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Abstract 

In order to limit the effects of man-made climate change, the assessment of the ecological 

impact of different powertrain concepts is of increasing relevance and intensely studied. In this 

contribution we present a data-driven optimization environment that enables to identify the 

ecological potential of different concepts for different scenarios. The parametrization of each 

powertrain concept is dedicatedly optimized to minimize the ecological impact, which allows 

for an unbiased and reliable comparison on an uniform evaluation basis. To exploit the poten-

tial of each single powertrain parametrization, the operating strategy of the powertrain is 

adapted. Naturalistic driving profiles, including the speed, acceleration and road-slope infor-

mation are depicted by multidimensional and representative driving cycles, allowing for an ef-

ficient search of the real-driving-optimal powertrain parametrizations within the optimization. In 

this study, we investigate long-range capable vehicles for a scenario in the reference year 

2030 in Germany. Conventional vehicles, battery electric vehicles, fuel cell electric vehicles 

and plug-in hybrid electric vehicles are examined. Finally, the results are compared to an eval-

uation of the CO2 emissions according to the Worldwide harmonized Light vehicles Test Pro-

cedure (WLTP). 

1 Introduction and Motivation 

The increasingly visible effects of man-made climate change and its consequences [1] require 

to maximize the efforts of reducing the global greenhouse gas (GHG) emissions. Regarding 

the automotive sector, various studies have investigated the total GHG emissions of different 

powertrain concepts over the entire life cycle of the vehicle and this topic is prominently dis-

cussed in public debate. In most existent studies, typical representative vehicles are defined 

for each powertrain concept, based on available market vehicles. These representative vehi-

cles are defined to depict typical parametrizations of the powertrain concepts regarding their 

components such as the electric machine and the battery. 

The comparison of these representative vehicles is suited to compare state-of-the-art vehicles. 

However, these representative market vehicles are designed with various different objectives. 



The vehicle�s performance, the respective brand image or monetary costs are exemplary ob-

jectives that are considered in the development. Due to the differing development objectives, 

it remains unclear how the powertrain concepts would have performed in the comparison of 

GHG emissions if they had been specifically designed to minimize the ecological impact in-

stead. 

In [2], an optimization environment for the comparative analysis of the ecological potential of 

different powertrain concepts has been introduced for this purpose. For given scenarios and 

required design constraints of the vehicles, the powertrain parametrization is optimized to-

wards minimal total GHG emissions over the life cycle of the vehicle (including production and 

End-of-Life), resulting in the ecological potential of a powertrain concept. By identifying this 

achievable minimum in the GHG emissions for each powertrain concept, a reliable and unbi-

ased comparison of the different powertrain technologies is possible on a uniform evaluation 

basis. 

The comparison of the GHG emissions of different powertrain concepts becomes increasingly 

complex due to various new developments such as the synthesis of fuels from electric energy 

(Power-to-X), that can potentially be supplied by renewable energy power plants. Furthermore, 

manufacturers are starting to take compensatory measures, such as planting trees, to argue 

that a certain vehicle is produced with an even GHG emissions balance. In future scenarios, 

all powertrain concepts could therefore potentially become nearly GHG-neutral if all the pro-

duction and operation supply is based on renewable energies or if compensatory measures 

are taken. For this reason, it is meaningful to consider further quality measures, besides the 

GHG emissions, for the ecological assessment of powertrain concepts. Within this study, we 

additionally consider the total energy demand (TED). The TED quantifies the total electric en-

ergy, taken from the electric grid, to produce, operate and dispose a vehicle. For the opera-

tional phase, it is assumed that all fuels are synthesized via Power-to-X considering corre-

sponding synthesis efficiencies. Especially for future scenarios that assume near 100 % re-

newable energies, the TED is suited to assess the eco-impact of different powertrain concepts. 

Consensus in various different studies is that short-range battery electric vehicles (BEV) with 

a relatively small battery capacity perform very well in the comparison of the ecological impact 

of different powertrain concepts. On the other side, regarding long-range capable vehicles, 

different studies have been conducted. While [3] quantifies that BEV concepts outperform in-

ternal combustion engine vehicle (ICEV) concepts until very high ranges of 800 km for the 

reference year of 2019, [4] finds that fuel cell electric vehicles (FCEV) achieve smaller GHG 

emissions than BEV for ranges higher than 250 km. In [2], our team predicted that plug-in 

hybrid electric vehicles (PHEV) can lead to the lowest GHG emissions in 2030 for an exemplary 



range of 350 km, if the vehicles are optimally used and regularly charged electrically. From the 

presented studies, no general consensus about the most suitable powertrain concepts for long-

range capable vehicles can be concluded. Therefore, we further investigate long-range capa-

ble vehicles in this work. 

An additional limitation in available studies on the ecological impact of different powertrain 

concepts is the absence of studies that investigate all currently relevant powertrain concepts 

on a uniform evaluation basis, which might be part of the reason for the lack of consensus 

about long-range capable vehicles. PHEV or ICEV, driven by the combustion of compressed 

natural gas (CNG), and FCEV are often excluded from available studies. Furthermore, FCEV 

are mostly considered without external charging (plug-in) functionality. Within the present work, 

we incorporate all previously mentioned concepts into the optimization framework to provide a 

comprehensive comparison of the ecological potential of the presented concepts on a uniform 

evaluation basis. 

Additionally, a significant impact factor on the resulting GHG emissions and TED are the con-

sidered driving profiles, that are used for the evaluation. As pointed out in various studies, the 

consideration of real-driving profiles resulting from the naturalistic driving of the relevant appli-

cation is essential. To address this point, we perform our analysis for two given naturalistic 

driving profiles measured on public roads in the area of Darmstadt in Germany, that are char-

acterized by the occurrence frequency of operating states concerning speed, longitudinal ac-

celeration and road-slope. Further, the results of these real-driving profiles are compared to 

the method of the �Worldwide harmonized Light vehicles Test Procedure� (WLTP) for the quan-

tification of GHG emissions. 

In Section 2 of this work, the optimization framework for the comparative analysis of the eco-

impact is presented. Section 3 provides details about the naturalistic driving data sets and the 

derivation of driving cycles applied in this study. Thereafter, the vehicle simulation model for 

the simulative evaluation of fuel (including hydrogen (H2) and CNG) and electricity demands 

is introduced. The results of the ecological potential concerning the GHG emissions and the 

TED are presented in Section 5 for the different driving profiles. Finally, we summarize the 

presented work and draw conclusions in Section 6. 

2 Optimization Framework to enable an unbiased Comparison 

As stated above, the assessment criteria for the vehicles to be compared in this work are the 

TED and the GHG emissions. Both measures are affected by various different factors in dif-

ferent phases of the vehicle life cycle. The GHG emissions are considered for the complete 



life cycle including emissions during the operational phase, production and End-of-Life ('Cra-

dle-to-Grave').  

Concerning the TED, the energy chain from the grid to the demand for driving, i.e. 'Grid-to-

Wheel' energy demand, is considered. This also incorporates the energy demand for the pro-

duction of synthesized fuels. For the TED, it is assumed, that all fuels are synthesized via 

Power-to-X. Due to the current lack of detailed data for the energy demands in the production 

and End-of-Life phases for most powertrain components, only the production of the battery, as 

a main contributing component, based on [5], is considered. 

