fitness and distribution of tree species, trophic interactions, and community structures1-3. 32 

Under global warming, advanced spring phenology has been widely reported in recent decades1,4. 33 

Contrary to spring phenology, autumn phenology responses to climate warming are inconsistent, 34 

with advanced and delayed trends as well as no response having been reported5; the mechanisms 35 

of the complex climatic responses of autumn phenology remain poorly understood1,6. Consequently, 36 

current tree phenology models often fail to simulate and predict autumn phenological changes7,8. 37 

This leaves the ability of the models to forecast responses of growing season length and biosphere–38 

atmosphere feedbacks under future climatic scenarios in doubt9.  39 

In addition to temperature, autumn phenology has been found to be influenced by other 40 

environmental cues, i.e., photoperiod, precipitation, and solar radiation5,10,11. In particular, 41 

photoperiod provides a more consistent and reliable signal of seasonality than the other climatic 42 
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factors. Accordingly, when trees rely on photoperiodic cues to signal the arrival of autumn, leaf 43 

senescence would be expected to show no or limited climatic responses12. For example, plants in 44 

cold regions with frequent frosts track photoperiod to determine the growth cessation in autumn12 45 

in order to reduce the risk of frost damage13. However, whether photoperiodic sensitivity and 46 

climatic responses of plant phenology are consistent under different autumn conditions remains 47 

unclear. Using >500,000 records of leaf senescence timing of four temperate tree species monitored 48 

in situ between 46 °N and 55 °N during 1951-2013 in Europe (Supplementary Fig. 1), we 49 

investigated and compared the effects of climatic factors on the onset of leaf senescence in years 50 

with warm and cold autumn seasons.  51 

Climatic response in cold and warm autumns 52 

The concept of climatic sensitivity has been widely used to quantify and predict the climatic 53 

responses of plant phenology under global warming14. To investigate the difference in the climatic 54 

responses of leaf senescence under cold and warm conditions, we calculated the climatic 55 

sensitivities of leaf senescence in cold and warm autumns at cold and warm sites (G1-G4). The 56 

classification of the cold and warm sites was based on their latitudes and elevations (see Methods), 57 

representing a temperature gradient from the coldest (G1) to the warmest (G4) sites 58 

(Supplementary Table 1). The cold and warm autumns were identified by comparing whether mean 59 

daily maximum temperature (Tmax, 
oC) during the period 1st August – 31st October of each year 60 

and site group was below or above its long-term average for 1951-2013, respectively.  61 

 In order to calculate the climatic sensitivities, we first used partial correlation analysis to 62 

calculate the optimal preseason length for each combination of climatic factor, species, and site 63 

group. The optimal preseason was defined as the period before the onset of leaf senescence with 64 

the highest absolute partial correlation coefficient14,15 between leaf senescence dates and the 65 
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particular climatic factor for the period of 1951-2013. The length of the optimal preseason ranged 66 

from 8 to 120 days across different species, consistent with earlier results of both spring and autumn 67 

phenology4,14,24(Supplementary Fig. 2). Ridge regression reduces the variance of regression 68 

coefficients and improves the estimations when multicollinearity occurs 16,17, as was the case in 69 

this work. We first calculated the average of each climatic factor during the optimal preseason and 70 

those of leaf senescence dates at each site group for each species. Then, ridge regression models 71 

were applied to calculate the climatic sensitivities of leaf senescence for daily maximum 72 

temperature (Tmax,
oC), daily minimum temperature (Tmin,

oC), daily sunshine duration (hour), and 73 

daily precipitation (mm) in cold and warm autumns. In all models, normalized anomalies of 74 

response and predictor variables were used to calculate the climatic sensitivities, which were then 75 

used in the comparisons of the effects of different climatic factors on leaf senescence in cold and 76 

warm autumn seasons18. Positive and negative sensitivities indicate delayed and advanced 77 

senescence, respectively.  78 

We found that average climatic sensitivities of leaf senescence to Tmin, sunshine duration 79 

and precipitation during 1951-2013 were significantly higher in warm than in cold autumns across 80 

the four studied species (P<0.001, Fig. 1a). Furthermore, the climatic sensitivities of leaf 81 

senescence to Tmax were significantly more negative in warm than in cold autumns (P<0.001, Fig. 82 

