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1. Abstract 

1.1. Zusammenfassung 
 

Das FK506-bindende Protein (FKBP51) wurde als Risikofaktor für diverse psychiatrische Erkrankungen 

wie bespielsweise Depression und andere Erkrankungen wie Fettleibigkeit und chronischem Schmerz 

identifiziert. FKBP51 ist enzymatisch aktiv, seine FK1-Domäne ist eine Prolyl-peptidyl-isomerase. 

FK506, ein natürlicher und immunsuppressiver Ligand, bindet an diese Tasche. Mittlerweile wurden 

verschiedene neue Klassen an FKBP51-Liganden entwickelt. Diese Moleküle sind nicht mehr 

immunsuppressiv, besitzen eine höhere Affinität zu FKBP51 und sind teilweise selektiv gegenüber 

anderen FKBPs. Der „Selective Antagonist of FKBP51 by Induced Fit 1“ (SAFit1) ist hochselektiv für 

FKBP51 gegenüber seinem engen Homolog und in Teilen funktionellem Gegenspieler FKBP52. 

Liganden mit SAFit-Struktur wirken dem Effekt von FKBP51 entgegen, die Ausdifferenzierung 

neuronaler Zellen zu inhibieren. Außerdem zeigen sie diverse Effekte in verschiedenen Mausmodellen. 

Mäuse, die mit SAFit2 behandelt werden, passen sich besser an Stress an, bleiben schlanker bei 

fetthaltiger Ernährung und weisen abgeschwächte Symptome bei chronischem Schmerz auf. Die am 

besten beschriebene Aktivität auf molekularer und zellulärer Ebene von FKBP51 wird mit dem 

Glucocorticoid Rezeptor (GR) assoziiiert. Dieser ist ein zentraler Regulator der Reizweiterleitung bei 

Stress. Mutationen im fkbp5-Gen wurden mit erhöhter FKBP51-Expression und Glucocorticoidresistenz 

assoziiert. Neben dem GR wurden noch viele weitere Proteine als FKBP51-Interaktoren beschrieben, 

u.a. innerhalb des NF-κB und Akt-Signalweges. Obwohl FKBP51 ein attraktives Drugtarget von stetig 

steigendem Interesse ist, sind die zugrundeliegenden molekularen und zellulären Funktion von 

FKBP51-Liganden und des Proteins selbst kaum aufgeklärt. Diese Dissertation trägt dazu bei, die Kluft 

zwischen Molekularbiologie und klinischen Befunden zu schließen. In einem ersten Ansatz wird die 

Erforschung einer neuen Klasse von FKBP51-Liganden, entwickelt von Tianqi Mao in der Arbeitsgruppe 

Hausch, beschrieben. Diese FKBP51-PROTACs (proteolysis targeting chimeras) sollen einen 

chemischen Knockdown ihres Targets bewirken. Die PROTACs wurden gescreent. Eine 

vielversprechende Struktur, die die Menge an zellulär endogenem FKBP51 heruntersetzt, wurde mittels 

Western Blotting identifiziert. Dieser Befund wurde sowohl durch die reduzierte Aktivität eines FKBP51-

Luciferase-Konstrukts als auch durch die PROTAC-Wirkung in einem GR Reportergenassay bestätigt. 

Dieser Assay bestätigt zudem das Modell, dass FKBP51 den GR-Signalweg inhibiert und FKBP52 dem 

entgegenwirkt. Dennoch zeigten in diesem Assay konventionelle Liganden keinen Effekt. In einem 

zweiten Ansatz wurde die Interaktion von FKBPs und dem E3-Ligaseregulator Glomulin detailiert 

untersucht. FKBP12.6 wurde als neuer Bindepartner mittels HTRF-Methodik (Homogeneous Time 

Resolved Fluorescence) identifiziert. Dies ist der erste in-vitro-Assay, der die Bindung von FKBP51 an 

andere Proteine auf molekularbiologischer Ebene untersucht. Die Aminosäuren F67 und D68 sind 

essentiel, damit Glomulin an die FK1 Domäne von FKBP51 binden kann. Letztendlich beschreibt die 

Glomulin-FKBP51-Interaktion den allerersten Proteinkomplex, der sensitiv für verschiedene Klassen 



 

von FKBP51 Liganden ist. Zusammenfassend deuten meine Ergebnisse darauf hin, dass FKBP51 zwei 

grundverschiedene Wirkungsweisen aufzeigt. Einer ist sensitiv für Liganden und abhängig von einer 

intakten PPIase-Domäne und der andere nicht. Diese Arbeit weist damit auf die Wichtigkeit der 

Erforschung definierter FKBP51-Protein-Interaktionen hin und unterstreicht das Ziel, Liganden zu 

entwickeln, die beide Wirkungsweisen von FKBP51 beeinflussen. 

 

 

 



 

1.2. Abstract 
 

The FK506 Binding Protein 51 (FKBP51) is an identified risk factor for a variety of psychiatric disorders 

such as major depressive disorder as well as obesity and chronic pain. Enzymatically, FKBP51 exhibits 

prolyl-peptidyl-isomerase activity located within a pocket in its FK1 domain. The natural ligand and 

immunosuppressive drug FK506 binds to this pocket. Nowadays, several new classes of FKBP51 

ligands have been developed. These compounds that lack the immunosuppressive feature, show 

higher affinity for FKBP51 and partial selectivity towards other FKBP family members. The Selective 

Antagonist of FKBP51 by Induced Fit 1 (SAFit1) is highly selective for FKBP51 compared to FKBP52, 

a close homolog and partial functional counterplayer of FKBP51. Ligands of the SAFit class have been 

shown to reverse FKBP51 induced inhibition of neurite development of neuronal cells and are active in 

various mouse models. Mice treated with SAFit2 have an improved stress coping behavior, remain 

leaner during a high-fat diet and show decreased symptoms in a chronic pain state. The best described 

molecular and cellular activity of FKBP51 is linked to the Glucocorticoid Receptor (GR), a key player in 

the stress signaling cascade. Mutations of the fkbp5 gene were linked to increased FKBP51 levels and 

glucocorticoid resistance. Beside the GR, FKBP51 has been described as the interactor of many other 

proteins e.g. within the NF-κB and Akt signaling pathway. Although FKBP51 is an attractive drug target 

of continuous rising interest, the underlying molecular and cellular functions of FKBP51 ligands and the 

protein itself remain to be elucidated. This thesis contributes in closing the gap between molecular 

biology and clinical findings regarding FKBP51 and its ligands. The first approach was the investigation 

of a new class of FKBP51 ligands developed by Tianqi Mao in the Hausch lab. These FKBP51 

PROTACs (proteolysis targeting chimeras) aim to chemically knock down their target. These PROTACs 

were screened and a promising structure was identified, which resulted in decreased endogenous 

FKBP51 levels in cells detected through Western blotting. This finding was confirmed by a decreased 

FKBP51-Luciferase fusion protein signal and the PROTACs action in a GR reporter gene assay. The 

later assay supports the model of FKBP51 inhibiting and FKBP52 enhancing GR signaling. However, 

conventional ligands did not impact the FKBP51 effect. The second approach elucidated the interaction 

of FKBPs and the E3 ligase regulator Glomulin (Glmn) in detail. FKBP12.6 has been identified as novel 

interactor of this protein utilizing the HTRF (Homogeneous Time Resolved Fluorescence) methology. 

This is the first in-vitro assay, which addresses the binding of FKBP51 and a protein interactor on the 

molecular biological level. The amino acids F67 and D68 have been identified to be essential to 

establish the binding of Glmn to FKBP51s FK1 domain. At last, the FKBP51-Glmn complex is the first 

discovered interaction that is sensitive to multiple classes of FKBP51 ligands. In conclusion, my findings 

indicate two distinct modes of action of FKBP51. One is ligand-dependent and PPIase-domain-

dependent while the other is independent. My thesis points out the importance to increase the focus on 

the investigation on defined FKBP51 interactions and to raise the efforts to develop FKBP51 ligands 

that address both FKBP51 action modi. 



 

 

2. Introduction 

 

2.1. FK506 Binding Proteins 

FK506 binding proteins are clustered according to their ability to bind the immunosuppressive natural 

ligand FK506 and therefore, belong to the family of immunophilins along with cyclosporin-binding 

cyclophilins. Many members of both families are enzymatically active, exhibiting prolyl-peptidyl-

isomerase activity. The structures of FKBPs are versatile, but all members have at least one FK domain, 

a typical fold of five β-sheets palming an α-helix. The smallest family member, the archetypical FKBP12, 

comprises solely just this very domain.  The FKBP motif can be found in all kingdoms of life, 

FKBP51 itself is present in all mammals (as investigated thus far). Cellular functions and distribution of 

human FKBPs are various: FKBPs 12, 12.6, 51 and 52 can be localized in the cytoplasm; FKBP13 and 

65 can be found in the endoplasm and FKBP25 in the nucleus. This already points out the multitude of 

molecular processes involved: FKBP51 and 52 serve as cochaperones of Hsp90 and and modulate 

steroid receptor signaling (2.5.2), FKBP65 is involved in collagen folding [1] and calcium channels of 

the TRPC family are regulated by FKBP12 and 12.6 [2], just to name a few. 

 

2.2. FKBP51 – a disease relevant protein 

 

FKBP51 is a known interactor of the glucocorticoid receptor, a steroid hormone receptor and central 

player in stress procession and final attenuation of the hormonal stress reaction (see 2.5.2). It gained 

significant importance, as the correlation between single nucleotide polymorphisms (SNPs) and the 

recurrence of depressive episodes and rapid response to antidepressant treatment of major depressive 

disorder was discovered [3]. Some of those SNPs have been linked to altered methylation and 

expression patters of the fkbp5 gene [4], with an increasing number of associated psychiatric disorders 

[4-6]. There is indeed fundamental proof of the involvement of FKBP51 for the neuroendocrinology of 

stress and stress coping behavior in mice [7-11].  

The genetics of FKBP51 is furthermore reported to be associated with insulin resistance and 

energy metabolism [12,13] as well as trauma related chronic pain [14,15]. On the one hand, data 

obtained from fkbp5 -/- mice is widely supporting genetic findings and detrimental effects of this knockout 

have not been observed thus far [10]. On the other hand, a row of phenomenological benefits can be 

found: improved sleep profile [16], resistance towards diet induced obesity [17,18], resistance against 

artificially induced chronic pain [19,20] and resistance against glucocorticoid induced skin atrophy [21]. 

Treatment of wild type mice with SAFit2 (Selective Antagonist of FKBP51 by induced fit) enhanced 

feedback inhibition of the hypothalamus-pituitary-adrenal axis [22], various behavioral stress coping 

mechanism [22,23] and glucose tolerance [18]. It acted anxiolytic [23,24], protected from weight gain 



 

[18] and positively dampened mechanical hypersensitivity in inflammatory, neuropathic and 

chemotherapy-induced pain states [19,20].  

Taken together, within the last 15 years FKBP51 emerged as an interesting and promising drug target. 

 

2.3. Structure of FKBP51 ligand development  

FKBP51 contains three domains: The N-terminal FK1 domain, the central FK2 domain and its C-

terminal tetratricopeptide repeat (TPR) domain, which serves as attachment site for Hsp90s MEEDV 

motif (Figure 1) [25]. The FK1 domain displays prolyl-peptidyl-isomerase (PPIase) activity and is 

capable of binding ligands, such as the name-giving FK506 (Ki = 100 ±10 nM) and the second natural 

compound, Rapamycin (Ki = 3.7 ±0.9 nM) [26]. It comprises five antiparallel β strands, which are 

wrapped around a central α helix. Although the FK2 domain exhibits a similar structure to the FK1 

domain, it is thought to neither be enzymatically active nor capable of ligand binding. The PPIase 

deficiency was justified by its structure [27]. The FK2 domain of FKBP52 was also found deficient 

[28,29]. The inability to bind ligand was thus far just shown for FKBP52s FK2 domain [30], where FK506 

could be detected in the binding pocket of the FK1 but not the FK2 domain (PDB-ID: 1LAX). 

 



 

 

Figure 1 Full length FKBP51 (PDB-ID: 1KT0) [27] bound to the MEEDV motif derived from the Hsp90 C-terminus (PDB-ID: 

5NJX) [31]. FK506 bound to the FK1 domain is superimposed from PDB-ID: 3O5R. Figure taken from [25]. 

FKBP51 shares 60% sequence identity and 78% similarity with its homologue FKBP52. Their overall 

structure is similar, but the relative orientation of FK1 and FK2 domain is twisted [32]. This could be a 

potential explanation for their differing effects on the glucocorticoid receptor [33,34] and non-identical 

interactomes. BioGRID.com (May 2019) lists 20 confirmed (≥ 2 independent methods and/or 

publications) interactors for FKBP52 and 69 for FKBP51.  

Most important for binding of small molecules such as FK506 are the H-bond donors tyrosine 

113 and isoleucine 87 within the FK1 domain [35,36]. Great efforts of ligand development were spent 

towards the development of selective ligands. Due to a highly conserved binding pocket shared with its 

close homologue FKBP52 ligands often exhibit similar binding affinities. Selectivity is important to 

achieve, since FKBP51 and FKBP52 act antagonistically in steroid hormone receptor signaling (see 

2.5.2) and neuritotrophic differentiation [22,37]. Additionally, FKBP52 knockout mice display a strongly 

impaired phenotype regarding their reproductive tissue development and fertility [38], making it an 



 

antitarget. Gaali and Kirschner overcame this obstacle by serendipity in their discovery of SAFit 

(Selective Antagonist of FKBP51) class ligands [22]. 

 

Figure 2 FK1 domain bound to the selective ligand iFit4 (PDB-ID: 4TB7). The Phe67-in state is superimposed from PDB-

ID: 5OBK. Taken from [25]. 

The selectivity is achieved either by induced fit [22] or conformational selection [39][Jagtap et al. Angew 

Chem, 2019, in press] of a Phe67 out state, which is sterically possible for FKBP51 but not FKBP52 

(Figure 2 FK1 domain bound to the selective ligand iFit4 (PDB-ID: 4TB7). The Phe67-in state is 

superimposed from PDB-ID: 5OBK. Taken from [25]. The best binding was achieved by SAFit1, which 

binds to FKBP51 with Ki = 4 nM and 10,000 fold stronger than to FKBP52. Yet another class of FKBP 

ligands are [4.3.1]-aza-bicyclic sulfonamides, which are unable to discriminates between FKBP51 and 

FKBP52. However, their affinity reach high picomolar range for FKBP12 and low nanomolar range for 

FKBP51 and FKBP52, serving as more powerful tools for in vitro assays [40,41]. An overview on those 

ligands is given in Figure 3. 



 

 

Figure 3 FKBP ligands: The natural compounds FK506 and Rapamycin, SAFit series structure and [4.3.1]-aza-bicyclic 

sulfonamides, adapted from [42]. 

 

2.4. PROTACs 

 

The development of PROteolysis-TArgeting Chimeras (PROTACs) is a recently emerging concept of 

ligand development in order to achieve chemical knockdown of a target protein, which has yet to prove 

its applicability in drug development. The basic concept of PROTACs is the heterobifunctional 

connection of a target ligand (warhead) and an E3 ligase ligand connected via a linker (Figure 4 A).  

 

 

Figure 4 A) Action principle of PROTACs: By bringing target and E3 ligase into close proximity, polyubiquitination on the target 

followed by proteosomal degradation can be achieved. B) Overview on the limitations of conventional small molecular 

inhibitors. Inspired by [43]. 



 

The PROTAC principle was firstly developed in 2001 targeting peptidases by linking a phosphopeptide 

moiety and a small molecule moiety binding TrCP leading to the ubiquitination and degradation of the 

peptidase MetAP-2 [44]. In 2008 the first non-peptide based, cell permeable PROTAC consisting of a 

non-steroidal androgen receptor ligand and nutlin, a ligand of the E3 ligase MDM2, successfully 

knocked down its target in HeLa cells [45]. Within the last years the E3 ligases Von-Hippel-Lindau (VHL) 

and cereblon (CRBN) [43] became most common to exploit. Example ligands, also used in our research, 

of both E3 ligases are (S,R,S)-AHPC or VH032 for VHL [46] and pomalidomide for CRBN [47], 

respectively.  

PROTACs have been shown to overcome certain limitations conventional ligands face (Figure 

4 B) in vitro. Since PROTACs can exhibit their catalytic function for the degradation of multiple targets, 

their potential efficacy can be exhibited sub-stoichiometrically [43,47,48]. On top of that, it was shown 

that some PROTACs have lower half-maximal values for target degradation (DC50) than the half-

maximal inhibitory effect of their corresponding target ligand moiety (IC50) [49,50]. A prominent readout 

in this field of research is the induction of apoptosis, due to the fact, that many cancers are caused by 

overexpression of certain factors. The inhibition of apoptosis via the bromodomain extraterminal protein 

(BETP) was with 16 nM for the PROTAC ARV-825 significantly higher than for the conventional inhibitor 

OTX015 with 398 nM [51]. Excitingly, the same study observed target overexpression induced by 

OTX015 treatment in Mino cells, which is a common escape mechanism of many cancer cell lines, 

which did not occur during PROTAC exposition. It was shown, that PROTACs can have both a quick 

onset (1 h) and long lasting effect up to 48 h, which could be even achieved by a single injection in a 

mouse xenograft model [52]. By developing conventional small molecules, drug discovery faces its 

limitations concerning certain proteins, which either lack an active site or contain an active site, which 

has no impact on its related pathology. Similar difficulties are encountered for multi-domain protein 

complexes, which serve as scaffolding platform for example in signal transduction, such as receptor 

tyrosine kinases (RTKs). In a recent case study, a PROTAC targeting the RTK epidermal growth factor 

receptor (EGFR), was introduced, which led to a more robust and rapid downstream inhibition and anti-

proliferative effect compared to the classical inhibitor [53]. Additionally, it was found that PROTACs can 

feature altered selectivity patterns [54,55], which is especially interesting in order to hit protein families 

with highly conserved binding pockets, such as kinases or FKBPs. It was even shown that PROTACs 

can have an improved efficacy against mutated targets [50], which is prominent escape mechanism in 

many cancers. 

The successful development of PROTACs usually requires an empirical approach and the 

synthesis of a small library to achieve the desired chemical-induced protein degradation. For the 

conception of PROTACs, one needs to address the following attributes: designated E3 ligase, 

constitution of the linker (length and chemical nature), chemical nature of warhead, attachment point of 

linker at the warhead (examples: [49,56,57]). Especially the nature and length of the linker is not 

predictable, as the only available crystal structure of the artificial ternary complex, finds it folded in 



 

between target and E3 ligase (Figure 5)[46]. This indicates a potentially essential enhancement of a 

stable and cooperative complex by the linker, rather than a simple distance definition.  

 

Figure 5 Ternary structure of human VHL (blue), Brd4 (pink) and the PROTAC MZ1 (green). Linker describes a turn 

between both binding moieties. PDB: 5T35 

It has to be noted, that high throughput screening assays for PROTACs, especially with respect to 

concentration dependence and time course of the degradation, are hardly available so far, but first 

steps have been made by genetically labeling the protein of interest with a luciferase fragment tag [58]. 

Taken together, PROTACs are a promising concept of drug development. Besides conventional 

small molecules and monoclonal antibodies, PROTACs exhibit an often unpredictable difference 

regarding selectivity, efficacy and applicability compared to its small molecule warhead. Although they 

are proven to be powerful tools in molecular and cellular biology, clinical administration is in its earliest 

stage of development. Just recently, the first phase I study started by Arvinas to test in vivo degradation 

of the androgen receptor by their substance ARV-110 in stage 4 prostate cancer patients [59]. Due to 

the fact, that FKBP51 related pathologies are connected to elevated expression levels [3], the model of 

FKBP51 as scaffolding protein and a number of FKBP51 interactions, that have been found to be ligand 

insensitive [25], the research of FKBP51 PROTACs is promising to elucidate the biological role of this 

protein. 

 

2.5. Interactome of FKBP511 

 

FKBP51 has a rather vast interactome with more than 60 associated proteins reported (Figure 6). Many 

of the proposed interactors have been discovered through CoIP experiments and sometimes lack 

independent confirmation. Because FKBP51 binds to Hsp90, it is naturally part of large protein 

                                                
1 This content is taken from my review with slight changes “The Many Faces of FKBP51” 25. Hahle, A.; Merz, S.; Meyners, C.; 

Hausch, F. The Many Faces of FKBP51. Biomolecules 2019, 9, doi:10.3390/biom9010035. 



 

complexes for example steroid hormone receptors [60]. Therefore, FKBP51 can be considered to be 

rather “sticky” and claims of interactors should be evaluated with caution. 

 

Figure 6 Overview of known FKBP51 interactors within their respective field of discovery. Stronger arrows indicate a 

larger data set of this specific interaction. Taken from [25]. 

2.5.1. Hsp90 

The heat shock protein 90 (Hsp90) is a highly abundant and ubiquitously expressed chaperone in 

most mammalian cells. It is a central player in protein folding, stabilization, mediator of protein complex 

formation and involved in protein degradation, with hundreds of client proteins and therefore involved 

in a plethora of cellular pathways and processes [61]. In early studies on steroid hormone receptors, 

FKBP51 and 52 (“p50/p54”) were successfully co-purified along with Hsp90 and the progesterone 

receptor [62] and later on identified as immunophilins of the FKBP family [63]. FKBP51 and Hsp90 

interact via their respective C-terminal domains. The FKBP51 TPR-domain binds the highly conserved 

MEEDV motif of Hsp90 [34]. The Hsp90 complex can be dissociated by the selective Hsp90 inhibitor 

Geldanamycin, which also interrupts the attachment of immunophilins to the complex [64]. 

