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Abstract

HPC applications are large software packages with high computation and storage require-
ments. To meet these requirements, the architectures of supercomputers are continuously
evolving and their capabilities are continuously increasing. Present-day supercomputers have
achieved petaflops of computational power by utilizing thousands to millions of compute cores,
connected through specialized communication networks, and are equipped with petabytes of
storage using a centralized I/O subsystem. While fulfilling the high resource demands of HPC
applications, such a design also entails its own challenges. Applications running on these
systems own the computation resources exclusively, but share the communication interconnect
and the I/O subsystem with other concurrently running applications. Simultaneous access
to these shared resources causes contention and inter-application interference, leading to
degraded application performance.

Inter-application interference is one of the sources of run-to-run variation. While other
sources of variation, such as operating system jitter, have been investigated before, this
doctoral thesis specifically focuses on inter-application interference and studies it from the
perspective of an application. Variation in execution time not only causes uncertainty and
affects user expectations (especially during performance analysis), but also causes suboptimal
usage of HPC resources. Therefore, this thesis aims to evaluate inter-application interference,
establish trends among applications under contention, and approximate the impact of external
influences on the runtime of an application.

To this end, this thesis first presents a method to correlate the performance of applications
running side-by-side. The method divides the runtime of a system into globally synchronized,
fine-grained time slices for which application performance data is recorded separately. The
evaluation of the method demonstrates that correlating application performance data can
identify inter-application interference. The thesis further uses the method to study I/O
interference and shows that file access patterns are a significant factor in determining the
interference potential of an application.

This thesis also presents a technique to estimate the impact of external influences on an
application run. The technique introduces the concept of intrinsic performance characteristics
to cluster similar application execution segments. Anomalies in the cluster are the result
of external interference. An evaluation with several benchmarks shows high accuracy in
estimating the impact of interference from a single application run.

The contributions of this thesis will help establish interference trends and devise inter-
ference mitigation techniques. Similarly, estimating the impact of external interference will
restore user expectations and help performance analysts separate application performance
from external influence.
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Zusammenfassung

Anwendungen im Bereich Hochleistungsrechnen (HPC) sind große Softwarepakete mit ho-
hen Rechen- und Speicheranforderungen. Um diesen Anforderungen gerecht zu werden,
entwickeln sich die Architekturen von Supercomputern ständig weiter, dabei nimmt ihre
Leistungsfähig-keit ständig zu. Heutige Supercomputer erreichen Rechenleistungen im
PetaFLOPs-Bereich, indem sie Tausende bis Millionen von Rechenkernen nutzen, die über
spezialisierte Kommuni-kationsnetzwerke miteinander verbunden sind und über ein zentral-
isiertes E/A-Subsystem mit Petabytes an Speicherplatz ausgestattet sind. Eine solche Struktur
erfüllt zwar die hohen Res-sourcenanforderungen von HPC-Anwendungen, bringt aber auch
eigene Herausforderungen mit sich. Anwendungen, die auf diesen Systemen laufen, haben
exklusiven Zugriff auf die Res-sourcen für Berechnungen, allerdings müssen sie sich Kom-
munikationsverbindungen und das E/A-Subsystem mit gleichzeitig laufenden Anwendungen
teilen. Der gleichzeitige Zugriff auf diese gemeinsamen Ressourcen verursacht Konflikte und
Interferenz zwischen den Anwendun-gen, was zu einer verminderten Anwendungsleistung
führt. Interferenz zwischen Anwendungen ist eine Quelle von Leistungsvariationen zwis-
chen Ausfüh-rungen. Andere Variationsquellen, wie z.B. vom Betriebssystem verursachte
Fluktuationen, wurden bereits untersucht. Deshalb wird in dieser Doktorarbeit gezielt In-
terferenz zwischen Anwendungen aus deren Perspektive betrachtet. Schwankungen der
Ausführungszeit verursa-chen nicht nur Unsicherheit und beeinflussen die Erwartungen der
Benutzer (insbesondere bei der Leistungsanalyse), sondern führen auch zu einer subopti-
malen Nutzung der Ressourcen eines Hochleistungsrechners. Daher zielt diese Arbeit darauf
ab, Interferenz zwischen Anwen-dungen zu evaluieren, Tendenzen zwischen in Konflikt
stehenden Anwendungen zu ermitteln und die Auswirkungen externer Einflüsse auf die Aus-
führungszeit von Anwendungen zu appro-ximieren. Zu diesem Zweck wird in dieser Arbeit
zunächst eine Methode vorgestellt, um die Leistung von gleichzeitig laufenden Anwendungen
zueinander in Beziehung zu setzen. Die Methode unter-teilt die Laufzeit eines Systems in
global synchronisierte, feingranulare Zeitabschnitte, für die die Leistungsdaten jeder Anwen-
dung separat aufgezeichnet werden. Die Auswertung der Me-thode zeigt, dass durch die
Korrelation von Leistungsdaten Interferenz zwischen Anwendungen identifiziert werden kann.
Weiterhin zeigt die Untersuchung von Interferenz beim Dateizugriff mithilfe der Methode,
dass Dateizugriffsmuster ein wichtiger Faktor bei der Bestimmung des Interferenzpotentials
einer Anwendung sind. In dieser Arbeit wird weiterhin eine Technik zur Abschätzung des
Einflusses von externen Ein-flüssen auf die Ausführung einer Anwendung vorgestellt. Die
Technik führt das Konzept der intrinsischen Leistungsmerkmale zum Gruppieren ähnlicher
Segmente der Anwendungsausfüh-rung ein. Externe Interferenz führt hierbei zu Anomalien
in den Gruppen. Die Auswertung von mehreren Benchmarks zeigt eine hohe Genauigkeit bei
der Abschätzung von interferenzbeding-ten Auswirkungen mit nur einer einzigen Ausführung
der Anwendung. Diese Arbeit wird dazu beitragen, Interferenztendenzen zu ermitteln und
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Techniken zur Ver-meidung von Interferenz zwischen Anwendungen zu entwickeln. Ebenfalls
werden durch die Abschätzung der Auswirkungen von externen Einflüssen die Leistungser-
wartungen der Benut-zer wiederhergestellt und Leistungsanalytikern wird dabei geholfen,
die Anwendungsleistung von externen Einflüssen zu trennen.
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1 Introduction

Supercomputers performance has increased tremendously in the past few decades. In the
Top500 list, which maintains a record of the worlds most powerful supercomputers, the
maximum achieved computation performance has increased from 59.7 gigaflop/s in 19931

to 415.5 petaflop/s in 20202. This sustained increase in performance can be partly attributed
to Moore’s Law, which famously predicted the number of transistors on a processor to double
every two years [88]. Together with advancement in compiler technology and instruction-
level parallelism, computers have seen significant increase in performance over the past
few decades [45]. Supercomputers have also benefitted from this trend, experiencing an
exponential growth rate of 1.9 until 2008 [122]. When single-thread performance started
to stagnate, supercomputers growth rate also dropped, but to a lower degree (to 1.5), as it
exploited multiple processing units per node, as shown in Figure 1.1.

1.1 Supercomputer architecture

Another significant factor in the growth of supercomputer performance is its distributed design.
A typical supercomputer consists of hundreds of thousands of compute nodes connected
through a communication interconnect, as shown in Figure 1.2. Applications span many
compute nodes and exchange messages to synchronize and communicate. With such a
distributed design, supercomputers have achieved higher performance by scaling to a large
number of compute nodes. At the same time, while the design has remained distributed, the
increasing scale has been a catalyst in evolving the architecture of a supercomputer.

1.1.1 Memory architecture

A supercomputer is a distributed system, consisting of up to hundreds of thousands of compute
nodes. Each compute node has its own local memory, and processes executing on different

1https://top500.org/lists/top500/1993/06/
2https://top500.org/lists/top500/2020/06/
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Figure 1.1: Increase in core count per socket has largely offset the stagnation in single-
thread performance [122] © 2015 IEEE.

nodes communicate via the communication interconnect. A compute node itself consists of
multiple sockets and processors. It has a NUMA architecture [45], that is each processor has
its own directly attached cache and memory, as shown in Figure 1.3. A processor interconnect
provides access to memory local to other processors on the node. Cache coherency protocol
synchronizes the cached data.

1.1.2 Communication interconnect

The communication interconnect binds all the components of a supercomputer into a coherent
system. As the scale of the supercomputer has increased, so has the importance of the
fabric connecting them. Applications are spanning increasingly higher number of compute
nodes and have become sensitive to the performance of the communication interconnect.
Coupled with financial considerations, supercomputers have been designed with innovative
network architectures to achieve higher performance at lower cost. We describe three such
architectures here.

A fat-tree is a hierarchical network topology [77], consisting of a tree like arrangement of
switches, as shown in Figure 1.4. The edge switches are directly connected to the compute
nodes, while each higher level of switches connect lower level of switches. The network can
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Figure 1.3: The architecture of a compute node.

be setup in a blocking or non-blocking configuration. Switches in a non-blocking configuration
have the same number of uplinks as downlinks, that is the number of network links coming
from the lower level is equal to the number of links going to the higher level. In this
configuration, every pair of compute nodes can communicate without blocking as there exists
a unique network route between them. On the other hand, a blocking network has less
uplinks than downlinks, meaning pairs of communicating nodes may share network links.
When messages from a compute node are routed through a link under use, the messages are
queued and are temporarily blocked until the link is free.

A torus network is another common network topology [27]. In the topology, there are no
dedicated network switches, rather the nodes are directly connected to each other, as shown
in Figure 1.5. The nodes at the edges are also connected to each other via a loop-back link,
forming a torus, shown by dashed lines in the figure. The network can be configured as a
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Figure 1.4: A non-blocking fat-tree topology.

three-dimensional [10], five-dimensional [21], and even six-dimensional [5] interconnect.
Such a network architecture provides high bandwidth at low latency among neighboring
compute nodes, and allows for scalability at lower cost.

Supercomputers that have a large number of compute nodes also commonly deploy a
dragonfly network [57, 67]. It is a two-level hierarchical topology, resembling a highly
connected network at each level, as shown in Figure 1.6. The lower level consists of groups
of compute nodes that are connected using high-radix routers. The high-radix routers in a
group also use a few ports to connect to routers in other groups, forming the higher level
topology. When communicating, compute nodes may share network routes. There may also
exist multiple routes among them and the network uses adaptive routing to avoid hotspots.
The network performance of a dragonfly network depends upon how processes are mapped
to nodes, the routing strategy, and the network traffic from other applications, causing
application performance variation [37, 134, 137]. However it is deployed on some of the
largest supercomputers as it also provides high global bandwidth as well as short routes
among compute nodes.

1.1.3 I/O subsystem

Applications running on a supercomputer read and write a large amount of data [120]. For
example, VPIC (a plasma physics code), when executed on 120,000 cores generates 30TB of
data [15]. With increasing scale of applications, this trend is also increasing [76], with flagship
projects predicting datasets of 100 petabytes or more [79]. To accommodate the high demand,
supercomputers typically employ a central, parallel file system called the I/O subsystem. It is
a shared resource, connected to all compute nodes through the communication interconnect.
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Figure 1.5: A three-dimensional torus network with a (4 × 3 × 3) network topology. The
loop back links are shown as dashed lines.

When an application running on the supercomputer manipulates data, the I/O request is sent
from the compute node to the I/O subsystem. Figure 1.7 shows the architecture of a typical
I/O subsystem.

The I/O subsystem consists of multiple servers. Each server houses several RAID devices
to store the data. On some supercomputers, the I/O subsystem also has dedicated nodes. In
such a setup, a file access request from the compute nodes is routed to the I/O nodes, which
relay them further to the I/O servers. On some modern systems, an I/O forwarding layer,
called burst buffer, is used between I/O nodes and RAID storage devices [9, 78]. This layer
employs NVMe drives with high read and write bandwidth, and acts as a cache. The layer
can absorb bursts of write activities from applications and write them to the RAID devices
as a continuous lower intensity stream. At the same time, it can also serve the data back to
the application when servicing read operations. The I/O subsystem is further described in
Chapter 3.

1.2 Variation in application performance

A supercomputer is a multi-tenant system, hosting multiple applications at the same time. The
applications themselves consist of multiple processes, ranging from a few tens to hundreds of
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Figure 1.6: A dragonfly network topology consisting of three groups. Each group has eight
nodes connected via four routers.

thousands in number. If such an application is executed multiple times, its execution time
can vary. On some systems, such as the IBM Blue Gene systems, the variation is small, while
on other systems, such as the Cray XE systems, the variation can be significant [8].

Figure 1.8 shows the average messaging rate in MB/s for a laser-plasma interaction code
on three different systems over a period of three months [8]. The rate can be used to gauge
the variation in execution time of the code. When the application takes longer to execute, the
average messaging rate decreases, and vice verse. In the figure, Mira and Interpid (IBM Blue
Gene systems) have a consistent average messaging rate, indicating low run-to-run variation.
On the other hand, Hopper (Cray XE6) shows high variation in average messaging rate,
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Figure 1.7: Architecture of a typical I/O subsystem.
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Figure 1.8: Average message passing rate for a laser-plasma interaction application on
IBM Blue Gene/Q (Mira), Cray XE6 (Hopper) and IBM Blue Gene/P (Interpid) systems [8]
© 2013 IEEE.

indicating significant run-to-run variation. Similarly, numerous other studies have identified
execution time variation on supercomputers [6, 7, 73, 87, 137, 138].

The execution time variation can be attributed to several factors. Of them, three major
factors are the following:

1.2.1 Operating system jitter

Typically, on supercomputers, an application exclusively occupies the compute nodes. It is
possible that this trend might change in the future, especially in the case of nodes that have
accelerators attached to them, where a compute node might be shared between an accelerator-
utilizing application and a none-accelerator-utilizing application. Nonetheless, the current
established approach is to assign compute nodes to a single application exclusively. Even in
such a configuration, the compute node resources are still shared between the application
and the operating system. The operating system mostly remains idle but whenever it executes
some daemons or utilities, or performs scheduling activities, it utilizes the compute node
resources, degrading the performance of the application running on the compute node.
This effect is called operating system jitter. Historically, operating system jitter has been a
major source of execution-time variation, causing applications to slow down by as much as
50% [104]. Several studies have therefore investigated operating system jitter and have
identified its sources [28, 129, 132], its impact on communication [6, 50], on multicore
systems [111, 112], and at extreme-scale [7]. However, recent work has shown that modern
operating systems have reduced their noise footprint significantly [87].