1a and Supplementary Fig. 3a), i.e., leaf senescence advanced more in warm than in cold autumns 83 

with the increase in Tmax. In order to assess the extent to which the climatic factors influence the 84 

onset of leaf senescence in cold and warm autumns, without considering the direction of the effect 85 

(delay or advance), the concept of climatic signal, defined as the absolute value of climatic 86 

sensitivity, was introduced. We found that climatic signals were significantly stronger in warm 87 

than in cold autumns (P<0.001, Fig. 1b and Supplementary Fig. 3b). To further test the generality 88 
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of this finding, we collected records of five additional species and examined their climatic 89 

responses of leaf senescence in cold and warm autumns. As with the four initial species, the average 90 

climatic signals of all of the five additional species were significantly higher in warm than in cold 91 

autumns (P<0.01, Supplementary Fig. 4). These results suggest that leaf senescence exhibited 92 

significantly stronger climatic response in warm than in cold autumns.  93 

To test the robustness of our results, we calculated the climatic sensitivity for each climatic 94 

factor based on a fixed preseason in autumn (1st August to 31st October). Consistent with the result 95 

based on the optimal preseason, we observed significantly stronger climatic responses of autumn 96 

leaf senescence in warm than in cold autumns also when using the fixed preseason (P<0.001, 97 

Supplementary Fig. 5). Because previous studies reported autumn phenology is influenced by 98 

spring phenology19,20, we further  accounted  for  the effects of spring leaf unfolding using a joint 99 

modelling approach, where both spring leaf unfolding dates and climatic factors were incorporated 100 

into the ridge regression models. In all species, leaf unfolding dates had positive effects on leaf 101 

senescence dates (Supplementary Fig. 6a), indicating delayed leaf senescence with delayed leaf 102 

unfolding, and vice-versa. This is consistent with previous findings19,20. After accounting for the 103 

effects of spring phenology, leaf senescence of all species still showed significantly stronger 104 

climatic responses in warm than in cold autumns (P<0.01, Supplementary Fig. 6b).   105 

Phenological plasticity in cold and warm autumns 106 

We compared the plasticity of autumn leaf senescence in each species at each site group between 107 

cold and warm autumn seasons based on the coefficient of variation (CV) of leaf senescence. In 108 

accordance with the stronger climatic responses found in warm than in cold autumns, a 109 

significantly higher phenological plasticity, as indicated by a higher CV, was observed in warm 110 
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than in cold autumn seasons (P<0.001, Fig. 2). In addition, the onset of leaf senescence occurred 111 

later in warm than in cold autumns (Fig. 3 and Supplementary Fig. 7).  112 

  Limited climatic responses, with a lower plasticity of phenological events, is expected when 113 

trees are under a strong photoperiodic control12. We found such conservative climatic responses 114 

and reduced plasticity of leaf senescence in cold, but not in warm, autumn seasons (Figs. 1 and 2). 115 

On one hand, before leaf senescence, trees need to assimilate sufficient carbohydrate and nutrients 116 

for overwintering and budburst during the following spring10. The accumulated GDD was 117 

significantly higher in warm than in cold autumns across all of the site groups (P<0.001, Fig. 4). 118 

Under the favorable conditions, trees may therefore prefer to delay leaf senescence and increase 119 

carbon uptake in warm autumns10, especially in warmer sites. This is supported by the observed 120 

later onset of leaf senescence in warm autumns (Fig. 3 and Supplementary Fig. 7). On the other 121 

hand, trees also need to harden sufficiently early to avoid frost damage21. As a compensating factor, 122 

photoperiod may act as a safety mechanism for trees to avoid too late leaf senescence to reduce the 123 

risk of frost in cold autumns. This may explain why, compared to warm autumns, the onset of leaf 124 

senescence showed a lower phenological plasticity (Fig. 2) and occurred earlier (Fig. 3 and 125 