The energy demand during the operational phase is further dependent on the powertrain type 

and the parametrization of the powertrain components like the energy converters, but also on 

the specific usage of the vehicle. A specific parametrization of a powertrain might be advanta-

geous for a specific usage of the vehicle. For example, a higher peak power of the electric 

motor affects the vehicle�s consumption due to a higher vehicle weight and because it may be 

operated in less efficient operating points of the motor. This in turn requires a larger battery 

capacity to meet a specific range, which again leads to higher emissions during production of 

the battery. Therefore, an unbiased comparison of different powertrain concepts can only be 

ensured when the parametrization is optimized for the specific usage and for the respective 

assessment criterion. 

To ensure an uniform evaluation basis for the different powertrain concepts, the consumption 

of the vehicles is determined on the same driving profiles and with the same minimal range 

requirements. To analyze the influence of the driving profile on the results, two different natu-

ralistic driving profiles are examined in this work. Representative driving cycles are derived 

from the naturalistic driving profiles by a cycle synthesis method based on [6] that can be used 

to efficiently determine realistic consumptions of the vehicles. A detailed description of the 

naturalistic driving profiles and the derivation of representative driving cycles is given in Section 

3. In addition to meeting the traction demand imposed by the driving cycle, technology neutral 

design constraints are defined for all powertrain concepts to ensure the general drivability of 

the vehicles. All vehicles must be able to meet multiple acceleration characteristics (0-60 km/h 

in 4,2 s, 0-100 km/h in 8,6 s, 80-120 km/h in 6 s). Additionally, a maximum speed of 180 km/h 

and a launch acceleration of 2,5 m/s² on a slope of 30 % are demanded. 

As mentioned above, the optimization of the powertrain sizing and parametrization has the 

objective to minimize either the GHG emissions or the TED in order to create an unbiased 

basis for the comparison of the powertrain concepts� potentials. For this purpose, a set of main 

design parameters  is defined that enable the encoding of a specific powertrain parametriza-



tion, shown in Table 1. Amongst others, they comprise of the peak powers of the energy con-

verters (Internal Combustion Engine (ICE), Electric Machine (EM) and Fuel Cell (FC)) and the 

capacity of the battery CBatt. More detailed information about the powertrain modelling based 

on these parameters is given in Section 4. 

 

Table 1:  Summary of the design parameters  that are optimized for every powertrain con-

cept and for every driving profile both towards minimal GHG emissions and mini-

mal Total Energy Demand. 

NICE Index of the internal combustion engine in the database 

PEM,max Peak power of the electric machine 

PFC,max Peak power of the fuel cell 

CBatt Capacity of the battery 

nTransm Number of speeds in the transmission system 

in Gear ratio of the transmission speeds  to  

iEM,Hy-

brid 

Relative ratio of the connection of the electric machine for Parallel-Hybrid-Electric-
Powertrains to the gearbox inlet 

These design parameters are optimized with a genetic algorithm [7] using the presented as-

sessment criteria as objective functions. The algorithm creates populations of encoded power-

train parametrizations, evaluates their respective fitness, i.e. the GHG emissions or TED, and 

iteratively creates new generations through selection, mutation and recombination methods. 

In every evaluation of the fitness function, an efficiency-oriented operating strategy of the ve-

hicle is applied for each parametrization that is based on a locally optimal control approach. 

The operating strategy is adapted for every individual parametrization of the population to en-

sure the comparability of different parametrizations in the framework. Since the optimal encod-

ings of the powertrains might differ for both objective functions as well as the considered driving 

profiles, all powertrain concepts are optimized separately for both objective functions and both 

driving profiles. The whole optimization framework described here is illustrated in Fig. 1. 



 

Fig. 1:  Data-driven optimization framework for the comparison of the eco-impact of different 

powertrain concepts. 

 

3 Naturalistic Driving Profiles 

It has been shown that driving profiles differ significantly [8] and strongly influence a vehicles 

consumption [9]. Therefore, the considered driving profiles are of fundamental relevance in the 

simulative assessment of the eco-impact. 

To enable an unbiased estimation of the ecological impact of the powertrain concepts, the real 

driving data from the relevant application must be considered. Since the chosen driving profiles 

have a significant impact on the resulting consumptions and powertrain parametrizations, we 

investigate two different naturalistic driving profiles, which allows us to analyze the differences 

with respect to the driving characteristics. The two driving profiles result from the naturalistic 

use of two vehicles that have been equipped with vehicle data loggers. The first driving profile 

comprises of tracks recorded with a pool-vehicle at TU Darmstadt (pool-vehicle profile), which 

is operated by various different drivers for business purposes. The second driving profile was 

recorded with the private vehicle of a single employee of TU Darmstadt (employee profile) 

which is only driven by this person. However, the here presented method could be repeated 

with any given driving profile, from a certain application field (certain drivers, regions, vehicles 

classes etc.) enabling to quantify the potential of different powertrain concepts for the specific 

driving profile. 

For the two real-driving profiles, the vehicle�s speed and longitudinal acceleration as well as 

the GPS positions are recorded for this study. From the GPS position, the elevation is interpo-

lated with the free topology data from the �Radio Shuttle Topology Mission� (RSTM) [10]. The 

road-slope is estimated based on the elevation and speed information. In summary, the driving 

profiles can be regarded as three-dimensional matrices that contain the occurrence frequency 

of operating states in the speed, acceleration and road-slope dimension. In Fig. 2, two-dimen-

sional representations of the three-dimensional pool-vehicle profile are shown by adding all 



occurrence frequencies in the respective missing third dimension. The pool-vehicle profile is 

characterized by rather dynamic driving with high top speeds and accelerations at higher 

speeds. Furthermore, the different drivers frequently use adaptive cruise control (ACC) with 

commonly selected desired speeds resulting in various visible peaks in the pool-vehicle profile 

on the zero acceleration axis. 

(a) (b) 

Fig. 2:  Illustration of the pool-vehicle profile. 9077 km of operating data have been rec-

orded. SubFig. (a) shows the occurrence frequency of operating states in the speed-

acceleration plane from the three-dimensional driving profile. SubFig. (b) shows the 

occurrence frequency in the speed-slope plane. 

In the following, we present, how the driving profile is considered in the optimization framework 

in detail for the pool-vehicle profile. The same approach is applied for the employee profile. 

Within the previously presented optimization framework, representative driving cycles are used 

to depict the entirety of the driving profiles data in a compressed manner. As mentioned before, 

the use of the representative driving cycles allows to evaluate the characteristics of a high 

number of powertrain parametrizations very efficiently within the optimization, compared to the 

consideration of all the data for each powertrain parametrization. We apply the driving cycle 

synthesis method presented in [6] to generate multidimensional and representative driving cy-

cles, including the road-slope in addition to the vehicle speed and acceleration. The synthesis 

procedure is able to maintain the physical dependencies between the speed, acceleration and 

road-slope signal from the original data within the generated cycles [6]. 