7



1.2.2 Process-to-node mapping

An application running on a supercomputer spans multiple processes. When the application
executes, its processes are mapped to the compute nodes of the supercomputer. Depending
upon the network architecture, the process-to-node mapping can have an impact on applica-
tion execution time. For example, in fat-trees, if application processes are mapped to compute
nodes that are attached to the same edge switch, communication among them will have low
latency. On the other hand, if they are mapped to compute nodes attached to different edge
switches, communication messages will get routed through multiple switches, adding latency
and causing variation in performance. The variation can be especially significant in blocking
fat-trees. Similarly, on dragonfly networks, communication among compute nodes belonging
to the same group has lower latency compared to communication among nodes residing in
different groups.

On torus networks, the process-to-node mapping can have a significant performance
impact. As there are no dedicated network switches, messages from a node hop over inter-
mediate nodes to reach their destination. If the distance between the communicating nodes
is large, messages have to hop through many nodes, adding latency and variation. Some
systems, like Blue Gene systems, address this issue by always allocating an exclusive compact
network section to an application. Other systems, like Cray systems, allow application pro-
cesses to scatter over the network, increasing the possibility of processes being mapped far
apart.

1.2.3 Inter-application interference

The process-to-node mapping is not only a source of execution-time variation itself, but it
also exposes an application to inter-application interference. The communication fabric is
a shared resource. When multiple applications try to access it simultaneously, they create
contention, causing inter-application interference and variation in application performance.
The higher the number of shared network resources between communicating nodes, the
higher the likelihood of interference. Recent studies have found inter-application interference
to cause significant variation in application performance. Hopper (a Cray XE machine),
whose performance data is listed in Figure 1.8, uses a three-dimensional torus network. The
high variation in performance, as seen in the figure, is primarily caused by simultaneously
running applications [8]. Similarly on dragonfly networks, applications share network
routes and are susceptible to interference. Several studies have found inter-application
interference to be significant in dragonfly networks. The degree of interference is affected by
application communication patterns [134], process-to-node mapping [137], and adaptive
routing algorithms [57].
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Another shared resource on a supercomputer is the I/O subsystem, as described in
Section 1.1.3. When multiple applications access the I/O subsystem simultaneously, they
cause contention on resources and degrade performance, in some cases by more than a factor
of 4 [119]. At the same time, studying I/O interference and identifying sources of variation is
challenging [130]. Nonetheless, as I/O interference can cause significant interference, it has
been a subject of several studies. They have analyzed I/O performance at a system level [17,
18], compared it across sytems [82], identified characteristics that effect the magnitude of
interference [73, 138], and proposed techniques to reduce the interference [33].

1.3 Motivation

We have shown that execution time variation on supercomputers can be significant and that
it has three major sources. With increasing size of HPC systems and applications, inter-
application interference has become a significant source of performance variation [87]. At
the same time, there are many aspects that are still still unexplored. Especially the seemingly
random manner in which it degrades the performance of an application, leading to several
challenges.

1.3.1 Estimating application execution time

Estimating application execution time under the external influence is error prone. As the
intensity of interference cannot be predicted, the resulting unpredictability of execution time
can cause challenges when scheduling applications.

HPC systems employ a batch system to schedule and execute applications. Expected
execution time is one of the parameters required to schedule a job. When the job exceeds the
time, it is aborted. As inter-application interference can randomly extend the execution time
of applications, users tend to provide a higher than expected execution time when submitting
jobs. However, this practice misleads the job scheduler into making inefficient decisions, that
can potentially lower system utilization. Similarly, several situations arise when users want
to benchmark their application. Run-to-run variation means that users have to execute their
application multiple times to have confidence in their measurements, which consumes a lot
of precious core hours.
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1.3.2 Analyzing application performance

The situation becomes more complicated when measuring and analyzing the performance of
an application. Reliable analysis requires a performance measurement as close as possible
to the intrinsic behavior of an application, that is the natural behavior of the application
which is clean from outside influences. In the presence of seemingly random external
interference, a performance analyst has no reliable method of gauging the impact of outside
effects on a measurement. A common approach would then be for the analyst to take several
measurements and then pick the fastest or the mean or median run [49]. Even then, the
analyst cannot be sure as all the measurements can be interfered.

1.3.3 Wasting system resources

On the other hand, degraded application performance means wasting system resources.
Applications running on a supercomputer utilize shared resources like the communication
interconnect and the I/O subsystem on demand, yet they occupy the compute resources
throughout their execution. When an application is interfered, its execution time increases,
causing it to occupy compute resources for longer than needed, wasting system resources.
Especially applications with high process count can significantly waste resources if they are
exposed to interference.

1.4 Thesis contributions

Based on the mentioned challenges, identifying and understanding effects of inter-application
interference has become an important topic. At the same time, it is a vast area of study.
There are many complex sources of interference and significantly analyzing their effects is
challenging. This dissertation studies certain aspects of the problem and contributes the
following:

1.4.1 Identifying and evaluating inter-application interference

The first contribution is a method to identify inter-application interference among concurrently
running HPC applications [115], which commonly arises when applications contend for access
to shared resources such as the file system or the network. The method divides the application
runtime into fine-grained time slices whose boundaries are synchronized across the entire
system. Mapping performance data related to shared resources onto these time slices, it is
possible to establish the simultaneity of their usage across jobs, which can be indicative of
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inter-application interference. Experiments show that such interference effects, for which the
developer is usually not to blame, can degrade application performance significantly. This
dissertation further uses the method to rate the interference potential of common file-write
patterns [73, 113]. A particular challenge that arises on high-dimensional torus networks is
to give users a legible visual feedback for identifying contention and interference. We address
this challenge by presenting a visualization technique that projects the torus networks onto a
2D display using simultaneous views [128].

1.4.2 Quantifying inter-application interference

The second contribution is an approach to estimate the impact of sporadic and high-impact
external interference on the runtime of bulk-synchronous MPI applications [114]. The
approach identifies independent execution segments in an application run and establishes
similarity by clustering them using their computation, communication, and I/O characteristics.
Outliers in these clusters are segments exposed to external interference. An evaluation with
several realistic benchmarks shows that the approach can estimate the impact of external
interference already based on a single run.

1.5 Thesis structure

This dissertation is structured as follows. Chapter 2 introduces our first contribution of a
method to identifying inter-application interference. Chapter 3 then uses the method to study
in depth the effect of file access pattern under concurrent I/O, identifying an interference
trend between simultaneously writing small and large files. Chapter 4 briefly describes
our method to visualize high-dimensional torus networks. Chapter 5 presents our second
contribution of estimating the impact of interference on an application runtime. We survey
related work in Chapter 6. The dissertation is concluded with a summary and outlook in
Chapter 7.

1.6 Statement of Originality

The work presented in this dissertation has been conducted under the supervision of Prof. Dr.
Felix Wolf, head of the Parallel Programming chair, Department of Computer Science, TU
Darmstadt. In its later stages, it has also been supported by Prof. Dr. Matthias Müller, Director
of IT Center, RWTH Aachen. Furthermore, this dissertation has profited from the master thesis
of Chih-Song Kuo conducted under my supervision [72]. The master thesis work contributed
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to two publications [73] (where Chih-Song Kuo is the first author) and [113] (where I am
the first author). This dissertation has also benefitted from the bachelor thesis of Lucas
Theisen [127] carried out under my supervision, which resulted in one publication [128]. In
the following, I describe the source of the material of each chapter.

Chapter 2 is based on my publication Capturing inter-application interference on clus-
ters [115]. Under the supervision of Prof. Wolf, I was the primary contributor of the paper.
The paper was a join contribution with Prof. Voevodin’s group at Moscow State University.
They provided a prototypical deployment of our LWM2 tool on their GraphIt system, which is
described in Section 2.1.3. Among others, Section 2.1 and 2.2 are quoted verbatim from the
paper.

Chapter 3 is based on my journal publication How File-access Patterns Influence the
Degree of I/O Interference between Cluster Applications [113]. I am the first author of
this paper. It is an extension of the conference paper How file access patterns influence
interference among cluster applications [73], which was derived from the master thesis
work of Chih-Song Kuo [72] carried out under my supervision. He is the first author of
the conference paper. The master thesis was a joint collaboration with Prof. Matsuoka’s
group at Tokyo Institute of Technology. Among others, Section 3.3.4 is quoted verbatim from
the paper How File-access Patterns Influence the Degree of I/O Interference between
Cluster Applications [113]. With regards to research contribution, the work was continuation
of our method to identify inter-application interference, presented in Chapter 2. I proposed
the idea of evaluating the influence of file access patterns on I/O interference. I also developed
the micro-benchmark used in the study and gathered initial data to support the claim. Chih-
Song Kuo picked up from this point and investigated the different scenarios described in
the chapter. He also was the main collaborator with Prof. Matsuoka’s group, who were
indispensable for this study. They provided the computing resources to carry out all our
experiments on the TSUMABE2.0 computer, and also helped Chih-Song in monitoring the
backend servers of the I/O subsystem. Section 3.5 describes my contributions in detail.

Chapter 4 is based on my co-authored paper Down to Earth – How to Visualize Traffic
on High-dimensional Torus Networks [128]. The work presented in the paper is described
in the bachelor thesis of Lucas Theisen conducted under my supervision [127]. The paper
presents two approaches to visualization. I only discuss the elements of the first approach in
the thesis and reuse its figures, as I proposed the idea and which Lucas later implemented.
The second approach was contributed by Lucas and is not discussed in this dissertation. Please
refer to Section 4.5 for details.

Chapter 5 is based on my publication Estimating the impact of external interference
on application performance [114]. Under the supervision of Prof. Wolf and support of Prof.
Müller, I was the primary contributor of the paper. Among others, large portions of Section 5.1
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and 5.2 are quoted verbatim from the paper.
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2 Identifying inter-application
interference

Supercomputers are typically setup as a cluster of computing devices, connected via a com-
munication interconnect. The complete system is very rarely occupied by a single application,
rather multiple applications execute on it simultaneously. A scheduler and a batch system
is used to submit applications to the supercomputer. When the resources required by an
application becomes available, and other scheduling constraints are met, an application is
assigned compute nodes and starts executing on them. This way, a HPC cluster is shared,
both in time and space.

It is common these days to assign compute nodes exclusively to an application. From the
start of its execution till its end, compute nodes resources are occupied by the application.
While other resources, such as the communication interconnect, which binds the compute
nodes together, and the I/O subsystem, which handles the file access requests of applications,
are utilized on demand. As these resources are shared among the running application, simul-
taneous access on these resources leads to contention, degrading performance of applications
and causing inter-application interference.

In spite of this situation, users are exposed to only the behavior of their executed applica-
tions. In such a single-application view, the only way to consider interference from outside
sources is to take multiple measurements and then quantify variation. Even in this approach,
the nature of interference remains opaque. An intuitive way to account for external effects
is to observe the behavior of all running applications by profiling them, and correlate their
performance. While techniques exists to silently create profiles of all executing jobs on an
HPC cluster [38, 69], the indicators needed to establish simultaneity of events, a prerequisite
to any correlation analysis, are still missing.

This chapter presents a new performance-analysis approach that can be used to identify
inter-application interference. As in earlier techniques, every job running on the system is
profiled. However, the novelty of the approach is to divide the running of the system into
small time slices for which application performance data is recorded separately. The slices
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are thin enough so that even smaller performance events such as sudden peaks of file I/O
in one application can be correlated with temporary performance degradation observed for
another. The slice boundaries are synchronized across the whole system to ensure that the
slices of different jobs running at the same time can be precisely mapped onto each other.
Using the method, we evaluate different shared resources with respect to their interference
potential and demonstrate the serious influence this phenomenon can have.

The rest of this chapter describes our method, evaluates the interference potential of
different shared resources, and the influence this phenomenon can have.

2.1 Approach

To capture application interference, we model the operation of a cluster system as a time-space
grid, as illustrated in Figure 2.1. The space dimension represents the hardware, which is
divided into a set of disjoint nodes. Each node may run one or more processes. The time
dimension represents the runtime of the system, which is divided into a set of disjoint time
slices. Discrete time slices are needed to establish an approximate notion of simultaneity
among performance phenomena. Assuming static allocation of hardware resources, each job
on the system occupies one or more rectangular areas that all start at the same time and end
at the same time. Performance data is collected at the granularity of processes and time slices.
Thus, for each time slice and process, we record a vector of performance metrics, resulting in
as many metric vectors per node as there are processes on the node during the time slice.

Now we can correlate performance data in two different ways: First, we can check whether
we can see differences between different nodes that remain stable across an extended period
of time. Although outside the scope of this dissertation, this information can be used to
detect hardware anomalies that do not constitute outright failure but lead to some form
of performance degradation applications cannot be blamed for. Examples include network
links whose throughput is reduced due to cabling problems, a node throttled due to some
error condition, or a smaller amount of per-node memory. Second, and this is central to
our approach, we can compare the performance of an application during a given time slice
with the performance background, that is, the performance of applications running at the
same time on relevant parts of the system. Since the possibility of interference depends on
the topological characteristics of the system, which may restrict the sharing of resources to
certain zones such as the same subtree of a fat-tree network, we also precisely record the
node each process is running on.
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Figure 2.1: Operation of a cluster system as a time-space grid. The picture shows four
nodes, each running four processes (denoted by colored squares) at a time. During the
interval represented by the x-axis the system runs four jobs (A-D). The brightness of each
square indicates the intensity of a performance metric. Synchronized time-slice boundaries
allow the correlation of performance phenomena across jobs. In the highlighted time slice,
high intensity in job A coincides with low intensity in job B.

2.1.1 Requirements

To implement the above approach, we need to collect performance data from every job
running on the system. For this purpose, we implemented a system-wide profiler called LWM2

(lightweight monitoring module) that is supposed to be dynamically linked to each applica-
tion at job start—with the option of being disabled if needed. Of course, such mandatory
performance screening has multiple benefits, including the early detection of application
performance bottlenecks and guidance in choosing more advanced tools to conduct more
sophisticated diagnostics. While our design takes such aspects into account, the primary focus
of the narrative remains the detection of application interference. Our monitoring module
satisfies the following requirements:

1. Collection of basic performance metrics. To be able to exploit topological information
and to avoid communication and synchronization at larger scale, metrics have to be
collected separately for each process.