Supplementary Fig. 7) in cold autumns.  126 

Effects of daytime and night-time warming  127 

Among all of the climatic factors analyzed, the mean climatic signal was highest for Tmax, and 128 

second highest for Tmin (P<0.05, Fig. 5a). This is in accordance with the earlier findings of stronger 129 

influence of daytime than nighttime temperature on spring phenology22. However, it is noteworthy 130 

that here climatic sensitivities of Tmax and Tmin were negative and positive, respectively (Fig. 5b). 131 

This indicates that the onset of leaf senescence was advanced by daytime warming, but it was 132 

delayed by nighttime warming. Wu et al.15 recently observed advanced leaf senescence caused by 133 
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daytime warming in regions with continental climates. A possible explanation for the observed 134 

advanced leaf senescence by daytime warming is drought stress15,23. To test this hypothesis, we 135 

calculated the Standardized Precipitation-Evapotranspiration Index (SPEI), which considers effects 136 

of both precipitation and potential evapotranspiration on drought severity24, and examined the 137 

effect of drought stress on the onset of leaf senescence. The averaged SPEI was positive in cold 138 

autumn seasons, but negative in warm autumn seasons (Supplementary Fig. 8). This indicated drier 139 

environmental conditions in warm autumn seasons. We further observed a significant effect of 140 

drought stress on the onset of leaf senescence, with a stronger effect in warm autumns (P<0.001, 141 

Supplementary Table 2). This suggests that a higher daytime temperature may increase evaporative 142 

demand and impose a drought stress on tree growth, especially in warm autumns, and eventually 143 

advance autumn leaf senescence10,15.  144 

Among the four studied species, leaf senescence advanced by daytime warming was greater 145 

in Fagus sylvatica L. and Quercus robur L. than in Aesculus hippocastanum L. and Betula pendula 146 

Roth (Fig. 1a). This is possibly due to a difference in the drought tolerance among species25,26. 147 

Accordingly, under drought stress, onset of leaf senescence is less likely to advance in a species 148 

with a high drought tolerance than in a species with a low drought tolerance. However, the 149 

physiological mechanisms behind the species-specific climatic response of leaf senescence remain 150 

to be tested experimentally. Using the simulated climate data by Community Earth System Model 151 

(CESM) Large Ensemble (CESM-LENS) (http://www.cesm.ucar.edu/projects/community-152 

projects/LENS/)27, we investigated the trends in the Tmax and Tmin in the autumn season (1st August-153 

31st October) during 2021-2050 in Europe. We found both average Tmax and Tmin showed 154 

significant increases through the years of 2021-2050 (P<0.001, Supplementary Fig. 9). Therefore, 155 

drought-induced advance of leaf senescence might continue in the future decades. This may 156 



8 

 

counteract the delayed leaf senescence and offset the extension of growing season duration in 157 

Europe.  158 

Conclusion 159 

Using a long-term and large-scale dataset of field observations in Europe, we demonstrated that: 160 

(1) climatic response of leaf senescence was significantly stronger in warm than in cold autumns, 161 

and (2) the onset of leaf senescence was delayed by nighttime warming, but was advanced by 162 

daytime warming. These findings provide important guidance for the understanding of complicated 163 

climatic responses of plants’ autumn phenology in the context of global climate change. Our results 164 

can be used to facilitate more reliable predictions of the timing of autumn phenological events, and, 165 

as a result, biosphere-atmosphere feedbacks under future climatic scenarios. However, further 166 

studies should experimentally investigate the physiological mechanisms behind the species-167 

specific climatic responses in controlled environments and examine whether the observed 168 

nonlinear climatic response of autumn phenology also exists in other parts of Northern Hemisphere, 169 

including Asia and North America.  170 

 171 
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Methods  236 

Leaf phenology and climate data  237 

The leaf senescence dataset was obtained from the Pan European Phenology (PEP) network 238 

(www.pep725.eu), which provides an open access to in situ phenology records across central 239 

Europe28. The leaf senescence dates, expressed as the day of year (DOY), were defined according 240 

to the BBCH (Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie) code. Most 241 

of the records used in the study are from between the 46th and 55th parallels (Supplementary Fig. 242 