About nine TPR domain-containing proteins have been identified and confirmed to bind to Hsp90, 

such as the Hsp70-Hsp90 Organizing Protein (HOP), the serine/threonine protein phosphates 5 (PP5) 

and the E3 ubiquitin ligase CHIP (C terminus of HSC70-Interacting Protein), which is explicitly reviewed 



 

[61,65,66]. All of them share a 20 amino acid consensus sequence, which is required for Hsp90 

recognition [67,68]. Cochaperones are thought to compete for Hsp90 association which was shown to 

be important for the regulation of steroid receptor signaling [69]. The differences in binding affinity and 

concentration of various TPR-domain proteins [28] reflects one layer to regulate the action of FKBP51 

[60]. The dynamic association and dissociation of cochaperones, including PPIases, have been shown 

to be essential for the progression and fine-tuning of the conformational cycle of Hsp90 [61,70]. While 

it is clear that FKBP51 can associate with Hsp90, the involvement of Hsp90 as mediating factor in the 

action of FKBP51 within many pathways is often unclear.  

 

2.5.2. Steroid Hormone Receptors 

Both discovery and research motivation to study FKBP51 and other TPR-domain proteins is tightly 

connected to the investigation of steroid hormone receptors (SHR). The members of the SHR family 

are the Androgen Receptor (AR), the Estrogen Receptor (ER), the Mineralcorticoid Receptor (MR), the 

Progesterone Receptor (PR) and the Glucocorticoid Receptor (GR). SHRs are located in the cytosol 

and translocate into the nucleus upon hormone binding serving as transcription factors. Most SHR are 

clients of the Hsp90 chaperone machinery, which is essential for receptor maturation, hormone binding 

and translocation to the nucleus [71]. In a comprehensive study, Schülke et al. performed reporter gene 

assays and co-immunoprecipitations to investigate the impact of TPR proteins on SHRs [69]. GR and 

PR were shown to be most sensitive towards the presence of TPR proteins, including FKBP51, while 

AR was only mildly affected and MR and ER were found to be largely unresponsive to TPR proteins. 

Both FKBP51 and its PPIase-deficient mutant (FD67/68DV) are preferentially associated with PR and 

GR [72]. The fkbp5 gene itself is inducible by glucocorticoids [73-76], progesterone [75,77-79] and 

androgenic hormones [80-82] leading to both elevated mRNA and protein levels. The fkbp5 gene 

contains several glucocorticoid receptor response elements and GR attachment mediates PolII loading 

and DNA methylation [83]. Soon it became clear, that FKBP51 and especially the glucocorticoid 

receptor constitute an ultrashort negative feedback loop: Induced by steroid hormone receptors, 

elevated expression of FKBP51 reduces the transcriptional activity of those receptors. It was first shown 

in yeast, that FKBP51 blocks the FKBP52-induced potentiation of the GR [84]. In mammalian cells, 

FKBP51 reduces GR reporter activity, which was connected in part to a reduced dynein binding of the 

receptor-chaperone-complex and henceforth a dampened translocation rate of the GR into the nucleus 

[33]. The PPIase activity seems not to be required for this mode of action since the FD67/68DV mutant, 

that has no PPIase activity on peptide substrates, retains GR inhibitory activity. However, amino acid 

119 was found to be important in the different activity of FKBP51 and FKBP52. Pro119 as in FKBP52 

supported receptor activation whereas L119 as in FKBP51 displayed an inhibitory effect [85]. Mass 

spectrometry studies reveal similar complexes of GR/Hsp90/Hsp70/ATP with FKBP51 and FKBP52 as 

interchangeable factors in the early stages of complex formation. In those complexes, FKBP51 



 

stabilizes the binding of the cochaperone p23, while FKBP52 leads to a release of p23, which primes 

the complex for nuclear translocation [86]. 

There might be other forms of GR and FKBP51 crosstalk. One study found that FKBP51 expression 

leads to GR subform α-mediated adipogenesis [87]. Regulation by posttranslational modification has 

also been described for FKBP51. The attachment of SUMO at lysine 422, which was shown in vitro, 

was claimed to be important for GR inhibition in a reporter gene readout in hippocampal neuronal cells 

[88]. Recently, benztropine was claimed to diminish the inhibitory effect of FKBP51 on GR, but the 

molecular mechanism of this remains to be elucidated [89]. GR itself is part of the hypothalamic pituitary 

adrenal (HPA) axis, which is the neuroendocrine stress response. Upon an external stimulus, the 

hypothalamus releases the corticotropin-releasing factor (CRF). Upon binding of CRF to CRF receptors 

on the anterior pituitary gland, adrenocorticotropic hormone (ACTH) is secreted. ACTH itself is 

perceived by the adrenal cortex and stimulates the release of cortisol. Cortisol finally activates the GR, 

which coordinates the final step of stress response and exerts a negative feedback on CRF and ACTH 

release, leading back to systemic homeostasis in the magnitude of hours. Several factors, such as 

repeating and continuous stress, certain drugs and age influence the sensitivity towards cortisol. Many 

patients suffering from major depressive disorder exhibit “cortisol resistance”, being unable to regain 

homeostasis (for recent reviews see [90-92]). Since FKBP51 is a negative regulator of the GR, its 

impact on various psychiatric disorders is mainly theorized to be GR-mediated.  

AR has largely been investigated in prostate cancer models. Contrary to GR, where FKBP51 has 

repeatedly been described as an inhibitory factor, two studies in 2010 reported an activation of AR by 

FKBP51 [93,94]. However, since those initial studies, no further confirmation of these findings has been 

published and the role of FKBP51 in prostate cancer biology remains controversial. The involvement of 

FKBP51 in steroid hormone signaling leads to numerous associations in physiological and pathological 

pathways involving a fine-tuned and cross-regulated interactome, intensively studied and reviewed [95]. 

 

2.5.3. Akt and NF κB 

 

Besides steroid hormone signaling, FKBP51 is described as actor in the important pathways of Akt and 

NF κB.  

The kinase Akt serves as a central node to regulate various signaling pathways in growth and 

proliferation. Akt activity strongly depends on the phosphorylation of its Serine 473, which is thought to 

be regulated by the PH domain and Leucine rich repeat Protein Phosphatases (PHLPP). FKBP51 is 

believed to serve as a scaffolding protein that recruits PHLPP to Akt to facilitate dephosphorylation 

[96,97]. In support for this model, overexpression of FKBP51 was shown to reduce phosphorylation of 

both Akt S473 [8,96-98] and the Akt downstream targets GSK3β and FOXO1. Conversely, FKBP51 

knockdown or knockout led to an enhanced S473 phosphorylation of Akt. Truncation studies suggest 

that the FK1 domain of FKBP51 is mainly required to recruit Akt [99] and the TPR domain to recruit 



 

PHLPP [96]. Further investigations revealed that the FK1 domain alone can bind Akt, as well as their 

respective PPIase mutants without being impacted by the presence of FKBP ligands [18,99], suggesting 

a competitive binding model for several FKBPs towards Akt. Not all studies could confirm the impact of 

FKBP51 overexpression on Akt [99]. Another study found that FKBP51 overexpression enhanced 

GSK3β phosphorylation in HEK293 cells, which is counterintuitive to the suggested role FKBP51 on 

Akt/PHLPP [100]. In the context of Akt regulation, the ubiquitin specific peptidase 49 (USP49) could be 

co-purified with FKBP51. This deubiquitinase was claimed to stabilize FKBP51 and to enhance the 

dephosphorylation of Akt via PHLPP [97]. Moreover, the Akt-FKBP51-interaction was recently 

suggested to be regulated by acetylation of FKBP51 [98]. Six acetylation sites were reported, of which 

two are regulated by the deacetylase Sirtuin 7 (SIRT7). Acetylation on the sites K28 and K155 were 

proposed to enhance FKBP51-Akt interaction, S473 dephosphorylation of Akt reduced phosphorylation 

of Akt downstream targets such as GSK3β. In 2017, the Akt substrate 160 (AS160) was 

coimmunoprecipitated along with FKBP51, Akt and PHLPP [18]. Its phosphorylation status could be 

disrupted by the selective FKBP51 ligand SAFit2, both in vitro and in vivo.  

On the other hand, FKBP51 was also described as a regulator of NF-κB (nuclear factor binding 

near the κ light-chain in B cells) signaling in different cell types. For this reason, FKBP51 has been 

suggested as a drug target for the treatment of NF-κB-mediated inflammation and cancer [101-106]. 

NF-κB is a family of transcription factors affecting multiple cellular processes such as inflammation, 

proliferation, maturation, differentiation, survival and apoptosis [107-109]. As a key factor, NF-κB 

regulates the innate and adaptive immune response. In the last 15 years, several studies aimed to 

elucidate the role of FKBP51 in NF-κB pathways and the underlying mechanisms [101-106,110-113]. 

Different FKBP51 interaction partners involved in NF-κB pathways have been identified. Among them, 

members of the IKK complex, namely IKKα [101,102,104,111,113], IKKβ [102,104,113] and IKKγ 

[102,104,110,113] belong to the most prominent interaction partners shown in various cell lines. The 

FK1 and TPR domain of FKBP51 both appeared to be required for its interaction with IKKγ in HEK293 

cells [104]. Jiang et al. proposed that the FK1 domain is involved in the interaction with IKKα in human 

glioma cells (U87) [101]. The data indicated that the PPIase-inactive double-point mutation FD67DV of 

the FK1 domain reduced the interaction of FKBP51 with IKKα [101]. In contrast, Romano et al. did not 

observe any impact of the FD67DV mutation on either the FKBP51/IKKα/β or the IKKγ/IKKα/β 

interaction in HEK293 cells [104]. In accordance with these results, FK506, a FKBP51 isomerase 

inhibitor, did not affect the FKBP51/IKKα interaction [104]. Instead, a TPR domain mutant with 

diminished Hsp90 binding seemed to impair the interaction of IKKα/β with FKBP51 as well as with IKKγ 

in HEK293 cells [104]. The involvement of Hsp90 in FKBP51-mediated NF-κB signaling is still under 

discussion [102,112,113]. 

The effect of FKBP51 on NF-κB activation is also controversially discussed. On the one hand, 

various studies demonstrated that FKBP51 enhances NF-κB activation [104,105,111]. On the other 



 

hand, Erlejman et al. described the opposite effect of FKBP51 and concluded that NF-κB activation is 

regulated by the FKBP51/FKBP52 ratio [112]. Reporter gene assays implicated that FKBP51 impaired, 

whereas FKBP52 enhanced, PMA (phorbol 12 myristate 13 acetate) as well as TNF α induced NF-κB 

activation in HEK293T cells overexpressing either FKBP51 or FKBP52, respectively. Both effects 

seemed to be reversed by the expression of the corresponding TPR peptide. A competition assay with 

FKBP51 and FKBP52 using the transcriptional activity of NF-κB as readout led to the conclusion, that 

FKBP52 could act as an FKBP51 antagonist, reversing its inhibitory effect on NF-κB activation. 

Taken together, it can be concluded that FKBP51 is connected to both pathways, but the extend 

and significance is unclear due to strong controversing findings.  

 

2.5.4. Glomulin 

 

Glomulin (Glmn) has been identified as a binding partner of FKBP12 and FKBP52 in a Y2H screen 

[114,115]. Initially, Glmn has been described as FKBP Associated Protein (called FAP48 or FAP68) 

[114,116]. More recently, a link between FKBP51 and Glmn was described in a high-throughput 

interactome network study [60]. 

Glmn has been discussed as E3 ligase regulator. Eukaryotic cells utilize a system of three 

enzymes (E1 to E3) and ubiquitin to prime proteins for proteosomal degradation. One of the most 

studied examples of the E3 ligase family is CRL1Fbw7 [117,118]. Glomulin (Glmn) binds to this complex 

by intercalating between Cullin1 (Cul1) and RING-box protein 1 (Rbx1) (Figure 7). Henceforth, Glmn 

masks the interaction surface of Rbx1 towards the E2 ubiquitin-conjugating enzyme Cdc34, leading to 

an inhibition of the ligase activity, because activated ubiquitin becomes unavailable [119,120]. This is 

also thought to prevent an overshooting ubiquitinylation reaction, which is mediated by Rbx1 binding to 

cullins and which would lead to a degradation of CRL1Fbw7 itself [120]. Later, an interaction of Glmn 

with cellular inhibitors of apoptosis proteins 1 and 2 (cIAP1 and cIAP2), which regulate E3 ligases, was 

discovered [121]. Additionally, most recently Glmn was associated with the infectious mechanism of 

Shigella [121,122], where Glmn was claimed to be hijacked by a bacterial E3 ligase to promote 

inflammation. Mutations in the Glomulin gene lead to Glomuvenous malformation [116,123,124]. Point 

mutants and truncation mutants lacking Prolin219 of Glomulin showed significantly reduced β-

galactosidase activity in a Y2H screen [115]. However, the detailed mechanism and regulation of this 

reaction is still poorly understood. A potential regulation by FKBPs in this context has not been 

investigated. 



 

 

Figure 7 Crystal structure of Glomulin (pink) with Cullin1 (green) and Rbx1 (blue). Proline219 is 

indicated in red. 

 

2.5.5. Other pathways and interactors associated with FKBP51 

 

FKBP51 has been associated with a great number of other proteins. In a comprehensive interactome 

study addressing the Hsp90 complex and its cochaperones, numerous interaction partners of FKBP51 

were described [60]. Among those findings are kinases such as the cyclin dependent kinases (CDK1, 

4, 9 and 11A) as well as kinases involved in cytoskeleton formation (Aurorakinase B, Fer). Furthermore, 

MYND-domain proteins, associated with transcriptional repression, minichromosome maintainance 

(MCM) complex proteins, helicase subunits and the argonaut proteins Ago1 and 2, essential 

components of the RNA-induced silencing complex (RISC) were identified as potential interactors. For 

CDKs, an antagonizing action mode of FKBP51 and 52 was described for their respective impact on 

DNA methylation [125]. Both immunophilins were copurified with the cyclin dependent kinase (CDK5) 

and its downstream target DNA methyltransferase 1 (DNMT1) [100,125]. Higher FKBP51 expression 

was linked to decreased DNMT1 phosphorylation levels and reduced methylation levels of the brain-

derived neurotrophic factor locus in human blood samples. Accordingly, FKBP52 was suggested to 

exhibit opposite effects [125]. In addition, FKBP51 was also found to bind to CDK4, a known oncogene, 

where FKBP51 knockdown led to decreased CDK4 expression [126].  

Although, the evidence of FKBP51 being involved in cytoskeletal processes accumulates, an 

overall model for its action mode is still lacking. The microtubule forming monomer Tau is linked to 

plague formation in Alzheimer’s Disease (AD). In 2010 it was claimed, that overexpression of FKBP51 

increases Tau concentration and FKBP51 knockdown reduces it. Both proteins could be copurified. 



 

FKBP51 seemed to protect Tau from ubiquitination potentially acting as a chaperone, since Hsp90 was 

found in this complex as well. An active PPIase pocket was required for binding Tau [127]. In the same 

year, FKBP51 and its partial counter player FKBP52 were linked to another process involving 

microtubule arrangements. FKBP51 dampens while FKBP52 enhances neurite outgrowth during 

neuronal differentiation [22,37] which requires elevated expression of cytoskeletal proteins. The anti-

neuritotrophic activity of FKBP51 could be blocked by FKBP51 ligands which increases neurite 

outgrowth in neuroblastoma cell lines and in primary embryonic neurons [22,41,128]  

Interestingly, the connection of FKBP51 and microtubule formation via tau dephosphorylation 

was recently proposed to be PP5C mediated, a TPR-domain containing phosphatase [129]. 

Furthermore, expression levels of both proteins impact the store-operated calcium entry current in 

pulmonary artery endothelial cells and HEK293 cells. Additionally, store-operated channels have been 

reported to be desensitized by FKBP51. FKBP52 was shown to antagonize this effect [130]. 

Immunophilins, such as the FKBPs 52, 12, 25 and 38 have generally been associated with calcium ion 

channels especially of the TRPC family and effects of high concentrations of FK506 on calcium flux 

have been reported [2,131-133].  

The RISC protein complex shows elevated expression with increased FKBP51 and 52 levels in 

mural embryonal stem cells and is less abundant, if one or both immunophilins are knocked down. 

Interestingly, less Ago2 can be found if the cells are treated with FK506 [97,134]. 

It can be summarized that research on FKBP51 faces many (yet) loose ends and the findings are 

partially controversial or are lacking independent confirmations. A general concept bringing together all 

potential interactors and phenotypes has yet to be defined. 

 

2.6. Objectives of the work 

 

It becomes clear, that FKBP51 is an important protein factor in multiple cellular pathways and 

associated with many more other proteins. Side by side, there is continuous growing proof of FKBP51’s 

disease relevance in multiple fields, including psychiatric disorders, obesity, chronic pain and some 

cancers [25].  

The aim of this work was to contribute towards two goals, back to back: 

1. Elucidate the molecular and cellular mechanisms of FKBP51 ligands. 

2. Utilize FKBP51 ligands to create an improved understanding of FKBP51’s action modes itself. 

Selective FKBP51 ligands such as SAFit1 and SAFit2 have been shown to be active in various murine 

models for the previous named pathologies [18,20,23,24,104]. The underlying mechanisms are overall 

unclear. To address this problem, a first focus has been set to the action of FKBP51 in GR context. A 

reporter gene assay was established to research the effects of FKBP51 and its mutants overexpression 

on GR signaling strength, as well as the impact of FKBP51 ligands within this setup. In close 

cooperation with Tianqi Mao, a novel class of FKBP ligands – PROTACs – with the purpose to induce 



 

chemical knockdown, were screened by Western Blotting and tested in the reporter gene assay. 

Besides the gain-of-function effects of FK506 and Rapamycin, no specific protein-protein interaction is 

described thus far which is altered by the presence of FKBP51 ligands. During the course of my work, 

some unpublished results indicated a tight and promising interaction of FKBP51 and Glmn. To 

investigate this interaction in vitro a HTRF setup was developed. Multiple FKBPs and FKBP51 mutants 

have been examined, as well as FKBP ligands.  

In this work, I present a new functional readout for GR signaling that confirms the FKBP action. 

Conventional ligands and a PROTAC exhibit different effects in this assay. Furthermore, two 

unprecedented protein-protein interactions are discovered and the very first ligand-sensitive interaction 

is described.  

  



 

3. Materials 

All materials are listed with their name as indicated by their provider label, their provider and the 

providers catalog number. 

3.1. General Chemicals  
 

4-(6-methyl-1,3-benzothiazol-2-yl)aniline (dissolved in DMSO, Santa Cruz Biotechnology, sc-276812), 

Acetic acid 99-100% (C. Roth, 7332.2), Adenosin-5’-triphosphat disodium salt (C. Roth, HN35.1), Agar-

Agar, Kobe I (C. Roth, 5210.3), Albumin, Fluorescein isothiocyanate Conjugate bovine (Sigma, A9771), 

Ampicillin sodium salt (C. Roth, K09.5), Bovine Serum Albumin (Sigma, A7030), Brilliant Blue G250 (C. 

Roth, 9598.1), Charcoal Activated (C. Roth, X865.1), Carbachol (Alfa Aesar, L06674), Coelenterazine 

h (dissolved in Ethanol, AAT Bioquest, 21159), Coenzyme A free acid (AppliChem, A0812), cOmplete 

Mini Protease inhibitor cocktail (Roche, 11836153001), Coomasie Brilliant Blue R250 (C. Roth, 9598.1), 

D-Luciferin (C. Roth, CN24.1), Deoxyribonuclease I from bovine pancreas (DNAse I) (Sigma, DN25-

1G), Dexamethasone 21-phosphate disodium salt (dissolved in DMSO, Sigma, D1159), 

Dimethylsulfoxid (DMSO) (C. Roth, 4720.4), Dithiothreitol (DTT) (C. Roth, 6908.1), di-Potassium 

hydrogen phosphate (C. Roth, P749.1), Dual-Glo® Stop & Glo® Substrate (Promega, E313B), Ethanol 

70% pure (Krankenhaus Apotheke Schwabing, UN 1170), Ethanol denatured (C. Roth, K928.4), FK506 

Tacrolimus (Beta Pharma, 56-01267), Fluorescein-5-Maleimide (ThermoScientific, 62245), Glycerol 

86% (C. Roth, 4043.2), Glycine (C. Roth, 3908.2), Glutathione (reduced) (Merck, K46409890 514), 

Hepes (C. Roth, 9105.3), Hyperforin, Hyperforin derivatives, OAG (Friedland group, Universität Mainz), 

Imidazole (Fluka, 56750), Insulin solution from bovine pancreas (Sigma, I0516-5mL), IPTG (C. Roth, 

CN08.3), Kanamycin sulphate (C. Roth, T832.1), LB Broth (Luria/Miller) (C. Roth, X968.2), Lysozym 

(C. Roth, 8259.3), Magnesium chloride hexahydrate (Merck, Q649033 524), Magnesium sulphate 

heptahydrate (C. Roth, P027.2), mTNF-α aa80-235 E.coli derived (R&D Systems, 410-MT) Nano-Glo® 

Luciferase Assay (Promega, N112B), Nickel II Sulphate 6-hydrate (C. Roth, T111.1), Nonidet® P-40 

substitute (VWR Life Science, E109-50mL), Passive Lysis Buffer 5x (Promega, E194A), Phenymethyl 

suphonyl fluoride (C. Roth, 6367.2), Phorbol 12-myristate 13-acetate (Enzo, BML-PE 160), Ponceau S 

(C. Roth, 5938.2), Potassium dihydrogen phosphate (C. Roth, 3904.1), Potassium hydroxide (C. Roth, 

6751.1), Powdered mil (C. Roth, T145.3), Propan-2-ol (AppliChem, 603-117-00-0), Protein degrader 1 

hydrochloride (VHL ligand) (MedChemExpress, HY-101763A), Rapamycin (Alfa Aesar, J62473), 

Rotiophorese® Gel 30 (37.5:1) (C. Roth, 3029.1), SDS (C. Roth, 0183.3), Sodium Chloride (C. Roth), 

Sodium acetate anhydrous (Fluka, 71183), TECEP hydrochloride (trc Canada, 249283), TEMED (C. 