2. No modification of the executable and minimum assumptions about its runtime system
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and its parallel programming model(s)

3. Negligible overhead in terms of both time and space. We define this as ≤ 1% runtime
penalty and ≤ 5 MB of required buffer space per process and day

4. Attribution of performance metrics related to the usage of shared resources to globally
synchronized time slices

Whereas the first three requirements are common to silent profilers in general, the last
one is new and challenging to fulfill without incurring too much overhead.

2.1.2 Design

The monitoring module features a modular architecture for customization and further ex-
tendibility, offering compile time customization of profiling capabilities with support for
further configuration of the compiled capability through environment variables. Capabilities
include profiling of MPI applications, pthreads-based multithreaded applications, and CUDA
applications through CUPTI [99], along with the interception of POSIX file I/O calls. Finally,
sequential performance is measured through hardware counters using PAPI [91].

Instrumentation

To keep runtime dilation low, LWM2 combines direct instrumentation via interposition wrap-
pers with sampling. Interposition wrappers enclose all calls to MPI and POSIX file I/O
functions while CUPTI callback functions are used for CUDA calls. Different from prior hybrid
profiling approaches [123], the direct instrumentation is only used to count function calls
and to intercept data-transfer parameters such as the number and size of messages, the data
volumes read from or written to disk, or the amount of data transferred between hosts and
accelerators. We explicitly refrain from direct time measurements in wrappers, as their cost
can accumulate in application that frequently call any of the wrapped functions. Instead we
earmark the wrapped routine currently being executed so that we can correctly attribute
samples to them without having to examine the stack. Hardware counters are recorded when
crossing time-slice boundaries.

Time slices

In addition to creating a job digest at the end that summarizes the whole execution in terms
of performance indicators such as the time spent in MPI calls and that provides guidance in
choosing more sophisticated diagnostic tools for further analyses, LWM2 creates separate
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Figure 2.2: Comparison of applications performance with the performance background.
The performance background of an application is the sum of the metric values collected for
all applications (A, B, C) running at the same time.

profiles for each time slice, which allow insights into the changing performance dynamics of
the application.

As illustrated in Figure 2.1, the time slices are synchronized across the system so that it is
possible to compare and aggregate performance data both across all processes of a parallel
job and across all jobs running on the system at a given time. In essence, time slices offer a
way to establish the simultaneity of performance incidents such as file-system access storms.
While we left the length of the slices configurable, we chose a length of 4 s for our experiments.
This is small enough to capture performance dynamics with reasonable granularity but still
large enough in relation to the precision at which the system time is usually synchronized (in
the order of 1 ms without global clock). As we explain below, we slice only the data collected
in wrappers, which is why the sampling frequency does not have to be taken into account
when defining the time slice length.

With performance data collected at the granularity of time slices, a user can now compare
the performance dynamics of their own application with the performance background and
identify correlations, as shown in Figure 2.2. When observing a performance drop for a
specific interval, the user would search for peaks in the background that occurred during
the same interval. The metric where this peak appears is then indicative of the source of
interference. For example, an application experiences a slowdown during a specific time slice.
If the performance background shows increased file I/O activity during this time slice then
I/O interference emerges as a possible reason to be further investigated.
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Multithreaded applications

While the collection of time-sliced performance data is trivial for single-threaded applications,
it is non-trivial for multithreaded ones. Specific challenges arise when trying to reconcile the
desire to keep the memory footprint small with the requirements of thread safety and low
runtime dilation. Nevertheless, when monitoring applications system wide multithreaded
program cannot be ignored nor can they be treated like single-threaded ones. To make our
solution most portable across a large variety of applications, we assume pthreads as the
underlying threading library. With pthreads constituting the foundation of many higher-level
threading libraries, we believe this choice not to be overly restrictive.

To record time-sliced profiles, LWM2 requires linearly increasing buffer space. To keep
this as small as possible even in view of long-running applications, we refrain from storing
performance metrics individually for each thread over an extended period of time. Instead
we aggregate the values collected by the threads of a process in their thread-local storage in
situ at the end of each time slice. In this way, our memory footprint remains independent of
the number of threads, as we have to store only one value per metric, process, and time slice.
As a result, the total storage required for time-sliced profiles for a 24 hour execution is less
than 4MB per process, for a 4 sec long time slice.

To efficiently aggregate data, each application thread maintains two thread-local buffers,
one for even and one for odd time slices. A flag is used to indicate the active buffer. During a
time slice, threads write to the active buffer. When a time slice ends, the flag is switched and
the data in the inactive buffer is aggregated.

However, this is easier said than done. The flag to indicate active buffer requires a read-
write lock. If the end of a time slice is signaled via a timer interrupt, the lock will have to be
acquired in an interrupt handler, which is prohibited [100]. We therefore cannot use a timer
interrupt to signal the end of a time slice.

Heartbeat thread. To solve this dilemma, we employ a so-called heartbeat thread, an
auxiliary thread whose task is to collect the data from all application threads of the process
whenever a time slice expires. The heartbeat thread is created during the initialization of
LWM2 and is only activated at time slice boundaries. It sleeps in between. While the heartbeat
thread sleeps, each application thread updates its local metrics in the currently active buffer.
When a time slice ends, the heartbeat thread wakes up and switches the active buffer of all
threads. It then aggregates the values in the inactive buffers.

Let us assume the number of the current time slice is even. When the time slice ends, the
heartbeat thread wakes up and allocates the process-wide summary buffer needed for the
next time slice. It also turns the flag to odd after acquiring the write lock associated with it.
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Figure 2.3: The steps taken by the heartbeat thread at the time slice boundary.

This is summarized in Figure 2.3. Only during this very short moment are application threads
prevented from updating their local buffers. After the flag has been turned, the application
threads use the odd buffer while the heartbeat thread aggregates the values of the previous
(i.e., even) iteration into the process-wide time-slice buffer.

Since writing to the thread-local time-slice buffer requires the prior acquisition of a read
lock to prevent a sudden update of the even-odd flag, the buffer cannot be accessed from
interrupt handlers, which do not allow the acquisition of locks. Therefore, we only slice
the information collected in wrappers via direct instrumentation, that is, the frequency and
amount of data transfers. However, since interference is usually caused by data transfers to
and from shared resources, this is enough to cover the most interesting cases of application
interference. Plus, the statistical accuracy of sampling within the relatively narrow time-slice
boundaries might be limited anyway. In addition to collecting data from each thread, the
heartbeat thread also reads hardware counters on a per-process basis once the time-slice
boundary has been reached.

Thread-level concurrency. As a silent profiler, LWM2 was designed to capture not only
interference between applications but also performance issues within applications, which,
of course, includes limited thread-level concurrency. Following our philosophy that all our
performance metrics have to refer to the process as a whole instead of individual threads, we
calculate the effective thread count of a process. Whenever LWM2 takes a sample, each active
thread is hit by an interrupt. Thus, the total number of samples is larger than what would
be expected for serial code. The effective thread count is thus defined as the ratio between
these two numbers and provides a good indicator of thread-level concurrency, for example,
when compared to concurrency goals as specified in OMP_NUM_THREADS. Since it relies on
sampling, the metric is calculated only for the execution as a whole, where we believe it is
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also most useful.

2.1.3 Deployment

LWM2 is designed to collect performance data of each application running on a system.
However collecting performance data also requires helper services acting alongside LWM2.
In a typical deployment, one of these helper services will be a database agent which reads
the application profiles LWM2 generates and stores them in a database serving as the central
performance profile repository. A Web front-end would give end users access to the job
digest and changing dynamics of their application, as captured in time slices, and—for
comparison—to the performance background of the system at the time their application was
running.

LWM2 was deployed in a similar setup on the GraphIt system [55] at Moscow State
University. GraphIT was 16 node HPC cluster, with each node consisting of two 6-core Intel
Xeon X5650 CPUs and three NVidia “Fermi” Tesla M2050 GPUs. The nodes were connected
through QDR Infiniband 4x interconnect. GraphIt has been decommissioned.

Figure 2.4 shows the setup on the GraphIt system. In the default batch system configura-
tion, LWM2 automatically profiled every executing application. When the application finished,
LWM2 wrote a job digest with performance information to the terminal. The information
included:

1. The MPI collective call rate and bytes communicated

2. The number of point-to-point calls and bytes sent/received

3. The number of MPI and POSIX I/O operations, and bytes read/written

4. The number of floating points operations per second (when available)

5. The effective number of active thread count

For all the metrics, minimum, average, and maximum values were calculated and written
in the job digest.

LWM2 also wrote the full set of metrics to a predefined destination. The database agent
monitored the location and pushed any new profiles to the database. Users could then access
the profiling information through a web interface.
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Figure 2.4: Depicting the functionality of the integrated setup deployed on the GraphIT
system at MSU. Every batch job would get screened by LWM2. The resulting profile files
where pushed into a database, which was accessed by a web frontend to generate a job
digest for users.

2.2 Evaluation

Our evaluation pursues several objectives: First, we confirm the low runtime overhead of
LWM2. Second, we demonstrate how it can be used to identify application interference. At
the same time, we analyze the interference potential of typical shared resources.

All our tests were performed on two machines at the Jülich Supercomputing Centre:
JUROPA was a Linux cluster consisting of 2208 compute nodes, each equipped with two Intel
Xeon X5570 (Nehalem-EP) quad-core processors running at 2.93 GHz [63]. The nodes were
connected through an Infiniband QDR network with non-blocking fat-tree topology. All our
file I/O was performed on a Lustre file system with four meta-data servers (MDS) of type
Bull NovaScale R423-E2 (two Nehalem-EP quad-core & two Westmere-EP, 6-core) and eight
object storage (OST) servers of type Bull NovaScale R423-E2 (Westmere-EP, 6-core) attached
to the same Infiniband network. JUROPA was decommissioned and dismantled on June 24,
2016. JUDGE was a Linux GPU cluster. The node we used in this study featured two Intel
Xeon X5650 (Westmere) 6-core processor running at 2.66 GHz plus two Nvidia Tesla M2050
Fermi GPUs [61]. JUDGE was decommissioned on November 30, 2015.
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2.2.1 Overhead

Since silent profilers such as LMW2 are supposed to be operated in a compulsory mode, requir-
ing at least an explicit opt-out to be disabled, low overhead is essential for user acceptance.
The overhead of a profiler falls in to categories—space and time. We collect currently 22
metric values á 8 bytes per time slice (i.e., every 4 s) and process, resulting in a memory
footprint of less than 4 MB for 24 hours of execution. The runtime dilation was verified
using applications from two benchmark suites: SPEC MPI2007 [90] for single-threaded MPI
programs and the NAS Parallel Benchmark [131] for hybrid MPI/OpenMP programs. The
profiling overhead was compared with IPM [38], a silent profiling module already used in
production.

Measuring small overhead on a production system exposed to run-to-run variation is
extremely challenging. To minimize the effects of this variation, we took a number of steps.
Since application start up is usually very sensitive to variation, we compared only the times
between initialization and finalization of MPI. We ran each benchmark 90 times, 30 times
without profiling, 30 times with IPM, and 30 times with LWM2. To even out system load
variations, we alternated between the three types of runs in a round-robin fashion. We
removed outliers using the modified Z-score method [54] such that we can locate the mean
value in the range of the runs with a confidence of 99%. The filtered set was used to calculate
the mean, maximum, and minimum values.

Single-threaded MPI

For our experiments, we ran all benchmarks from the SPEC MPI2007 suite for which a large
reference data set was available on 32 nodes of JUROPA with 256 processes. The results,
which quantify the overheads of LWM2 in comparison with IPM, are shown in Figure 2.5. In
all but one case, the overhead of LWM2 is less than 1 %. The negative overhead of 137.lu is
surprising, although not totally outside our earlier experiences with overhead measurements.
Only 143.dleslie exhibits anomalously high overhead. In both cases, IPM mirrors the behavior
of LWM2, which suggests that the source of anomaly lies outside the two profiling tools.
Further investigation of 143.dleslie revealed the cause to be the dynamic loading of the shared
PAPI library, a behavior observed only for this specific Fortran code and Linux kernel version.
The last run in the figure shows the overhead for 143.dleslie without PAPI, which was less
than 1%.
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Figure 2.5: Runtime overhead of LWM2 vs. uninstrumented execution for single-threaded
MPI (SPEC MPI2007), also in comparison to IPM. The high and low marks indicate the
spread after the removal of outliers.

Hybrid MPI

We used the BT-MZ benchmark, which uses OpenMP to exploit shared-memory parallelism,
from the NAS Parallel Benchmark suite to estimate the profiling overhead for hybrid applica-
tions with multiple threads. The benchmark was executed in three different configurations,
keeping the number of processes constant while changing the number of threads. Figure 2.6
shows that the overhead of LWM2 is less than 1%, with negative overhead for 8 threads. The
anomaly can most likely be attributed to the high variance in execution times and overhead,
also shown by IPM and the uninstrumented run.

The two sets of experiments confirm the low overhead of LWM2, which is similar to IPM,
despite generating time-sliced profiles. Overall, the overhead is much less than the natural
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Figure 2.6: Runtime overhead of LWM2 vs. uninstrumented execution for Hybrid MPI (NAS),
also in comparison to IPM. The high and low marks indicate the spread after the removal of
outliers.

run-to-run variation of the system.

2.2.2 Interference

In spite of running in space-sharing mode, applications on cluster systems usually share
some resources that they cannot own exclusively. Contention for such shared resources may
cause inter-application interference, one component of the overall runtime jitter. In a set of
experiments, we measured the jitter resulting from this interference for different types of
shared resources.

Concurrently executing applications usually share at least the file system and depending
on its topology parts of the network. Sharing parts of the network means sharing a subset of
the links and switches. Unless the file system is reached over a dedicated network, file I/O
also implies network traffic that may interfere with network traffic between compute nodes.
While some systems allocate nodes exclusively to a single job, others may even allow the
sharing of nodes. There, node sharing is motivated by the desire to balance the need for classic
CPUs and GPUs among a highly diverse workload. If nodes are shared then contention may
occur with respect to the network interface, the memory, and, depending on the architecture,
the accelerator bus. We assume a sensible node-sharing scheme in which applications run at
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Figure 2.7: Inter-application interference when sharing I/O resources: continuous I/O
benchmark vs. periodic I/O noise.

least on separate sockets with their physically attached memory, hence already minimizing
memory-subsystem interference. We target each of these shared resources in experiments to
measure their impact as a source of interference.