1). Because records of PEP725 network may include erroneous data points, median absolute 243 

deviation (MAD) method (Leys et al., 2013) was used to identify and exclude outliers14,29,30. MAD 244 

is a robust alternative to the standard deviation measure of the central tendency in a dataset. For a 245 

dataset with values of X1, X2, ..., Xi, the MAD is defined as follows:  246 

                                     MAD = median (|Xi – median(X)|).  247 

Using a conservative criterion, any data point deviating more than 2.5 times MAD was considered 248 

as an outlier and removed from the dataset before the analyses31. In this way, we selected 547,000 249 

records of leaf senescence during 1951-2013 from approximately 10,000 sites between 46°N and 250 

55°N across all nine temperate tree species examined. The primary analysis focused on four species: 251 

Betula pubescens Ehrh. (Downy birch), Fagus sylvatica L. (European beech), Quercus robur L. 252 

(European oak), Aesculus hippocastanum L. (Horse chestnut). An additional five species were 253 

examined in supplementary analysis: Sorbus aucuparia L. (Mountain ash), Acer platanoides L. 254 

(Norway maple), Betula pendula Roth (Silver birch), Tilia cordata Mill. (Small-leaved lime), early 255 

cultivar of Prunus avium (L.) L. (Wild cherry (early)), and late cultivar of Prunus avium (L.) L. 256 

(Wild cherry (late)). Note that the two cultivars of Prunus avium (L.) L. were examined separately.  257 
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Gridded daily maximum temperature (Tmax, ℃), minimum temperature (Tmin, ℃) and 258 

precipitation (mm) data between 1951 and 2013 with a spatial resolution of 0.25° were downloaded 259 

from the database E-OBS (http://ensembles-eu.metoffice.com). Because gridded solar radiation 260 

dataset with 0.25° spatial resolution was only available since 1980, the daily measured sunshine 261 

duration (hours) dataset between 1951 and 2013 obtained from E-OBS database was used to 262 

account for the effect of solar radiation on leaf senescence. In addition, daily measured temperature 263 

and precipitation datasets between 1951 and 2013 were downloaded from E-OBS database. In the 264 

E-OBS climate database, the quality of the observations is classified into valid, suspect, or missing. 265 

We used only the values classified as valid in the data analysis. 266 

To investigate differences in the climate-phenology relationship in cold and warm regions, 267 

we divided the phenological observation sites into four groups based on their latitudes and 268 

elevations: elevation > 300 m a.s.l. and latitude > 51 °N (G1), elevation > 300 m a.s.l. and latitude 269 

< 51 °N (G2), elevation < 300 m a.s.l. and latitude > 51 °N (G3), and elevation < 300 m a.s.l. and 270 

latitude < 51 °N (G4). The four groups represent a temperature gradient from the coldest (G1) to 271 

the warmest (G4) sites (Supplementary Table 1). We also tried other grouping criteria (e.g., 272 

elevation <100 or 200 m) and obtained similar results.  273 

          Among the nine selected species, there were approximately 517, 000 records for Aesculus 274 

hippocastanum L., Betula pendula Roth, Fagus sylvatica L., and Quercus robur L.  These records 275 

accounted for 95% of all of the records and were also well-distributed across the four site groups. 276 

In contrast, the records of other five species were more limited and only distributed across one or 277 

two site groups. We therefore mainly present results based on the four widely distributed species 278 

with massive records in this study. The results of the additional other five species were used to test 279 

the generality of the results found from the more representative abovementioned four species.  280 
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Climatic sensitivity and climatic signal    281 

In order to calculate climatic sensitivities of each species to each climatic factor, we first used 282 

partial correlation analysis to calculate the optimal length of preseason of each climatic factor for 283 

each species at each site group. For each climatic factor, the optimal preseason was defined as the 284 

period before the onset of leaf senescence with the highest absolute partial correlation coefficient 285 

14,15 between leaf senescence dates and corresponding climatic factors during 1951-2013 (with 8-d 286 

steps). Using the period corresponding to the optimal length of preseason, we then calculated the 287 

climatic sensitivity as the slope of a ridge regression16,17 between the onset of leaf senescence 288 

(DOY) and the averaged climatic factor during the preseason period for each species at a site group. 289 

The climatic sensitivity was calculated in this way for the daily maximum temperature (Tmax, 
oC), 290 

daily minimum temperature (Tmin, 
oC), daily sunshine duration (hour), and daily precipitation (mm). 291 