For vehicle powertrain concepts with only one energy source, like ICEV and BEV, we could 

compress the entire driving data of a driving profile into a single cycle since the consumption 



only depends on the occurring operating states. However, in the case of plug-in hybrid con-

cepts with two energy sources, such as PHEV and fuel cell plug-in hybrid electric vehicles 

(FCPHEV), the consumption also depends on the distance of the tracks. Shorter tracks allow 

for an increased percentage of electric driving compared to longer tracks. The PHEV might 

drive a short track completely electrically, but needs to use the combustion engine for longer 

tracks (even if the tracks have equal operating points) to achieve the desired range. Therefore, 

the distribution of trip distances, shown in Fig. 3 for the pool-vehicle profile, has to be consid-

ered for each driving profile. On the left, the number of trips for different distances are illustrated 

showing that most trips are rather short. On the right, the cumulative proportion of driven kilo-

meters from the total mileage of the driving profile is shown. A significant share of nearly 50 % 

of the driven kilometers is performed on tracks with a distance between 120 and 170 km de-

spite the relatively small number of these trips. 

Fig. 3:  Distribution of trips and driven kilometers over the trip distance. A total of 9077 km 

has been recorded for the pool-vehicle profile. 

To consider the distance distribution within our model, we assign the available driving data to 

multiple distance clusters, using the 'k-means' algorithm. Each distance cluster contains all 

tracks from a certain distance range. Each cluster represents a driving subprofile for which a 

representative driving cycle is synthesized. The driving cycles are then used in the vehicle 

simulation model of the optimization framework with distances of the corresponding cluster 

centers. 

The number of distance clusters is a trade-off between a low variance of distances inside a 

cluster, to avoid that tracks are assigned to cluster centers far from their original distance, and 

a sufficiently large number of tracks inside a cluster to enable a meaningful compression of the 

data through the cycle synthesis. Further, each distance cluster requires a driving cycle simu-



lation for each parametrization of a powertrain concept within the optimization leading to in-

creased computational effort. To identify an adequate number of distance clusters, we repeat 

the k-means clustering with multiple cluster numbers and analyze the distribution of the dis-

tance deviation of the tracks from their assigned cluster centers using boxplots as shown in 

Fig. 4. The boxplots show the maximum deviation, the 2-sigma interval, the 25 % and 75 % 

quantiles as well as the median deviation. Until a number of 5 clusters, the maximum distance 

difference of the tracks decreases significantly. The 2-sigma interval, the 75 % quantile and 

the median distance stay nearly constant from two to four clusters, but there is a significant 

improvement for five clusters. From five to eight clusters, these values stagnate again. There-

fore, we use a cluster number of five for the pool-vehicle profile as a good compromise of 

computational effort and modelling accuracy. 

(a) (b) 

Fig. 4:  Results from the cluster analysis of tracks in the pool-vehicle profile. SubFig. (a) 

shows the results of the clustering for three to six clusters with the cumulative den-

sity function (cdf) of the driven kilometers. SubFig. (b) shows the boxplots of the de-

viations of all track distances to their assigned cluster centers in kilometers. The 

maximum deviation is marked with a red circle. Tracks with a deviation above the 2-

sigma interval are marked with blue dots. The 2-sigma interval is shown with a black 

line. The 25 % and 75 % quantile are shown with blue boxes. The median is indi-

cated by the red line.  

For each of the five chosen distance clusters, we synthesize 10,000 representative driving 

cycles using the method presented in [6]. From the multitude of cycles of every cluster, we 

0

0.5

1

cd
f k

m 3 clusters

0

0.5

1

cd
f k

m 4 clusters

0

0.5

1

cd
f k

m 5 clusters

0 50 100 150 200 250 300 350

distance in km

0

0.5

1

cd
f k

m 6 clusters

2 3 4 5 6 7 8 9 10
number of clusters

0

20

40

60

80

100
de

vi
a

tio
n

 in
 k

m



chose the cycle with the lowest error in the speed-acceleration-slope frequency distribution 

(SASFD) . 

The  sums up the relative difference of times  spent in state n between the cluster 

profiles and the synthesized cycles. The states n consist of the combinations of speed, accel-

eration and road-slope that occurred in the driving profile. Additionally, cycles with a difference 

in elevation from start to end are omitted to maintain balanced recuperation potentials. 

Fig. 5 shows the subprofiles of the five distance clusters in the speed-acceleration plane and 

the chosen cycles with minimal SASFD error that fulfil the elevation constraint. As expected, 

the driving cycles of the clusters for higher distances contain a larger amount of high-speed 

driving and less frequent acceleration or deceleration manoeuvres than the cycles of short 

distance clusters. 

 

 

 

 

 

 

  (1) 



 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

 Center = 12 km Center = 53 km Center = 155 km Center = 211 km Center = 345 km 

 Mileage weight 

20 % 

Mileage weight 

9 % 

Mileage weight 

48 % 

Mileage weight 

19 % 

Mileage weight 

4 % 

Fig. 5:  Sub driving profiles from the five distance clusters of the pool-vehicle profile together 

with the synthesized driving cycles for each of the five clusters. Furthermore, the 

cluster center distances and the mileage-weights of the cycles are denoted. 

For each cluster and corresponding driving cycle, the distance of the cluster center and the 

driven percentage of the total mileage within the cluster are summarized in Fig. 5. The mileage-

percentage is used to weight the consumption values, identified by the vehicle simulation 

model on the different driving cycles to a total mean consumption. 

The two-dimensional projections of the employee driving profile are shown in Fig. 6. The em-

ployee profile is characterized by more efficiency-oriented driving at moderate speeds and 

accelerations, compared to the pool-vehicle profile. During highway driving, the ACC system 

was applied frequently with a set speed of 120 km/h, visible in the profile 120 km/h and zero 

acceleration. 

0 100

speed in km/h

-5

0

5
ac

ce
le

ra
tio

n
 in

 m
/s

2

0 1000 2000
0

100

200

sp
ee

d 
in

 k
m

/h

0 1000 2000

time in s

-4

-2

0

2

4

sl
o

p
e

 in
 d

e
g

0 100

speed in km/h

-5

0

5

0 1000 2000
0

100

200

0 1000 2000

time in s

-4

-2

0

2

4

0 100

speed in km/h

-5

0

5

0 1000 2000
0

100

200

0 1000 2000

time in s

-4

-2

0

2

4

0 100

speed in km/h

-5

0

5

0 1000 2000
0

100

200

0 1000 2000

time in s

-4

-2

0

2

4

0 100

speed in km/h

-5

0

5

0 1000 2000
0

100

200

0 1000 2000

time in s

-4

-2

0

2

4



(a) (b) 

Fig. 6:  Illustration of the employee profile. 8193 km of operating data have been recorded. 

SubFig. (a) shows the occurrence frequency of operating states in the speed-accel-

eration plane from the three-dimensional driving profile. SubFig. (b) shows the oc-

currence frequency in the speed-slope plane. 

From the cluster analysis, we derive a number of four clusters for the employee profile, which 

results in similar key values (max deviation, 75 % quantile and median) in the distance devia-

tion of the tracks from their assigned cluster centers compared to the pool-vehicle profile. The 

information about the clusters is summarized in Fig. 7.  

 

 

 



(a) (b) 

Fig. 7:  Results from the cluster analysis of tracks in the employee profile. SubFig. (a) 

shows the results of the clustering for three to six clusters with the cumulative den-

sity function (cdf) of the driven kilometers. SubFig. (b) shows the boxplots of the de-

viations of all track distances to their assigned cluster centers in kilometers. The 

maximum deviation is marked with a red circle. Tracks with a deviation above the 2-

sigma interval are marked with blue dots. The 2-sigma interval is shown with a black 

line. The 25% and 75% quantile are shown with blue boxes. The median value is 

shown with a red line. 