In production environments, cluster applications experience jitter from many sources. Ex-
tracting and measuring the contribution of contention for a single resource to inter-application
interference is therefore challenging. To do exactly this, we created a set of benchmarks, one
for each resource type, that inject noise according to a distinct periodic pattern of resource
usage. If the benchmark interferes with another simultaneously executing application that
makes use of the same resource, it will impose the inverted pattern on the time-sliced profiles
of the application. That is, whenever the noise exhibits a peak, the metrics of the application
suffer a dent. Note that because each metric value represents a rate (per time slice), the
slowdown affects all metrics. Thus, we identify interference through inspection of time-sliced
profiles. Moreover, we quantify the interference effect by comparing the execution time
under noise with the time we see without introducing noise. In this study, LWM2 was not
mandatory for all jobs on the system, we could not profile the complete workload—just the
jobs we submitted ourselves. However, the artificial noise pattern is distinct enough to make
coincidence extremely unlikely. In a production deployment on a full cluster, where the
source of interference is unknown, one would search for the source following the inverse
strategy, trying to find a metric in the overall performance background that shows a peak
where an application we are interested in suffered a dent.
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Figure 2.8: Inter-application interference when sharing network resources: 128.GAPgeofem
vs. periodic network noise.

I/O subsystem

On JUROPA, file I/O operations may share the communication network and I/O nodes. At the
same time, the network is also available to messages exchanged between compute nodes. To
study the interference potential of file I/O operations, we ran two I/O intensive benchmarks
side-by-side, one with a continuous I/O pattern, and one with a periodic I/O pattern. We ran
each of the benchmarks with 256 processes on 32 nodes of JUROPA. In the first benchmark,
which we call the probe, each process continuously opened a file, wrote a 100× 100 integer
matrix in consecutive write operations to it, one per element, and closed it again. Each
process used its own file. It was created in the beginning and then re-used in each iteration.
The second benchmark, the noise, did the same, only that the stream of matrix writes was
periodically interrupted by phases of inactivity. The benchmarks performed predominantly
file I/O. Hence, any resulting interference pattern can be attributed to this I/O with high
confidence. Figure 2.7 shows the number of write operations per time slice, accumulated
across all processes, as an indicator of performance. The imprint the noise left on the probe
as a sign of interference is clearly discernible, especially when compared to the execution
without noise. The interference reduced the application’s write performance significantly,
with a drop of 50% at the points of interference and an overall execution time prolonged by
35%. The experiment was repeated several times and the same behavior was observed each
time. Exposing 128.GAPgeofem from the SPEC MPI2007 suite, a finite-element code that
performs I/O on a regular basis, to our artificial noise resulted every time in an abort with a
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Figure 2.9: Inter-application interference when sharing node resources: communication
interference during point-to-point communication.

“file not accessible” error, indicating that I/O subsystem interference can even be prohibitive
in certain cases.

Communication network

Although we experimented with a large variety of communication patterns and execution
configurations, we were surprisingly unable to find any unequivocal evidence of significant
interference at the level of message exchange between the compute nodes of JUROPA. This
might have to do with the generous bandwidth and the well-balanced fat-tree topology of
the network and does therefore not apply to other systems.

Nevertheless, in this study, what we found is a reproducible case of interference between
128.GAPgeofem, which performs both inter-process communication and file I/O in regular
intervals, and a noise benchmark that alternates between periods of intensive global inter-
process communication and periods of silence. Each program was executed on 128 nodes
of JUROPA. This system has a two-layer fat-tree topology, where each leaf switch connects
24 compute nodes and the top level switches connect all the leaf switches. Utilizing 128
nodes guaranteed that the two programs used overlapping portions of the network. Figure
2.8 shows the number of collective calls per time slice with and without noise. Although
not the only and not even the most relevant type of communication in this experiment,
collective calls represent global synchronization points, which is why their number serves as

29



0 10 20 30 40 50 60 70 80 90
0

2

4

·108

time slices

#
C

U
D

A
b
y
te

s
se

n
t

to
d
ev

ic
e

Traffic from GPU 1 only Traffic from GPU 1 of 2
Traffic from GPU 2 of 2

Figure 2.10: Inter-application interference when sharing GPGPU resources: two GPU
benchmarks sharing one PCI Express bus.

a good indicator of the progress 128.GAPgeofem makes towards completion. It can be seen
that during the network activity phase of the periodic noise benchmark, the performance of
128.GAPgeofem drops by 10%. This leads to an overall 5% longer execution time compared
to a run without noise. The experiment was repeated several times and each time 7% to 10%
degradation was observed during the active phase of the periodic noise benchmark.While
this indicates that the interference occurs at the level of the network, it remains unclear
whether the target of the interference was inter-process communication or file I/O. During
the entire execution, each process of 128.GAPgeofem exchanges more than 1 GB of data
in MPI point-to-point communication (and a smaller amount in collectives), while it writes
only 0.5 MB of data to files. On the other hand, when exposing 128.GAPgeofem to network
noise, we observed several failures due to the inaccessibility of the file system. Also in the
light of our disability to demonstrate pure network interference, we are therefore inclined to
attribute this phenomenon to cross-interference between network communication and file
I/O.

Node

To improve resource utilization, some accelerator-based HPC systems allow individual nodes
to be shared between CPU- and GPU-oriented applications. One such system at the time of
our study was Tsubame2 at Tokyo Institute of Technology, which permitted node sharing
on its thin-nodes, consisting of two host processors and three GPUs [124]. Tsubame2 was
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upgraded to Tsubame2.5 in the fall of 2013.

Network interface. Even if simultaneously executing applications do not share individual
sockets, a common scheduling constraint in the interest of minimizing interference within
the memory subsystem, the applications share at least the network interface of the node.
In our experiments, we tried to investigate whether such sharing can lead to significant
interference. Since none of our test systems allowed nodes to be shared between applications,
we split the world communicator of a single benchmark to mimic two different applications.
The communicator was split in such a way that the border between the two communicators
divided nodes but assigned the sockets exclusively either to one or the other. Both commu-
nicators performed MPI point-to-point communication, the first one (i.e., the probe) in a
continuous fashion, the second one (i.e., the noise) only periodically, that is, interrupted
by phases of inactivity. Figure 2.9 shows the number of bytes sent per time slice for each
communicator. For comparison, the probe communicator was also measured with the noise
communicator disabled. We observed sporadic interference between the two communicators
during execution. We ran the experiment several times and observed sporadic interference in
each of the runs, albeit occurring at different points. On average, a run with ten bursts of
noise lead to interference during four or five of these bursts. Thus, the average probability of
interference for a single burst was between 0.4 and 0.5. A run of the benchmark with only
collective calls did not produce any interference.

PCI Express bus. Modern heterogeneous clusters may feature more than one accelerator
per node. If they are attached to the same PCI Express bus like on JUDGE then interference
can occur when two GPU applications share a node even if they do not share GPUs. This is also
true for a single application with multiple threads that use different GPUs independently. To
test this hypothesis, we ran a simple benchmark on JUDGE, repeatedly multiplying matrices
on a single GPU. For each multiplication, the benchmark, which was sequential on the host
side, copied the matrix from the host memory to the device. Two instances of the benchmark
were executed together on a shared node and compared with a single-instance run. Figure
2.10 shows the number of bytes transferred from host to device per time slice as an indicator
of overall progress. It can be seen that for shared execution, the PCI Express bus performance
of the application drops by up to 50%, resulting in 35% longer execution. To eliminate
the host memory as the source of interference, we replaced the second GPU benchmark
instance with another benchmark that accessed the host memory in a way similar to the GPU
benchmark but without accessing the PCI bus. No performance degradation was observed
in this case. This strongly points to the shared data bus as the bottleneck and source of
performance degradation.
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2.3 Summary

To analyze inter-application interference on clusters, we presented a novel profiling method
based on the concept of globally synchronized time slices that allows the correlation of
performance phenomena across jobs. We showed that it can be applied with only negligible
overhead and is thus suitable for the silent profiling of entire workloads. By observing probe
applications exposed to a pronounced periodic noise pattern, we analyzed the interference
potential of several shared resources. We found file I/O to be a major catalyst of interference
with I/O performance degraded by up to 50%. We further identified slower file I/O as
a likely effect of concurrent inter-process communication. Finally, we found evidence of
bottlenecks at the host channel adapter and the PCI Express bus that connects host and device
on heterogeneous clusters when sharing nodes between applications. The latter can be easily
addressed by investing in a separate bus.
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3 Influence of file access patterns on
I/O interference

To meet the growing resource requirements of HPC applications, the performance of HPC
systems is continuously being increased. To this end, these systems frequently employ
specialized network designs, such as dragonfly or torus networks. They also deploy a
centralized, parallel file system to entertain bursty, parallel I/O from applications, which can
be in tens to hundreds of terabytes [15]. These parallel file systems have a middle layer of
I/O servers that connect the compute nodes of the HPC cluster to storage devices. When
applications access a file, the request is routed through the communication interconnect
to the I/O servers. Such decoupling of compute and storage allows for easy scaling of I/O
resources, it also entails challenges. The parallel file system is a centralized resource, which
means it gets shared by all running applications. When multiple applications access the file
system simultaneously, it can lead to contention and can substantially degrade application
performance. Applications that frequently access the file system or access large amount of
data are especially susceptible to such contention, adding an element of variability to their
performance [81].

HPC applications that access large amount of data or perform frequent file access requests
are quite common. These include data-intensive codes such as the global cloud system
resolving model GCRM [74], the cosmic microwave background analyzer MADCAP [12], and
the Hardware Accelerated Cosmology Code (HACC) [44]. They generate massive amount of
data during execution, resulting in large write requests. On the other hand, the Community
Atmosphere Model (CAM) [29] of the Community Earth System Model (CESM) [53] and the
continuum mechanics solver OpenFOAM [58] frequently checkpoint their state, resulting
in small but recurring writes. Overall, very different classes of file-access patterns can be
distinguished. Not only do these patterns access the file system in unique ways, but their
sensitivity to interference from other applications that access the file system at the same time
also varies widely. Likewise, they actively interfere with other I/O-intensive applications in
different ways. All this makes access patterns an important factor for file-system contention.
Our initial experiments with different access patterns revealed negligible interference in
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the case of read-read and read-write contention. These results are also consistent with
word-of-the-mouth understanding in the HPC community. Therefore, we concentrated our
investigation on write-write contention and the most common access patterns involved.

File system contention and the associated performance degradation are well known [126].
In this context, the influence of request size and process count was already studied from a
single-application perspective [70], while process count has been identified as a factor of
dominance when two applications compete for the file system [33]. Similarly, file-access
patterns have been studied in various contexts [14, 26, 80, 116, 121]. The novelty of
our research is that we study typical write access patterns found in HPC applications from
the perspective of simultaneous access from multiple applications. To achieve this, we
first developed a micro-benchmark capable of producing three distinct file-access patterns,
mimicking those of real applications. The patterns simulate application checkpointing, out-
of-core processing, and writing large output files. We explored the interference potential of
these patterns by first running them in isolation and then running them concurrently against
each other. We further evaluated the patterns in the form of realistic applications covering
check-point-intensive and data-intensive access patterns. We not only observed different
levels of interference between different patterns, but also identified some general rules such
as writing large output files dominating checkpointing at smaller checkpoint sizes, with the
trend being reversed for larger checkpoint sizes.

Taken together, our results bring us closer to effectively reducing interference by auto-
matically recognizing applications with high interference potential, allowing their I/O to be
separated in either space or time.

The remainder of this chapter is organized as follows. We first provide the necessary
background information on parallel file systems, present our approach, including a taxonomy
of file-access patterns, and explain our experiment design. We then present our results,
ranging from micro-benchmark-only experiments to measurements with realistic applications.
We end the chapter with a summary and also outline the contributors of this work.

3.1 Parallel File Systems

A typical file system found on modern HPC systems follows a client-server model, in the spirit
of Network File System (NFS). It consists of I/O servers that are connected to RAID storage
devices through a dedicated network. A message passing network network connects the
compute nodes to the I/O servers, as shown in Figure 3.1. When an application accesses a file,
the request is routed to the I/O servers. The request is served by distributing it across storage
devices depending upon how files are mapped to them. A single file can also be stripped
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Figure 3.1: A typical Lustre configuration, with separate I/O servers for metadata and file
storage.

across multiple storage devices. Such a configuration means simultaneous file accesses can
be handled efficiently and in parallel. Examples of parallel file systems include Lustre, HDFS,
PVFS, GPFS, PanFS, and FhGPS. We have used Lustre and GPFS in our experiments, and
describe them below in detail.

3.1.1 Lustre

Lustre is one of the most commonly used parallel file system among the Top500 HPC sys-
tems [31]. It is commonly deployed as a central file system, where it separately stores
metadata and actual files, as shown in Figure 3.1. Metadata resides on metadata servers
(MDSs) while data is stored as objects on object storage targets (OSTs), attached to object
storage servers (OSSs). Metadata includes the file-system structure, the layout of directories,
and file attributes. When a file is accessed, its metadata is first accessed from the metadata
server. The MDS access itself results in small seeks and reads or writes. The actual data
manipulation then happens on OSS as potentially large reads or writes. Decoupling metadata
and object storage server gives Lustre an opportunity to optimize each according to its
common access pattern.

35



3.1.2 GPFS

GPFS stands for General Parallel File System. It is a proprietary parallel file system developed
by IBM, and is commonly deployed on IBM systems, such as Summit1 and Sierra2. It is
also found on other HPC clusters. GPFS has a flexible architecture. It can be deployed in a
shared-disk-cluster configuration where each compute node is responsible for a part of the
file system. Another configuration, common on large HPC systems, is as a centralized file
system with thousands of nodes. GPFS stores data files as well as their associated metadata
on the same block-based devices called network shared disks (NSDs). GPFS also achieves high
performance by striping data files across all disks in a storage pool.

3.2 Approach

HPC applications employ different I/O libraries and file formats to perform I/O operations.
They also produce different process-to-file ratios. In our evaluation, we concentrate on
single-file-per-process mode, as a major proportion of HPC applications still use POSIX-I/O or
MPI-I/O in this scenario [17]. We also evaluate MPI-I/O in shared-file configuration. Given
that MPI-I/O in single-file-per-process mode is similar to POSIX-I/O on our test systems (and
also on many other systems [12]), we exercise only MPI-I/O in our micro-benchmarks.