Positive and negative sensitivities indicate delayed and advanced senescence, respectively. 292 

Climatic signal was defined as the absolute value of climatic sensitivity. It indicates the extent to 293 

which the climatic factor influences the onset of leaf senescence, without considering the direction 294 

of the effect (delay, advance).  295 

In addition to the full data set used, the results of climatic sensitivities are reported 296 

separately for species and for site groups, and for years with cold and warm autumns seasons. The 297 

seasons were classified into cold and warm ones based on whether mean daily Tmax during the 298 

autumn season (1st August – 31st October) of the particular year at the particular site was below 299 

or above its long-term average for 1951 – 2013, respectively.  300 

Multicollinearity is a problem when two or more predictors in multiple regression models 301 

are highly correlated16. The estimated regression coefficients based on ordinary least square 302 

regression can be unreliable when multicollinearity occurs16. By adding a penalty parameter in the 303 
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model, ridge regression reduces the variance of regression coefficient and produces more reliable 304 

estimates17. In order to take into account the potential multicollinearity between climatic factors, 305 

ridge regressions were therefore used in the calculations of climatic sensitivity16,17.  The spatial 306 

resolution of sunshine duration dataset was too coarse to obtain the sunshine duration hours for 307 

each site. To address this, we averaged climatic data, including Tmax, Tmin, precipitation and 308 

sunshine duration, and leaf senescence dates for each site group (G1-G4), and analyzed the effect 309 

of the averaged climatic factors on autumn leaf senescence. A total of 128 models were applied to 310 

calculate the climatic sensitivities, one for each combination of site group, species, and season type 311 

(4 climate factors × 4 climate groups × 4 species × 2 season types). The response variable was the 312 

mean leaf senescence date, the predictors were the averaged climatic factors during the optimal 313 

preseason of each species at each site group. Normalized anomalies of climatic factors and leaf 314 

senescence dates were used in all of the models when calculating the climatic sensitivities, which 315 

were then used for comparing the effects of different climatic factors on the onset of leaf senescence 316 

in cold and warm autumns in different species and different site groups18. To test the robustness of 317 

our results, we calculated the climatic sensitivity also based on a fixed preseason in autumn (1st 318 

August to 31st October) for each climatic variable. We also addressed the effects of spring 319 

phenology on autumn leaf senesce in cold and warm autumns via a joint modelling approach where 320 

both spring leaf unfolding dates and climatic factors were incorporated into the ridge regression 321 

models. Both the response variables and the predictors were normalized also in these models.   322 

Due to the coarse spatial resolution of sunshine duration dataset, we could not analyze 323 

the effects of all of the four climatic factors on leaf senescence at the site level. To address this, we 324 

performed an additional analysis using the climatic data that could be obtained for each site (see 325 

Supplementary Fig. 10). Specifically, we first excluded the outliers deviating more than 2.5 times 326 
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MAD and selected sites with at least 40 years records of leaf senescence between 1951 and 2013. 327 

Second, we used the bilinear interpolation method to extract the daily Tmax, daily Tmin, and daily 328 

precipitation between 1951 and 2013 for each site using the “raster” package32 in R version 3.6.133. 329 

After determining the optimal preseason length of climatic factors, we calculated the mean 330 

temperature and precipitation during the optimal preseason for each year at each site. Finally, we 331 

obtained year-to-year normalized anomalies (relative to average year) of both climatic variables 332 

and leaf senescence dates, and calculated climatic signals in cold and warm autumns for each 333 

species at each site using ridge regressions. 334 

Linear mixed models are widely used to analyze hierarchical data, because they allow 335 

inclusion of both fixed and random effects34. By pooling all of the species at different site groups, 336 

a linear mixed model was used to examine the difference in climatic sensitivity or climatic signal 337 

between cold and warm autumn seasons. In the linear mixed model, the response variable was 338 

climatic sensitivity or signal, the fixed effect was autumn season type (a categorical variable with 339 

two levels: cold and warm autumn), with random intercepts among species. Tukey's HSD 340 