Roth, 2367.3), tetra-Sodium pyrophosphate decahydrate (Na4PPi) (Fluka, 71515), Trichloroacetic acid 

(C. Roth, 8789.2), TRIS (C. Roth, 4855.2), TRIS hydrochloride (C. Roth, 9090.3), Triton X-100 (C. Roth, 

3051.4), Tween 20 (C. Roth, 9127.2) 

 



 

3.2. General Plastics and Materials 
 

Eppendorf Tubes 5.0 mL (Eppendorf, 0030119401), Micro tube 1.5 mL (Sarstedt, 72.690.001), 

Microtube 1.5 mL protein LB (Sarstedt, 72.706.600), Micro tube 2.0 mL (Sarstedt, 72.691), Micro tube 

2.0 mL LB (Sarstedt, 72.695.600), Pipette Tips – various volumes (Sarstedt), ProteinLoBind Tubes 

5.0 mL (Eppendorf, 003010832), white 96-well half-area plate (Greiner bio-one, 392-0287), gel drying 

frame and cellophane (C. Roth), Amersham™ Protran™ 0.2 µm Nitrocellulose (GE Healthcare Life 

Sciences, 10600001), Rotilabo®-Blottingpapiere, 0.35 mm (C. Roth, CL65.1),  

 

3.3. Cell Culture Plastics 
 

TC Dish 100 Standard (Sarstedt 83.3902), Combitips advanced 1.0 mL (Eppendorf BIOPUR 0030 

089.642), Combitips advanced 5 mL (Eppendorf BIOPUR 0030 089.669), CryoPure Tubes 1.8 mL 

white (Sarstedt, 72.379), TC Testplate 96F (TPP, 92096), TC Plate 24 Well Standard F (Sarstedt, 

83.3922.005), 12 Well Cell Culture Plate (Greiner bio-one, 665 180), TC – Plate sterile with lid single 

packed (Greiner bio-one, 657 160), Greiner CELLSTAR® 96 well plates wells V-bottom (with lid) 

(M9686 Sigma), Cell Culture Microplate 96 well PS, F-bottom (CHIMNEY WELL) µCLEAR® black 

cellstar® TC lid with condensation rings (Greiner Bio-one, 655090), Adhesive Black Light-Absorbing 

Film (VWR, 391-1291) 

 

3.4. HTRF Material 
 

384 well plate Assay Plate 384 Well No Lid Flat Bottom Low Flange Non-Binding-Surface Black 

Polystyrene (CORNING, 3575), Mab Anti GST-Tb cryptate (Cisbio, 61GSTTLA) 

 

 

3.5. Devices  
 

Biofuge Pico (Heraeus), Electrophorese Powersupply (EPS series, Amersham), CVC 3000 Vacuum 

pump (vacuubrand), DS11+ Spectrophotometer (Denovix), Duomax 1030 and Polymax 1040 

(Heidolph), EMB500-1 scale (KERN), IKA Kombimak REO stirring device, RM5 Rollenmischgerät, Light 

Microscope WILOVERT S (hund), Microwave (Samsung), Mixing Block MB-102 (BIOER) Multichannel 

Pipette 8 – 100µL (Eppendorf), Pipette Matrix Multichannel 16 – 125µL (Thermo Scientific), Pipettes – 

various volumes (Gilson), Reax 1 Vortexer (Heidolph), Rotilabo-Block-Heater H250 (Roth), RS-T170S 

Rollenmischgerät (PHOENIX Instrument), Sartorius Analytic Scale, Sprout Minifuge (Biozym), 

Waterbath-GFL-Typ-1002 

 



 

3.6. Readers  
 

Genios Pro (Tecan), Infinite M1000 with dual injection module (Software: i-control 1.11), Berthold 

TriStar² LB 942 

 

3.7. Software  
 

Graphpad Prism6, ImageJ, Microsoft Office Suite 2016, Sigmaplot 11.0 

 

3.8. List of used group internal ligands 
 

Internal 

Nomenclature 

Published Name  Publication 

AV075 Unpublished Dissertation AV 

CK182 2b [26] 

MTQ238 16j [40] 

JK096 16g [40] 

MB53, THe10, SG770 SAFit1 [22] 

MTQ202 / MTQ416 unpublished Dissertation MTQ 

Other PROTACs unpublished Dissertation MTQ 

 

3.9. Primary Antibodies 
 

Name IgG Subtype, Species Dilution Manufacturer 

Flag(HRP), A8592 mono, mouse 1:10000, 5% milk in TBS Sigma-Aldrich 

FKBP51 A301-430A poly, rabbit 1:500, TBS Bethyl 

GAPDH A300-641A poly, rabbit 1:1000, 5% milk in TBS Bethyl 

Glomulin A304-940A poly, rabbit 1:1000, 5% milk in TBS Bethyl 

HA(HRP) 3F10 mono, rat 1:10000, 5% milk in TBS Roche 

Hsp90 PA5-27410 poly,rabbit 1:2500, 5% milk in TBS Thermofisher 

 

3.10. Secondary Antibodies 
 

Name IgG Subtype, Species Dilution Manufacturer 

Rabbit IgG A120-112P poly, goat 1:1000, 5% milk in TBS Bethyl 

 

3.11. Bacterial Strains 
 



 

Two fundamental Escherichia coli strains were used, both purchased from Invitrogen (Karlsruhe).  

DH5α (Genotype: F’ Phi80dlacZ ΔM15 Δ(lacZYA-argF)U169 deoR recA1 endA1 hsdR17(rK-mK+)phoA 

supE44 lambda- thi-1) for molecular cloning, site-directed mutagenesis and preparation of plasmid DNA.  

BL21(DE3)pLysS (Genotype:  F–, ompT, hsdSB (rB–, mB–), dcm, gal, λ(DE3), pLysS, Cmr) for the 

heterologous production of protein. 

 

3.12. Expression Plasmids 
 

Proteintags are indicated ahead of the protein name if they are located N-terminally and after the protein 

name if they are located C-terminally of the protein sequence. 

 

3.12.1.  Bacterial expression 

 

Internal Reference 

Number 

Insert  Backbone  Created by 

HG 21 His-FKBP12 pProEx-HTA CKo, 08.09.2005 

HG 49 His-FKBP51FK1 (1-140) pProEx-HTA CKo, 09.03.2006 

HG 92 His-FKBP52FK1 (1-140) pProEx-HTA Andreas, 10.04.2006 

HG 116 His-FKBP51-Strep pProEx-HTA Steffen, 15.01.2008 

HG 118 His-FKBP52-Strep pProEx-HTA Steffen, 15.01.2008 

HG 156 His-FKBP12.6 pProEx-HTA ClS, 2005 

HG 306 His-FKBP51FK1 (1-140) 

F67V 

pProEx-HTA Bas 

HG 365 His-FKBP51FK1 (1-140) 

FD67/68DV 

pProEx-HTA Veronika Kupfer, 

19.07.2010 

HG 633 His-FKBP51FK1 (16-140), 

A19T 

pET30b ClS, 16.02.2015 

HG 653 His-FKBP51FK1-MonoCys 

(1-140, C103A, C107I, 

E140C)  

pET30b ClS, 02.09.2016 

HG 656 His-FKBP12-MonoCys 

(C23V, E108C)  

pET30b ClS, 07.09.2016 

HG 660 GST-Glmn pGex AHa, 08.07.2016 

obtained from Schulman 

group, Memphis) 



 

HG 661 GST-Rbx1 pGex AHa, 08.07.2016 

obtained from Schulman 

group, Memphis) 

 

3.12.2.  Eukaryotic expression 

 

Internal Reference 

number 

Insert  Backbone  Created by 

HG 124 HA-GR pRK5 AHa, 13.07.2018 (AG 

Rein, MPIPsych) 

HG 206 FKBP52-Flag pRK5 AF, 2008 (AG Rein, 

MPIPsych) 

HG 207 FKBP51-Flag pRK5 AF, 2008 (AG Rein, 

MPIPsych) 

HG 302 FKBP51- Flag TPR* 

(K352A/R356A) 

pRK5 SC, 02.12.2009 (AG Rein, 

MPIPsych) 

HG 382 FKBP51-Flag PPIase 

(FD67/68DV) 

pRK5 AK, 23.11.2011 

HG 473 hRLuc/TK (pGL4.74) pGL4 AK, 23.08.2011 (Promega, 

9PIE692) 

HG 490 HA-FKBP51 pRK5 AK, 17.10.2011 

HG 498 MmFKBP51-HA pRK5 CKo, 3.11.2011 

HG 591 FKBP51-Flag (L119P) pRK5 ClS 

HG 598 RT-233-2/TRPC6-YFP pcDNA3.1 AG Leuner, FAU Erlangen 

HG 600 FKBP51-Flag Triple mut 

(K58T, K60W, F129V) 

pRK5 ClS, 25.06.2013 

HG 628, 

pGRE4luc2P 

Three copies of tandem GRE 

[135] 

pGL4.27 AHa, 01.09.2014 (Dvorak 

Group, University 

Olomouc) 

HG 644 3xFlag-Glmn pcDNA3.1 AHa, 11.01.2016 (Taipale 

Group, Toronto University) 

HG 645 Glmn-3xFlag pcDNA3.1 AHa, 11.01.2016 (Taipale 

Group, Toronto University) 

HG 658 TRPC6 YFP SDM C1 pcDNA3.1 AHa, 08.07.2016 

HG 680 Nluc-FKBP51 pNLF1 NGu, Master Thesis 



 

HG813 p1242  Firefly-Reporterplasmid, 

canonical NF-κB pathway 

pGL2 Nils Gassen, MPIPsych, 

Promega product 

HG814 pNF-κB2  Firefly-Reporterplasmid, non-

canonical NF-κB pathway 

pGL2 Nils Gassen, MPIPsych, 

[136] 

 

3.13. Mammalian Cell Lines 
  

Name Description Origin Provided by  ATCC No. 

A375 malignant 

melanoma skin cells 

H. sapiens AG Boßerhoff 

(FAU Erlangen) 

CRL-1619 

HEK293-T Embryonic kidney 

cells 

H. sapiens Dr. T. Rein (MPI 

for Psychiatry, 

Munich) 

CRL-1573 

HEK TRPC6-HA 

#4 

Embryonic kidney 

cells, stable 

transfection with 

TRPC6 

H. sapiens Jana Demleitner 

(LMU Munich) 

 

HeLa Cervix 

adenocarcinoma 

cells 

H. sapiens Dr. T. Rein (MPI 

for Psychiatry, 

Munich) 

CCL-2 

Jurkat peripheral blood 

T Lymphocyte 

H. sapiens Anthony Zannas, 

Nils Gassen (MPI 

for Psychiatry, 

Munich) 

CRL-2899 

MEF Embryonic 

fibroblast cells 

M. musculus Dr. M. Cox 

(University of 

Texas, El Paso) 

CRL-2991 

Neuro2a Brain 

neuroblastoma cells 

M. musculus Dr. J. Deussing 

(MPI for 

Psychiatry, 

Munich) 

CCL-131 

PC12 Pheochromocytoma 

cell, adrenal gland 

R. norvegicus AG Friedland 

(Universität 

Mainz) 

CRL-1721 

 

3.14.  Cell Culture Media and Additives 
 



 

Name Contents Used for Manufacturer  

Sterile Water Art.-

Nr. 3256.1 

 Plasmid Dilution, 

Plate coating 

C. Roth 

(Karlsruhe) 

Dulbecco’s 

Modified Eagle 

Medium 

C4207.0500 

4.5g/L glucose, L-

glutamine, 

sodium pyruvate, 

w/o phenol red, 

3.7g/L NaHCO3 

Reporter Gene 

Assays 

GENAXXON 

bioscience (Ulm) 

Dulbecco’s 

Modified Eagle 

Medium 41966-

029 

4.5g/L glucose, L-

glutamine, 

sodium pyruvate, 

phenol red 

Most cell lines Gibco-Invitrogen 

(Karlsruhe) 

Advanced RPMI 

1640 Medium, 

12633012 

glucose, non 

essential amino 

acids, sodium 

pyruvate, phenol 

red 

Jurkat, PC12  Gibco-Invitrogen 

(Karlsruhe) 

Dulbecco’s 

Phosphate 

Buffered Saline 

14190-094 

 All cell lines Gibco-Invitrogen 

(Karlsruhe) 

Heat Inactivated 

Fetal Bovine 

Serum 10500-064 

 All cell lines  Gibco-Invitrogen 

(Karlsruhe) 

Poly-L-Lysine 

P4707 

0.01%  PLL  Sigma 

LifeScience 

(Steinheim) 

Opti-MEM 

Reduced Serum 

Medium, 11058-

021 

L-Glutamine, 

HEPES, w/o 

phenol red 

All cell lines Gibco-Invitrogen 

(Karlsruhe) 

Pen Strep 

15140-122 

10,000 Units/mL 

Penicillin 

10,000 µg/mL 

Streptomycin 

All cell lines Gibco-Invitrogen 

(Karlsruhe) 



 

Lipofectamine 

2000, 11668-019 

 All cell lines Invitrogen 

(Karlsruhe) 

0.25% Trypsin-

EDTA, 25200-056 

 All cell lines Gibco-Invitrogen 

(Karlsruhe) 

Trypan Blue Stain 

(0.4%), 15250-

061 

 All cell lines Gibco by Life 

Technologies 

 

  



 

4. Methods  

 

4.1. Protein Purification 
 

4.1.1. His-tagged Proteins 

 

Proteins were expressed in E.coli BL21(DE3) cells. All incubation steps were performed at 

approximately 200 rpm in a heatable shaker. 3 mL LB media and the according antibiotic were 

inoculated with a scratch of glycerol stock by a steril pipette tipp to obtain the preculture and grown at 

37 °C overnight. The next day, 200 mL media + antibiotic were inoculated with 1 mL preculture and 

treated similar. 4 L of the main culture were inoculated with 120 mL of the second preculture and 

distributed into four time 1 L in a 2 L glass Erlmeyer flask. The cultures were grown to an OD600=0.5, 

induced with 600 µM IPTG (final) and grown for 4 h at 37 °C (Monocys variants 4 h 30 °C). The culture 

was spun down (4 °C, 6,000 g, 10 min, Sorvall RC5B), resuspended in lysis buffer (20 mM Hepes, 

200 mM NaCl, 200 mg/mL lysozyme, 2.5 mM PMSF, 0.1 mg/mL DNAse I, pH 8.0) and subjected to 

sonication (Branson SONIFIER cell disruptor B15, 20% output, 60% duty cycle, two times 5 min). After 

that, the lysis mixture was centrifuged (35,000 xg, 4 °C, 30 min, Sorvall RC5B). 6 mL Nickel-NTA bead 

slurry (Machery Nagel) were equilibrated in washing buffer (20 mM Hepes, 200 mM NaCl, 40 mM 

imidazole, pH 8.0, two times 10 mL), added to the lysis supernatant and incubated for 2h on a rolling 

device at 4°C. After that, the beads were spun down (100 xg, 2 min, Eppendorf Centrifuge 5804 R), the 

supernatant was removed, and the beads were washed two times with 30 mL washing buffer. The 

beads were added to a column (Biorad) and washed again. Elution was performed with elution buffer 

(20 mM Hepes, 200 mM NaCl, pH 8.0, 300 mM imidazole). Elution progress was monitored via 

qualitative Bradford assay (5 µL elution fraction added to 100 µL 1x Roti®-Nanoquant, C. Roth, in a 

transparent 96-well plate). Protein-containing fractions were pooled, centrifuged (14,000 xg, 4 °C, 

20 min, Eppendorf Centrifuge 5804 R), and the supernatant was subjected to size exclusion 

chromatography (FPLC buffer: 20 mM Hepes, 20 mM NaCl, 5%(v/v) glycerol, pH 8.0, HiLoad™ 26/600 

SuperDex™ 200pg on an ÄKTA Pure chromatography system by GE Healthcare). Resulting protein 

fractions were quantified, frozen in liquid nitrogen and stored at -80 °C. All buffers used for the 

purification of MonoCys mutants additionally contained 5 mM DTT.  

 

4.1.2. GST-tagged Proteins 

 

Proteins were expressed in E.coli BL21(DE3) cells. All incubation steps were performed at 

approximately 200 rpm in a heatable shaker. 3 mL LB media and the according antibiotic were 

inoculated with a scratch of glycerol stock by a steril pipette tipp to obtain the preculture and grown at 

37 °C overnight. The next day, 200 mL media + antibiotic were inoculated with 1 mL preculture and 



 

treated similar. 4 L of the main culture were inoculated with 120 mL of the second preculture and 

distributed into four time 1 L in a 2 L glass Erlmeyer flask. The cultures were grown to an OD600=0.5, 

induced with 600 µM IPTG (final) and grown at 15 °C overnight). The culture was spun down (4 °C, 

6,000 g, 10 min, Sorvall RC5B), resuspended in lysis buffer (20 mM Hepes, 200 mM NaCl, 200 mg/mL 

lysozyme, 2.5 mM PMSF, 0.1 mg/mL DNAse I, 5mM DTT, pH 8.0) and subjected to sonication 

(Branson SONIFIER cell disruptor B15, 20% output, 60% duty cycle, two times 5 min). After that, the 

lysis mixture was centrifuged (35,000 xg, 4 °C, 30 min, Sorvall RC5B). 7 mL Gluthathion bead slurry 

(Glutathion Sepharose 4 FastFlow, GE Healthcare, 17-5132-01) were equilibrated in washing buffer 

(20 mM Hepes, 200 mM NaCl, 5 mM DTT, pH 8.0, two times 10 mL), added to the lysis supernatant 

and incubated for 2 h on a rolling device at 4 °C. After that, the beads were spun down (100 xg, 2 min, 

Eppendorf Centrifuge 5804 R), the supernatant was removed, and the beads were washed two times 

with 30 mL washing buffer. The beads were added to a column (Biorad) and washed again. Elution was 

performed with elution buffer (20 mM Hepes, 200 mM NaCl, 5 mM DTT, pH 8.0, 10 mM glutathione). 

Elution progress was monitored via qualitative Bradford assay (5 µL elution fraction added to 100 µL 

1x Roti®-Nanoquant, C. Roth, in a transparent 96-well plate). Protein-containing fractions were pooled, 

centrifuged (14,000 xg, 4 °C, 20 min, Eppendorf Centrifuge 5804 R), and the supernatant was 

subjected to size exclusion chromatography (FPLC buffer: 20 mM Hepes, 20 mM NaCl, 5% glycerol, 

5 mM DTT, pH 8.0, HiLoad™ 26/600 SuperDex™ 200pg on an ÄKTA Pure chromatography system by 

GE Healthcare). Resulting protein fractions were quantified, frozen in liquid nitrogen and stored at -

80 °C. Previous to size exclusion chromatography GST-Rbx1 was digested with TEV-protease to 

remove the GST-tag (20 U/µL = 3.5 µg/µL TEV Protease (MPI for Biochemistry, Munich, Dr. B. 

Suppmann) added to pooled Elution fractions, incubated at 4 °C overnight). 

 

4.1.3. Protein Labeling 

 

2 mL (up 2.5 mg protein) of FKBP51FK1-MonoCys and FKBP12-MonoCys were dialysed for 5 cycles 

(approximately 30 min / 1 / 2 / 4 h and overnight) at 4 °C in a Dialyse Slide-A-Lyzer 3.5k MWCO 

(ThermoFisher) in 20 mM Hepes, 20 mM NaCl, 5%(v/v) glycerol, 10 mM TCEP pH 8.0 with 45 mL buffer 

per cycle in order to remove DTT. The rebuffered protein was added to 500 µL equilibrated Ni-NTA 

slurry (4.1.1). After 2 h, a 20-fold molar excess of fluorescein-maleimide “5-MF” (TRC, F489500) was 

added and incubated for 2 h. The mix was transferred to a column (Biorad) and washed with buffer 

(20 mM Hepes, 20 mM NaCl, 5%(v/v) glycerol, pH 8.0, 5 mM DTT) until the flowthrough became 

colorless. Elution was performed with elution buffer (20 mM Hepes, 200 mM NaCl, pH 8.0, 300 mM 

imidazole, 5 mM DTT). The elution was ended as the eluate became colorless. In order to remove 

remaining unreacted fluorescein-maleimide, the first 3 mL of eluted, labeled protein were dialysed for 5 

cycles in a Dialyse Slide-A-Lyzer 3.5k MWCO (ThermoFisher, #88403) in 20 mM Hepes, 20 mM NaCl, 



 

5% glycerol, 5 mM DTT as described before. The protein concentration was determined by measuring 

OD280 and OD495. Calculation protocol by ThermoFisher:  

 

cProtein = (OD280 – (OD495*0,3)) / εProtein 

Labeling efficiency = (OD495 / (εFluorescein x cProtein); εFluorescein = 68000 M-1 cm-1 

 

Washing and elution of FKBP12-MonoCys with 5-MF are visualized in Suppl. Fig. 63. 

 

4.1.4. Activity Assay of Labeled Proteins 

Compound FK[4.3.1]-16g [40] (Figure 8) was diluted in 15 one-to-one dilution steps ranging from 25 µM 

to 1.5 nM in DMSO. 1 µL of each dilution step was added to a black 384 well plate (Corning 3575). 

50 µL of a 5 nM 5-MF labeled protein dilution in FP-Assay buffer (20 mM Hepes, 0.002% Triton X-100, 

pH 8.0) were added to each tracer containing well. Fluorescence (Ex: 485±20 nm, Em: 520±10 nm) 

was measured with a Tecan Genios Pro plate reader. Data was processed with GraphPad Prism 6 and 

curves were fitted via a one-site-ligand depletion curve (Y= A / E * 0.5 *(X + E + 1 / K - sqrt ( sqrt ( X + 

E + 1 / K ) - 4 * E * X ))+B). 