3.2.1 File access patterns

HPC applications exhibit a variety of file access patterns, of which frequent checkpointing,
file accesses for out-of-core processing, and writing of large output files are considered here.
We implemented these three use cases as characteristic patterns in a micro-benchmark. We
evaluated the patterns by running them against each other and against realistic applications,
for a range of file sizes. The access patterns are listed in Figure 3.2.

Open-write-close. Our first pattern is called open-write-close (OWC), listed as Algorithm 1
in Figure 3.2. In this pattern, each process creates a new file, writes data to it and then closes
it. In the next iteration, a new file is created again for data writing. This is a common pattern,
used in applications, such as Flash [36], CESM [53] and OpenFOAM [58], for checkpointing.
This access pattern creates high metadata traffic and can create bottleneck on systems with
limited metadata resources.

1https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
2https://hpc.llnl.gov/hardware/platforms/sierra
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Algorithm 1 Open-Write-Close
1: procedure open_write_close(N, chunk_size)
2: for i← 1, N do
3: Open New File
4: Write chunk_size
5: Flush I/O
6: Close File
7: end for
8: end procedure

Algorithm 2 Write-Seek
1: procedure write_seek(N, chunk_size)
2: Open File
3: for i← 1, N do
4: Seek to file start
5: Write chunk_size
6: Flush I/O
7: end for
8: Close File
9: end procedure

Algorithm 3 Aggregate-Write
1: procedure aggregate_write(N, chunk_size)
2: Open File
3: for i← 1, N do
4: Write chunk_size
5: end for
6: Close File
7: end procedure

Figure 3.2: Three I/O access patterns [72, 113].

Write-seek. Our second pattern is write-seek (WS), listed as Algorithm 2. In this pattern,
each process creates a file at the beginning. Then, in each iteration, each process writes
chunks of data to its file, and then seeks back to the beginning of the file. The file is closed at
the end of the execution. Similar to open-write-close, this pattern also generates massive
number of small file accesses. However, as the same file is reused and as only seek operation
takes place between individual writes, this pattern generates less metadata traffic. The
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write-seek pattern captures file accesses during out-of-core processing of HPC applications,
such as in MADCAP [19]. Facing memory capacity pressure, HPC applications often have
to resort to out-of-core processing. This means they write data they cannot hold in main
memory temporarily to a file, and read it back once it needs to be processed. This results in
a write-seek-read pattern. The pattern can have many different instantiations with respect
to write size, seek size, and read size. As our goal is measuring write-write interference
potential, for simplicity, we have reduced the pattern to a write followed by a complete seek.

Aggregate-write. Our third pattern is aggregate-write (AW), listed as Algorithm 3. In this
pattern, each process creates a file at the start and then iteratively adds data to it in chunks,
closing the file at the end. This pattern mimics writing of large output files in applications such
as GCRM [74] and MADCAP [12]. This pattern has a small number of metadata operations
but a large number of writes, leading to large files. Aggregate-write can overwhelm an I/O
subsystem performance at scale.

Mitigating client-side I/O caching requires flushing I/O traffic after every write operation
of the write-seek pattern. In the absence of flushing, small writes remain buffered in the
Lustre client software and are overwritten by the writes in the next iteration. We have also
found flushing of write buffers in real applications a common practice. Therefore, our addition
of buffer flushes is not unusual. The need for flushes does not arise for large writes if they
are larger than the OST buffer size. Moreover, aggregate-write is not affected by this issue as
writes are initially buffered by the Lustre client software and eventually flushed to the file
system. For consistency, our benchmark flushes writes for all chunk sizes on both Lustre and
GPFS.

3.2.2 Capturing interference

We execute the patterns against each other and observe the drop in I/O throughput compared
to an isolated run, to identify incidents of interference. In every benchmarking experiment,
we have a pair of applications. We are interested in the throughput degradation of one
application, which is called the probe. The degradation in throughput is quantified as passive
interference. The other application, called the signal, is causing the degradation through
active interference. We also execute the signal benchmark in a periodic fashion to study how
the interference effects evolve with changing I/O access frequency. In the configuration, an
active phase of I/O is followed by a silent phase with no I/O activity. The probe benchmark
may suffer a drop in I/O throughput during the active phase, whose intensity is indicated by
the depth of the dent.

To measure how the I/O throughput of an application changes, we use the profiler
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LWM2 [115]. It is described in detail in Chapter 2. One aspect of LWM2 important to our
study is the ability to capture performance dynamics in time slices. The duration of the time
slices can be configured. In our evaluation, a time slice of length 4 seconds was used. For
the periodic version of the benchmark, a period length of 24 seconds was used, so that every
period covers a few time slices.

Ideally, the I/O interference study should be conducted on a dedicated, fully reserved
system to have a noise-free environment. However, this requires reserving an entire cluster
which is prohibitively expensive. Conducting our experiments on a production cluster while
using the mostly application-centric LWM2 profiler, we had to address interferences from
applications outside our experimental setup and irregularities in the behavior of the I/O
servers.

To address these two effects, we extended the LWM2 profiler to also monitor the I/O
server activities when an application is executing. For both GPFS and Lustre, we monitor the
InfiniBand counters on the servers to estimate the I/O traffic. We also parse the statistics
maintained by the Lustre client on each compute node, indicating the I/O traffic to/from the
Lustre servers. Similar to application events, the server activities are also captured every time
slice, giving us the ability to correlate them. To keep our evaluation runs as clean as possible,
we discard the runs in which the load on the file-servers is 10% higher than the I/O traffic
generated by our applications. Similarly, with server-side monitoring, we were able to learn
more about the irregularities in the behavior of the I/O servers, and are now able to address
them in our measurements.

3.2.3 Server-side imbalance
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Figure 3.3: Mapping one file to one OST reduces the runtime imbalance among processes.

In some experiments, we observed substantial differences among the execution times
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Figure 3.4: Write throughput of I/O servers. The performance of server 3 is degraded,
leading to a longer execution time of I/O operations and hence the application.

of individual processes of an application that occurred sporadically on both file systems. In
such cases, most of the processes would finish execution as expected, while the remaining
ones would keep on performing I/O for a longer duration, up to twice as long in some cases,
as shown in Figure 3.3a. Such observations are not uncommon and have been reported
before [136]. In a closer investigation of the imbalance effect, we found the load imbalance
among the file servers, as shown in Figure 3.4, to be a major factor. In our experiments,
this happened in particular on Lustre, where files were randomly assigned to an OST in the
one-file-per-process mode.

When many processes access the same OST, its performance drops, also affecting the
performance of the associated I/O server. We verified this finding in a small experimental
run by artificially enforcing an equal number of files per OST. Such a setup reduced the
variance in execution time of processes by about 75%, as shown in Figure 3.3b. However,
enforcing such a policy is not realistic, as it necessitates the number of application processes
to be an integer multiple of the number of OSTs. On GPFS, the server-side imbalance was
more pronounced for small files, but materialized to a lesser degree for large files as they
were striped automatically across all network-shared disks (NSDs). Other factors can also
contribute to the imbalance effect, such as the straggler phenomenon [136].

To address the effects of the server-side imbalance, while at the same time discern the
effects of interference, in our runs, we evaluated the balanced part only, and did not consider
the tail-off stage. As the server-side imbalance affects only the later part of a run, and the I/O
volume written in it is a small portion of the total traffic, our approach is justifiable. In our
experiments, the write volume in the imbalanced part of a run was less than 10%. Therefore,
in our evaluation, we consider only the part of a run until any of the two running applications
finished writing 90% of its total data volume. While our approach did not completely address
the variance caused by the server-side imbalance, it significantly diminished the inaccuracy
in a consistent way, while also conserving the interference effects.
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PFS Mount Metadata File storage devices Bandwidth
point server server per server

GPFS /data0 N/A 4 14 20 GB/s
Lustre /work1 1 8 13 50 GB/s

Table 3.1: Specifications of the file systems on TSUBAME2.5 used in our experiments.

3.3 Evaluation

In our experiments, we first executed our micro-benchmark in pairs to assess the interference
effects of one pattern on another in its purest form. To confirm our findings, we then
executed the micro-benchmarks against three realistic applications, OpenFOAM, MADbench2,
and HACCIO, used for simulations of fluid dynamics, cosmic background radiation, and
collisionless cosmic fluid creation, respectively. Finally, we also evaluated the observable
interference effects between pairs of these applications.

3.3.1 Environment

We conducted our experiments on the TSUBAME2.5 supercomputer, which was deployed at
Tokyo Institute of Technology, Japan at the time of the study [125]. The cluster, which was
decommissioned in August of 2017, consisted of different types of nodes. The nodes we used
made up the majority of the cluster. They consisted of two Intel Xeon X5670 Westmere-EP
processors, with 6 cores and at a clock frequency of 2.93 GHz. They also had three NVIDIA
Tesla K20X GPUs (GK110) attached to them. The cluster had a two-rail fat-tree InfiniBand
4X QDR interconnect, which was used for both network communication and file I/O.

TSUBAME2.5 was equipped with both a GPFS and a Lustre file system, attached at
different mount points. The mount points were frequently updated. The configuration used
in our experiments is as follows. GPFS was mounted on /data0 and was hosted on four
NSD servers. Each server was connected to 14 NSDs (network-storage devices). Lustre was
mounted on /work1 and was hosted on eight OSS (file servers). Each server was connected to
13 OSTs (RAID storage targets). One MDS (metadata server) handled all metadata requests,
with one standby server. Only these two mount points were used in our experiments. On
Lustre, the qos_threshold_rr parameter was set to 16%, which meant mostly a round
robin selection of storage devices. The compute nodes where also equipped with 120 GB
SSDs as scratch space. The I/O servers were connected to one of the two rails of the fat-tree
network using two InfiniBand 4X QDR adapters. Table 3.1 shows a summary of the two file
systems we used.
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Signal
Open-write-close Write-seek Aggregate-write

Standalone Bandwidth [GB/s] 28.4 31.6 42.2

Signal
Bandwidth [GB/s] 16.1 19.8 3.8
Degradation [%] 43.31 35.76 9.95

Probe
Bandwidth [GB/s] 16.3 16.8 9.6
Degradation [%] 42.61 40.85 66.2

Table 3.2: Write bandwidth observed in an experimental run on Lustre when the probe
open-write-close was executed against three different signal patterns at a chunk size of
1 MiB.

3.3.2 Experimental setup

Except for the experiments comparing patterns at different process counts, a single instance
of a micro-benchmark or an application consisted of 256 processes. They were executed on
64 compute nodes. As the experiments were undertaken on a production system, we used
the I/O server monitoring module of LWM2 to exclude runs with more than 10% external
noise. Every experiment was also repeated five times and we took the best-performing run,
that is the run with the lowest degree of external interference.

We executed the three access patterns for chunk sizes ranging from 1 MiB to 256 MiB
on a logarithmic scale. This means that for open-write-close and write-seek pattern, a file
of a specific size was repeatedly written. For aggregate-write, the buffer size of each write
operation had the specified size.

3.3.3 Micro-benchmarks

To evaluate the interference potential of the I/O access patterns, we execute them in pairs. We
executed every pattern first against itself and then against the remaining two. As a result, there
were six different experiments. However, every pattern was considered separately as a probe
and as a signal, resulting in nine different interference scenarios (that is {OWC,WS,AW}2).

Table 3.2 shows the write throughput when an open-write-close probe is exposed to three
different signal patterns. For both the probe and the signal patterns we show the isolated and
the interfered throughput. We also quantify the severity of the interference effect in terms of
the percentage degradation of the throughput T , defined as:
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T =
Tisolated − Tinterfered

Tisolated
× 100

A high value of T indicates high degradation and severe interference caused by the signal
pattern. As the focus of this study is the severity of the interference, in the remainder of the
chapter we restrict ourselves to relative throughput degradation figures.

Access patterns

We executed all the combinations of access patterns for chunk sizes of 1 MiB, 16 MiB, and
256 MiB on both Lustre and GPFS. Figure 3.5a shows the throughput drop for GPFS. For 1 MiB
and 16 MiB chunk sizes, aggregate-write has a higher interference potential compared with
the other two patterns. When aggregate-write is executed against the other two patterns,
the latter’s throughput drops by more than 80%, while the former’s drops by a small amount.
This shows that aggregate-write occupies most the I/O resources at 1 MiB and 16 MiB chunk
sizes and dominates the other two patterns. At a chunk size of 256 MiB, open-write-close and
write-seek are less affected by aggregate-write, with a throughput drop of about 40% to 50%.
Aggregate-write itself is more affected by the other two patterns, indicating equal sharing
of I/O resources. Open-write-close and write-seek have throughput drops of about 45% to
55% when executed against each other, which can be caused by equal distribution of I/O
resources. Open-write-close, at chunk sizes of 16 MiB and 256 MiB, when executed against
itself, becomes serialized, that is, one pattern of the pair executes first, almost completely
degrading the second pattern during first’s execution.

The same set of experiments was repeated on Lustre, as shown in Figure 3.5b. The
interference trend for the 1 MiB, 16 MiB, and 256 MiB chunk sizes is similar to the trend
on GPFS, but with different potential. Aggregate-write interferes the most at chunk size of
1 MiB, while itself being affected the least. However, the difference in throughput drop is not
as severe as on GPFS. As the chunk size is increased to 16 MiB and 256 MiB, respectively, the
interference potential of aggregate-write decreases, whereas that of open-write-close and
write-seek increases. At a chunk size of 256 MiB, write-seek causes most of the throughput
reduction, more than 60% for the other two patterns.

Chunk size

As the interference potential of the above patterns is affected to a large degree by the chunk
sizes, we evaluate this more closely. We executed aggregate-write against open-write-close
and write-seek for chunk sizes increasing from 1 MiB to 256 MiB logarithmically. The results
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Figure 3.5: Drop in I/O throughput when the patterns are executed in pairs against each
other. The pattern at the top shows the probe, while the x-axis shows the signal patterns. A
lower bar means lower passive interference and higher throughput.

for GPFS are shown in Figure 3.6a. Open-write-close seems to share I/O resources with
aggregate-write more evenly as the chunk size increases, with 256 MiB being the break-even
point. Write-seek shows a similar trend but with the slope shifted to the right. Here the
convergence begins when a chunk size of 32 MiB is reached. The interference trend is similar
to open-write-close beyond the chunk size of 32 MiB, presumably because the I/O resources
are shared more evenly. The two patterns break even at the last data point of 256 MiB.