As can be seen from the Fig., the longest track of the employee profile is around 250 km, 

compared to a maximum track length of 345 km in case of the pool-vehicle profile. In order to 

achieve a better comparison between the two naturalistic driving profiles, we use an equal 

minimum range requirement for both profiles. Therefore, we will simulate the driving cycle from 

the last distance cluster of both driving profiles twice. At first, with the respective center dis-

tance and mileage weight. Secondly, with a range requirement of 380 km, which corresponds 

to the longest track of the pool-vehicle profile and a 10 % 'buffer', and a mileage weight of zero. 

This represents an equal long-range requirement for both profiles, but will not directly affect 

the consumption values of the profiles, since the mileage weight is set to zero. 

The best synthesized driving cycles for each distance cluster of the employee profile are shown 

in Fig. 8. The cycles for higher distance clusters are characterized by fewer stops and fewer 

acceleration and deceleration manoeuvres.  
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 Cluster 1 Cluster 2 Cluster 3 Cluster 4 

 Center = 14 km Center = 59 km Center = 158 km Center = 210 km 

 Mileage weight 

37 % 

Mileage weight 

22 % 

Mileage weight 

21 % 

Mileage weight 

20 % 

Fig. 8:  Sub driving profiles from the four distance clusters of the employee profile together 

with the synthesized driving cycles for each of the clusters. Furthermore, the cluster 

center distances and the mileage weights of the cycles are denoted. 

In this work, we also compare our approach to the evaluation of GHG emissions using the 

WLTP. The use of the presented optimization framework for the WLTP would not deliver plau-

sible powertrain parametrizations due to the missing consideration of GHG emissions in the 

production, in the electricity and fuel supply and in the End-of-Life. Therefore, we consider the 

powertrain parametrizations from the optimization towards the GHG emissions for the pool-

vehicle profile and compare the results of the WLTP and total GHG emissions evaluation. To 

depict the method of the WLTP, we simulate the Worldwide harmonized Light Duty Test Cycle 

(WLTC) two times using a charge-depleting and a charge-sustaining strategy. The fuel and 

electric consumptions of the two simulations are then weighted by the utility factor for the esti-

mated electric range on the WLTC. The estimated GHG emissions of the WLTP evaluation 

result exclusively from the tailpipe emissions. The WLTC and the range dependent utility factor 
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are shown in Fig. 9. Road-slopes and secondary demands, for example for the climatization 

of the cabin, are not considered for the WLTP evaluation. 

(a) (b) 

Fig. 9:  SubFig. (a) shows the speed over time for the WLTC. In (b), the utility factor  

dependent of the electric range on the WLTC is illustrated. 

4 Vehicle Simulation Model 

To calculate the consumption of the powertrain concepts, a vehicle simulation model is inte-

grated into the optimization framework. Inputs to the model are the design parameter set , 

which is chosen by the optimizer and determines the parametrization of a single powertrain 

variant, and the driving cycles derived from the driving profile. The consumption of different 

powertrain concepts that is calculated in the vehicle model is then used to calculate the TED 

or to calculate the emissions in the operational phase as one part of the total GHG emissions 

of the vehicle. In addition to the primary consumption for moving the vehicle, a secondary 

energy demand is considered in the model that represents the energy demand of auxiliary 

systems like Heating, Ventilation and Air Conditioning. For a more detailed description of the 

secondary energy model, we refer to [11]. 

To differentiate between multiple powertrain concepts, a generic powertrain model is defined 

that consists of energy converters, a battery and three sub-transmissions TM1-TM3. The re-

sulting tractive force is transmitted to one of the wheel axles. A specific powertrain concept 

can thus be built up by employing or omitting parts of the total powertrain model. The model 

and the connections of the different parts are shown in Fig. 10. 
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Fig. 10:  Generic powertrain model used in this work. All of the analyzed powertrain concepts 

are derived from this model. 

In this work, we examine conventional internal combustion engine vehicles (ICEV) with petrol 

and CNG engine, two battery electric vehicles, one with a fixed gear ratio (BEV-1) and one 

with a 2-speed transmission (BEV-2), fuel cell electric vehicles with and without plug-in func-

tionality (FCPHEV and FCHEV) and plug-in hybrid electric vehicles (PHEV) with internal com-

bustion engines (petrol E10 and CNG). The relevant parts of the generic powertrain model that 

are used for every powertrain concept are given by a binary encoding of the powertrain and is 

summarized in Table 2. 

 

Table 2:  Overview of the powertrain concepts analyzed in this work. The powertrain of a 

specific concept is built from the generic powertrain through the binary encoding 

(1 means existing, 0 means non-existing). 

Class Concept Description Binary encoding 

(ICE,EM,FC,TM1,

TM2,TM3,battery)

ICEV ICEV-E10 Conventional vehicle with petrol engine (1,0,0,1,0,0,0) 

ICEV-CNG Conventional vehicle with CNG engine (1,0,0,1,0,0,0) 

BEV BEV-1 Battery electric vehicle with fixed gear ratio 

transmission 

(0,1,0,0,1,0,1) 

BEV-2 Battery electric vehicle with two-speed transmis-

sion 

(0,1,0,0,1,0,1) 

FCEV FCHEV Fuel cell hybrid electric vehicle (0,1,1,0,1,0,1) 

FCPHEV Fuel cell plug-in hybrid electric vehicle (0,1,1,0,1,0,1) 

PHEV PHEV-E10 Plug-in hybrid (P2 configuration) with petrol en-

gine 

(1,1,0,0,1,1,1) 

PHEV-CNG Plug-in hybrid (P2-configuration) with CNG en-

gine 

(1,1,0,0,1,1,1) 



The vehicle model used is a backward-facing implementation of the longitudinal dynamics. 

Lateral and vertical vehicle dynamics are assumed to have an insignificant effect on the con-

sumption. Also, no driver model is hence required for following the speed defined in the driving 

cycle. In a driving resistances equation, the tractive demand at the wheels is calculated as a 

function of vehicle speed, longitudinal acceleration, road-slope and the assumed vehicle pa-

rameters, summarized in Table 3. The vehicle masses, shown for each parametrization in 

Section 5, is calculated from the base mass of 1150 kg and the parametrization dependent 

mass of the powertrains. 

 

Table 3:  Vehicle parameters for the calculation of traction forces in the driving resistances 

equation. 

Frontal area Air drag coeff. Roll res. coeff. Base mass Powertrain mass 

2,2 m² 0.3 0.008 1150 kg  

 

As mentioned in Section 2, an efficiency-oriented operating strategy, the Equivalent Consump-

tion Minimization Strategy (ECMS) [12], is applied which decides on gear shifting and the dis-

tribution of the tractive demand on ICE and EM, represented by the gear mode  and the 

torque split . The idea of the ECMS is to define a cost function  comprising an equivalent 

fuel mass flow of chemical and electric energy that is weighted by the balancing cost factor 

The cost function is minimized in every time step , yielding a locally optimal gear mode  

and torque split  in every time step of the simulation. 