 

 

Figure 8 Structure of FK[4.3.1.]-16g. 

The TAMRA fluorescence was not obtained. 

 

4.1.5. Active Site Titration of FKBPs 

 

All unlabeled FKBPs have been quantified by active site titration [26]. Proteins were diluted in 15 one-

to-one dilution steps in FP-assay buffer and equally mixed with a 100 nM solution of compound 

FK[4.3.1]-16 g in FP-Assay buffer (20 mM Hepes, 0.002% Triton X-100, pH 8.0) in a black 384 well 

plate (Corning 3575). Fluorescence polarization was measured with a Tecan Genios Pro plate reader 

(Ex: 485±20 nm, Em: 535±25 nm), plotted against the UV concentration (DevNovix, 



 

D11+Spectrophotometer) and subjected to a four parameter fit using GraphPad Prism6: Y=Bottom + 

(Top-Bottom)/(1+10^((LogIC50-X)*HillSlope)). Concentration of active protein was calculated: cAST = 

((0.5x cTracer + KD) / EC50) x cUV. 

 

4.2. HTRF 
 

All components were diluted in HTRF-Assay-Buffer (20 mM Hepes, 20 mM NaCl, 5% Glycerol, 10 mM 

DTT, pH 8.0). The assay mix consists of four fractions of equal volume: binding partner I and II, Tb – 

cryptate coupled antibody and competitor. Therefore, 4x predilutions dilutions of all fractions were 

prepared (if not indicated differently) in low binding tubes: 120 nM Glmn-GST, 120 nM 

FKBP51FK1MonoCys-5MF, 40 ng /well Mab Anti GST-Tb cryptate monoclonal antibody (Cisbio) 

(approximate final concentration of 0.8 nM) and competitor as indicated. FKBP51FK1MonoCys-5MF, 

competitor and Glmn-GST (each 20 µL) were pre-incubated in a 384 well plate for 1 h at RT. Mab Anti 

GST-Tb cryptate (20 µL) was added and incubated for 2 h at. Fluorescence at Em: 340±10 nm / Ex: 

520±10 nm and Em: 340±10 nm / Ex 620±10 nm was measured sequentially for all wells in a Tecan 

Genios Pro Reader. The 520 nm signal of each well was normalized over its corresponding 620 nm 

signal. All assays were measured with the “Gain Optimal” setting, potentially leading to variations of 

absolute fluorescence values in between separate assays. Data was processed with GraphPad Prism6 

and competition curves fitted using a four parameter fit: Y=Bottom + (Top-Bottom)/(1+10^((LogIC50-

X)*HillSlope)) 

 

4.3. Cell Culture 
 

All incubation steps took place in a HERAcell 160vi (ThermoFisher) at 37 °C and 5% CO2, if not 

indicated differently. All media and reagents are listed in section 3.14. All work was performed using 

sterility guidelines. Cell culturing and cellular assays were generally accompanied by the observation 

of the cells via light microscopy to assure confluency, cell shape, surface effects and the absence of 

contaminations. The adherent cell lines Neura2a (N2a), HEK293T and HeLa as well as Jurkat cells, 

which grow in suspension were used. Protocol deviations for Jurkat cells are described in 4.3.5. 

 

4.3.1.  Growth Conditions and Passaging 

 

Cells were grown in 10 cm TC-dishes for 3 to 5 days. After that, the cell culture media was aspirated 

and the cells were washed with 5 mL PBS. 1 mL of prewarmed Trypsin-EDTA solution was added and 

equally distributed on the surface. The dish was placed in the incubator for 5 min. Cells were removed 

from the surface by resuspension in 5 mL culture media and spun down for 2 min at 1000 rpm. The 

supernatant was removed and cells were resuspended with 5 mL culture growth media. For cells of 80 



 

– 95% confluency, 250 µL of this suspension were added to 10 mL cell culture media in a fresh plate 

(1 to 20 passage). 

 

4.3.2. Surface Coating 

 

If indicated, cell culture dishes and multiwell plates used for assays were coated with poly-L-Lysine 

(PLL, 0.002%(v/v), 1:50 dilution in water). Half of the volume of the recommended culture volume was 

added to each cavity and placed in the incubator for 2 h up to 24 h. Afterwards, the solution was 

removed and all cavities were washed with an equal amount of water. Plates were dried in a sterile 

bank for 1 h and stored tape sealed at 4 °C until usage. Surface coating was performed for all cell 

culture assay experiments such as PROTAC treatment and reporter gene assays and to culture N2a 

and MEF cells. 

 

4.3.3. Storage 

 

In order to store cells, they were resuspended after passaging in cell culture media containing 10% (v/v) 

sterile filtered DMSO. The suspension was added to Cryo Pure tubes (Sarstedt, 72.379) and frozen to 

-80 °C in Cryo 1 °C Freezing Container (NALGENE). After 1 day, the tubes were transferred to a liquid 

nitrogen container (Locator 5 Plus, Thermo Scientific). In order to regain fresh cells, a 10 cm petri dish 

was filled with 20 mL media. An aliquoted cryotube of cells was removed from the liquid nitrogen tank 

and thawn in a 37 °C warm water bath under mild shaking. Cell suspension was then added to the 

prepared petri dish. After one day the media was exchanged and on the second day, cell passaged. 

Usally 30 to 100% of the cells were reseeded at this point, depending on their confluency. 

 

4.3.4. Cell Counting 

 

As the cells were passaged in order to transfer them to any assay, they were counted after 

resuspension. For this, 10 µL of cells and 10 µL Trypan Blue solution were mixed in a tube. 10 µL were 

then transferred to a Neubauer Counting Chamber (Marienfeld). All non-blue cells in the four major 

quadrants were counted. Cell count in resuspension was calculated: 1 Neubauer count ≙ 5,000 cells / 

mL in the primary resuspension. 

 

4.3.5. Jurkat Cell Culture 

 

Jurkat cells are a non-adherent T lymphocyte cell line. They are cultured in RPMI 1640 media, 

supplemented with 10% FBS. Passaging was performed by simply transferring 10% of the current 



 

passage and add it to fresh media. In reporter gene assays non-coated, V-shaped well 96well plates 

were used. Each step, which required exchange of media, was preceded by a centrifugation step 

(1000 rpm, 2 min) and followed by mildly tapping the plate to assure resuspension. A successful 

centrifugation and resuspension of Jurkat cells in V-shaped wells can be monitored via light 

miscroscopy. 

 

4.4. Reporter Gene Assays 
 

4.4.1. Glucocorticoid Receptor Signaling 

 

Reporter gene assays were performed using media without phenol red and with 10% charcoal stripped 

FCS. 10,000 cells in media were seeded into a PLL-coated 96 well plate in a volume of 50 µL/well. 

Plates were incubated for 24 h. The transfection mix was prepared according to Lipofectamine 2000 

(Invitrogen) protocol: Plasmids (solved in sterile water) were diluted in Opti-MEM (45 ng/well 

pGRE4Luc2P, 5 ng/well pGL4.74, 0.5 ng/well HA-GR, different amounts of FKBP51, FKBP52 and 

Glmn). Maximum transfection doses varied from assay to assay but were equalized within an assay by 

the addition of mock plasmid (pRK5). Transfection doses always remained beneath 100 ng/well as 

recommended. A 1.67% (v/v) dilution of Lipofectamine in Opti-MEM was prepared and incubated for 

5 min at RT. After that, both Lipofectamine 2000 and plasmid dilutions were mixed equally and 

incubated for 20 to 25 min at RT. During that time, media was removed from the seeded cells and 80 µL 

of fresh media were added to each well. 20 µL of the final transfection mix were added to each well and 

the cells were incubated for 24 h. After that, each well was washed once with 50 µL media and 50 µL 

media were added to the wells. An incubation period of 30 to 60 min followed. Consecutively, the cells 

were treated with small molecules, which were added in a volume of 50 µL solved in media (4x 

concentration of the final concentration). All used compounds were dissolved and prediluted in sterile 

DMSO and the final DMSO content of the cell culture media remained below 0.2%. Treatment time 

extended up to 24 h. After that, the stimulation mix in a volume of 100 µL was added on top. This mix 

consisted of Dexamethasone dissolved and prediluted in sterile DMSO, diluted in cell culture media to 

a final concentration ranging from 0 to 100 nM. Here as well, the DMSO content in the cell culture media 

did not exeed 0.2% (v/v). Stimulation time extended up to 24 h. Subsequently, the cells were washed 

with 100 µL/well cold PBS and lysed in 50 µL 1× “Passive Lysis Buffer” (Promega, E1910) on ice for 

30 min. The plates with lysed cells were stored at - 20 °C. 

Preceding measurement, plates were thawn and 20 µL lysate of each well transferred to a white 96-

well half-area plate (Greiner bio-one, 392-0287). Measurement buffers were prepared as published in 

“ A protocol for combined Photinus and Renilla luciferase quantification compatible with protein assays” 

by Hampf, M. and Gossen, M., Anal Biochem, 2006 [137]. Measurement was performed with a Berthold 

TriStar² LB 942 (indicated in figure description) or a Tecan Infinite M1000 connected to a dual injection 



 

module. Both lines were washed with 80% EtOH and water and primed with 0.5 mL of the corresponding 

substrate solution. 20 µL of firefly luciferase substrate solution (Photinus Buffer: 200 mM Tris-

HCl,15 mM MgSO4, 0.1 mM EDTA, pH 8, plus freshly added: 25 mM DTT, 1 mM ATP, 0.2 mM CoA, 

0. 2mM Luciferin) were injected to one well (speed: 200 µL/s) and luminescence measured for 5 s after 

a delay of 2 s. Afterwards, the same procedure was repeated in the same well with the gaussia 

substrate solution (Renilla Buffer: 25 mM Na4PPi,10 mM NaOAc, 15 mM EDTA, 500 mM Na2SO4, 

500 mM NaCl, pH 5, plus freshly added: 4 µM benzylcoelenterazine, 50 µL 4-(6-methylbenzothiazol-2-

yl)-aniline). Both buffers were prepared and stored at 4 °C without the components indicated as 

“freshly”. After the measurement of a single well, the measurement proceded to the next well. Data 

were processed as following: 1) Normalization of the firefly signal over the gaussia signal. 2) Averaging 

the quadruplicate or hexaplicate values of firefly, gaussia and normalized signal and calculation of the 

standard error of the mean using excel. Data was transferred to GraphPad Prism6 and graphically 

edited. 

 

4.4.2.  NF-κB-Signaling 

 

Reporter gene assays measuring the reporter activity of NF-κB-plasmids were generally performed in 

a similar fashion as GR reporter gene assays. Instead of pGRE4luc2P, the reporter plasmids p1242 for 

the canonical pathway and pNF-κB2 for the non-canonical NF-κB pathway were used at the 

concentration of 45 ng/well. A GR expression plasmid was not transfected. No experiment with ligand 

treatment was performed. Therefore, 24 h transfections were directly followed by stimulation with TNFα 

or PMA (phorbol 12-myristate 13-acetate) for 20 h. The stimulants were used up to a concentration of 

20 ng/µL for TNFα (stock dissolved in sterile PBS with 0.1% BSA) and 80 nM for PMA (stock dissolved 

sterile DMSO). For concentration equal and greater than 40 nM PMA massive cell death was observed 

(HEK293T and A375). Up to 15 nM PMA cells appeared to be fine in light microscopic observation. 

 

4.5. PROTAC Treatment of Cells 
 

Cells were seeded at a concentration of 35,000 per well in a 24 well TC-plate and incubated for 24 h. 

Medium was removed and 250 µL fresh medium were added to each well. PROTACs (Stock 1 to 5 mM 

in DMSO) were diluted in medium at 2x concentration. Usually a 1:1 dilution series was performed in 

DMSO containing medium to achieve a constant final DMSO content of 0.2% (v/v). 250 µL of the 

respective dilution was added to the according wells and incubated for the indicated time. After that, 

cells were lysed.  

 



 

4.6. Cell Lysis 
 

To analyse expression levels of certain cellular proteins, medium was removed and cells were washed 

with with 4 °C cold PBS: 50 µL for reporter gene assay in 96 well format, 1 mL for a PROTAC in 24  well 

format. Then an appropriate amount (e.g. 70 µL for a single well of a 24 well plate) of NETN buffer 

(100 mM NaCl, 20 mM Tris-Cl pH 8.0, 0.5 mM EDTA, 0.5% (v/v) Nonidet P-40 (NP-40), 1% Protease 

inhibitor, 1 mM PMSF) was added. Cell plates were incubated for at least 30 min on ice on a shaking 

device. Cells were scratched off with a bended 100 µL pipette tipp (1 per well) and the fluid suspension 

was transferred to an Eppendorf tube. Lysates were centrifuged for 20 min at 16,000 xg at 4 °C 

(Eppendorf Centrifuge 5804 R) and the supernatants transferred to a fresh tube.  

 

4.7. Protein Quantification via BCA Assay 
 

In order to quantify protein amounts via Western Blot detection, the total protein content of lysates was 

normalized. The relative quantity of protein was obtained using a Pierce® BCA Protein Assay Kit 

(Thermo Scientific, 23227). 5 µL of centrifuged lysate sample were added to a transparent 96 well plate 

and 100 µL BCA reagent mix added. The plate was closed with a lid and incubated at 37 °C in a water 

bath above the water level for 30 min. The bottom of the plate was dried. The absorbance of each well 

at 590±20 nm was measured with a Tecan Genios Pro device. Data was processed using Excel. All 

samples which were going to be added to the same SDS-gel were normalized to an equal total protein 

concentration with 4xLämmli buffer of the sample of the least protein content: 15 µL of lysate mixed 

with at least 15 µL 4xLämmli buffer.  

 

4.8. SDS-PAGE  
 

SDS-PAGEs were performed using 1.0 mm disposable cassettes (Novex, NC2010) and mini gel tanks 

(Invitrogen by Thermo Fisher Scientific). In order to cast two gels, the separation gel was prepared as 

following: 

 

Amounts in mL  8% 10% 12% 14% 16% 

Acrylamide / 

Bisacrylamide 

30% / 0.6% 

3.80 4.75 5.70 6.65 7.60 

Aqua dest.  4.87 3.92 2.97 2.02 1.07 

Table 1 Variable components of acrylamide gels. Values are not rounded, since often a multitude of those amounts were 

calculated and pipetted 



 

Independant of the acrylamide concentration: 5.34 mL 1 M Tris pH 8.8, 140 µL 10% SDS, 84 µL 10% 

APS, 17 µL TEMED. The mixture was poured into the cassettes (filling 3 / 4) and was overlayed with 

ca. 250 µL isopropanol. After polymerization, isopropanol was poured out and collection gel filled in to 

the top (for three gels: 5 mL stacking gel buffer containing, 25 µL 10% APS, 10 µL TEMED). 

 

Stacking Gel Buffer (250 mL):44 mL Acrylamide /Bisacrylamide 30% / 0,6%, 188.5 mL aqua dest, 

15 mL 1 M Tris-HCl pH 6.8, 2.5 mL 10% SDS. 

 

Gel combs were added right afterwards. After polymerization, gels were stored wrapped in wet tissue 

at in a plastic back at 4 °C.  

Protein samples were prepared with at least 25% 4xLämmli (amounts vary, especially since Lämmli 

buffer was used to normalize protein concentration) and boiled at 96 °C for at least 5 min. 1 L 4xLämmli 

buffer contains: 80 g SDS, 320 mL, 1 M Tris pH 6.8, 400 mL glycerol, 400 mg brom phenol blue, aqua 

dest add 1 L. Before usage 14 µL β-Mercaptoethanol were added per 1 mL Lämmli. Afterwards, the 

samples were spun down (13.000 rpm, 3 min) and added to the gel (3 to 15 µL). 3 µL marker solution 

were used (Page Ruler™, Prestained Protein Ladder, Thermo Scientific, #26616). 

Gels were run at 15 / 25 mA for the stacking phase and 25 / 45 mA for the separation phase, depending 

if one or two gels were loaded in a tank module using 1x SDS-Page buffer (500 mL 10x buffer contain: 

15 g Tris base, 72 g glycin, 5 g SDS, pH 8.3, in aqua dest). SDS-Pages performed for protein level 

quantification to analyse chemical knockdown by PROTACs were loaded with equal sample volume 

(15 µL) of equal total protein concentration. 

 

4.9. Coomassie Staining and Gel Drying 
 

SDS-page gels, which were not transferred for Western Blotting, were stained in Coomassie stainer 

(40% v/v ethanol, 10% v/v acetic acid, 1 g/L Coomasie Brilliant Blue R250) for at least 15 min. 

Destaining was performed in two steps: 1) at least 30 min in destaining solution (40% v/v ethanol, 10% 

v/v acetic acid) and 2) in water at 4 °C overnight. Additional steps in either liquid could be added for 

optimized contrast. Subsequently, gels were dried for at least two days in cellophane using a gel drying 

frame. 

 

4.10. Western Blotting 
 

Western blot sandwiches consisting of sponge, whatman paper, SDS-gel, nitrocellulose membrane, 

whatman paper and another sponge were prepared. All components were previously soaked in western 

blot buffer (1x SDS buffer, 20% (v/v) EtOH). The blotting sandwich was transferred to a blotting chamber 

and added to a mini gel tank (Invitrogen, various models). Transfer was performed at 30 V for one and 



 

60 V for two sandwiches per chamber for 75 min. Afterwards, the nitrocellulose membrane was stained 

with Ponceau S solution (0.1%(w/v) Ponceau S in 5%(v/v) acetic acid) to verify transfer and 

subsequently destained in water. The membrane was blocked in 5% skimmed milk in TBS (50 mM Tris, 

150 mM NaCl, pH 7.4) for at least 30 min. The membranes were incubated with the primary antibody 

in the indicated dilution overnight at 4°C on a rolling device. Afterwards, the membrane was washed in 

TBS, TBS-T (0.1% Tween-20 added) and TBS for 5 min each under mild, constant swiveling. The 

membrane was added to the secondary antibody dilution and incubated for at least 1 h at room 

temperature on a rolling device. Washing procedure was repeated similarly. A mixture of equal parts 

HRP substrate solutions (“Immobilon Western”, Millipore) was prepared, added to the membrane 

placed in a transparent foil, equally distributed and measured until a decent chemiluminescence signal 

was detected (LAS-3000, Fujifilm).  

 

4.11. Westen Blot Data Procession for Signal Strength Analysis 
 

This procedure was developed by Thomas Geiger, during his research internship under my supervision 

in order to analyse chemiluminescence signals for chemical knockdown by PROTACs. 

Images of the blots were (colour) inverted using Paint (Version 1803). Afterwards, the FKBP51 and 

GAPDH band intensities were quantified using the “Analyze” tool of ImageJ. The area of interest was 

constant for all protein bands. The intensity of the FKBP51 band was normalized by the corresponding 

GAPDH intensities. The normalized intensities were divided by the normalized intensity of the according 

DMSO control (DMSO value is set to 1). This value indicates the endogenous FKBP51 level relative to 

the DMSO control. Data was processed using GraphPad Prism6.  

 

4.12. Degradation of Nanoluc-tagged FKBP51 
 

10,000 cells in media were seeded into each well of a polylysine coated 96 well plate in a volume of 

50 µL each. Plates were incubated for 24 h. The transfection mix was prepared according to the 

Lipofectamine 2000 (Invitrogen) protocol. Transfection was performed as described in 4.4 Reporter 

Gene Assays with HG 680 (N-terminally Nanoluc tagged FKBP51) in amounts indicated in the 

experiment. At the end of the transfection, the supernatant of each well was removed and fresh 50 µL 

media were added per well. Consecutively, the cells were treated with small molecules, which were 

added in a volume of 50 µL dissolved in media (2x concentration of the final concentration). All used 

compounds were dissolved and prediluted in sterile DMSO and the final DMSO content of the cell 

culture media remained below 0.2%. Treatment time extended up to 24 h. Subsequently, the cells were 

washed with 100 µL/well cold PBS and lysed in 50 µL 1× “Passive Lysis Buffer” (Promega, E1910) on 

ice for 30 min. The plates with lysed cells were stored at - 20 °C. 



 

Preceding readout measurement, plates were thawn and 20 µL lysate of each well were transferred to 

a white 96-well half-area plate (Greiner bio-one, 392-0287). Nano-Glo® Luciferase Assay (Promega, 

N1120) was prepared by adding 45 µL substrate to 2250 µL assay buffer and 2250 µL PBS. 20 µL of 

this mixture were added to each lysate-containing well using a dispenser. These plates were incubated 

for 5 min at RT and measured in a Tecan Genious Pro (automatic signal reduction mode). Obtained 

data was processed using GraphPad Prism6. 

 

4.13. Calcium Influx Assays 
 

Calcium Influx Assays were performed using a Fluo-4 Direct Calcium Assay Kit (Invitrogen, F14201, 

containing assay buffer, calcium reagent and probenecid). In preparation one vial probenecid (77 mg) 

was dissolved in 1 mL assay buffer to obtain a 250 mM stock solution. The 2x calcium loading solution 

consisted of 10 mL assay buffer and 200 µL probenecid added to one bottle of calcium reagent. Cells 

were seeded at a densisty of 80,000 cells per 50 µL per well in a black 96 well plate with transparent 

bottom (655090) if no transfection step is indicated and 40,000 cells, if a transfection was performed 

prior to measurement. Transfection was performed as described in 4.4 Reporter Gene Assays with the 

plasmids indicated in the experiments. Cells were allowed to attach for 24 h. Afterwards, the assay was 

performed under non-tissue culture conditions and the bottom of the plate sealed with adhesive black 

light-absorbing film. 50 µL of 2x calcium loading solution were added to each well and incubated 30 to 

60 min at 37° C for dye loading. After that time, plates were kept at room temperature until measurement 

(Kit protocol notes assay stability up to 4 h at RT). Stimulation solutions containing OAG, Carbachol, 

Hyperforin, Hyp1 (stocks prepared in DMSO under excess of light) or DMSO were prepared in assay 

buffer. ATP served as positive control and was prepared as 10 mM stock in water. The Berthold TriStar² 

LB 942 injectors were primed with the solutions. The background of each well was measured (RLU0). 