We also investigated the effects of chunk size on Lustre. The results are summarized in
Figure 3.6b. The trend of open-write-close on GPFS, where, at small chunk sizes, aggregate-
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Figure 3.6: Effect of chunk size on throughput degradation.

write dominates open-write-close, reappears on Lustre. As the chunk size increases, open-
write-close starts to perform better. The trend culminates at 256 MiB, where open-write-close
and aggregate-write experience the same amount of throughput drop. In the case of write-
seek, aggregate-write dominates at small chunk sizes. However, as the chunk size is increased,
the trend is quickly reversed. Both patterns suffer the same amount of throughput degradation
at 16 MiB, beyond which write-seek starts to dominate aggregate-write.

High frequency vs. low frequency

As the sensitivity to chunk size shows, the trend of interference among the patterns depends
on their specific characteristics. To evaluate this further, we consider the file access frequency
of a pattern. However, covering the whole breadth of possible write access frequencies is
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Figure 3.7: Drop in I/O throughput when the patterns are executed in pairs against each
other. The pattern at the top shows the probe, while the x-axis shows the signal patterns. A
lower bar means lower passive interference and higher throughput. The signal pattern is
executed in periodic mode.

prohibitively expensive. Instead, we expose the unaltered probe to a periodic signal, in which
write activity phases alternate with computation busy-wait phases, mimicking bursty I/O.
The period length of the signal was set to 24 seconds so that multiple consecutive time slices
of LWM2 fall in one period. The results of the experiments are shown in Figure 3.7.

Overall, the interference trend, both for GPFS and Lustre, is similar to what was observed
for the sustained activity patterns, but with lower intensity. Aggregate-write still dominates
open-write-close and write-seek at 1 MiB chunk size. Similarly, at the larger 16 MiB chunk
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Figure 3.8: Effect of process count on the passive degradation produced by patterns on
GPFS and Lustre.

size, aggregate-write causes lesser degradation while finding itself being victimized to a
higher degree. On GPFS, at a chunk size of 16 MiB, open-write-close suffers less throughput
degradation against itself and against write-seek. One of the reasons can be that at lower
frequencies and at larger write chunk size, the metadata operations cease to be the I/O
bottleneck, while, additionally, the low frequency prevents the write bandwidth of the system
from being saturated. As a result, the performance of open-write-close degrades to a lesser
degree.

Process count

It has been previously observed that an application with higher process count dominantly
occupies the I/O resources of a system when run against an application with lower process
count [33]. However, does this relationship hold true if the two applications have different
file access patterns? We investigated this by running open-write-close and aggregate-write
against each other with a chunk size of 1 MiB. Because write-seek is similarly dominated by
aggregate-write at this chunk size, we have concentrated our study on open-write-close. For
each run, we executed the open-write-close pattern with 256 processes and the aggregate-
write pattern with 64, 128 and 256 processes. The results of the experiments are shown in
Figure 3.8.

The blue line shows the throughput degradation of open-write-close while the red line
shows the throughput degradation of aggregate-write. For GPFS, we see in Figure 3.8a that
open-write-close is degraded severely, even when aggregate-write occupies only one fourth
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the space. As we increase the process count of aggregate-write, open-write-close degrades
even more severely. Figure 3.8b shows the trend for Lustre, which is similar to that of GPFS,
but with lesser degradation. Again, we see that open-write-close suffers higher degrees of
degradation when run against aggregate-write, even when aggregate-write is one fourth
the size. The throughput of open-write-close decreases even further as the process count of
aggregate-write increases. From these experiments we can conclude that, when it comes to
sharing of I/O resources between applications, the write-access pattern can play a bigger role
than the application process count.

Shared file

We also evaluated the increasingly common mode of shared files. We set up the sharing in
such a way that each process was assigned a contiguous section of the file. The size of the
section was the same as the chunk size for open-write-close and write-seek, while it was
equal to the total write volume of each process for aggregate-write.

Figure 3.9a shows the interference potentials on GPFS. At a chunk size of 16MiB, aggregate-
write dominates the other two patterns significantly, while at 256 MiB, even though being
still dominant, the drop in throughput it causes is less. These findings are comparable to
the results with our single-file-per-process setup. However, in the pairwise execution, we
found some cases where one pattern would completely dominate the other pattern, leading to
serialization of the I/O traffic between the pairs. This serialization behavior was observed for
both, patterns running against themselves and against other patterns. Figure 3.9b presents
the results on Lustre, where we observed that aggregate-write dominates open-write-close
at a chunk size of 16 MiB, while becoming itself slightly dominated by write-seek. At a
chunk sizeof 256 MiB, open-write-close and write-seek are evenly interfered in all the runs
but dominate aggregate-write. The behavior of aggregate-write is again consistent with the
one-file-per-process case. Open-write-close, however, is less prone to interference at larger
chunk sizes.

In the presented results, we have only touched a small set of possible options of writing
shared files. Furthermore, shared files have their own set of characteristic access patterns.
Therefore, a full coverage of shared files warrants a separate study.

Discussion

We evaluated different factors and found that file access patterns and the chunk size of their
I/O operation have a large impact on the interference potential of applications. At smaller
chunk sizes, open-write-close and write-seek are dominated by aggregate-write, significantly
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Figure 3.9: Drop in I/O throughput in MPI shared-file when the patterns are executed in
pairs against each other. The pattern at the top shows the probe, while the x-axis shows
the signal patterns. A lower bar means lower passive interference and higher throughput.

degrading the throughput of the former two while exerting little pressure on the latter. On
the other hand, as chunk size increases, so does the interference potential of open-write-close
and write-seek. At a certain chunk size, they both degrade as much as aggregate write,
beyond which the trend may even become reversed. Open-write-close has less interference
potential on Lustre compared to write-seek, while on GPFS they show similar degradation
trends. The factors contributing to the interference trend are not clearly known. However,
both the number file blocks written and the number of metadata operations performed by a
pattern are determinant, and would explain the trend in Figure 3.6b. With the increase in
chunk size, the number of blocks written by aggregate-write also increase, while the rate of
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Application Access pattern Chunk size

OpenFOAM open-write-close a few bytes
MADBench2 write-seek 74MB
HACCIO aggregate-write 386MB

Table 3.3: Applications and the access pattern they represent including the chunk size.
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Figure 3.10: Throughput degradation of OpenFOAM when run against the patterns.

metadata operations decreases.

3.3.4 Applications

After establishing an interference relationship among the access patterns through micro-
benchmarks, we investigated the same effects using realistic applications. We consider three
typical I/O-intensive HPC applications, OpenFOAM, MadBench2, and HACCIO. All three
together provide one realistic use for each of the three access patterns, as summarized in
Table 3.3.

OpenFOAM

OpenFOAM (Open source Field Operation And Manipulation) [58] is an open source
computational-fluid-dynamics software. It is distributed by the OpenFOAM foundation.
It is written in C++ and has a modular design. It provides parallel implementations of
mathematical equation solvers and general physical models. It uses standard C++ file I/O
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for checkpointing periodically. At a checkpointing event, each process writes a new file a few
kilobytes in size, which makes the checkpointing behavior similar to our open-write-close
pattern. As LWM2 has limited support for C++ file I/O, we were able to record only the
file-close count in our experiments. However, it is possible to substitute the throughput rate of
OpenFOAM with the file-close rate. OpenFOAM frequently opens and closes files, up to 14000
in one time slice in our experiments. As the application itself had a few hundred processes,
this means that most of the files closed in a time slice were also created in it. This makes
it possible to substitute the throughput rate with the file-close rate. We complement this
information by the dilation of the execution time, which is caused by drop in I/O throughput.

OpenFOAM is a library which is used by other applications as equation solver. In our
setup, we used the version 2.3.0 of OpenFOAM and executed the cavity example from the
official tutorial against our three micro-benchmark patterns, both on GPFS and Lustre. We set
the chunk size of the patterns to 1 MiB, the smallest chunk size used in our micro-benchmark
only experiments.

The I/O performance of OpenFOAM degraded when executed concurrently against all the
three patterns, as shown in Figure 3.10a. As the I/O access pattern of OpenFOAM is similar
to our open-write-close pattern, and it performs I/O at small chunk sizes, the significant
interference potential of the aggregate-write patterns is immediately evident. It causes more
than 80% drop on Lustre and 90% on GPFS Unlike the micro-benchmark, OpenFoam suffered
also about 80% throughput drop against open-write-close. One reason for this behavior
can be the unequal chunk size of the patterns and OpenFOAM. To verify this, we executed
the patterns at 2 KiB chunk size. The results are shown in Figure 3.10b. Aggregate-write
still dominates OpenFOAM, with a throughput drop of more than 90% for GPFS. Lustre on
the other hand shows a slightly reduced drop of 70% in throughput. Open-write-close now
degrades OpenFOAM’s throughput by around 60%, similar to what the micro-benchmark
allowed us to see. The interference of write-seek on Lustre remains at 30% for both chunk
sizes. However, it declines from around 50% for 1 MiB to 10% for 2 KiB on GPFS. Overall,
the interference trend is similar to that of our purely micro-benchmark-based observations.

To gain deeper understanding of the I/O interference dynamics during parallel execution,
we executed open-write-close and aggregate-write in periodic mode against OpenFOAM. The
periodic mode of the micro-benchmarks have been described in Section 3.3.3. We show the
time slice view of OpenFOAM executing against open-write-close in Figure 3.11a and against
aggregate-write in Figure 3.11b. During the active phase of the open-write-close pattern, the
performance of OpenFOAM degrades by 60%-70%. On the other hand, the active phase of
aggregate-write degrades the performance of OpenFOAM by up to 95%. This is quite evident
in Figure 3.11b as the file-close rate of OpenFOAM drops significantly under interference.
Comparing OpenFOAM to our open-write-close micro-benchmark, we see that it suffers in a
similar way when exposed to aggregate-write, that is, its performance degrades significantly.
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(b) OpenFOAM vs. aggregate-write

Figure 3.11: Execution of OpenFOAM against periodic occurrences of open-write-close
and aggregate-write on GPFS. The time-slice view shows low throughput during the active
phases of the micro-benchmarks.

MadBench2

MADbench2 is derived from MADCAP, which is a cosmic microwave background radiation
analysis software. It performs dense-linear-algebra calculation using ScaLAPACK [23]. The
matrices required for its calculation normally do not fit in memory. Therefore, the matrices
are stored on disk and read when needed. This means MadBench2 performs complex I/O
operations in four phases. For our experiments, as the scope of our study is write-write
contentions, we concentrate on the first phase, which has only writes and seeks. The other
phases are either reads or a mixture of reads and writes. We henceforth use MadBench2 to
refer to the build with the first phase only.

For the experiments, we setup MadBench2 to use POSIX I/O in the one-file-per-process
mode. To maximize performance, we used the configuration recommended by Borill et
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Figure 3.12: Throughput degradation of MadBench2 when run against different patterns.

al. [12], which is: WMOD=1, NPIX=50,000, NBIN=36, NGANGS=1, SBBLOCKSIZE=1,
FBBLOCK- SIZE=128. Furthermore, MadBench2 is configured to run in I/O mode. In I/O
mode, MadBench2 acts as a pure I/O benchmark, replacing computation with busy-wait
cycles. With this configuration, and using 256 processes, MadBench2 writes 670 GB of data,
with each process performing seeks with an offset of about 74 MB during execution. This
makes the I/O behavior similar to the write-seek pattern with a chunk size of 74 MB. For this
reason, we executed MadBench2 against the three patterns at a chunk size of 64 MB. The
results are shown in Figure 3.12.

The throughput degradation on both file systems is quite different for MadBench2. On
GPFS, aggregate-write generates the most interference, reducing the throughput by about
80%. Similarly, write-seek degrades the throughput of MadBench2 by about 40%. However,
in the case of open-write-close, MadBench2’s runtime improves. For a chunk size of 64 MiB,
the higher interference aggregate-write generates is consistent with our micro-benchmarks
results. On Lustre, all the patterns generate similar interference levels, with aggregate-write
degrading the throughput of MadBench2 slightly less compared to others. The reason is
that, for write-seek, the interference trend already reverses at a chunk size of 64 MiB, as was
shown in Figure 3.6b. Overall, the passive interference behavior of MadBench2 resembles
that of our write-seek micro-benchmark.
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Figure 3.13: Throughput degradation of HACCIO when run against different patterns.

HACCIO

HACCIO is an I/O benchmark code derived from a cosmology software framework called HACC
(Hardware Accelerated Cosmology Code). HACC simulates the formation of collisionless
fluids under the influence of gravity using N-body techniques. HACC has very high I/O
demands, where a small simulation can write terabytes of data [44].

HACCIO writes large checkpoint files during its execution. It creates one file per process,
and incrementally writes data to it. During checkpointing, the files are written, read back, and
verified. As our work concentrates on write-write contention, we removed the read-back and
verification part in our experiments. HACCIO can use different I/O modes during execution,
including POSIX I/O, MPI with one file per process or MPI with one or more shared files.

In our experiments, we ran HACCIO with 256 processes and with POSIX I/O. During
execution, each process wrote 3.6 GiB of data to its file, in chunks of 381 MiB. The I/O
behavior can be equated to the aggregate-write pattern with a chunk size of 381 MiB. We
ran HACCIO against the three patterns with chunk sizes of 1 MiB and 256 MiB, respectively.
The results are shown in Figure 3.13.

With 1 MiB, on both GPFS and Lustre, open-write-close and write-seek degrade HACCIO’s
performance to a smaller degree than aggregate-write. This trend is consistent with our
micro-benchmark results. In the case of aggregate-write, the degradation HACCIO suffers on
GPFS is slightly higher than on Lustre (60% vs. 40%). In our micro-benchmark experiments
for 1 MiB and 16 MiB, we also saw aggregate-write suffering a degradation of around 40% on
Lustre and between 50% and 60% on GPFS. With 256 MiB on Lustre, the degradation caused
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Figure 3.14: Throughput degradation when the applications are run against each other.

by write-seek grows to about 60%, while open-write-close and aggregate-write cause around
50% degradation. This is again similar to what has been observed with micro-benchmarks.
Write-seek dominates aggregate-write at large chunk sizes. On GPFS, open-write-close
degrades HACCIO by less than 10%. On the other hand, write-seek and aggregate-write
cause about 50% degradation of the HACCIO write throughput. Overall, the trend is similar
to our micro-benchmark-based observations.