 

(2) 

 (3) 

Here,  denotes the brake specific fuel consumption,  the torque,  the rotational speed, 

 the lower heating value and  the efficiency. With this operating strategy, hybrid operating 

modes like load point shifting can be chosen if they are identified to be optimal in the current 

operating point. The energy management of the operating strategy depends on the balancing 

cost factor . For vehicles with plug-in functionality, the value of  is determined in a separate 

iteration loop assuring that the battery is fully depleted at the end of the trip distance1. Hybrid 

vehicles without plug-in functionality, on the other hand, are operated in charge-sustaining 

                                                 
1 If the trip-distance does not exceed the purely electric range of the vehicle, the battery is not depleted. 



mode. The exemplary operating behavior of a PHEV in P2-configuration, that results from the 

described operating strategy, is shown in Fig. 11. 

(a) 

(b) (c) 

Fig. 11:  Exemplary simulation results of the vehicle model for a PHEV-E10 parametriza-

tion. SubFig. a) shows the driving cycle, the road-slope and the time-dependent 

motor torques and state of charge of the battery. The colors indicate operating 

modes like purely electric driving, combustion engine driving or hybrid modes like 

boosting for the highest traction power demands. SubFig. b) shows the corre-

sponding operating points of the EM. SubFig. c) shows the operating points of 

the ICE in the map of brake specific fuel consumption (bsfc). 



Concerning the individual powertrain components, we use efficiency maps for the ICE and the 

EM as functions of torque  and rotational speed . To differentiate between powertrain para-

metrizations based on the design parameter set , multiple scaling approaches are applied to 

the components. For the EM, a reference efficiency map  is defined and a torque-based 

scaling approach, as in [13], is used to scale the efficiency map as a function of the peak power 

of the EM . 

 

The efficiency of the FC in our model depends on the momentary power of the FC. The 

power-dependent efficiency characteristics of a reference FC  are scaled to other FC with 

different peak powers  for the simulation of different powertrain parametrizations. 

 

Since similar scaling approaches applied to a reference internal combustion engine are as-

sumed to induce larger uncertainties, the ICE is not scaled, but a database of various ICE with 

different rated powers and efficiency maps is built up. During optimization of a powertrain con-

cept, one of the engines can be selected and its respective power and efficiency characteristics 

are considered in the vehicle model. The efficiency of the transmission is dependent on the 

momentary output power and on the powertrain concept, the battery is assumed to have a 

constant efficiency. 

Alongside the efficiency characteristics of the powertrain components, the emissions of the 

components during production and End-of-Life phases have a considerable effect on the over-

all GHG emissions. The GHG emissions  of component  are therefore calculated based on 

the constant emission coefficient  and the mass of the component , which is a function of 

the parameter set . 

 

For example, the mass of the EM is made dependent on its peak power  and the mass 

of the battery is dependent on its capacity . Various nonlinear regression curves are de-

rived based on data of existing components to model these characteristics. In Table 4, a sum-

mary of the most relevant parameters of the investigated scenario is given, which are relevant 

to evaluate the GHG emissions and the TED for the different powertrain concepts. The param-

eters are meant to describe the scenario of Germany in the reference year 2030 and are ap-

plied for all results, presented in Section V. 



 

Table 4: Scenario parameters for the estimation of the GHG emissions and the TED. 

Description Value 

Fuel supply E10 (GHG) 0,71 kgCO2-eq/kg 2 

Fuel supply CNG (GHG) 0,77 kgCO2-eq/kg 3 

Fuel supply H2 (GHG) 9,83 kgCO2-eq/kg 4 

Power-to-X synthesis efficiency petrol 44,6 % 

Power-to-X synthesis efficiency CNG 62 % 5 

Power-to-X synthesis efficiency H2 65,5 % 6 

Production of battery (GHG) 10,17 kgCO2-eq/kg 7 

Production of battery (TED) Electricity: 9 kWh/kg & Heat: 5,55 kWh/kg 8 

Production of fuel cell (GHG) 17 kgCO2-eq/kW 9 

Production of H2-tank (GHG) 340 kgCO2-eq/kgH2 10 

Energy density of the Battery 126-170 Wh/kg 11 

Depth of discharge for the Battery 90-95 % dependent on battery size 12 

Specific emissions in the electricity supply 400 gCO2/kWh 13 

Total vehicle mileage 250 000 km 14 

 

5 Ecological Potential of Different Powertrain Concepts 

Within this section, we present the results of the comparative evaluation of the eco-impact of 

different powertrain concepts in terms of the GHG emissions and the TED. For the first natu-

ralistic driving profile, the pool-vehicle profile, a detailed discussion of the results is given. In 

                                                 
2 Based on [14]. 
3 Based on [14]. 
4 Based on [4] with an assumption of 20% H2 via Power-to-X with renewable energies. 
5 Based on [15]. 
6 Based on [15, 16]. 
7 Based on [4]. 
8 Based on [5]. 
9 Based on [4]. 
10 Based on [4]. 
11 Scaling with battery size. Lower limit from [17]. 
12 Further improvements for 2030 from study of [5]. 
13 Chosen value between [18] and [3]. 

14 Annual mileage of diesel vehicles within Germany [19] combined with the mean lifetime of passenger 

vehicles in Germany [20]. 



case of the second driving profile, the overall results and differences from the first profile are 

presented and discussed. 

All results were obtained using the presented boundary conditions for the reference year of 

2030. As described in Section III, a minimum range of 380 km is imposed to all vehicles. 

Smaller minimum ranges would lead to different results, as it was studied in previous publica-

tions [2]. Especially for BEV class vehicles, the minimum range requirement is a main influ-

encing parameter. For this reason, we additionally investigate the sensitivity of different range 

requirements for the BEV-2 on the pool-vehicle profile. A comparison to the results from the 

WLTP is presented in an additional section at the end. 

 

Pool-vehicle profile 

The optimized powertrain parametrizations of the different concepts, identified by the optimi-

zation framework, are summarized in Table 5. For the concepts with a single energy source 

(ICEV, BEV, FCHEV), the optimizations towards GHG emissions and TED lead to identical 

optimal parametrizations. For the plug-in hybrid concepts (FCPHEV & PHEVs) however, the 

optimal parametrizations differ. 

 

Table 5: Parametrizations of the powertrain concepts, identified by the optimization frame-

work, for the pool-vehicle profile. 