50 µL were injected into three adjacent wells (medium speed setting). Plate was shaken by the device 

for 2 s. The wells were measured for up to 200 s, Ex: 530±15 nm and Em: 585±15 nm. Data was 

processed with SigmaPlot 11 and the fluorescence intensity (RLU) was corrected by the well 

background plotted against the time. 

  



 

5. Results 

 

5.1. FKBP51 PROTACs 
 

Thus far, several series of PROTACs aimed to target endogenous FKBP51 were generated in the 

Hausch lab. Out of these, 62 different compounds [PhD Thesis Mao Tianqi] were tested in several cell 

lines (HeLa, HEK293T, N2a) and the levels of FKBP51 have been monitored via Western Blotting 

(Table 2). Yannick Kristiansen and Thomas Geiger contributed to this project as students under my 

supervision. The experiments performed by them are labeled with “Lab book: YK #” and “Lab book: 

TGe #”. 

 

  

Table 2 Overview of tested PROTACs. PROTACs are named as their respective "MTQ" number according to the following 

features: 1) SAFit-like or bicyclic structure, 2) linker length, 3) attachment point or substituent and 4) targeted E3 ligase (VHL 

or CRBN) 

 

5.1.1. Endogenous FKBP51 

 

The expression of GAPDH usually served as reference. Among the tested PROTACs only MTQ202 

and its second batch MTQ416 robustly decreased levels of FKBP51. The structure of this PROTAC is 

depicted in Suppl. Fig. 61. Western Blot figures of all other PROTACs can be found in 7.1. The PROTAC 

MTQ202 was able to knockdown the levels of FKBP51 in HEK293 cells after 24 h with maximum 

efficacy with concentration ranges between 63 and 500 nM (Figure 9).  

  

Linker Length
1

199 328 338 498 508 518

2 200 329 339 499 509 519

3 201 330 340 500 510 520

4 202 /  416 331 341 501 511 521

5 203 332 342 502 512 522

0 229

1 204 333 343 503 513 523

2 205 334 344 504 514 524

3 206 335 345 505 515 525

4 207 336 346 506 516 526

5 208 337 347 507 517 527

0 235

Atttachment Point 1 2 3 Substituent none X Y

SAFit based structure Bicyclic structure

V
H
L

C
R
B
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Figure 9 Incubation of HEK293T cells with the PROTAC MTQ202, 35,000 cells per well in a 24 well format. Upper blot: 

Endogeneous FKBP51. Lower blot: GAPDH. Cells are treated with the compound for 24 h before lysis. All samples have 

exposed to a constant DMSO concentration. Lysate protein concentration was quantified via BCA assay and normalized with 

Lämmli buffer. Equal amounts of total protein were subjected to SDS-Page and Western Blot afterwards. Lab book: TGe13 

 

Figure 10 Quantification of Figure 9. Normalized Intensities of FKBP51 over GAPDH signal. Ration of the last lane (DMSO 

control) is set to 1. Intensities were analyzed using ImageJ. Masterthesis TGe 

The quantification of the same blot shows that FKBP51 levels go down to 40% (Figure 10) 

The very same compound is also active in HeLa cells with minimum FKBP51 concentrations after 24h 

of 250 nM (Figure 11). Since the antibody used for FKBP51 detection showed clearer signals in 

HEK293 lysats compared to HeLa cell lysats, I mainly focused on that cell line. The antibody was not 

reactive to mouse derived cell lines such as Neuro2a and MEF.  



 

  

Figure 11 Incubation of HeLa cells with the PROTAC MTQ202. 35,000 cells per well in a 24 well format. Upper blot: 

Endogeneous FKBP51. Lower blot: GAPDH. Cells are treated with the compound for 24 h before lysis. All samples have 

exposed to a constant DMSO concentration. Lysate protein concentration was quantified via BCA assay and normalized with 

Lämmli buffer. Equal amounts of total protein were subjected to SDS-Page and Western Blot afterwards. This blot shows 

duplicates. Lab book: AHa388 

During the course of this thesis, a second batch of MTQ202, MTQ416, was synthesized. This batch 

was tested as well and showed a strong chemical knockdown of FKBP51 after 48 h incubation in the 

range of 60 and 1000 nM (Figure 12). 

  

Figure 12 Incubation of HEK293T cells with the PROTAC MTQ416. 35,000 cells per well in a 24 well format. Upper blot: 

Endogeneous FKBP51. Lower blot: GAPDH. Cells are treated with the compound for 48 h before lysis. All samples have 

exposed to a constant DMSO concentration. Lysate protein concentration was quantified via BCA assay and normalized with 

Lämmli buffer. Equal amounts of total protein were subjected to SDS-Page and Western Blot afterwards. This blot shows 

duplicates. Lab book: AHa456 

 

To elucidate the time course of the chemical knockdown of MTQ202, a similar experiment was 

performed on several plates which were incubated with the PROTAC (Figure 14) or DMSO (Figure 13) 

for the indicated time prior to lysis.  



 

 

Figure 13 Incubation of HEK293T cells with DMSO. 35,000 cells per well in a 24 well format. Upper blot: Endogeneous 

FKBP51. Lower blot: GAPDH. Cells were seeded in separate 24well plates and treated with DMSO containing media. Cells 

were lysed after indicated incubation time ranging from 30 min to 48 h. Experiment shows duplicates for each point of time. 

Although there is an instable GAPDH signal, no effect of DMSO was observable in other experiments for the time points of 24 

and 48 h. Lab book: AHa428.  

 

Figure 14 Incubation of HEK293T cells with the PROTAC MTQ202. 35,000 cells per well in a 24 well format. Upper blot: 

Endogeneous FKBP51. Lower blot: GAPDH. Cells were seeded in separate 24 well plates and treated with DMSO containing 

media. Cells were lysed after indicated incubation time ranging from 30 min to 48 h. Experiment shows duplicates for each 

point of time. While the FKBP51 signal gradually decreases over time, the GAPDH signal remains rather stable. Lab book: 

AHa428. 

MTQ202 continuously decreases the levels of FKBP51 for up to 48h, while the DMSO control showed 

no effect over time. Although many PROTACs show a limited action window for intracellular chemical 

knockdown, MTQ202 remained active for 48 h. 



 

In order to obtain more information on the the PROTACs activity time course, a lower amount of cells 

was seeded and incubated with MTQ416 up 72 h. After 24 h incubation, the media was exchanged in 

some wells to provide a PROTAC-free growth environment. 24 h incubation without PROTAC led to a 

recovery of the FKBP51 signal (Figure 15). 

 

Figure 15 Incubation of HEK293T cells with the PROTAC MTQ416. 15,000 cells per well in a 24 well format. Upper blot: 

Endogeneous FKBP51. Lower blot: GAPDH. Cells were seeded in separate 24 well plates (one per point of time) and treated 

with media containing 500 nM MTQ416. Cells were lysed after indicated incubation time ranging from 15 min to 72 h. For 

some wells liquid was exchanged after 24 h with compound free media, indicated with a *. The FKBP51 signal decreased for 

24 / 48 and 72 h, while media exchange leads to signal recovery. The GAPDH signal fluctuates. The quality of these blots are 

low due to low protein amount loaded. Protein concentrations were normalized to the first sample (15,000 cells, which grew 

for 24 h, instead of 35,000 cells growing for usually at least 48 h. Lab book: AHa490. 

Finally, a competition experiment was performed to investigate the chemical knockdown effect of 

MTQ416 in presence of either 2 µM SAFit1 or 2 µM VHL-ligand (Protein degrader 1 hydrochloride, 

dissolved in DMSO + 10% water). In the 24 h incubation blot the presence of both ligands seem to 

increase FKBP51 levels. At least for SAFit1 also GAPDH gives a stronger signal indicating a higher 

protein load for this sample. The FKBP51 levels after 48 h remain unaffected, neither did they dampen 

the chemical knockdown by MTQ416. Due to solubility limitations, an 8-fold excess of competitor 

(250 nM vs. 2 µM) was the highest possible (Figure 16). 

 

 

Figure 16 Incubation of HEK293T cells with the PROTAC MTQ416 (M), SAFit1/THe10 (S) or VHL-ligand (V). 35,000 cells 

per well in a one 24 well format. Upper blot: Endogeneous FKBP51. Lower blot: GAPDH. Cells were seeded in separate 



 

24 well plates (one per point of time) and treated with media containing either 250 nM MTQ416, 2 µM SAFit1 or 2µM VHL-

ligand. Cells were lysed after indicated incubation time of either 24 or 48 h. All samples containing the PROTAC show a 

decreased FKBP51 signal independent of the presence of SAFit1 or VHL-ligand. SAFit1 and VHL-ligand alone have no impact 

on FKBP51 levels. The GAPDH signal is rather stable. Lab book: AHa491. 

  



 

5.1.2. Exogenous FKBP51 

The detection of endogenous FKBP51 was limited to human FKBP51. Other antibodies tested showed 

no reactivity towards mouse FKBP51(data not shown, AHa375, AHa384). MTQ202 was capable to both 

knock-down mouse FKBP51 with a C-terminal HA-tag transfected in HeLa cells (Figure 17) and human 

FKBP51 with a N-terminal HA-tag in murine N2a cells (Figure 18). 

 

Figure 17 Incubation of HeLa cells with the PROTAC MTQ202. 35,000 cells per well in a 24 well format and transfected 

with 100 ng/well mouse FKBP51-HA (HG498) for 24 h. Upper blot: Hsp90. Lower blot: HA-tag. Cells were seeded in separate 

24 well plates and treated with DMSO containing media. Cells were lysed after 24 h. Experiment shows duplicates for each 

concentration. While the FKBP51 signal gradually decreases over time, the Hsp90 signal remains stable. Lab book: YK 

Bachelorthesis 

  

Figure 18 Incubation of murine N2a cells with the PROTAC MTQ202. 35,000 cells per well in a 24 well format and 

transfected with 100 ng/well human HA-FKBP51 (HG490). Upper blot: Hsp90. Lower blot: HA-tag. Cells were seeded in 

separate 24 well plates and treated with DMSO containing media. Cells were lysed after 24 h. Experiment shows duplicates 

for each concentration. While the FKBP51 signal gradually decreases over time, the Hsp90 signal remains stable. Lab book: 

AHa380 

 

5.1.3. Degradation of Nanoluc-FKBP51 

 

The screening of the PROTAC library via Western Blot required a high work and time load. In a side-

project a screening method was investigated featuring a higher throughput. In order to do so, HEK293T 

and N2a cells were seeded in a 96 well plate and transfected with an N-terminally Nanoluc®-tagged 

FKBP51 expression construct (HG 680). Transfected cells were treated with MTQ202 and the luciferase 

activity was read out after lysis. It was assumed that degradation of FKBP51 by MTQ202 also leads to 

degradation of the Nanoluc tag. It could be shown that, MTQ202 was capable to reduce luciferase 



 

signal for the transfection amount of 1 ng/w HG 680 (Figure 19). Increasing amounts of transfected 

plasmid increased general signal strength from 104 RLU background to 108 for 10 ng/w. While no clear 

trend can be observed for 0 and 10 ng/w, the signal reduces with increasing amounts of MTQ202 on 

both cell lines by approximately 50% (125 nM for N2a and 500 to 1000 nM for HEK293T cells). The 

competition of 1000 nM MTQ202 with 1000 nM SAFit1 (MB53) did not lead to a significant change of 

the signal, likely because the lower plateau was already reached. High amounts of transfected plasmid 

could lead to an unaffected signal due to high expression levels. 



 

  

Figure 19 HEK293T (red) and N2a (blue) cells transfected with 0 (A), 1 (B) or 10 ng/w HG680 and treated with MTQ202. 

10,000 cells were seeded in a 96 well plate, settled for 24  

This assay system has not been persuded further. 



 

5.2. FKBP51 in reporter gene assays 
 

5.2.1. Assay Setup 

 

Figure 20 Working principle of the GR reporter gene assay used here. Cell, which are exogenously transfected with a mix 

of plasmids including two reporters as well as GR and FKBP51 expression plasmids are stimulated with dexamethasone. The 

reporter plasmid containing GREs (triple tandem repeat) is expressed upon GR activation. The amount of transcribed firefly 

luciferase depends on the GR signaling strength, which might be impacted by the amount of FKP51 present and potentially 

by FKBP ligands. The second reporter transcribes renilla luciferase and is neither activated nor repressed by GR, FKBPs or 

ligands (herpes simplex virus thymidine kinase promotor – HSV-TK). Its expression levels serve as signal normalization tool. 

The GR is stimulated by Dexamethasone, inducing a reporter plasmid expressing the firefly luciferase. 

This induction might be dependent on the levels of FKBP51 present and its ligands. A second plasmid, 

expressing the Renilla luciferase is independent of external stimuli. The expression strength of both 

luciferases can be read out independently by the addition of their respective substrates and the 

measurement of the resulting luminescence. The assay principle is graphically depicted in Figure 20. 

It was observed that absolute luminescence value varied in between assays for various reasons. 

Therefore, stimulation controls were included. 

 



 

5.2.2. Establishing the Assay Window and the Effect of Normalization 

 

  

Figure 21 Graph shows the normalized signal of N2a cells transfected with different amounts of HA-GR by increasing 

Dex concentrations. 10,000 cells per well in a 96well plate were used. Lower panels show the respective Firefly and Renilla 

signal. Each data point represents a quadruplicate and SEM. Lab book: AHa426 

During the establishment of the assay in N2a cells an insufficient assay window was observed. 

Therefore, a plasmid carrying HA-GR was cotransfected. 0.5 ng/well of this plasmid were sufficient to 

increase the signal from 0 to 4 nM Dex about 15-fold and with 100 nM Dex 30-fold (Figure 21). This 

effect is based on the signal change within the Firefly signal. The Renilla signal remains rather 

independent of Dexamethasone and serves as normalization basis to normalize occurring variables 

within and between assays, such as a fluctuating cell growth rate. All later described effects were 

observed at a stimulation of 4 nM Dexamethasone. 0 nM and 100 nM Dexamethasone served as 

stimulation control. 

 



 

5.2.3. Overexpression of FKBP51 

 

 

Figure 22 Effect of increasing transfection amounts of FKBP51 on GR signaling stimulated by 4 nM Dex. Normalized 

signal of N2a cells transfected with different amounts of FKBP51 at constant Dex concentrations. 10,000 cells per well in a 

96well plate were used, transfected with plasmid mix (Firefly reporter, Renilla Reporter, GR, FKBP51) for 24 h. 0 and 100 nM 

Dex serve as controls. Dexamethasone stimulation started 24 h prior to lysis. DMSO concentration and total plasmid load are 

kept constant for all conditions. Lysates were transferred and handled as described in methods section 4.4.1 to be read out 

with a Tecan Infinite M1000. Each bar represents mean values of a quadruplicate and SEM. Lab book: AHa439 

At a constant stimulation of the N2a cells an increasing transfection dose of FKBP51 is lowering the 

read out signal indicating an active repression of GR signaling by FKBP51 (Figure 22). Each condition 

contained the same amount of plasmid to exclude transfection stress induced effects. The following 

assays used transfection amounts of either 3.3 or 10 ng/well FKBP51 plasmid (if not indicated 

differently: FKBP51-FLAG, HG207). 

 



 

5.2.4. Effects of Different FKBP51 Mutants 

 

 

Figure 23 Effect of different FKBP51 mutants at 4 nM Dex stimulation: WT – wild type, PPIase mut = FD67/68DV; Triple 

= K58T/K60W/F129V, L119P, TPR mut = K352A/R356A. Normalized signal of N2a cells transfected with different mutants 

of FKBP51 at constant Dex concentrations. 10,000 cells per well in a 96well plate were used, transfected with plasmid mix 

(Firefly reporter, Renilla Reporter, GR, FKBP) for 24 h. Total plasmid load are kept constant for all conditions. Stimulation took 

place 24 h prior to lysis. Lysates were transferred and handled as described in methods section 4.4.1 to be read out with a 

Berthold TriStar² LB 942. Each bar represents mean values of a quadruplicate and SEM. Lab book: AHa125 

 

Different FKBP51 constructs have been cotransfected in a dose of 10 ng/well. Wild type FKBP51 

reduced the GR reporter strength at 4 nM Dex, as well as the PPIase deficient mutant (FD67/68DV) 

and the triple mutant, containing three amino acids of the homologues FKBP52 (K58T/K60W/F129V). 

The L119P mutant, another FKBP51-52 swap and especially the TPR mutant (K352A/R356A), which 

is unable to bind Hsp90 proved to be weaker inhibitors of the GR. 

 



 

5.2.5.  FKBP52 in the Reporter Gene Assay 

 

  

Figure 24 Effect of the titration of FKBP52 with and without the cotransfection of FKBP51. Normalized signal of N2a 

cells transfected with different amounts of FKBP52 at constant Dex concentrations. 10,000 cells per well in a 96well plate were 

used, transfected with plasmid mix (Firefly reporter, Renilla Reporter, GR, FKBP) for 24 h. Total plasmid load are kept constant 

for all conditions. 0 and 100 nM Dex serve as controls. Stimulation took place for 8 h prior to lysis. Lysates were transferred 

and handled as described in methods section 4.4.1 to be read out with a Berthold TriStar² LB 942. Each bar represents mean 

values of a quadruplicate and SEM. Lab book: AHa126 

FKBP52 is described as functional counter player of FKBP51 in the GR context, enhancing GR 

signaling. An increasing amount of FKBP52 added to the transfection mix enhanced GR signaling both 

in the presence and absence of exogenous FKBP51. FKBP52 is able to completely overrule FKBP51 

inhibition. This effect was only observable after 8 h and not after 24 h stimulation time in the incubator 

(Figure 24). 

 



 

 

Figure 25 Effect of the titration of FKBP52 with and without the cotransfection of FKBP51. Normalized signal of N2a 

cells transfected with different amounts of FKBP52 at constant Dex concentrations. 10,000 cells per well in a 96well plate were 

used, transfected with plasmid mix (Firefly reporter, Renilla Reporter, GR, FKBP) for 24 h. Total plasmid load are kept constant 

for all conditions. 0 and 100 nM Dex serve as controls. Stimulation took place for 24 h prior to lysis. Lysates were transferred 

and handled as described in methods section 4.4.1 to be read out with a Tecan Infinite M1000. Each bar represents mean 

values of a triplicate and SEM. Lab book: AHa458 

After 24 h of stimulation, increasing amounts of FKBP52 expression plasmid transfected further 

reduced the luminescence, which could be caused by degradation of FKBP52 and increasing cellular 

translational stress (Figure 25). 



 

5.2.6. Impact of FKBP51 Ligands in the Reporter Gene Assay 

  

Figure 26 Addition of two FKBP51 ligands at the indicated concentrations with and without overexpression of 

FKBP51. Normalized signal of N2a cells. 10,000 cells per well in a 96well plate were used, transfected with plasmid mix (Firefly 

reporter, Renilla Reporter, GR, FKBP51) for 24 h. Cells were treated for 8 h with MB53 (SAFit1) in blue or MTQ202 in green. 

Stimulation mix was added on top without removing treatment mix. 0 and 100 nM Dex serve as controls. Dexamethasone 

stimulation took 24 h prior to lysis. DMSO concentration and total plasmid load are kept constant for all conditions. Lysates 

were transferred and handled as described in methods section 4.4.1 to be read out in a Tecan Infinite M1000. Each bar 

represents mean values of a quadruplicate and SEM. Lab book: AHa453 

The effects of FKBP51 ligands present in the assay have been tested as well. After transfection, 

ligand containing-medium was added to the cells. Then, the cells were incubated for 8 h. After that, 

stimulation was performed without removing the ligand solution. Figure 26 shows three 

concentrations of MB53 (SAFit1 blue) and MTQ202 (green) added in the presence and absence of 

exogenous FKBP51. While MB53 seems to have a negative impact on GR signaling, MTQ202 

increases the signal under both conditions in a dose-dependent manner. The negative impact of 

SAFit not always occurred. Especially here, the highest concentration of SAFit has no effect in 

absence of exogenous FKBP, indicating an unspecific artifact. 

  



 

5.2.7. Overexpression of Glomulin  

 

Due to the fact, that Glmn emerged as interesting interactor of FKBP51 during the course of this thesis, 

a similar reporter gene assay was performed to investigate any effect by the overexpression of Glmn. 

Two eukaryotic expression plasmids carrying Glmn tagged with three FLAG-peptides either N-

terminally (HG 644) or C-terminally (HG 645) were contransfected. Interestingly, 3x-FLAG-Glmn (N-

term.) overexpression shows no effect for both amounts (10 and 30 ng/well) (Figure 27), while Glmn-

3xFLAG (C-term) does increase reporter strength for the transfection load of 30 ng plasmid per well, 

but not for 10 ng/well. This effect is even stronger, if FKBP51 is co-overexpressed. How and if this effect 

is related to FKBP51 cannot be concluded, but Glomulin has a strong impact on GR signaling if its N-

terminus remains unlabeled. 

 

Figure 27 The effect of overexpression of 3xFLAG-Glmn in presence and absence of cotransfected FKBP51 at the 

stimulation of 4 nM Dex. Normalized signal of N2a cells transfected with two amounts of 3xFLAG-Glmn at constant Dex 

concentrations. 10,000 cells per well in a 96well plate were used, transfected with plasmid mix (Firefly reporter, Renilla 

Reporter, GR, FKBP, Glmn) for 24 h. 0 and 100 nM Dex serve as controls. Dexamethasone stimulation was performed for 

24 h prior to lysis. DMSO concentration and total plasmid load are kept constant for all conditions. Lysates were transferred 

and handled as described to be read out in methods section 4.4.1 in a Tecan Infinite M1000. Each bar represents mean values 

of a hexaplicate and SEM. Lab book: AHa464 

 



 

 

Figure 28 The effect of overexpression of Glmn-3xFLAG in presence and absence of cotransfected FKBP51 at the 

stimulation of 4 nM Dex. Normalized signal of N2a cells transfected with two amounts of 3xFLAG-Glmn at constant Dex 

concentrations. 10,000 cells per well in a 96well plate were used, transfected with plasmid mix (Firefly reporter, Renilla 

Reporter, GR, FKBP, Glmn) for 24 h. 0 and 100 nM Dex serve as controls. Dexamethasone stimulation took 24 h prior to lysis. 