Application vs. application

After evaluating how micro-benchmarks with isolated access patterns interfere with realistic
applications, we extend our investigation to interference between realistic applications. To
achieve this, we ran OpenFOAM, MADBench2, and HACCIO first against themselves and later
against each other, always using 256 processes per application. The results are shown in
Figure 3.14. In the figure, the x-axis shows the probe applications whose runtime dilation
is reported. For each probe application, we show a separate bar for each signal application
that is causing degraded performance. In these figures, each application represents an access
pattern, however, each one of them has a different chunk size and access frequency. Therefore,
the interpretation our results requires consideration of pattern type, chunk size, and access
frequency.

On GPFS, HACCIO generates the biggest interference of all, with OpenFOAM being
degraded by more than 90% and MadBench2 by more than 60%. The values are similar to
open-write-close against aggregate-write at a chunk size of 1 MiB and write-seek against
aggregate-write at 256 MiB. MadBench2 degrades OpenFOAM by more than 80% and

55



HACCIO by more than 10%. Here, MadBench2’s behavior diverges from write-seek, with
high degradation for OpenFOAM and low degradation for HACCIO. A possible explanation
for OpenFOAM against MadBench2 can be the large chunk-size difference, while for HACCIO
it can be low access frequency, as was observed for periodic probe signals in Figure 3.7a.
OpenFOAM against the other two applications generates a comparatively small throughput
degradation. This is similar to our observation of open-write-close at small chunk sizes.

On Lustre, HACCIO degrades OpenFOAM by about 60%, while being degraded itself by
less than 10%, similar to what was observed with micro-benchmarks. HACCIO degrades
MadBench2 by about 55%, while being degraded itself by about 40%. This is again similar to
micro-benchmark results, where for chunk sizes greater than 16 MiB, write-seek dominates
aggregate-write. Looking at MadBench2 against OpenFOAM, we see that OpenFOAM’s
runtime is dilated by about 70%. This is because of the large chunk-size difference between
OpenFOAM and MadBench2.

Considering the different access patterns, write chunk sizes, and access frequencies, the
overall results are in line with our observations of synthetic micro-benchmarks.

3.4 Conclusion

In this study, we evaluated the interference potential of different I/O access patterns, and
assessed factors such as the behavior of the patterns, their write chunk size, access frequency,
process count, and sharing mode. Specifically, we found that file access pattern and its I/O
chunk size are a significant factor in determining the interference potential of applications.
At small chunk sizes, metadata-intensive applications can slow down significantly when
executing concurrently with data-intensive applications, up to a factor of five in one of our
experiments. However, the data-intensive applications are only slightly affected. Furthermore,
the data-intensive application had higher interference potential even at smaller process count.
However, with increasing chunk size, the interference trend is reversed.

Preventing I/O interference in a centralized and shared parallel file system is challenging.
However, the impact of interference can be reduced by separating file accesses from different
applications, either in space by isolating their I/O or in time by scheduling them separately.
For this technique to work, it is important to automatically identify aggressive and sensitive
patterns. Our technique can be leveraged to identify them and to dynamically separate them.
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3.5 Contributions

The write-write contention study described in this chapter was carried out as a master thesis
project by Chih-Song Kuo under my supervision [72], as also described in Section 1.6. The
concept of inter-application interference, the method to identify it, and the profiling tool
LWM2 were already developed before his thesis, as described in Chapter 2. I had also identified
the three write patterns used in this study. Each process in the open-write-close pattern
initially accessed the same file in all iterations and was later changed to a new file for every
iteration based on reviews of our conference paper [73]. I had also developed the micro-
benchmark used in this study and had gathered initial experimental data for pattern vs. itself.
Chih-Song carried the research from this point onward. His contributions are extending the
LWM2 profiler with server-side profiling and conducting all the experiments presented in this
chapter, including the application-vs-application experiments. He also choose the appropriate
I/O phase of MadBench2 for the experiments. He further identified the server-side imbalance
phenomenon, and investigated the factors behind it. The postmortem approach to mitigate
its effects is a joint contribution.

The master thesis was a joint collaboration with Prof. Matsuoka’s group at Tokyo Institute
of Technology. They provided the computing resources for all our experiments on TSUB-
AME2.0 supercomputer, and also helped Chih-Song develop the module to monitor the I/O
servers.
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4 Visualizing traffic on
high-dimensional torus networks

The communication interconnect is a shared resource on a HPC system. It binds all the
compute nodes together, allowing applications running on them to exchange messages.
In order to meet the increasing resource requirements of applications while also meeting
financial constraints, innovative network architectures have been deployed on HPC systems.
Examples include fat-tree [77], torus [27], and dragonfly [67] networks.

The torus network in particular has a peculiar architecture, as shown in Figure 4.1. It has
a switch-less architecture, where the compute nodes are directly connected to each other,
forming a three-dimensional [10], five-dimensional [21], and even six-dimensional [5] tori.
Such a network architecture provides high bandwidth at low latency among neighboring
compute nodes. Furthermore, as the network is scaled to a higher number of nodes, the
number of required interconnects also scales linearly. In comparison, the number of required
interconnects scale quadratically on an all-to-all network. As a result, torus networks provide
scalability at low cost. However, it can also lead to inter-application interference.

Messages in a torus network are routed through intermediate nodes. When the commu-
nication nodes are far apart, the messages are exposed to traffic from intermediate nodes,
which can lead to contention. Some systems, such as IBM Blue Gene systems, assign exclusive,
compact network sections to applications. Users also have a degree of freedom in mapping
application processes to compute nodes. Mapping communicating processes to neighboring
nodes localizes network traffic and reduces contention [139].

Other systems, such as Cray XE6 systems, do not enforce any restrictions on the process-to-
nodemapping. The nodes can be located close to each other or dispersed in the network, which
can lead to contention and variation in performance. Bhatele et al. compared the performance
of Mira and Intrepid (Blue Gene systems) with Hopper (Cray XE6) using a communication-
heavy application [8]. They found the application to have consistent performance on the
former two while it exhibited significant variation on the latter, caused mainly by inter-
application interference.

59



Figure 4.1: A three-dimensional torus network with a (4 × 3 × 3) network topology. The
loop-back links are shown as dashed lines.

Identifying inter-application interference on these torus networks requires capturing
communication traffic, analyzing it, and also providing visual feedback to the user. The
visualization should be system-centric, that is in terms of compute nodes and their connecting
network routes, making it possible to identify hotspots on the network and relate them back to
applications. However, projecting a multi-dimensional torus network onto a two-dimensional
display for an intelligible feedback is challenging. This is especially the case for systems with
high-dimensional torus networks, such as the five-dimensional network of IBM Blue Gene/Q
systems [21] and the six-dimensional network of Fujitsu’s K computer [5]. We tackle this
problem by proposing a visualization technique based on displaying simultaneous views to the
user. Each view displays the same network section but uses a different visualization paradigm.
The views also focus on different dimensions. They are interactive and synchronized with
each other.

In the remainder of this chapter, we present our visualization technique demonstrating
its use of simultaneous views. We then apply the technique on a synthetically generated
application to identify hotspots. We summarize the chapter at the end and also outline the
contributors of this work.
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(a) Left: the detailed plane view, visualizing the traffic inside the (a×b) planes in full detail. Right:
the composite plane view summarizing the traffic in the remaining dimensions. The ordering of the
dimensions is the same in the views.

(b) The zoomed-in view of the (a×b) planes and the polygon view, displayed side-by-side. The
polygon view shows node-level details of the selected plane, separately displaying the incoming and
outgoing network traffic links.

Figure 4.2: An interactive method to visualize traffic on a high-dimensional torus.

4.1 Visualization

We use the example in Figure 4.2 to explain our approach. The figure depicts the mockup of
an application on a (a×b×c×d×e) dimensional torus network.
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4.1.1 Detailed plane view

In Figure 4.2a, the detailed plane view is shown on the left side. The view displays the
network traffic along two dimensions as a series of planes, while the planes themselves are
ordered based on the other dimensions. In the example, the planes visualize the traffic along
the (a×b) dimensions. The planes are horizontally ordered first along the c dimension and
then along the d dimension. The vertically ordering is along the e dimension.

4.1.2 Composite plane view

The composite plane view compliments the detailed plane view, shown on the right side in
Figure 4.2a. The blue rectangles in the figure represent the (a×b×c) cuboids. The black bars
represent the (a×b) planes of the detailed plane view, collapsed along the b dimension. As
the length of the dimension a is four, there are four lines between the black bars. Each line
represent the traffic between the planes along the c dimension. The traffic is aggregated
along the b dimension, that is every line n represents the traffic between between nodes on
plane (a×b) where a = n.

The blue rectangles are ordered horizontally along the d dimension and vertically along
the e dimension. The horizontal lines between them depict the traffic between the (a×b)
planes along the d dimension, while the vertical lines summarizes the traffic along the e

dimension.

Taken together, the detailed and composite plane views display the traffic along all
the dimensions. The views are synchronized, with the former detailing traffic along two
dimensions while the latter summarizing it in the rest of the dimensions. Users can select the
dimensions and their ordering in the two views.

4.1.3 Polygon view

Users can magnify a plane by selecting it in the detailed plane view. In that case, the detailed
plane view focuses on a single cuboid while the right side shows the polygon view. An
example is shown in Figure 4.2b, where the (a×b) planes are magnified. The right side of the
figure depicts the polygon view, which shows node-level detail of the selected plane. Nodes
are represented by polygons, with each corner representing one dimension of the network.
The pair of lines originating from the center towards the corners display the incoming and
outgoing traffic along that dimension.
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(a) The detailed plane view showing detailed traffic inside the (b×c) planes. The ordering of the
dimensions is shown by the overlay.

(b) Changing the order of the dimensions to show the (a×d) planes in the detail plane view.

(c) The polygon view, showing node-level details for the selected plane. The polygon view clearly
shows alternating traffic along the d-dimension for even- and odd-ranked nodes.

Figure 4.3: Visualizing a synthetic example application occupying a (4×4×4×4×2) network
section. The network traffic alternates along the d dimension for even- and odd-ranked
nodes.
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4.2 Example

We have developed a software prototype implementing our visualization technique. We
present an example using a synthetically generated application. The application occupies a
(4×4×4×4×2) section of a (a×b×c×d×e) dimensional torus network. Figure 4.3 visualizes
the traffic of the example application.

In Figure 4.3a, the left side presents the detailed plane view, showing the traffic inside the
(b×c) planes. The links on the edges visualize the loop-back links. The planes are horizontally
ordered, first along the a dimension inside the blue rectangles and then along the d dimension
inside the brown rectangle. Dimension e is used for vertical ordering.

An overlay depicts the ordering of the dimensions. The nested dimensions (dimension b,
c, and d in our example) represent the planes and their ordering inside the blue rectangles,
while the outer dimensions represent the ordering of the blue rectangles.

The composite view is shown on the right side of the figure. In the view, the ordering of
the blue rectangles remain the same. The composite view summarizes the traffic along the c,
d, and e dimensions. In the view, we see uneven traffic along the d dimension.

We investigate the uneven traffic by changing the ordering of the dimensions to focus
on (a×d) planes, as shown in Figure 4.3b. In the detailed plane view, we see that the traffic
along the d dimension alternates between even- and odd-ranked nodes. We can further zoom
in on a specific plane by selecting it in the detailed plane view, as depicted in Figure 4.3c.
The left side now shows the four (a×d) planes of the (a×b×d) cuboid, while the right side
shows the polygon view of the selected plane. In the view, the nodes are horizontally ordered
along the a dimension and vertically along the d dimension. Each node is represented by
a pentagon, and the pairs of lines show the traffic along each dimension. A overlay at the
top right corner shows the dimension associated with each corner. The polygon view clearly
shows alternating traffic along the d dimension for even- and odd-ranked nodes.

4.3 Interference identification

The technique presented in this chapter gives users a visual feedback about the traffic on torus
networks. It can be used to identify hotspots and inter-application interference in the network.
By distinguishing the applications of the processes that are executing on the compute nodes,
it is possible to identify whether an application is surrounded by noisy neighbors and whether
it is vulnerable to external interference. However, the degree of interference not only depends
upon the communication characteristics of the applications, that is the frequency, volume, and
type (point-to-point or collective) of the communication, but also on the how the processes
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of the applications surround each other in the network and the degree of traffic on the links
between them. Providing an intuitive visual feedback simplifies understanding the latter.
Coupled with our method of globally synchronized time slices (presented in Chapter 1), it
will be possible to establish simultaneity among network events and identify inter-application
interference.

4.4 Conclusion

We presented a visualization technique based on simultaneous views to display traffic on
high-dimensional torus network. The views are interactively synchronized and allow users
to zoom into different sections of the network. Using a synthetic example application, we
demonstrated how our technique can be used to find irregular traffic patterns. Our technique
will help users visually locate network hotspots and identify inter-application interference on
high-dimensional torus networks.

4.5 Contributions

The work presented in this chapter was described in the bachelor thesis of Lucas Theisen [127]
conducted under my supervision, as described in Section 1.6. This work was also published
in the proceedings of the first workshop on Visual Performance Analytics (VPA) [128]. I
proposed the idea of visualizing high-dimensional torus networks through simultaneous view
that are interactively synchronized. I further proposed displaying the torus network as a
series of planes in detailed plane view, along with a summary in a separate view. Lucas
worked on the implementation, and also came up with the concrete ideas for the summary
in the form of the composite view and also contributed the polygon view. He also came up
with other visualization techniques, which are covered in his thesis [127] and also in the
mentioned paper [128]. Those techniques are not discussed in this dissertation.
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5 Estimating the impact of interference

On many HPC systems, the execution time of applications can vary considerably between runs.
The source of the variation can either be the operating system or inter-application interference
caused by contention on shared resources by simultaneously running application. On such
systems, measuring and analyzing the performance of applications can be challenging. To get
an accurate picture of the performance of an application and to correctly identify bottlenecks,
a performance measurement has to be as close as possible to the intrinsic behavior of an
application. On systems that exhibit high run-to-run variation in application execution time,
a measurement captures both the performance characteristics of an application and also the
variation induced by external factors. However, for accurate analysis, the former has to be
separated from the latter.