 

Regarding the class of BEV concepts, the BEV-2 normally allows for a significant reduction of 

the required traction power [2]. This is due to the shiftable transmission, so the launch torque 

can be achieved with the first transmission speed and the maximum vehicle speed with the 

second transmission speed. For the BEV-1 on the other hand, the maximum vehicle speed 

and the launch torque must be achieved with the same transmission ratio. Therefore, to 

concept
objective 
function

power 
ICE in kW

power 
EM in kW

power FC 
in kW

Battery 
capacity 
in kWh

total 
mass in 

kg

Max. 
torque 

req. in Nm
transmission ratios

ICEV-E10 GHG & TED 140 0 0 0 1278 1911 [7.1 5 3.6 2.7 2.1 1.6 1.3]
ICEV-CNG GHG & TED 140 0 0 0 1278 1911 [7.1 5 3.6 2.7 2.1 1.6 1.3]
BEV-1 GHG & TED 0 168 0 91,7 1763 2636 4.8
BEV-2 GHG & TED 0 157 0 90,8 1764 2637 [6.1 3.1]
FCHEV GHG & TED 0 134 91 10 1464 2189 [5.4 2.8]
FCPHEV GHG 0 140 28 35,6 1576 2357 [6.9 3.1]

PHEV-E10 GHG 96 80 0 35,7 1604 2398 iICE:[13.5 8.8 5.9 4.2 3.1 2.4 1.9] iEM:1.08*iICE

PHEV-CNG GHG 96 78 0 35,6 1598 2389 iICE:[13.5 9.4 6.7 4.9 3.7 2.9 2.4] iEM:0.88*iICE

FCPHEV TED 0 152 21 56,8 1681 2513 [6.4 3.2]

PHEV-E10 TED 71 165 0 85,1 1873 2801 iICE:[21.4 13.4 8.8 6.0 4.2 3.1 2.4] iEM:0.48*iICE

PHEV-CNG TED 96 154 0 59,6 1758 2628 iICE:[14.8 10.4 7.4 5.4 4.1 3.1 2.4] iEM:0.58*iICE



achieve the launch torque for a given transmission ratio, the EM power has to be raised. How-

ever, the downsizing potential here is rather small since the pool-vehicle profile is quite dy-

namic and requires a very high power output irrespective of the design constraints, leading to 

EM-powers of 168 kW and 157 kW for the BEV-1 and BEV-2. Due to the slightly downsized 

EM and the shiftable transmission, the BEV-2 allows for a reduction of electric consumption in 

the usage phase (see Fig. 12), which additionally enables to reduce the installed battery ca-

pacity. On the other hand, the two-speed transmission is heavier than the fixed-speed trans-

mission of the BEV-1, hence the total vehicle masses of both vehicles are almost identical. 

The vehicles of the FCEV class were equipped with a two-speed electric drive since this is 

beneficial for the GHG emissions and the TED, as previously discussed for the BEV vehicles. 

For the FCEV class, the plug-in variant requires a larger EM power due to a higher total vehicle 

mass mainly caused by a larger battery capacity. The power of the fuel cell is significantly 

lower for the plug-in variant, since enough energy and power support can be provided by the 

larger battery capacity for longer high traction power phases. The battery capacity of 10 kWh 

for the FCHEV, which is operated in charge sustaining mode, is necessary to provide enough 

combined electric power of fuel cell and battery to boost in high traction demands and for 

recuperation. For the FCPHEV, a battery capacity of ~35 kWh for the GHG optimization and 

~57 kWh for the TED optimization are calculated. Both allow for a very high electric range to 

limit the use of H2. However, to minimize the TED, a higher battery capacity is even more 

beneficial than to minimize the GHG emissions. 

Fig. 12:  Energy demands of the different powertrain concepts in the usage phase (1 liter 

petrol-E10 corresponds to 8.95 kWh, 1 kg H2 corresponds to 33.42 kWh, 1 kg 

CNG corresponds to 12.83 kWh). 

The parametrization of the two PHEV concepts optimized towards the GHG emissions are 

pretty similar. Both have EM powers of around 80 kW and battery capacities of around 35 kWh, 
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which allow to achieve a high electric driving percentage up to the driving cycle of the third 

distance cluster with a distance of 155 km (see Section III for details). For higher distances, it 

is preferable to use the combustion engine instead of further increasing the battery capacity in 

order to minimize the GHG emissions. For the TED optimization of the PHEV concepts on the 

other side, higher battery capacities are chosen to limit the energy demand in the Power-to-X 

fuel synthesis resulting in a parametrization that can drive almost purely electric for the E10-

variant. The PHEV-E10, optimized towards the TED, is the heaviest vehicle since it is equipped 

with a high battery capacity (~85 kWh) and the combined components of the hybrid powertrain. 

The synthesis of CNG via Power-to-X is less energy intensive than the synthesis of petrol, 

which is why the battery capacity is set to ~60 kWh for the PHEV-CNG, relying on a minor use 

of CNG on the highest distance tracks. 

The results concerning the GHG emissions of the different concepts are summarized in Fig. 

13. The different parametrizations of the same concept resulting from the two objective func-

tions have a noticeable effect on the GHG emissions. As a first general conclusion, it can be 

seen that the electrification of the powertrains is essential, since the conventional powertrain 

concepts lead to the highest GHG emissions. Concerning the BEV class concepts, the BEV-2 

shows slightly better results than the BEV-1. In the FCEV class, a plug-in option is very bene-

ficial, since it allows to make use of the efficient electric path from the charging station trough 

the battery to the EM. Using H2, on the other hand, is less efficient and also causes high GHG 

emissions in the fuel supply as shown in Table 4. The FCPHEV concept achieves the lowest 

GHG emissions for this scenario. 

 

 



Fig. 13:  GHG emissions of the powertrain concepts identified by the optimization frame-

work for the pool-vehicle profile with GHG emissions and TED as objective func-

tions. For the ICEV and BEV class concepts and the FCHEV, the powertrain para-

metrizations are identical for both objective functions and are therefore displayed 

with one bar respectively. 

The PHEV concepts which were optimized towards the GHG emissions show, by a small mar-

gin, worse results concerning the GHG emissions than the FCPHEV. The reduced battery 

capacity compared to the BEV concepts still allows for a high percentage of electric driving, 

but reduces the emissions in the production phase significantly. It is beneficial for the PHEV to 

drive long distances with the help of the combustion engine, which results in 15 and 

13 g CO2/km of tailpipe emissions for E10 and CNG, respectively. Due to the lower emissions 

in the supply of CNG compared to petrol, the PHEV-CNG achieves lower emissions than the 

PHEV-E10. 

If the use of Power-to-X with renewable energies would be partly assumed for CNG in the year 

2030, as it was done for H2 within this study, the GHG emissions of the PHEV-CNG would 

further improve. Another fundamental difference between the PHEV and the FCPHEV is the 

use of the ICE and the EM in parallel mode for traction, which is not possible for the fuel cell. 

Therefore, the parametrizations of the PHEV offer greater acceleration reserves and could be 

especially suited for premium class vehicles. 

The resulting TED of the optimized powertrain parametrizations is shown in Fig. 14. Since the 

fuel supply via power-to-X is very energy intensive, the conventional concepts lead by far to 

the highest TED. The FCHEV without plug-in option suffers from the same problem and leads 

to a relatively high TED. All concepts with a direct plug-in option achieve significantly better 

GHG opt TED opt 



TED values since they profit from the high efficiency of the electric path. The BEV concepts 

achieve values very close to their mean electric consumption. The difference between the TED 

and the mean electric consumption results from battery production. For the plug-in hybrid con-

cepts (FCPHEV and PHEV), the TED values differ dependent on the objective function of the 

optimization. The plug-in hybrid concepts, optimized to reduce GHG emissions, lead to higher 

TED values, since they still partly rely on the use of H2, petrol or CNG. To achieve a minimum 

TED, it is better to increase the battery capacity to further limit the necessary amount of fuel 

synthesis via Power-to-X. 

Fig. 14:  TED of the powertrain concepts identified by the optimization framework for the 

pool-vehicle profile with GHG emissions and TED as objective functions.  