(Honestly Significant Difference) test is a common post-hoc test used to compare the means 341 

between groups based on the studentized range distribution35. Here Tukey's HSD test followed by 342 

linear mixed model was used to examine the differences in climatic signals among the climatic 343 

factors addressed.  344 

Growing degree days 345 

Based on the following equation, we calculated the growing degree days (GDD) to assess the 346 

climatic forcing in cold and warm autumns at different site groups: 347 

                                      max min( )

2
base

T T
GDD T

 
  
 

      Eq. (1), 348 
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where GDD = 0 when (Tmax+Tmin)/2 < Tbase. Based on Eq. (1), we calculated the accumulated 349 

GDD5 (Tbase = 5 ℃) and GDD10 (Tbase = 10 ℃) during the optimal preseason36 of leaf senescence. 350 

These calculations were carried out separately for years with cold and warm autumns. Linear mixed 351 

models were used to examine the difference in the accumulated GDD5 and GDD10 between years 352 

with cold and warm autumns. The response variable was GDD5 or GDD10, the fixed effect was 353 

autumn season type (a categorial variable with two levels: warm and cold) with random intercepts 354 

among species.  355 

Phenological plasticity  356 

We calculated the coefficient of variation (CV) of leaf senescence dates to indicate the plasticity 357 

of autumn leaf senescence for each species at each site group during years with cold and warm 358 

autumn seasons. A total of 32 CV values were obtained to quantify the autumn phenological 359 

plasticity, one for each of the combinations of 4 site groups × 4 species × 2 season types. A linear 360 

mixed model was used to test the mean difference of the CV between the years with warm and cold 361 

autumn seasons. The response variable was the CV of leaf senescence dates, the fixed effect was 362 

autumn season type (a categorial variable with two levels: warm and cold) with random intercepts 363 

among species.  364 

Effects of drought on leaf senescence 365 

The Standardized Precipitation-Evapotranspiration Index (SPEI), which considers effects of both 366 

precipitation and potential evapotranspiration on drought severity24, was calculated to examine the 367 

effects of drought stress on the onset of leaf senescence. The mean SPEI during the autumn season 368 

(1st August – 31st October) across different site groups was selected to examine the effects of 369 

drought on leaf senescence. A linear mixed model was used to test the effects of drought on the 370 
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timing of leaf senescence during years with cold and warm autumn seasons. The response variable 371 

was the leaf senescence DOY, the predictor variables were the SPEI and the type of the season (a 372 

categorical variable with two levels: warm and cold autumn season), with random intercepts among 373 

site groups. Both response variable and predictors were normalized in the models.  374 

Using the simulated climate data by Community Earth System Model (CESM) Large 375 

Ensemble (CESM-LENS) (http://www.cesm.ucar.edu/projects/community-projects/LENS/)27, we 376 

investigated the trends in the averaged  Tmax and Tmin in autumn (1 August-31 October) under 377 

RCP8.5 scenario37 during 2021-2050 in Europe to project the effect of drought on the onset of leaf 378 

senescence under future climate scenarios.   379 
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Figure legends   422 

Fig. 1 Climatic responses of leaf senescence of four temperate tree species in Europe during 1951-423 

2013. (a) Climatic sensitivity, (b) climatic signal, with the results given separately for warm (red) 424 

and cold (blue) autumn seasons, based on whether mean Tmax during the autumn season from 1st 425 

August to 31st October of the particular year was above or below its long-term average for 1951 – 426 

2013, respectively. Climatic sensitivities were calculated for daily maximum temperature (Tmax, 427 

oC), daily minimum temperature (Tmin, 
oC), daily sunshine duration (Sun, hours), and daily 428 

precipitation ( Prec, mm) during the optimal preseason (see Methods for details). Climatic signal, 429 

the absolute value of climatic sensitivity, indicates the extent to which climatic factors influence 430 

leaf senescence without considering the direction of the effect (delay, advance). The averaged 431 

climatic signal represents the mean of the four climatic factors. The climatic sensitivities and 432 

signals reported were calculated using normalized response and predictor variables. Length of each 433 

box indicates the interquartile range, the horizontal line inside each box the median, and the bottom 434 

and top of the box the first and third quartiles, respectively. The black points outside the boxes 435 