DMSO concentration and total plasmid load are kept constant for all conditions. Lysates were transferred and handled as 

described in methods section 4.4.1 to be read out in a Tecan Infinite M1000. Each bar represents mean values of a hexaplicate 

and SEM. Lab book: AHa464 

The according Firefly and Renilla signals can be found in Suppl. Fig. 62. 

 

5.2.8. FKBP51 in NF-κB Signaling 

 

Via an internal cooperation within the MPI for Psychiatry, reporter gene assays were performed to 

investigate the effect of FKBP51 on NF-κB Signaling as a side project. Two different reporter plasmids 

were used: p1242 addressing the canonical and pNF-κB2 addressing the non-canonical pathway. The 

assay principle is depicted in Figure 29. 



 

 

Figure 29 Schematic depictution of the assay principle. A signaling cascade, which is induced by TNFα, leads to the 

release of IKKα from the IKK complex. IKKα phosphorylates the NF-κB precursors, which triggers proteolytic cleavage of the 

precursors and the formation of the transcription factor complexes. NF-κB can also be primed by PKC upon its activation by 

PMA. How PKC interacts with NF-κB2 is uncertain. The non-canonical pathway is stimulated by other signaling cascades as 

well, which are excluded here. This is a very strong simplification of the signaling pathway. 

 

Those firefly luciferase carrying reporters were transfected into different cell lines: the standard system 

HEK293T (Figure 30), the melanoma derived A375 line (Figure 31) and Jurkat T cells (Figure 32). 

A375 and Jurkat cells are commonly used to investigate the NF-κB pathway. Overall, experiments were 

performed similar to GR reporter gene assays. Stimulation was performed with either TNFα or PMA. It 

is speculated that PMA activates the non-canonical pathway via a limited set of PKC isoforms [138]. 

Optimal stimulation by PMA was reported for 15 nM [136,139,140]. Therefore, two concentrations higher 

and two concentrations lower have been choosen to stimulate the reporters as well. However, PMA 

treatment with 40 nM and more led to massive cell death of HEK293T and A375 cell (not tested for 

Jurkat). For lower PMA concentrations no detrimental effect was observed.  

 



 

  

Figure 30 The effect of overexpression of FKBP51 and the stimulation of the NF-κB Pathway in HEK293T cells. 

Normalized signal of HEK293T cells transfected with or without exogenous FKBP51 at increasing stimulant concentration. 

Two different reporter plasmids have been used: p1242 (A and C) and pNF-κB2 (B and D). Stimulation was performed either 

with TNFα (A and B) or PMA (C and D). 10,000 cells per well in a 96well plate were used, transfected with plasmid mix (NF-

κB reporter, Renilla Reporter, FKBP) for 24 h. Stimulation took 20 h prior to lysis. DMSO concentration and total plasmid load 

are kept constant for all conditions. Lysates were transferred and handled as described to be read out in a Berthold TriStar² 

LB 942. Each bar represents mean values of a hexaplicate and SEM. Lab book: AHa109 (analog in AHa94, 97, 103) 



 

  

Figure 31 The effect of overexpression of FKBP51 and the stimulation of the NF-κB Pathway in A375 cells. Normalized 

signal of A375 cells transfected with or without exogenous FKBP51 at increasing stimulant concentration. Two different 

reporter plasmids have been used: p1242 (A and C) and pNF-κB2 (B and D). Stimulation was performed either with TNFα (A 

and B) or PMA (C and D). 10,000 cells per well in a 96well plate were used, transfected with plasmid mix (NF-κB reporter, 

Renilla Reporter, FKBP) for 24 h. Stimulation took 20 h prior to lysis. DMSO concentration and total plasmid load are kept 

constant for all conditions. Lysates were transferred and handled as described to be read out in a Berthold TriStar² LB 942. 

Each bar represents mean values of a hexaplicate and SEM. Lab book: AHa117 

 



 

 

Figure 32 The effect of overexpression of FKBP51 and the stimulation of the NF-κB Pathway in Jurkat cells. Normalized 

signal of Jurkat cells transfected with or without exogenous FKBP51 at increasing stimulant concentration. Two different 

reporter plasmids have been used: p1242 (A and C) and pNF-κB2 (B and D). Stimulation was performed either with TNFα (A 

and B) or PMA (C and D). Bars indicated by with a * have been omitted due to cell death at those conditions. 10,000 cells per 

well in a 96well plate were used, transfected with plasmid mix (NF-κB reporter, Renilla Reporter, FKBP) for 24 h. Stimulation 

took 20 h prior to lysis. DMSO concentration and total plasmid load are kept constant for all conditions. Lysates were 

transferred and handled as described to be read out in a Berthold TriStar² LB 942. Each bar represents mean values of a 

hexaplicate and SEM. Lab book: AHa124 

The canonical pathway could be stimulated with TNFα in HEK293T and Jurkat cells and PMA in 

HEK293T cells. The non-canonical pathway responded to TNFα in Jurkat cells and weakly to PMA in 

A375 and HEK293T cells only. The overexpression of FKBP51 at 50 ng/well leads to a reduced signal 

for most stimulatable conditions. This assay has not been optimized with respect to transfection 

amounts and stimulation time. Further follow up would require and optimization of the assay window 

and address the issue if the FKBP51 overexpression effect is robust. 

  



 

5.3. Glomulin – FKBP HTRF  
 

During the course of this PhD it several indicators (unpublished) arose, that FKBP51 might be an 

interactor of Glomulin. To address and quantify the Glmn – FKBP-Interaction a homogenous time-

resolved fluorescence (HTRF) assay was developed. The experiments were partly performed by 

Thomas Geiger, a master student under my supervision. His data is labeled with “Lab book: TGe #”. 

Over the time of the experiments two batches of Glmn have been purified and are indicated here as B1 

and B2. 

 

5.3.1. Assay Setup 

 

 

Figure 33 HTRF Setup. Binding of Glmn-GST and FKBP51FK1-5-MF brings both fluorophores (Terbium cryptate and 

Fluorescein) in close proximity and enables FRET. The disruption of this interaction by FKBP ligands or unlabeled FK1 

domains can be tested in a competitive setup. 

 

The constitution of the assay is depicted in Figure 33. For this assay, protein binding partners were 

heterogeneously expressed and purified. Purity was confirmed via SDS-Page (Suppl. Fig. 64). Size 

exclusion chromatograms can be found in Suppl. Fig. 65 to Suppl. Fig. 69. The Glmn construct contains 

a C-terminal GST-Tag. A C-terminal MonoCystein mutant of the FK1 domain of FKBP51 was covalently 

labeled with Fluoresceinmaleimide (5-MF). A Tb-cryptate conjugated antibody binds to the Glmn 

construct. If Glmn und FKBP51FK1 bind in close proximity excitation of the Tb will lead to emission of 

5-MF: Specificity and binding site can be probed with an excess of unlabeled FKBP51FK1 and FKBP51 

ligands.  

 



 

5.3.2.  Assay development 

 

  

Figure 34 Establishing the HTRF (A) Activity test of labeled proteins by destructive FRET: Labeled proteins (5 nM) were 

incubated with the TAMRA based fluorescent tracer [4.3.1.]-16g /MTQ238. Fluorescence (Ex: 485±20 nm, Em: 520±10 nm) 

of 5-MF is quenched for higher tracer concentration. Data points (triplicates) are normalized to the “no tracer” value and fitted 

with a one-site-ligand depletion curve. Lab book: AHa485 (B) Assay window depending on Glmn concentration in presence of 

30 nM 5-MF labeled FKBP. Labeled FKBPs, increasing concentrations of Glmn B1 and 0.8 nM αGST-Tb-Cryptate are 

incubated together and FRET was measured. Data (triplicates) is normalized to the corresponding no FKBP control (first bar 

of each set). Suppl. Fig. 72 shows the same data plotted against the respective normalized fluorescence. Lab book: 

AHa382+407.  

In order to check the activity of the 5-MF labeled proteins, an activity assay was performed. An 

increasing amount of fluorescent tracer [4.3.1.]-16g quenched the signal of the conjugated 5-maleimide 

fluorescein in a dose-dependent manner via a destructive FRET (Figure 34 A). This can only be 

achieved, if the tracer binds to the fluorescein labeled protein, indicating that its binding pocket is still 

active and no denaturation of the pocket took place during the labeling. 30 nM of the respective FKBP 

was incubated with increasing concentrations of Glmn. It was possible to observe a FRET signal with 

FKBP51FK1-5-MF to a factor of three above background. This could not be achieved with FKBP12-5-

MF (Figure 34 B).  

 

5.3.3. Active site titrations of FKBPs 

 

The concentration of each unlabeled FKBP used in the HTRF assay was validated via active site 

titration (AST). This is an almost stoichiometric titration since the tracer concentration used is 10 to 100 

times higher than its respective KD. ASTs show a steep hillslope. At their EC50s (half rise to maximum), 

50% of the tracer molecules are equimolar bound to protein. Suppl. Fig. 70 shows the ASTs of FKBP12 



 

and FKBP12.6 which exhibit a very different binding affinity towards Glmn. ASTs confirm the determined 

affinities within the HTRF by excluding inactive or denatured proteins within the batch. Since the tracer 

concentration is defined, the protein concentration can be calculated. Proteins were prepared and 

quantified by different people in the lab. An overview of all used FKBPs is given in Table 3. ASTs have 

been performed by different people in the lab, as the reference indicates. The structure of MTQ238 can 

be found in Suppl. Fig. 71. 

 

 

Table 3 Overview of FKBPs used in HTRF assays. All FKBPs were characterized via active site concentration with the 

indicated tracer in the indicated experiment. CK97 is a rapamycin derived tracer. 

Protein Tracer [Tracer]  /  nM cUV /  µM cAST  /  µM Ref

FKBP51FK1 (16-140) MTQ238 50 102 120 AHa463

FKBP51FK1 (1-140) CK97 50 223 456 AHa186

FKBP51FK1 (1-140) F67V CK97 50 113 167 AHa186

FKBP51FK1 (1-140) FD67/ 68DV CK97 50 141 106 AHa186

FKBP52FK1 CK97 50 136 209 ClS231

FKBP12 B1 CK97 50 600 498 ClS203

FKBP12 B2 MTQ238 50 150 130 CMe291

FKBP12.6 B1 CK97 50 88 16 ClS238

FKBP12.6 B2 MTQ238 50 20 17 CMe362

FKBP51FL MTQ238 50 41 136 AHa405

FKBP52FL MTQ238 50 9 25 AHa401



 

5.3.4. Binding site specificity 

 

  

Figure 35 Four FKBP51 ligands compete with the interaction of Glmn and FKBP51FK1. 30 nM FKBP51-5-MF, increasing 

amounts of compounds (up to 40 µM), 30 nM Glmn B2 and 0.8 nM αGST-Tb-Cryptate are incubated together and FRET was 

measured. Data (triplicates) is normalized, plotted in GraphPad Prism6 and fitted to a non-linear regression curve. Lab book: 

AHa487 

FKBP51 ligands were tested for their potential to compete with Glmn binding to FKBP51FK1. Figure 

35 shows four competition curves of the ligands SG770 (SAFit1), JK96, FK506 and AV075 which are 

capable to quench the FRET signal. All curves are fitted with a four parameter fit. The half maximal 

inhibitory concentration (IC50) is the high nanomolar for JK96 and FK506 respectively and low 

micromolar range for SG770. The value for AV075 is extrapolated. Higher concentrations for this ligand 

could not be tested due to solubility limitations. 

A similar experiment was performed using a different a different batch Glmn and SAFit1 (MB53) (Figure 

36). Although JK96 binds weaker by a factor of 2 and SAFit by a factor of 4 in that assay under slightly 

different conditions (10 nM Glmn), it confirms the difference of competitive potential of both ligands. 



 

 

Figure 36 Two FKBP51 ligands compete with the interaction of Glmn and FKBP51FK1. 30 nM FKBP51-5-MF, increasing 

amounts of compounds (up to 10 µM), 10 nM Glmn B1 and 0.8 nM αGST-Tb-Cryptate are incubated together and FRET was 

measured. Data (triplicates) is normalized, plotted in GraphPad Prism6 and fitted to a non-linear regression curve. Lab book: 

AHa387 



 

5.3.5. Comparision of different FKBPs 

 

 

Figure 37 Competition of several FKBPs with FKBP51FK1-5-MF for Glmn binding. 30 nM FKBP51-5-MF, increasing 

amounts of the competing proteins FKBP51FK1, FKBP51-FL, FKBP12 (B2) and FKBP12.6 (B2) (up to 10 µM), 30 nM Glmn 

B2 and 0.8 nM αGST-Tb-Cryptate are incubated together and FRET was measured. Data (triplicates) is normalized, plotted 

in GraphPad Prism6 and fitted to a non-linear regression curve. Lab book: TGe71 

The same setup was used to investigate the competitive capabilities of other FKBPs and their potential 

to sequester Glmn and henceforth, lower the FRET signal (Figure 37 and Figure 38). The FK1 domains 

of FKBP51 and 52 showed comparible affinities (400 nM, 470 nM). Although, FKBP12 is the best 

described interactor of Glmn [114,115] it exhibited the weakest competitive capabilities with IC50s in 

micromolar range. On the other side, its close homologue FKBP12.6 proofed to bind rather strong with 

around 140 nM. Interesting as well is the fact, that both full-length proteins show improved binding 

compared to their respecitive FK1 domains. FKBP51 is three-times stronger and FKBP52 almost by a 

factor 50. 



 

 

Figure 38 Competition of several FKBPs with FKBP51FK1-5-MF for Glmn binding. 30 nM FKBP51-5-MF, increasing 

amounts of the competing proteins FKBP52FK1, FKBP52-FL, FKBP12 (B2) and FKBP12.6 (B2) (up to 10 µM), 30 nM Glmn 

B2 and 0.8 nM αGST-Tb-Cryptate are incubated together and FRET was measured. Data (triplicates) is normalized, plotted 

in GraphPad Prism6 and fitted to a non-linear regression curve. Lab book: TGe76 

These findings were confirmed a another set of experiments, where the assay was performed with a 

different batch of Glmn, in the concentration of 10 nM final instead of 30 nM, and different batches of 

FKBP12 and 12.6 (Figure 39). This assay showed comparable results in the respective IC50 values: 

400 vs. 240 nM for FKBP51FK1, 470 vs. 560 nM for FKBP52FK1, 9,000 vs. 10,000 nM for FKBP12 

and 140 vs. 72 nM for FKBP12.6. This points out a general robustness of this assay towards changes 

of protein batches and Glmn concentration. 



 

 

Figure 39 Competition of several FKBPs with FKBP51FK1-5-MF for Glmn binding, control with different batches Glmn, 

FKBP12 and FKBP12.6. 30 nM FKBP51-5-MF, increasing amounts of the competing proteins FKBP51FK1, FKBP52FK1, 

FKBP12 (B1) and FKBP12.6 (B1) (up to 1 µM), 10 nM Glmn B1 and 0.8 nM αGST-Tb-Cryptate are incubated together and 

FRET was measured. Data (triplicates) is normalized, plotted in GraphPad Prism6 and fitted to a non-linear regression curve. 

Lab book: AHa393 

 

The differences of competitive binding capability of full length and their respective FK1 domains was 

also confirmed with this batch of Glmn (Figure 40). The IC50s of all tested proteins were about a factor 

3 higher but for FKBP51FL, it still confirms the general trend seen so far: FKBP52FL >FKBP51FL > 

FKBP51FK1 >FKBP52FK1. 



 

 

Figure 40 Competition of several FKBPs with FKBP51FK1-5-MF for Glmn binding, control with different batches Glmn. 

30 nM FKBP51-5-MF, increasing amounts of the competing proteins FKBP51FK1, FKBP51-FL, FKBP52FK1 and FKBP52-FL 

(up to 1 µM), 10 nM Glmn B1 and 0.8 nM αGST-Tb-Cryptate are incubated together and FRET was measured. Data 

(triplicates) is normalized, plotted in GraphPad Prism6 and fitted to a non-linear regression curve. Lab book: AHa406 

 

5.3.6. Characterization of FKBP51FK1 F67D and FD67/68DV mutants 

 

In order to investigate potential binding sites within the FK1 domain of FKBP51, two mutants showing 

decreased (F67V) and completely blunted PPIase activity (FD67/68DV) were purified. The KD of the 

low affine tracer CK182 (Structure: Suppl. Fig. 71) of wild type and mutant FK1 domains is in the same 

order of magnitude (Figure 41) indicating that the binding pocket remains intact and capable to bind 

small molecular ligands.  



 

 

Figure 41 Binding curves of the three different FKBP51FK1 domains with the low affine tracer 20 nM CK182. 

FKBP51FK1 (1-140) and mutants F67V and FD67/68DF bind to the tracer with similar affinity in fluorescence binding assay. 

KDs are obtained using GraphPad Prism6 and an one-site depletion fit: Y= A / E * 0.5 *(X + E + 1 / K - sqrt ( sqr ( X + E + 1 / 

K ) - 4 * E * X ))+B. 

Lab book: AHa187 



 

5.3.7. Competition of other FKBP51 contructs 

 

  

Figure 42 Competition of various FKBP51FK1 constructs. 30 nM FKBP51-5-MF, increasing amounts of the competing 

proteins FKBP51FK1 (16-140), FKBP51FK1 (1-140), FKBP51FK1 (1-140) F67V and FKBP51FK1 (1-140) FD67/68DV (up to 

1 µM), 10 nM Glmn B1 and 0.8 nM αGST-Tb-Cryptate are incubated together and FRET was measured. Data (triplicates) is 

normalized, plotted in GraphPad Prism6 and fitted to a non-linear regression curve. Lab book: AHa397 

Similar to previous results different FK1 domains of FKBP51 were investigated for their competitive 

binding capability (Figure 42). The N-terminal shortened construct (aa 16-140, red circles) exhibits a 

slightly increased binding compared to the whole FK1 domain. Furthermore, the single respectively 

double point mutations of the FK1 domain of FKBP51 are not or just hardly able to break up the 

bound complex. 

 

5.3.8. Impact of Rbx1 in this HTRF setup 

Under my supervision Thomas Geiger performed competitive HTRF assays also testing Rbx1. Rbx1 

did not show any competition for Glmn binding up to a concentration of 40 µM (Figure 43), while 

FKBP52FK1 did. 
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Figure 43 Competition of Rbx1 with the interaction of Glmn and FKB51FK1. FKBP52FK1 serves as control. 30 nM 

FKBP51-5-MF, 30 nM Glmn, increasing amounts of competing protein (up to 40 µM) and 0.8 nM αGST-Tb-Cryptate are 

incubated together and FRET was measured. Data (triplicates) is normalized, plotted in GraphPad Prism6 and fitted to a non-

linear regression curve. Data was obtained in the same assay as Figure 38. The shown FKBP52FL is identical Lab book: 

TGe76 

We then tested, if the presence of Rbx1 has an impact on the competition of the FKBP51 ligand SAFit 

1 (Figure 44). The addition of 30 and 60 nM respectively, did not alter the IC50 of SAFit1 significantly. 

Intererstingly, the IC50 in this experiment was with 1 to 2 µM way lower than in previous experiment. A 

dilution error has to be assumed. 



 

 

Figure 44 Competition of the FKBP51 ligand SAFit1 with the interaction of Glmn and FKB51FK1. 30 nM FKBP51-5-MF, 

30 nM Glmn, increasing amounts of SAFit1 (up to 10 µM), 0.8 nM αGST-Tb-Cryptate and 0 / 30 / 60 nM Rbx1 are incubated 

together and FRET was measured. Data (triplicates) is normalized, plotted in GraphPad Prism6 and fitted to a non-linear 

regression curve. Lab book: TGe78 

  



 

5.4. FKBP51 and Calcium Influx  
 

FKBPs are descriped as regulators of calcium channels such as RyR1 and TRPC6 [2,141]. Hyperforin, 

a small molecule found in the popular herbal St. Johns wort, which is claimed to be mood enhancing, 

was described both as activator of TRCP6 calcium channels and neurite outgrowth regulator [142-144]. 

In order to investigate a potential impact of FKBP51 on TRPC6, it was tried to set up a calcium uptake 

assay utilizing the Fluor4 assay kit by Invitrogen. In all assays, fluorescence increased upon injection 

independent of the injected solution, which might be due to the chemical shift around the cells and 

detachement from the surface. Stably transfected HEK293 cells expressing TRPC6 and PC12 cells, 

which endogenously express this channel, were stimulated with ATP, DMSO, Hyperforin and the 

Hyperforin derivative Hyp1 (Figure 45). Only the positive control, ATP, which is an unspecific stimulator 

of Ca2+-channels, lead to a quick exponential rise followed by a slow sigmoidal decay. All others 

remained at a rather constant level. 

 



 

 

Figure 45 Calcium influx into HEK293 cells expressing TRPC6 and PC12 cells. Baseline-corrected fluorescence intensity 

(RLU-RLU0) over time. Time course of 3 min, six wells measured simultaneously, measurement per well every 2.13s. 50,000 

cells per well seeded 24 h prior to measurement and loaded with Fluor-4 dye. Stimulation solution either contained 100 µM 

ATP, DMSO, 10 µM Hyperforin or 20 µM Hyp1. 1st and 3rd row represent each three wells of TRPC6 stable transfected HEK. 