The FCPHEV shows a very good performance for both optimization criteria. Firstly, the syn-

thesis efficiency for H2 is higher than for petrol or methane. Therefore, even the GHG-opti-

mized FCPHEV achieves a relatively good TED of 26.2 kWh/100 km. Secondly, the mean ef-

ficiency of the FC is higher compared to the ICE. Thirdly, the vehicle weight of the FCPHEV is 

slightly smaller compared to the PHEV concepts. The combined weight of the fuel cell and the 

H2-tank in our model are less than the weight of the combustion engine, the more complex 

transmission and the exhaust gas treatment. 

As mentioned before, the GHG emissions of the BEV are highly dependent on the minimum 

range requirement in contrast to all other powertrain concepts which would only need a larger 

fuel tank.  

The GHG emissions of the BEV-2 based on the pool-vehicle profile for different range require-

ments are summarized in Table 6. When compared to the nearly constant values of 144 and 
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139 g CO2/km for the PHEV-CNG and FCPHEV, respectively, the BEV class proves to be 

suitable only for smaller range requirements. 

Table 6: GHG emissions of the BEV-2 concept for the pool-vehicle profile with different maxi-

mum range requirements. For each range, a separate optimization of the powertrain parame-

ters has been performed. The base scenario corresponds to the longest track of the profile 

with a 10% buffer. 

BEV-2 Values 

Range in km 250 300 380 450 

GHG in gCO2/km 142 145 148 155 

Battery capacity in kWh 68 81.9 90.8 109.8 

El. Consumption in kWh/100km 21.6 21.9 22.1 22.6 

Vehicle weight in kg 1665 1726 1764 1879 

 

Employee profile 

The parametrization of the optimized powertrain concepts for the employee profile are sum-

marized in Table 7. Again, the parametrizations of the concepts with a single energy source 

are identical for both objective functions. For the plug-in hybrid concepts, on the other hand, 

the resulting optimal parametrizations deviate for both objective functions. 

Due to the more efficiency-oriented and calm driving of this profile compared to the pool-vehi-

cle, a significant reduction in installed power is possible for all concepts. Further, this leads to 

a reduction of the energy demands during operation, as shown in Fig. 15, and a smaller battery 

capacity for the BEV concepts, compared to the pool-vehicle profile. 

 



 

Table 7:  Parametrizations of the powertrain concepts identified by the optimization frame-

work for the employee profile. 

 

In the case of the plug-in hybrid concepts, the battery capacity is also reduced in comparison 

to the previous profile. The reason for this lies in the distance distribution of driven kilometers 

shown in Fig. 7. As can be seen, a higher percentage of the kilometers are driven on trips 

bellow a distance of 100 km, compared to the pool-vehicle profile. Therefore, a smaller battery 

capacity is sufficient to achieve a high electric driving percentage for the hybrid vehicles, which 

is beneficial for the GHG emissions and the TED. 

Fig. 15:  Energy demands of the different powertrain concepts in the usage phase for the 

employee profile (1 liter petrol-E10 corresponds to 8.95 kWh, 1 kg H2 corresponds 

to 33.42 kWh, 1 kg CNG corresponds to 12.83 kWh). 

The resulting minimal GHG emissions are presented in Fig. 16. As mentioned before, the more 

efficiency-oriented driving results in lower GHG values for all concepts compared to the pool-

vehicle profile. However, the relative ranking of the concepts stays similar and previously 

drawn conclusions are confirmed. 

concept
objective 
function

power 
ICE in kW

power 
EM in kW

power FC 
in kW

Battery 
capacity 
in kWh

total 
mass in 

kg

Max. 
torque 

req. in Nm
transmission ratios

ICEV-E10 GHG & TED 96 0 0 0 1261 1885 [11.4 7.6 5.2 3.6 2.6 1.9 1.4]
ICEV-CNG GHG & TED 96 0 0 0 1261 1885 [11.4 7.4 5 3.4 2.4 1.8 1.3]
BEV-1 GHG & TED 0 124 0 63,1 1630 2437 6.4
BEV-2 GHG & TED 0 118 0 62,4 1633 2442 [8.5 4.2]
FCHEV GHG & TED 0 100 40 6,2 1380 2062 [7.3 3.7]
FCPHEV GHG 0 102 41 9,4 1407 2103 [8.4 4.3]

PHEV-E10 GHG 71 50 0 27,6 1528 2284 iICE:[17.5 10.7 6.9 4.6 3.3 2.4 1.9] iEM:1.14*iICE

PHEV-CNG GHG 96 43 0 10,3 1398 2090 iICE:[11.8 7.1 4.6 3.2 2.3 1.9 1.6] iEM:1.37*iICE

FCPHEV TED 0 113 42 27,4 1538 2300 [8.9 3.9]

PHEV-E10 TED 71 63 0 34,9 1579 2360 iICE:[18.1 11.7 7.7 5.2 3.6 2.5 1.8] iEM:0.82*iICE

PHEV-CNG TED 71 64 0 34,8 1579 2360 iICE:[18.1 11.9 7.9 5.4 3.7 2.6 1.9] iEM:0.81*iICE
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Fig. 16:  GHG emissions of the powertrain concepts identified by the optimization framework 

for the employee profile with GHG emissions and TED as objective functions. 

An electrification of the powertrain concepts is essential. For the FCEV class, a plug-in option 

is beneficial to reduce the GHG emissions and the TED. The FCPHEV and the PHEV-CNG 

can achieve the best GHG emission values, when they are parametrized to specifically mini-

mize the GHG. For the employee profile, the plug-in hybrid concepts show a larger percentage 

benefit over the BEV concepts, which is due to the higher occurrence of shorter trips in this 

profile, that can be driven mostly electrically with a smaller battery by the plug-in hybrid con-

cepts. For the PHEV-CNG concept, it is beneficial to rely on a significant use of the combustion 

engine in case of the GHG optimization instead of increasing the battery capacity. For the 

petrol-E10 counterpart, the fuel consumption is limited by an increased battery capacity and 

more electric driving. 

Regarding the TED, the results are shown in Fig. 17. According to the results for the GHG 

emissions, the minimum achievable TED values are also reduced, compared to the pool-vehi-

cle profile, due to the calmer driving profile. The plug-in hybrid concepts, optimized towards 

the TED, allow for a smaller TED than the BEV concepts. Their battery capacity of around 

30 kWh is sufficient to complete the representative driving cycle of the highest distance cluster 

with 210 km almost purely electrically. At the same time, the reduced power of the EM allows 

for the operation of the EM with higher efficiencies in electric driving situations, due to higher 

specific power utilization, compared to the BEV concepts. Additionally, the higher number of 

gear modes of the transmission can be used during purely electric driving, further increasing 

the efficiency. 
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Fig. 17:  TED of the powertrain concepts identified by the optimization framework for the 

employee profile with GHG emissions and TED as objective functions. 

Worldwide harmonized Light vehicles Test Procedure 

As described at the end of Section III, we evaluate the previously presented powertrain para-

metrizations on the WLTP and compare the results to the determined GHG emissions. The 

relevant values are summarized in Table 8. The vehicles from the optimization towards the 

GHG emissions for the employee profile are considered for the comparison, which means that 

all values result from the vehicle simulation with the parametrizations presented for the em-

ployee profile. Additionally, the CO2 emissions resulting from the WLTP evaluation, which only 

consider the tailpipe emissions, the previously determined total GHG emissions and the TED 

are compared. 
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Table 8:  Evaluation of the CO2 emissions of the vehicle parametrizations from the em-

ployee profile according to the WLTP. The results from the consideration of the to-

tal GHG emissions and the TED are denoted for the comparison from the GHG-

optimal powertrains. 