represent outliers. The four temperate tree species addressed are Aesculus hippocastanum L., 436 
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Betula pendula Roth, Fagus sylvatica L. and Quercus robur L. The asterisks in (b) indicate 437 

significant differences between cold and warm autumns (P<0.05).   438 

 439 

Fig. 2 Coefficient of variation (CV) of the leaf senescence onset day of four temperate tree species 440 

in Europe during 1951 – 2013. (a) Averaged over the four species and all observation sites and (b) 441 

separately for each species at different phenological observation site groups. The site groups 442 

represent a climatic gradient from cold (G1) to warm (G4) observation sites (see Supplementary 443 

Table 1). The results are presented separately for cold (blue) and warm (red) autumn seasons (1st 444 

August – 31st October), based on whether mean daily Tmax during the autumn season of the 445 

particular year was below or above its long-term average for 1951 – 2013, respectively. Total 446 

number of CV values is equal to 32 (4 species × 4 site groups × 2 season types). In (a), the length 447 

of each box indicates the interquartile range, the horizontal line inside each box the median, and 448 

the bottom and top of the box the first and third quartiles, respectively. The black points outside 449 

the boxes represent outliers. The four temperate tree species addressed are Aesculus hippocastanum 450 

L., Betula pendula Roth, Fagus sylvatica L., and Quercus robur L. The asterisks in (a) indicate 451 

significant differences between cold and warm autumns (P<0.05).   452 

 453 

Fig. 3 Average leaf senescence dates of four temperate tree species at different phenological 454 

observation site groups in Europe during 1951 – 2013. The site groups represent a climatic gradient 455 

from cold (G1) to warm (G4) observation sites (see Table S1). The results are presented separately 456 

for cold (blue) and warm (red) autumn seasons (1 August – 31 October), based on whether mean 457 

daily Tmax during the autumn season of the particular year was below or above its long-term average 458 

for 1951-2013, respectively. Error bars indicate standard error of the mean. The four temperate tree 459 
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species addressed are Aesculus hippocastanum L., Betula pendula Roth, Fagus sylvatica L., and 460 

Quercus robur L.  461 

 462 

Fig. 4 Growing degree days (GDD) at different site groups in Europe during 1951 – 2013. The site 463 

groups represent a climatic gradient from cold (G1) to warm (G4) observation sites (see Table S1). 464 

The results are presented separately for cold (blue) and warm (red) autumn seasons (1st August – 465 

31st October), based on whether mean daily Tmax during the autumn season of the particular year 466 

was below or above its long-term average for 1951 – 2013, respectively. The growing degree days 467 

were calculated based on the optimized preseason of leaf senescence. (a) GDD5 and (b) GDD10 468 

represent accumulated GDDs calculated with base temperatures Tbase = +5 oC and Tbase = +10 oC, 469 

respectively. Different letters indicate significant differences between site groups based on Tukey’s 470 

honest significant difference (HSD) test (P<0.05). 471 

 472 

Fig. 5  Climatic responses of leaf senescence of four temperate tree species in Europe during 1951-473 

2013. (a) Climatic sensitivity and (b) climatic signal. Climatic signal is defined as the absolute value 474 

of climatic sensitivity. Unlike climatic sensitivity, climatic signal does not address direction of the 475 

effect of climatic factor on leaf senescence. The values of both indicators are calculated for daily 476 

maximum temperature, Tmax (days per oC), daily minimum temperature, Tmin (days per oC), daily 477 

sunshine duration, Sun (days per h), and daily precipitation, Prec (days per mm) during the optimal 478 

preseason (see Methods for details). The climatic sensitivities reported were calculated using 479 

normalized response and predictor variables. Length of each box indicates the interquartile range, 480 

the horizontal line inside each box the median, and the bottom and top of the box the first and third 481 

quartiles, respectively. The black points outside the boxes represent outliers. The four temperate 482 
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tree species addressed are Aesculus hippocastanum L., Betula pendula Roth, Fagus sylvatica L., 483 

and Quercus robur L. Different letters indicate significant differences among the climatic factors 484 

based on Tukey’s honest significant difference (HSD) test (P <0.05). 485 
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