2nd and 4th row represent three wells of PC12 cells. Lab book: AHa160 

 

To verify the functionality of the assay, a similar experiment was performed injecting a 5% SDS solution 

into dye loaded HEK-TRPC6 and PC12 cells. Two conditions have to be met in order to constitute an 

active fluorophore: 1) intracellular cleavage and 2) binding of Ca2+. SDS leads to cell lysis and the 



 

exposure of the dye to elevated calcium concentrations in the surrounding media. If the dye was taken 

up by the cells and cleaved, SDS would lead to a signal increase. The addition of EDTA will complex 

Ca2+ and inactived the dye again. Such an assay was performed (Figure 46) and the principal 

functionality of the assay proven. 

 

 

Figure 46 Calcium influx into HEK293 cells expressing TRPC6 and PC12 cells. Baseline-corrected fluorescence intensity 

(RLU-RLU0) over time. Time course of 16 min, six wells measured at once, measurement per well every 2.13s. 50,000 cells 

per well seeded 24 h prior to measurement and loaded with Fluor-4 dye. Instead of stimulant, 50 µL 5% SDS solution was 

added. After 8 min 50 µL of a 60 mM EDTA solution were injected on top (200 µL final volume). Labbok: AHa161 

 

Since the reported TRPC6 stimulants did not show the expected effect in the mentioned cell lines, 

additional substances, namely the activator of phospholipid-dependent protein kinase C 1-oleoyl-2-

acetylglycerol (OAG) and the cholinergic agonist carbachol were tested. HEK293T cells were transiently 

transfected with either TRPC6 or mock plasmid and treated with OAG and Carbachol (Figure 47). While 



 

ATP served as robust positive control, OAG did not show any effect at the two used concentrations. 

Using Carbachol, it was possible to stimulate both TRPC6 overexpressing and Mock transfected cells.  

 

Figure 47 Calciuminflux into transient TRPC6 (green) or mock (red) transfected HEK293T. Baseline-corrected 

fluorescence intensity (RLU-RLU0) over time. Time course of 2 min, measurement interval of 0.1 s. 50,000 cells per well 

seeded 24 h prior to transfection with 100 ng/w (HG598 or HG30) for 24 h. Afterwards, cells were loaded with Fluor-4 dye. 

Stimulation solution either contained 100 µM ATP, DMSO, 25 µM OAG, 250 µM OAG, 20 µM Carbachol or 100 µM Carbachol. 

Lab book: AHa180 

 

To exclude artifacts introduced by the transfection and in order to check other stimulants as well, 

HEK293T cells were transfected with either TRPC6 or TRPC6 mutant (Leuner group, FAU Erlangen), 

which is expressed but uncapable of Ca2+ transport. The cells have been subjected to a Calcium-Uptake 

Assay using ATP, DMSO, Hyperforin, Hyp1 and OAG (Figure 48). Again, only ATP lead to Ca2+ influx. 



 

 

Figure 48 Calcium influx into transient TRPC6 (upper row) or TRPC6 mutant (lower row) transfected HEK. Baseline-

corrected fluorescence intensity (RLU-RLU0) over time. Time course of 3 min, measurement interval of 0.5 s. 50,000 cells per 

well seeded 24 h prior to transfection with 100 ng/w (HG598 or HG658) for 24 h. Afterwards, cells were loaded with Fluor-4 

dye. Stimulation solution either contained 100 µM ATP, DMSO, 20 µM Hyperforin, 20 µM Hyp1 or 20 µM OAG. Lab book: 

AHa210 

  



 

6. Discussion 

 

6.1. Summary 
 

In this thesis I present data that further elucidates both the action modes of FKBP51 and the effects of 

FKBP51 ligands. With MTQ202, I identified a PROTAC which robustly knocks down FKBP51 

expression levels in three different cell lines (HEK293, HeLa and N2a), both endogenous and transiently 

overexpressed. Using Western Blot protein detection, MTQ202 shows activity in concentrations higher 

than 60 nM which is confirmed by a reduced luminescence signal of an overexpressed Nanoluc-

FKBP51 fusion protein. The effect of MTQ202 is strongest after 48 h treatment. A competition of 250 nM 

MTQ202 with an 8-fold excess of either SAFit1 or VHL-ligand did not show a reduction of PROTAC 

activity. 

 In order to investigate FKBP51 in its role as cochaperone and regulator of glucocorticoid 

signaling, I successfully established a dual-luciferase-flash reporter gene assay in N2a cells. This assay 

required the cotransfection of a small amount GR in order to establish a sufficient assay window. The 

overexpression of FKBP51 reduced the expression of firefly luciferase in a dose-dependant manner 

without impacting the second luciferase signal. Several mutants of FKBP51 have been tested. A major 

impact was only exhibited by the TPR mutation but not by its active site mutations. The overexpression 

of FKBP52 increased GR signaling after 8 h stimulation but not 24 h. The reporter activity remained 

unaltered by the addition of SAFit1 but could be increased by MTQ202.  

 To investigate the FKBP-Glmn interaction, I developed a competitive HTRF binding setup. This 

HTRF assay confirmed the previously described binding of Glmn towards FK1 domains. Excitingly, 

other FKBPs and FKBP constructs were identified as interactors as well, discovering the novel 

interaction of Glmn and FKBP12.6. The known binder FKBP12 was shown to be a very weak interactor 

within this setup. Full-length FKBP51 and FKBP52 bind stronger than their respective FK1 domains. 

Within the FK1 domains two amino acids, F67 and D68, were identified, which are essential for the 

FKBP51-Glmn interaction. At last, I could demonstrate that this interaction is ligand sensitive, showing 

the very first biochemical activity of synthetic FKBP51 ligands. 

 



 

6.2. FKBP51 PROTACs 
 

Testing 62 different PROTACs for FKBP51 revealed a single compound (MTQ202/MTQ416) which 

induced a chemical knockdown in the range of 60 to 2000 nM after 6 h as long as 72 h down to 40% 

compared to FKBP51 levels in untreated cells. This effect was confirmed by the PROTACs action in 

the knockdown of a Nanoluc-FKBP51 construct and its effect in a GR reporter gene assay. Although, 

all SAFit and most bicyclic PROTACs are binding FKBP51 in the low nanomolar range (unpublished, 

PhD Thesis MTQ), their target affinity clearly cannot be translated into knockdown efficacy [43]. This 

phenomenon is commonly seen during the development of PROTACs, which often requires the 

synthesis of a small library to obtain a successful lead compound. The PROTACs developed by Tianqi 

Mao vary in linker length and linker attachment point. The formation of the trimeric complex is thus far 

unpredictable, but the linker is likely involved in mediating contacts instead of just a simple space keeper 

[46]. Therefore, the crystallization of the trimeric FK1-PROTAC-VHL complex might give valuable 

insights into the future development of FKBP-PROTACs.  

Although, HEK293T cells have been treated with up to 2 µM PROTAC, no hook effect was 

observable. The hook effect describes the phenomenon of decreased chemical knockdown at high 

PROTAC concentrations which is believed to be caused by the prefererred formation of dimeric 

complexes (Figure 49). The absence of the hook effect is not unpreceded and some PROTACs are 

only able to knock down their target at relatively high concentration in µM-range (see for example [145]).  

 

 

Figure 49 Hook effect of PROTACs. The excess of PROTACs leads to an increased formation of dimeric complexes, where 

the PROTAC binds either its target or the E3 ligase. The dimeric complexes  

In order to obtain decent Western Blot results, I experienced the importance of the normalization of the 

samples according to their total protein concentration and a careful removal of media prior to lysis and 



 

washing step, since leftover media distorts the BCA assay. Additionally, the solubiluty of many 

PROTACs have to be carefully observed during the experiment. Many of the here tested compounds 

precipitated at concentration >4 µM in cell media as they precipitated during the assay preparation. This 

limitation also prevented the observation of a competition effect by either free SAFit or VHL-ligand 

added. An 8-fold excess of both factors did not dampen the knockdown induced by 250 nM MTQ202, 

which is in line with the fact that at maximum tested PROTACs concentration of 2 µM no hook effect 

occurred. An overall challenge was the detection of the GAPDH control band. No systematic cause for 

partial altered GAPDH bands could be identified. The switch to another control would benefit the result 

quality, yet many of them run close FKBP51. In my experience, Hsp90 gives a decent control signal but 

is a rather uncommon loading control and also strongly associated with FKBP51. 

At last, I want to point out a certain possibility, that more than one PROTAC is active, but the 

chemical knockdown was not observable under the applied assay conditions. Recently, Riching, et. al. 

showed in their efforts to develop high-throughput PROTAC-screening methods that especially time 

and concentration will strongly effect knockdown strength [58]. They were able to lable target BRD 

proteins in cells. A newly constituted luciferase-tag provided a luminescence readout in presence of 

stabilized substrate. The indirectly measured protein concentration varied strongly depending on the 

assay condition and the time of the readout.  

Generally, the development of PROTACs would greatly benefit from high-throughput screening 

methods, enabling investigators to vary time, concentration and compounds within the same experiment 

without the workload of Western Blot detection.  

 

6.3. FKBP51 in Glucocorticoid Receptor Signaling 
 

In order to investigate the role of FKBPs and FKBP ligands in GR signaling a dual-luciferase-flash 

reporter gene assay was set up. The co-transfection of low amounts of a HA-GR construct (0.5 ng/well 

per 10,000 cells) was required to obtain a decent assay window, which underlines the low amount of 

endogenous GR present in N2a cells. This neuronal cell line was used for two reasons: On the one 

hand, stress-induced depression is linked to glucocorticoid resistance in the hypothalamus [146]. On 

the other hand, FKBP51-specific ligands showed an impact on the neurite formation of neuronal cells, 

including N2a cells [22]. Both firefly and normalized luciferase signal reached saturation as cells were 

stimulated with more than 100 nM Dexamethasone. The half-maximal signal was observed for 

concentrations around 4 nM. Henceforth, this concentration was used to investigate FKBP51 related 

effects. The titration of FKBP51 plasmid during the transfection led to a dose-dependant decrease of 

reporter signal saturated for concentrations > 10 ng/well per 10,000 cells. The overexpression of 

FKBP52 raised the signal and competed with the FKBP51-induced effect but only after 8 h stimulation 

time and not after 24 h. Those findings confirm the inhibitory model of FKBP51 in GR signaling and its 

functional counterplayer FKBP52. It can be speculated that FKBP52 overexpression raises intracellular 



 

coping mechanisms, such as the induction of degradation of this protein, which level off its effects after 

24 h stimulation time.  

 The reporter gene assay setup was also used to transfect different FKBP51 mutants. The 

PPIase mutant (FD67/68DV) had the same inhibitory potency as the wild type as well as the triple 

FKBP51-FKBP52 swap mutant. The L119P is a FKBP51/FKBP52 swap, which is located in a proline-

rich loop on top of the active site. The position 119 is one of the few differences in the very conserved 

binding pocket. Still, this mutant inhibited GR signaling, only mildly weaker than the wild type. The TPR* 

mutant, which was shown not to bind Hsp90 [28], led only to a slightly decreased signal. Those 

observations indicated that an intact PPIase activity is not required for GR signaling and that Hsp90 

binding enhances FKBP51 activity in GR signaling. Nevertheless, the TRP* mutant effect, which only 

dampens but not obliterates FKBP51 inhibition might indicate the presence of more interaction sites 

throughout the protein, concurring with the the model of FKBP51 serving as protein complex scaffold.  

 The presence of SAFit1 did not reverse FKBP51-induced GR inhibition. On the contrary, it 

weakly increases GR inhibition, which might be due to an unspecific side reaction. It has to be noted 

that SAFit1 concentrations greater 5 µM lead to an artificial rise of the normalized signal, due to a 

decreased Renilla signal concomitant with observable cell rounding and detachment. The addition of 

the PROTAC MTQ202 antagonized FKBP51 inhibition independent of the presence of transient 

transfected FKBP51. This supports the hypothesis, that FKBP51 acts independent of its active site and 

the presence of ligands attached to it. I consider it very likely, that the action of FKBP51 selective ligands 

in mouse model studies and in neuronal differentiation might be either hardly GR dependent or not 

represented within this reporter gene assay performed in the murine neublastoma derived N2a cell line. 

This concurs with the observation that single mutations of FKBP51 swapping amino acids with FKBP52 

hardly showed an impact. The triple mutant is unable to bind SAFit1 because it cannot adopt the Phe67-

out confirmation. To confirm this scaffold model, a domain swap mutant (FKBP52FK1-FKBP51FK2-

TPR) should be tested in this assay.  

The FKBP51 PROTAC MTQ202 acts differently compared to SAFit. Instead of a mere binding 

site occupation, it leads to proteosomal degradation of the protein reversing its expression – ligand 

induced removal instead of epitope inhibition. Overall, this assay has the potential to address the 

investigation of the effects of FKBPs and FKBP mutants, but reaches its limitations to study FKBP 

ligands. In order to transfer this assay to other cellular systems, a certain amount of optimization efforts 

have to be invested with respect to transfection, treatment and stimulation conditions. Performing this 

assay in a human cell line would bear the advantage of creating a pure human system which might not 

require the overexpression of the GR. The FKBP constructs and GR used in my experimental setup are 

human and the ligands are generally tested for in-vitro affinity on human but not murine FKBPs. 

 

6.4. FKBP51 in NF-κB Signaling 
 



 

While setting up a reporter gene assay using two reporter plasmids for either the canonical or non-

canonical NF-κB pathway, several observations did not concure with previous reports. The non-

canonical pathway was only inducible with TNFα in Jurkat cells providing a very limited assay window 

of a 3-fold induction. PMA proved to be a very weak, but toxic stimulant, only inducing the canonical 

pathway in HEK293 cells. The concentrations greater than 40 nM led to massive cell death of HEK293 

and A375 cells. Since the maximum induction by PMA occurred at 15 nM, it has to be questioned, if 

this stimulation might be unspecific and an overall cellular stressor. My findings indicate, that PMA is 

not a suitable stimulant, contradicting several reports [136,140]. A375 cells are derived from a human 

malignant melanoma, but the primary reporter remained unable to express the firefly reporter in 

presence of stimulants. Due to the fact, that the Renilla reporter showed a decent signal, the preceeding 

transfection was succesful. It has to be assumed, that a general issue with this cell line occurred. A375 

cells are a commonly used cancer cell line to investigate NF-κB signaling [103,104,147]. All data 

presented here, which showed a decent reporter induction, had the same feature in common: 

Overexpression of FKBP51 resulted in a reduced reporter activity. This is the contrary effect as Zannas 

et. al. found recently [148], which used the same cell line and reporter constructs. There are a couple 

of differences in the performance of the assay: 

 

 Hähle Zannas, et. al. 

Overall protocol 1) Seeding into 96 well plate 

2) Transfection in 96 well plate 

1) Transfection of the cell whole 

batch 

2) Seeding into 96 well plate 

Transfection amount of 

FKBP51 

50 ng/well per 105 cells 1 µg per 106 cells 

Stimulation  0 to 20 ng/mL TNFα 25 ng/ml PMA (40 nM) 

375 ng/ml Ionomycin 

 

The co-stimulation with PMA and Ionomycin is widely used to stimulate both NF- κB and NFAT pathway 

in order to study interleukin secretion. This was also represented in the paper for which the reporter 

gene assay was performed under similar stimulation conditions.  

To further confirm any FKBP51 effect, several controls should be introduced into the assay. 

Especially the effect of a PPIase-deficient mutant, a Hsp90 binding disabled TPR mutant and FKBP52 

should be cotransfected in order to exclude an assay artifact, such as translational stress.  

 

6.5. FKBP51 and Glomulin 
 

In my results, I show the binding of several FKBPs and Glmn in a HTRF setup. Variations in the 

respective IC50s occurred without altering the general trends of the different protein affinities. Those 



 

shifts appear for all competing proteins or ligands indicating a general error. Generally, increased 

attention should be paid to the environmental conditions during the assay performance. Especially 

assays with purified proteins might be temperature and humidity sensitve if incubated in a lid closed but 

unsealed state at “room temperature”, which I experienced to vary between 12 and 40 °C. A higher 

temperature would affect the HTRF signal by altering the thermodynamics of the interaction. An 

increased concentration of labeled FKBP51FK1-5MF would bind to those competitors without a 

decrease of the HTRF signal. I identified FKBP12.6 as a novel interactor, while FKBP12 remained very 

weak. This novel example of difference can help to understand the difference of action modi those two 

proteins despite their homology for example in RyR1 regulation. It has previously been proposed that 

a limited number of point mutations can reverse binding affinities to the ryanodine receptor [149]. A 

similar test as the HTRF setup might help to identifiy more amino acid sites, which contribute to the 

interaction. Furthermore, the enzymatic essential sites Phe67 and Asp68 of FKBP51 were shown to be 

required to bind Glomulin. In order to identify an overall FKBP interaction surface, those mutations 

should additionally be incorporated into FKBP52FK1 and FKBP12.6. Since full length FKBP51 and 

especially FKBP52 are binding Glmn 3-fold, respectively 50-fold better, the ability to blunt the FK1 

domain might finally lead to an improved understanding of the function of the FK2 domain. If those 

mutated full-length proteins still bind Glmn, it is very likely that either the FK2 or the TPR domain 

positively contribute to the binding. This could also be verified by testing the competitive capability of 

the purified domains alone. Also the respective TPR domains which are overall less conserved as the 

FK1 domains might be of interest. Bracher et. al. showed that the linker between FK1 and FK2 domain 

is more flexible in FKBP52 than it is in FKBP51 [30]. They found two conformational orientations of both 

FKBP52 FK domains. One is “FKBP51-like” and the other one is twisted by 180° (Figure 50). It is 

possible that the twisted conformation makes the FK2 domain more accessable for interaction, which 

cannot occure in FKBP51 and leads to a strongly improved binding of FKBP52 compared to 

FKBP52FK1 and FKBP51. 

 



 

 

Figure 50 The interface between the FK1 and FK2 domains, overlay of FKBP51 (red) and two conformation of FKBP52: 

“FKBP51-like” (blue) and rotated by 180° (green). Taken from [30]. 

 

I hypothesize that FKBPs represent an additional layer of E3 regulation and propose that FKBPs affect 

Cul/Rbx1-type E3 ligases through sequestration of the Glmn and therefore affecting E3 ligase target 

levels. The overexpression of Glmn was shown to led to an increase of Fbw7 E3 ligase targets such as 

Cyclin E and c-Myc [119]. If Glmn sequestration by FKBPs would prevent Glmn from binding to the E3 

complex, it should impact the target degradation. According to my results such sequestration might be 

FKBP ligand sensitive. 

 

FKBP Inhibitors ┤FKBP ┤Glmn ┤Cul/Rbx1 → Fbw7 self-ubiquitination and degradation → Cyclin E/c-

Myc abundance. 

  

I propose that FKBP inhibitors, which disrupt the FKBP-Glmn complex, will restore the regulatory role 

of Glmn on E3 ligases counteracting the effect of the known Glmn mutants. Investigating this hypothesis 

will improve our understanding of E3 regulation and might foster a novel therapeutic approach to target 

Glmn-associated disorders. 

 

 

6.6. FKBP51 in Calcium Signaling 
 



 

FKBPs are associated to calcium channels such as TRPC6 and RyR1. Therefore, a calcium influx 

assay was set up to test a potential impact. The calcium agonists are listed in Table 4. ATP treatment, 

which activates P2X and P2Y receptors, led to an increase of nucleosolic calcium concentrations, as 

did Carbachol, which leads to a release of intracellular stored calcium. 

 

Stimulant Mechanism Reference 

ATP Activates P2X receptors for external influx 

Activates P2Y receptors for stored release 

[150] 

[151] 

Hyperforin and its derivatives Specifically activates TRPC6 [142,143,152] 

OAG Derivative of DAG, both directly bind TRPC6 [153-155] 

Carbachol Agonist for muscarinic acetylcholine receptors, 

release of intracellular stored calcium 

[156,157] 

Table 4 Overview of tested stimulants 

Cells treated with the DAG derivative OAG, Hyperforin and its derivative Hyp1 did not show a 

measurable calcium increase in the reported range of 10 to 30 µM. There is a possibility, that the used 

drugs were degraded as Hyperforin and OAG is light and heat sensitive. Since the literature claimed 

stimulation was not observed, this assay was not pursued further. 

 

6.7. The FKBP51 interactome 
 

In this thesis, my results indicate that FKBP51 exhibits two different action modi. While FKBP51s 

binding to Glmn is mediated via Phe67 and Asp68 in its FK1 domain, their absence does not impact 

FKBP51s inhibitory effect on GR signaling. This concurs with the ligand sensitivity of the FKBP51FK1-

Glmn interaction, while the presence of SAFit shows no major impact within the GR reporter gene 

assay. In order to elucidate the molecular mechanisms of FKBP51 more knowledge of the protein-

protein-interaction sites needs to be acquired. Thus far, no cocrystal structure of FKBP51 with a 

potential client is available (except with Hsp90s MEEDV motif). Here, the homology with the FKBP 

family might be a guide for inspiration.  

All published dimeric crystal structure of FKBPs in complex with client proteins are listed in Table 

5. The two available trimeric complexes of FKBP12 with the FRB of mTOR mediated by Rapamycin 

and Calcineurin mediated by FK506 are excluded. Interestingly, all four structures show a proline close 

to either FKBP12 or FKBP12.6s concording phenylalanin and aspartic acid (Figure 51 to Figure 54). 

Even the trimeric complex of FKBP12, Calcineurin and FK506 finds a proline at that position. I raise the 

hypothesis that those three amino acids might define a common FKBP-client interaction motif. The F-

D sequence is present in many FK1 domains: FKBP51 Pos. 67-68, FKBP52 Pos. 67-68, FKBP12 37-

38, FKBP12.6 Pos. 37-38, FKBP13 66-67, FKBP25 145-146, FKBP65 Pos. 79-80. 