 

 

From the comparison, it is clear that the evaluation according to the WLTP is not suited to 

measure the eco-impact considering the complete GHG emissions. This is plausible since the 

WLTP does only consider direct tailpipe emissions. The GHG emissions of all powertrain con-

cepts are underestimated. Especially the emissions of 0 gCO2/km for BEV and FCEV vehicles 

are misleading. Furthermore, regarding the eco-impact according to the TED, the WLTP leads 

to wrong conclusions. For example, the benefit of the plug-in option for FCEV concepts shown 

in this work is not getting transparent. Also, the previously determined low GHG emissions and 

TED values of the PHEV-CNG cannot be concluded by the evaluation according to the WLTP. 

Despite these issues, the evaluation according to the WLTP is the established process, used 

by policy makers to induce changes to the vehicle market. For example, the average fleet 

emissions of manufacturers, limited to 95 gCO2/km for 2020 by the European Commission, 

are determined using the WLTP. The authors believe that the current homologation process 

leads to distorted incentives in the reduction of the ecological impact and that the introduction 

of a more suited evaluation procedure would improve the effectiveness in achieving the goal 

of a more ecological mobility. 

 

6 Conclusions 

In this contribution, we present a data-driven optimization framework for the comparative eval-

uation of the eco-impact of different powertrain concepts. Naturalistic driving profiles, contain-

ing the occurrence frequency of operating states in the speed, acceleration and road-slope 

dimension are the basis for the evaluation. Representative and multidimensional driving cycles 

are generated to depict the driving profiles in a compressed manner within the optimization 

framework. The representative cycles allow for an efficient search of the optimal powertrain 

units ICEV E10 ICEV CNG BEV 1 BEV 2 FCHEV FCPHEV PHEV E10 PHEV CNG
WLTP
utility factor ~ 0 0 1 1 0 0,92 0,97 0,90
petrol l/100km 4,7 0,1
CNG kg/100km 3,2 0,6
H2 kg/100km 0,6 0,3
elecricity kWh/100km 12,9 12,8 6,8 12,1 8,6
tailpipe emissions gCO2/km 96 83 0 0 0 0 2 17
Ecological impact on employee profile
GHG gCO2/km 164 149 119 119 119 109 114 112
TED kWh/100km 100 72 19 19 39 22 20 28



parametrizations in the optimization. Since the ecological potential of all powertrain concepts 

is identified with this framework, an equal and unbiased evaluation basis is generated to com-

pare different powertrain concepts. We investigate the GHG emissions and the Total Energy 

Demand (TED) of vehicles with long-range capability for the reference year of 2030 in Ger-

many. In our study, most of the currently discussed powertrain classes (BEV, FCEV, PHEV) 

are included to provide a comprehensive comparison of the ecological potential of the pre-

sented concepts on a uniform evaluation basis. 

Important conclusions can be drawn from our study of two exemplary naturalistic driving pro-

files: 

The driving profile itself has a significant impact on the GHG emissions and the TED. For 

example, the calm and efficiency-oriented driving style of the employee profile leads to a re-

duction of 19,6-22,2 % of the GHG emissions, for the concepts that were optimized towards 

the GHG emissions, compared to the pool-vehicle profile. This shows that the use of real-

driving profiles from the relevant application should be used to ensure that the real ecological 

impact of the vehicles is estimated. 

The results of both driving profiles show that the electrification of powertrain concepts is es-

sential to reduce the GHG emissions and the TED. Conventional vehicles have the lowest 

potential of the studied powertrain concepts to reduce the eco-impact by 2030. 

The class of BEV leads to improvements compared to the ICEV class. Within the BEV class, 

a shiftable transmission, enables to reduce the power of the EM, the electric consumption, the 

battery size and therefore both the GHG emissions and the TED. 

For the plug-in hybrid concepts (FCPHEV and PHEV), the parametrization of the concepts 

differs dependent on the objective function of the optimization. To minimize the GHG emis-

sions, a smaller battery capacity compared to the BEV concepts already allows for a high 

electric driving percentage. The use of fuels to manage high distance tracks is preferred in-

stead of further increasing the battery capacity, which would lead to higher vehicle weights and 

relevant emissions in the production phase. To minimize the TED on the other hand, higher 

battery capacities are advantageous to limit the use of fuels, which have to be synthesized via 

Power-to-X with a relatively low efficiency. 

The suitability of plug-in hybrid concepts for a reduction of the eco-impact is highly dependent 

on the distance distribution of tracks in the driving profile. For profiles with a significant share 

of shorter distance trips, the battery capacities of the plug-in hybrid concepts can be relatively 

small without diminishing the electric driving percentage. Therefore, on such profiles the ben-

efit of the plug-in hybrid concepts over the BEV increases. Conversely, if most tracks are of a 

high distance, the battery of the plug-in hybrid concepts and BEV will be dimensioned similarly 



and the benefits become smaller. However, in our model, we assume a fully charged battery 

before each trip for the plug-in hybrid concepts. Therefore, this ecological potential of the hy-

brid vehicles can only be achieved with a suited user behaviour and regular charging. Unreg-

ular charging, on the other hand, would increase the GHG emissions and the TED of the plug-

in hybrid concepts significantly. 

In the class of FCEV, a plug-in option is identified to be very beneficial for the eco-impact of 

these concepts. The plug-in option enables to make use of the higher efficiency electric path 

and enables to reduce the required H2-tank size. 

The PHEV concepts achieve reduced GHG emissions compared to the BEV concepts for both 

investigated profiles. The high electric driving percentage with a reduced battery capacity and 

vehicle weight is one of the main reasons for this. At the same time, the power of the EM of 

the GHG-optimized PHEV is smaller compared to BEV vehicles, since the ICE allows to fulfil 

the highest traction demands by boosting. In the less demanding driving situations, which oc-

cur much more frequently, the lower EM power allows for a higher specific power utilization of 

the EM and therefore the operation in generally more efficient operating points. 

Within our contribution, monetary costs have not been considered. Certainly, the ecological 

return on monetary invest is relevant for the comprehensive comparison of different powertrain 

concepts and should be further studied. Additional expenses regarding necessary infrastruc-

ture could also be included in the investigation. Certainly, the PHEV concepts demand the 

least adaptions of currently available infrastructure despite the conventional ICEV concepts. 

Generally, the three concepts BEV-2, FCPHEV and PHEV-CNG were identified to have the 

best ecological potential. The plug-in hybrid concepts are especially suited when the distance-

distribution is characterized by a high percentage of driven kilometers in the lower distance 

range while maintaining the requirement of long-range capability. 

As additional investigation, we compared the GHG emissions resulting from the evaluation 

according to the WLTP to the presented comprehensive evaluation. We showed that the obvi-

ous discrepancies in the assessment between our holistic approach and the WLTP lead to 

non-optimal incentives in the design of powertrain concepts. In order to support the develop-

ment of real-world efficient eco-friendly vehicles, the certification process should be further 

adapted. 
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