 

 

 

FKBP Client Remarks Proline 

present near 

Phe - Asp 

PDB 

FKBP12 RyR1 Dimeric complex YES 3J8H [158] 

FKBP12 TGFβ Dimeric complex YES 1B6C [159] 

FKBP12 ACVR1 Dimeric complex YES 3H9R [160] 

FKBP12.6 ACVR1 Dimeric complex YES 4C02 

[10.2210/pdb4C02/pdb] 

Table 5 Overview on published FKBP-client cocrystalstructures 

 

Figure 51 Cocrystalstructure of FKBP12 (blue) and RyR1 (green). Phe and Asp within the FKBP binding pocket are 

depicted in orange. Client prolines close to that pocket are depicted in red. PDB: 3J8H 



 

 

Figure 52 Cocrystalstructure of FKBP12 (blue) and TGFβ (green). Phe and Asp within the FKBP binding pocket are 

depicted in orange. Client prolines close to that pocket are depicted in red. PDB: 1B6C 

 

Figure 53 Cocrystalstructure of FKBP12 (blue) and ACVR1 (green). Phe and Asp within the FKBP binding pocket are 

depicted in orange. Client prolines close to that pocket are depicted in red. PDB: 3H9R 



 

 

Figure 54 Cocrystalstructure of FKBP12.6 (blue) and ACVR1 (green). Phe and Asp within the FKBP binding pocket are 

depicted in orange. Client prolines close to that pocket are depicted in red. PDB: 4DRI 

 

An important follow-up towards the shown FKBP-Glmn interaction would be crystallization efforts, which 

not only give more insight into the interaction surface, but have direct implications for drug development 

aiming for a disruption of the interaction. 

 

6.8. Perspectives for ligand development 
 

In summary, I described two different potential modes of action for FKBP51 ligands: The FKBP51-Glmn 

interaction can be interupted in vitro with different classes of ligands – the SAFit class ligand SAFit1, 

the bicyclic compound JK96, and the natural ligand FK506. In this kind of in-vitro assay using purified 

proteins, the addition of the PROTAC MTQ202 would not bear any benefit, since the assay mix does 

not contain the degradation-catalyzing enzymes. The inhibitory effect of FKBP51 in GR signaling could 

neither be obstructed by SAFit1 nor a blunted PPIase pocket. Here, FKBP51 likely serves as a part of 

a multi-protein complex exhibiting scaffold function which is independent enzyme pocket related activity. 

Nevertheless, MTQ202 impacted the reporter activity by degrading FKBP51. An overview can be found 

in Figure 55. 

 



 

 

Figure 55 Summary of found FKBP51 ligand action in GR signaling and the FKBP-Glmn interaction 

PROTACs and “conventional” ligands do not only distinguish from one another in their way of target 

inhibition but also in their chemical features. 

Especially the development of in-vitro assays would benefite by overcoming the 4 µM limitation. 

More hydrophilic compound derivatives could be applied to both cellular and purified protein utilizing 

assays. With respect to the addition of ligands to cultured cells an increase hydrophiliscity can cause a 

decreased uptake into the cytosol. A competitive BRET setup would be able to observe such a 

drawback. The use of more hydrophilic compounds in purified protein assays bears several advantages: 

1) Higher concentrations of soluble compound has the benefit to allow a more accurate quantification 

by obtaining both plateaus within the compound titration series as shown in my HTRF setup. 2) Any 

assay based on a pulldown or fishing approach will benefit from better soluble ligands, since the HTRF 

setup e.g. identified the IC50 of SAFit1 in the low micromolar range in order to disrupt the Glmn-

FKBP51FK1-5MF binding. In order to identify interaction partners of either FKBPs or FKBP ligands in 

cell lysates, it might occure that ligands thus far are too weak to quantitatively disrupt an already 

established FKBP-protein interaction.  

Table 6 lists the measured HTRF IC50s and their FP-Assay KDs on FKBP51FK1: 

 

 HTRF IC50 in µM FP-Assay KD in nM #-fold difference 

SAFit1 9; 35 20 [40] 1000 

JK96 0.16; 0.37 20 [40] 10 

FK506 0.31 400 [40] similar 

Table 6 Comparision of compound affinities (rounded) in Glmn-HTRF setup and competitive FP-Assay on FKBP51FK1 

It is obvious, that the values of both assays do not correlate. It has to be noted, that both assays utilize 

different FKBP51FK1 contructs: aa 1-140 C103A / C107I / E140C, 5-MF labeled (HTRF) and aa 16-



 

140 A19T (FP-Assay). Those different constructs unlikely impact ligand binding since the alterations 

are outsite of the binding pocket and not conserved between FKBP51, FKBP52 and FKBP12. Still, a 

single mutation and especially the fluorescein maleimide labeling procedure can impact the overall 

structure. For this reason, we choose to label the C-terminus which is of greater distance from the 

binding pocket and more likely avoids structural interference. While the values for FK506 are in the 

same order of magnitude, synthetic ligands compete worse in the HTRF. The HTRF assay incubated 

at least for one hour and also overnight ligand affinities tend to get weaker. Therefore, a model of a 

kinetic inert FKBP51FK1-Glmn complex, which cannot be disrupted by ligands seems unlikely. It is 

more likely that the KD of Glmn towards the FK1 domain is much lower than of the tested ligands, which 

would contradict the findings of FK506. To overcome this obstacle, simply more data is required, 

including the testing of more ligands and a similar HTRF with a different FKBP client protein. Different 

FK1 domains should also be utilized and fluorophore labeled as well as FK2 domains, as the respective 

Cysteins are not conserved within the FKBP family and usually not close to the ligand binding pocket. 

The creation of a labeled full-length FKBP51 or 52 might prove more sophisticated, as the greater 

number of Cysteins to mutate can affect the protein structure. The labeling position is of importance as 

well, as the FRET effect is strongly distance depending. 

 This is the first shown FKBP51-protein interaction disruptable by conventional ligands. Although 

those ligands did not impact GR signaling, their respective effects on neurite outgrowth and multiple 

mouse model phenotypes might be effected by one or more direct interactions. A promising target to 

follow up my findings seems to comprise components of the IKK complex. Despite the confusion on 

FKBP51s action within the NF-κB pathway, the increasing amount of publications linked to it urgently 

require a revision via a clear breakdown into single interactions.  

All in all, those findings encourage the development of conventional ligands striving for high-

affinity and selectivity profiles. Nethertheless, relying on FP-Assay data to justify their investigation in 

cellular or even mouse models should be backed up by other in-vitro assays such as my HTRF. 

Despite the conventional ligands, I showed the activity of the FKBP51 PROTAC MTQ202. 

PROTACs acts completely different by the induction of target degradation. This enables MTQ202 to 

decrease intracellular FKBP51 concentration and even target its PPIase pocket and conventional ligand 

insensitive functions, such as a scaffold providing platform. Henceforth, MTQ202 was active in my GR 

reporter gene assay. MTQ202 can serve as a great tool for any kind of cellular assay, since it provides 

the answer to a simple but important question: Do FKBP51 levels matter within a certain context? 

Therefore, PROTACs provide a potent and easy applicable alternative to gene editing and RNAi 

knockdown. The PROTAC is simply added to the cell media and the cells do not need to undergo a 

stressful transfection step, keeping their genome unaltered. MTQ202 seems especially promising, due 

to its long lasting effect. The concept of PROTACs always carried the flaw of being non-adaptive to 

mouse model studies for their comparable large molecular size and predicted ADME profile. This belief 

slowly changes. Some PROTACs carry the potential serving as more than “just” a chemical knockdown 



 

tool. Recently, the first PROTAC went into clinical trial phase I [59] and a FKBP12 degrader was shown 

to be active in multiple tissues in mouse – after oral administration [161]. Parallel to the development of 

CRISPR and RNAi technology, PROTACs might have a future in clinics (Figure 56). Further increasing 

the lab internal PROTAC library might lead to a better PROTAC as MTQ202, although the outcome is 

not predictable. Discovery of PROTACs acting on other FKBPs could be a potential side effect.  

 

Figure 56 The schematic illustration of various strategies to inactivate an oncogene or other disease-causing genes 

at the DNA, RNA or protein level by CRISPR, RNAi or PROTAC, respectively. Adopted from [162]. 

 

 



 

7. Supplemental Information 

 

7.1. Chemical Knockdown of FKBP51 library 
 

The first set of figures covers 11-point dilution series of the indicated compound. Upper panel 

FKBP51, lower panel GAPDH. Incubation time: 24h. 

 

 

 

Suppl. Fig. 2 Western Blot of HEK293T cell lysates treated with different concentrations of MTQ200. Lab book: TGe14 

 

Suppl. Fig. 3 Western Blot of HEK293T cell lysates treated with different concentrations of MTQ201. Lab book: TGe15 

 



 

 

Suppl. Fig. 4 Western Blot of HEK293T cell lysates treated with different concentrations of MTQ203. Lab book: TGe21 

 

Suppl. Fig. 5 Western Blot of HEK293T cell lysates treated with different concentrations of MTQ204. Lab book: TGe18 

 

Suppl. Fig. 6 Western Blot of HEK293T cell lysates treated with different concentrations of MTQ205. Lab book: TGe18 

 

Suppl. Fig. 7 Western Blot of HEK293T cell lysates treated with different concentrations of MTQ206. Lab book: TGe19 

 

 



 

 

Suppl. Fig. 8 Western Blot of HEK293T cell lysates treated with different concentrations of MTQ207. Lab book: TGe19 

 

Suppl. Fig. 9 Western Blot of HEK293T cell lysates treated with different concentrations of MTQ208. Lab book: TGe19 

 

Suppl. Fig. 10 Western Blot of HEK293T cell lysates treated with different concentrations of MTQ229. Lab book: TGe19 

 

Suppl. Fig. 11 Western Blot of HEK293T cell lysates treated with different concentrations of MTQ235. Lab book: TGe18 

The next set of figures covers 11-point dilution series of the indicated compound. Upper panel 

FKBP51, lower panel GAPDH. Incubation time: 48h. 



 

 

Suppl. Fig. 12 Western Blot of HEK293T cell lysates treated with different concentrations of MTQ328. Lab book: AHa447 

 

Suppl. Fig. 13 Western Blot of HEK293T cell lysates treated with different concentrations of MTQ329. Lab book: AHa442 

 

Suppl. Fig. 14 Western Blot of HEK293T cell lysates treated with different concentrations of MTQ330. Lab book: AHa447 

 

Suppl. Fig. 15 Western Blot of HEK293T cell lysates treated with different concentrations of MTQ331. Lab book: AHa447 



 

 

Suppl. Fig. 16 Western Blot of HEK293T cell lysates treated with different concentrations of MTQ332. Lab book: AHa447 

 

Suppl. Fig. 17 Western Blot of HEK293T cell lysates treated with different concentrations of MTQ333. Lab book: AHa448 

 

Suppl. Fig. 18 Western Blot of HEK293T cell lysates treated with different concentrations of MTQ334. Lab book: AHa448 

 

Suppl. Fig. 19 Western Blot of HEK293T cell lysates treated with different concentrations of MTQ335. Lab book: AHa442 



 

 

Suppl. Fig. 20 Western Blot of HEK293T cell lysates treated with different concentrations of MTQ336. Lab book: AHa448 

 

Suppl. Fig. 21 Western Blot of HEK293T cell lysates treated with different concentrations of MTQ337. Lab book: AHa448 

 

Suppl. Fig. 22 Western Blot of HEK293T cell lysates treated with different concentrations of MTQ338. Lab book: AHa450 

 

Suppl. Fig. 23 Western Blot of HEK293T cell lysates treated with different concentrations of MTQ339. Lab book: AHa450 



 

 

Suppl. Fig. 24 Western Blot of HEK293T cell lysates treated with different concentrations of MTQ340. Lab book: AHa455 

 

Suppl. Fig. 25 Western Blot of HEK293T cell lysates treated with different concentrations of MTQ341. Lab book: AHa450 

 

Suppl. Fig. 26 Western Blot of HEK293T cell lysates treated with different concentrations of MTQ342. Lab book: AHa452 

 

Suppl. Fig. 27 Western Blot of HEK293T cell lysates treated with different concentrations of MTQ343. Lab book: AHa452 



 

 

Suppl. Fig. 28 Western Blot of HEK293T cell lysates treated with different concentrations of MTQ344. Lab book: AHa344 

 

Suppl. Fig. 29 Western Blot of HEK293T cell lysates treated with different concentrations of MTQ345. Lab book: AHa452 

 

Suppl. Fig. 30 Western Blot of HEK293T cell lysates treated with different concentrations of MTQ346. Lab book: AHa452 

 

Suppl. Fig. 31 Western Blot of HEK293T cell lysates treated with different concentrations of MTQ347. Lab book: AHa442 



 

 

Suppl. Fig. 32 Western Blot of HEK293T cell lysates treated with different concentrations of MTQ498. Lab book: AHa474 

 

Suppl. Fig. 33 Western Blot of HEK293T cell lysates treated with different concentrations of MTQ502. Lab book: AHa474 

 

Suppl. Fig. 34 Western Blot of HEK293T cell lysates treated with different concentrations of MTQ521. Lab book: AHa474 

The next set of figures shows a “quicktest” of PROTACs of the second series. Upper panel 

FKBP51, lower panel GAPDH. Incubation time: 48h. 

 

Suppl. Fig. 35 Western Blot of HEK293T cell lysates treated with three concentrations (duplicates) of MTQ328 and MTQ329 



 

 

Suppl. Fig. 36 Western Blot of HEK293T cell lysates treated with three concentrations (duplicates) of MTQ330 and MTQ331 

 

Suppl. Fig. 37 Western Blot of HEK293T cell lysates treated with three concentrations (duplicates) of MTQ332 and MTQ333 

 

Suppl. Fig. 38 Western Blot of HEK293T cell lysates treated with three concentrations (duplicates) of MTQ334 and MTQ335 



 

 

Suppl. Fig. 39 Western Blot of HEK293T cell lysates treated with three concentrations (duplicates) of MTQ336 and MTQ337 

 

Suppl. Fig. 40 Western Blot of HEK293T cell lysates treated with three concentrations (duplicates) of MTQ338 and MTQ339 

 

Suppl. Fig. 41 Western Blot of HEK293T cell lysates treated with three concentrations (duplicates) of MTQ340 and MTQ341 



 

 

Suppl. Fig. 42 Western Blot of HEK293T cell lysates treated with three concentrations (duplicates) of MTQ342 and MTQ343 

 

Suppl. Fig. 43 Western Blot of HEK293T cell lysates treated with three concentrations (duplicates) of MTQ344 and MTQ345 

 

Suppl. Fig. 44 Western Blot of HEK293T cell lysates treated with three concentrations (duplicates) of MTQ346 and MTQ347 

The next set of figures shows a “quicktest” of PROTACs of the third series. Upper panel 

FKBP51, lower panel GAPDH. Incubation time: 48h. 

 



 

 

Suppl. Fig. 45 Western Blot of HEK293T cell lysates treated with three concentrations (duplicates) of MTQ498 and MTQ499 

 

Suppl. Fig. 46 Western Blot of HEK293T cell lysates treated with three concentrations (duplicates) of MTQ500 and MTQ501 

 

Suppl. Fig. 47 Western Blot of HEK293T cell lysates treated with three concentrations (duplicates) of MTQ502 and MTQ508 



 

 

Suppl. Fig. 48 Western Blot of HEK293T cell lysates treated with three concentrations (duplicates) of MTQ202 and MTQ503 

 

Suppl. Fig. 49 Western Blot of HEK293T cell lysates treated with three concentrations (duplicates) of MTQ504 and MTQ202 

 

Suppl. Fig. 50 Western Blot of HEK293T cell lysates treated with three concentrations (duplicates) of MTQ505 and MTQ506 



 

 

Suppl. Fig. 51 Western Blot of HEK293T cell lysates treated with three concentrations (duplicates) of MTQ507 and MTQ513 

 

Suppl. Fig. 52 Western Blot of HEK293T cell lysates treated with three concentrations (duplicates) of MTQ509 and MTQ510 

 

Suppl. Fig. 53 Western Blot of HEK293T cell lysates treated with three concentrations (duplicates) of MTQ511 and MTQ512 



 

 

Suppl. Fig. 54 Western Blot of HEK293T cell lysates treated with three concentrations (duplicates) of MTQ514 and MTQ515 

 

Suppl. Fig. 55 Western Blot of HEK293T cell lysates treated with three concentrations (duplicates) of MTQ516 and MTQ517 

 

Suppl. Fig. 56 Western Blot of HEK293T cell lysates treated with three concentrations (duplicates) of MTQ518 and MTQ519 



 

 

Suppl. Fig. 57 Western Blot of HEK293T cell lysates treated with three concentrations (duplicates) of MTQ520 and MTQ521 

 

Suppl. Fig. 58 Western Blot of HEK293T cell lysates treated with three concentrations (duplicates) of MTQ522 and MTQ523 

 

Suppl. Fig. 59 Western Blot of HEK293T cell lysates treated with three concentrations (duplicates) of MTQ524 and MTQ525 



 

 

Suppl. Fig. 60 Western Blot of HEK293T cell lysates treated with three concentrations (duplicates) of MTQ526 and MTQ527 

 
 

 

  



 

7.3. Reporter Gene Assays 
 

 

Suppl. Fig. 62 Firefly and Renilla signal for Figure 27 and Figure 28. 



 

7.4. HTRF 
 

 

 

  

Suppl. Fig. 63 Labeling of FKBP12-MonoCys with 5-MF on Ni-NTA-Agarose. First row shows the fractions during the column 

wash. Second row shows the elution fractions. 

 

 

Wash fractions 

W1 – W8 

Elution fractions 

E1 – E4 



 

 

Suppl. Fig. 64 Purified proteins used in the HTRF Assay. Upper panel depicts the Coomassie staining of the indicated proteins. 

Lower panel shows the same SDS-Page gels in GFP-detection mode of LAS-3000, Fujifilm, detecting 5-MF label of 

FKBP51FK1 and FKBP12. Rbx1 is not visible in this scan but a clean band was observable by eye. Lab book: AHa483 



 

 

 

Suppl. Fig. 65 SEC of Glmn B2 



 

 

Suppl. Fig. 66 SEC of Glmn B1 



 

 

Suppl. Fig. 67 SEC of FKBP52FL 



 

 

Suppl. Fig. 68 SEC of FKBP51FK1 (16-140) A19T 



 

 

Suppl. Fig. 69 SEC of TEV cleaved Rbx1 



 

 

 

Suppl. Fig. 70 Active Site Titrations of (A) FKBP12 and (B) FKBP12.6 Assays were performed in triplicates with 50 nM MTQ238 

/FK[4.3.1]-16g tracer. Active protein concentrations were calculated by cAST = ((0.5x cTracer + KD) / EC50) x cUV. Lab book: 

SMe88 and CMe362. Data gratefully taken from Stephanie Merz and Christian Meyners. 

 

 

 

Suppl. Fig. 71 (A) Structure of FK[4.3.1]-16g / MTQ238 and (B) 2b / CK182 



 

 

 

Suppl. Fig. 72 Titration of Glmn in the presence of labelled FKBP and Tb-αGST. Norm Fluorescence of 520/620 plotted. The 

two sets have been performed in two different experiments using the “Gain Optimal” setting that leads to different overall 

values in between different measurements 

  



 

8. Abbrevations 

 

5-MF 

ADME 

AF 

APS 

Fluorescein 5-Maleimide 

Absorption, distribution, metabolism, and excretion 

Anne Fabian 

Ammonium persulfate 

ATP 

BCA 

BRET 

Adenintriphosphat 

Bicinchoninic Acid 

Bioluminescence Resonance Energy Transfer 

Ca2+ 

CKo 

Calciumions 

Christian Kozany 

ClS 

CRISPR 

Claudia Sippel 

Clustered regularly interspaced short palindromic repeats 

C-terminus 

DAG 

Carboxy-terminus 

Diacylglycerol 

DMSO Dimethylsulfoxid 

DTT Dithiothreitol 

EC50 Concentration at which the effect is half maximal 

EDTA Ethylendiamintetraacetat 

EtOH Ethanol 

Em Emission  

Ex Excitation 

FCS Fetale Calf Serum 

FKBP 

FL 

FK506 binding Protein 

Full Length 

FRET Förster Resonance Energy Transfer 

GAPDH Glyceraldehyde 3-phosphate dehydrogenase 

Glmn Glomulin 

GR Glucocorticoid Receptor 

GST Glutathion S-Transferase 

HEK Human embryonal kidney cells 

HTRF Homogenous Time Resolved Fluorescence 

Hsp90 Heat shock protein HSP 90 

IC50# 

IKK 

Concentration at which the inhibition is half maximal 

I-κB kinase 

IPTG Isopropyl β-D-1-thiogalactopyranoside 

MB Compounds synthesized by Michael Bauder 



 

MEF Mouse embryonal fibroblasts 

MTQ 

N2a 

Compounds synthesized by Tianqi Mao 

Neuro-2a (ATCC® CCL-131™) 

NaAc Sodium acetate 

NaPPi sodium pyrophosphate 

NMR Nuclear magnetic resonance spectroscopy 

N-terminus 

OAG 

Amino-terminus 

1-oleoyl-2-acetyl-sn-glycerol 

PBS 

PKC 

PLL 

PMA 

Phosphate-buffered saline 

Protein kinase C 

poly-L-Lysine 

Phorbol 12-myristate 13-acetate 

PMSF Phenylmethylsulfonylfluorid 

PROTAC proteolysis targeting chimera 

SDS Sodium dodecyl sulfate 

Tb Terbium 

TBS(-T) 

TC 

Tris-buffered saline (-Tween) 

Tissue Culture 

TEMED 

TNFα 

TNFR 

Tetramethylethylenediamine 

tumor necrosis factor α 

tumor necrosis factor receptor 

TRPC6 

Y2H 

Transient Receptor Potential Cation Channel Subfamily C Member 6 

Yeast2Hybrid 
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