In common HPC applications, the natural performance characteristics remain the same in
multiple executions, while the variation induced from external sources changes from run to
run. Therefore, one approach to obtain a measurement as close as possible to the intrinsic
behavior of an application can be to take multiple measurements, and pick the fastest run or
the mean or median run, if a certain degree of interference is considered natural.

However, not only does this method consume more resources, but it is also inherently
unreliable as the fastest run might also be interfered. After all, the system load also changes
along macroscopic time scales (e.g., daytime or season).

To help performance analysts decide how much they can “trust” their benchmarking
results and whether they need to repeat measurements, in this chapter, we present a novel
approach to estimate the impact of external interference on the execution time of a common
class of MPI applications. As a distinctive feature, our method can deliver such an estimate
with negligible overhead based on a single run. Moreover, it is agnostic to the source of
interference. Instead, it exploits the properties of bulk-synchronous MPI applications that
perform frequent global all-to-all operations. Such applications not only make up a significant
portion of HPC workload (almost two-thirds of unique benchmarks in the SPEC MPI2007 suite
V2.0 [90] fall in this category), they are also the most sensitive to external interference [3,
40, 48].
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5.1 Approach

Most HPC applications are iterative in nature. After a brief initialization, they go through
different phases that are repeated over and over. Similar phases have similar execution times
unless a phase instance is struck by external interference. The stronger the impact, the greater
the elongation of the execution time.

Figure 5.1a shows a trace snippet of a typical HPC application. The application performs
several iterations, whose execution times are, however, not uniform. Figure 5.1b presents a
histogram of the execution times of the segments, showing variation in them. The variation
can be either intrinsic or extrinsic. Intrinsic variation is the natural behavior of the application,
as some iteration of the application perform extra work, like checkpointing or additional
computation, and therefore have longer execution times. Extrinsic variation is the caused
by external influences, such as inter-application interference. As the variations are not
distinguished in the figure, it is not possible to elicit the natural behavior of the application.
Figure 5.1a identifies two classes of iterations, A and B, based on distinguished by their
programmatic characteristics and visible as two peaks in Figure 5.1b. Figure 5.1c and 5.1d
show the execution time histograms of these segments. The variation that remains in these
two histograms is extrinsic and caused by noise such as interference from other jobs executing
at the same time.

The key is therefore to divide the execution of an application into segments and classify
them based on their intrinsic characteristics. Without external interference, the segments
in each class will have the same execution time. In other words, any variation seen in the
execution time of segments belonging to a class is caused by extrinsic sources.

In our approach, we first identify different segments in an application and then classify
them into different classes. As execution time of segments in a class can vary, we have found
hardware and software counters that represent the computation, communication, and file
I/O features suitable for classification of application execution segments.

5.1.1 Methodology

In this section, we present the concepts and methodology that form the basis of our approach.

Execution segments

To identify segments, we take advantage of the bulk-synchronous nature of many HPC
applications, specifically we exploit periodic (blocking) all-to-all communication. Although
this practically restricts our method to such applications, we claim that we can still cover
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Figure 5.1: Application iterations and their histograms.
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Wait-state Propagate Synchronize No impact

Segment Segment

Figure 5.2: Execution segments and wait-state propagation.

major portions of today’s HPC workloads. After all, this is not an uncommon feature. For
example, almost two-thirds of unique benchmarks in the SPEC MPI2007 suite fall into this
category. At the same time, applications with frequent all-to-all communication suffer more
than others from external interference because every delay of a process will likely induce
waiting time in all others.

We use the global all-to-all communication operation as a boundary between execution
segments. Segments identified this way might not exactly match the programmatically
specified iterations of an application. Nonetheless, an all-to-all operation will appear at least
once in the core loop of a bulk-synchronous application and will therefore identify repeated
application execution segments. When multiple all-to-all operations appear in an iteration,
the iteration will be split into multiple parts. Therefore, an all-to-all operation can be used to
isolate repeating application execution segments.

Furthermore, such all-to-all operations constitute a global synchronization point among
processes. While the MPI standard does not explicitly require an all-to-all synchronization,
the nature of the operation leads to such a dependency [50]. As a result, the execution of a
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bulk-synchronous application can be split into multiple segments, with each ending at an
all-to-all operation. These segments will be independent of each other with respect to wait
states that occur in response to external interference. That is, a wait state whose root cause
lies within a segment will not propagate across a global synchronization point [11], as shown
in Figure 5.2.

Due the above two reasons, application execution segments can be analyzed independently
of each other, and at the same time provide a representation of repeated application segments.
We therefore use them as a basic unit of our analysis.

For applications using non-blocking collectives, the wait operation of the collective call
can be used as a boundary indicator. For non-bulk-synchronous applications, (similar to the
approach of ScalaTrace [92]) recurring MPI calls can be used to identify repeating application
areas that represent execution segments. However, in both cases, adjacent application
segments may not be fully independent, with wait-states and interference-induced delays
potentially propagating across segment boundaries. We therefore concentrate on bulk-
synchronous applications with blocking collectives in this study and consider the remaining
cases as future work.

Clustering segments based on computation features

To classify segments, we first compare them in terms of their computation work. We use the
floating-point instructions hardware counter to measure the amount of work done. When
the floating-point counter is not available, such as on Intel Haswell processors [101], we use
the total number of completed instructions as a proxy. To focus solely on the computation
parts, we discard the communication and I/O operation parts of a segment when counting
the number of instructions. While the captured values are still perturbed by OS jitter, we have
found floating-point operations to be the most stable, whereas the total instruction completed
count shows less than 1% variability.

We cluster segments based on the above mentioned counters to establish similarity among
them. As the duration of segments in an application can vary widely, the possible range of
feature values can be quite large. Furthermore, OS jitter and inaccuracies introduced when
reading and storing hardware counters cause variation among hardware-counter values of
similar segments [32]. Therefore, the most appropriate clustering algorithm for our task
needs to handle a large range of values, and at the same time be tolerant to variations inside
a cluster.
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Figure 5.3: Clustering of segments based on relative and absolute thresholds.

Common clustering algorithms

Common clustering algorithms such as K-means require the number of clusters to be known a
priori. If such information is not available, such algorithms are executed for a range of cluster
counts and an internal cluster criterion, such as the Calinski and Harabasz (CH) criterion [16],
is applied to identify the most appropriate number of clusters. Even for a particular number of
clusters, these clustering algorithms require several iterations to find the optimum centroids.
These factors result in algorithms that, overall, are complex to implement and can take a
significant amount of time for large numbers of data points.

Density-based algorithms such as DBScan [34] seem to present an alternative. They can
identify the appropriate number of clusters in a single pass. Such algorithms use a distance
threshold to split the data points into clusters. However, relying on a fixed distance for a large
range of values results in either merging distinct clusters with lower values if the threshold
is too large, or splitting a single cluster with a modest range of higher values into multiple
clusters if the threshold is too small.

Clustering with relative distance

To overcome these difficulties, we designed a simple clustering algorithm that can identify
clusters in one-dimensional data even with a large value range in a single pass. The algorithm
uses the same principles as density-based algorithms, but relies on relative distance between
any two data points. The algorithm requires the data type to have a total order and a
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threshold for the maximum relative distance between any two data points in a cluster. We
define the relative distance between two points as subtracting one from the ratio between
the the larger and the smaller distance of the two points from the origin. As the algorithm
relies on relative distance, it can identify clusters with a modest degree of internal variance
both at the lower and higher end of the value range.

Figure 5.3a illustrates the challenge of clustering segments with a high value range and
variation among similar segments. In the figure, we have the floating-point operations (FLOP)
count of six segments which we wish to classify. For clarity, the figure also shows the FLOP
count in an ascending order. To a human observer, it would seem natural to classify segments
1 and 2 together, and segments 3 and 6 together. Segments 4 and 5 would seem to form their
own clusters. Now we classify them based on relative and absolute distance, as shown in
Figures 5.3b to 5.3d.

In each figure, the bottom row shows the segment values in an ascending order. The
segments are grouped into clusters, identified by different colors. The second from bottom
row shows the distance (relative or absolute) between consecutive segments. In Figure 5.3c
and 5.3d, we see that the absolute distance between segments 2 and 4 is 106 and it seems
natural to classify them into separate clusters. On the other hand, segments 3 and 6 have a
distance of 191 and should be clustered together. With absolute distances, it is not possible
to having such a clustering. Figure 5.3c shows clustering based on absolute distance with a
threshold of 100. In the figure, segments 2 and 4 are clustered separately, but at the same
time, segments 3 and 6 are also separated. In Figure 5.3d, the threshold is increased to 200.
Now segments 3 and 6 are not clustered together, but so are segments 2 and 4. On the other
hand, relative distance can easily cluster the segments properly, grouping together segments
3 and 6, and separating segments 2 and 4, as shown in Figure 5.3b. Hence, for segments with
a large value range and a modest degree of internal variation, relative distance can cluster
segments intuitively.

Clustering algorithm

Our relative-distance-based algorithm first sorts all the values in an ascending order and then
assigns the smallest element to the first cluster. After that, it iterates through the remaining
sequence and, at each step, picks the value at position i from the sorted list that was assigned
to a cluster in the previous step and determines the relative distance to the next value at
i + 1. If the relative distance is less than the threshold, the value at i + 1 is placed in the
same cluster as the value at i. Otherwise, a new cluster is created for the value at i+ 1.

We evaluated the relative density based clustering algorithm and compare it with the
K-means algorithm and the Expectation-Maximization (EM) algorithm that assumes the
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Figure 5.4: Evaluation of clustering algorithms using SPEC MPI2007 benchmark suite.

data to exhibit a mixed Gaussian distribution. For the relative-density-based algorithm, we
used thresholds of 0.2, 0.1, and 0.5. For the K-means and the mixed Gaussian method, we
generated clusters with total cluster counts of 2 - 40 and used the CH Index to pick the
best fitting cluster count. The total instructions completed hardware counter was used to
cluster the bulk-synchronous benchmarks of SPEC MPI2007 suite. The algorithms were
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Figure 5.5: Grouping of segments based on communication and file I/O features.

evaluated by comparing the mean normalized standard deviation of the created clusters and
by comparing the percentage segments that were not clustered. We consider clusters with
less than five segments as unclustered. Figure 5.4 shows the results of the evaluation. The
K-means algorithm created clusters with the least standard deviation, closely followed by the
relative-density-based algorithm at thresholds of 0.05 and 0.1, while the mixed-Gaussian-
based algorithm created clusters with very high standard deviation. On the other hand,
the K-means algorithm did not cluster almost twice the number of segments compared to
the relative-density-based algorithm, while the mixed-Gaussian-based algorithm had the
least unclustered segments. Based on the two criteria, we found the relative-density-based
algorithm at a threshold of 0.1 to provide the best results.

Grouping segments based on communication and file I/O features

As communication and I/O features of a segment, we consider the number and the accumu-
lated volume of communication and I/O operations, including the number of point-to-point
send/receive calls broken down by their blocking semantics, the number of collective calls
broken down by their number of senders vs. recipients, and the number of bytes sent or
received through them. Similarly, as file-I/O features we capture the number of open/close
operations, the number of read/write operations, and the accumulated number of bytes read
or written. Since there is no clear relationship between these metrics and the execution time
of a segment, we consider the corresponding values as nominal data, that is the execution
time of segments cannot be ordered based on these metrics. For example, a segment may
run longer than another segment, although its number of sends is smaller. At the same time,
these metrics are fairly stable and usually not subject to any jitter. Thus, we consider all
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Groups based on communication and file I/O features 1 2 3 4 5 6 7 8 9 10

Clusters based on computation features 1 2 3 4 5 6 7 8 9 10

Figure 5.6: Combining groups based on communication and file I/O features, and clusters
based on computation features into hybrid clusters.

segments that share the same unique combination of communication and file I/O metrics
a separate group. Figure 5.5 shows five segments, and their communication and file-I/O
features. Segments 1 and 4 have the exact same features and form a group. Segments 2 and
3 are also grouped together, while segment 5 forms a separate group. In some applications,
different processes can send/receive different number of bytes in a segment, which leads to
many small cluster of segments. In such cases, either taking the median number of bytes
among the processes, or completely discarding the bytes metric results in large clusters with
small variation.

Combining clusters and groups

In our methodology, we first cluster segments based on their computation features, and
separately group them based on their communication and file-I/O features. Later, we combine
the clusters and groups into hybrid clusters, as shown in Figure 5.6. Segments belonging to
the same computation cluster but to different communication/file-I/O group (or vice versa)
are split up into different hybrid clusters. As a result, a hybrid cluster has segments that have
similar computation, communication, and file-I/O features.

5.1.2 Profiling methodology

To capture application segments and their features, we use LWM2 [115], a low-overhead
profiler which is described in Chapter 2.

Capturing segments and metrics

For this study, we extended LWM2 to generate profiles at the granularity of the execution of
application segments. The end of an all-to-all collective call is used as the end of a segment
profile and the start of a new one. MPI_Init is considered as the start of the first segment,
while MPI_Finalize is considered as the end of the last segment. When an application
executes, LWM2 records the previously described computation, communication, and file I/O
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Figure 5.7: An example demonstrating data compression at runtime in LWM2. The index
tree has a maximum size limit of 3 nodes
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features. The metrics are recorded on a per-process basis. When a segment finishes, an
in-memory profile of the segment is generated.

Storing profiles in memory

To reduce the memory footprint of the profiles, the individual feature values are stored in
memory in the form of an index tree and an index table. The index tree is an auto-balancing
AVL tree that records all the unique values of the feature. The index list stores the feature
values by referencing nodes in the AVL tree. The index list also maintains the order in which
the values were captured. It is important to maintain the order of arrival as it enables us
to combine the values of individual features into a complete profile. When a new metric
value is captured, it is added to the index tree. The node is assigned an index value, which is
appended to the index list.

LWM2 further reduces the memory footprint of the profiles by limiting the unique values
in the index tree to 256. When the number of unique values exceeds the threshold, the values
are quantized, that is, values with small difference are grouped together by dividing them by
two, until there are at most 256 unique values. Similar values in the index tree are merged.
The indexes assigned to the nodes are also updated, both in the index tree and in the index
list. The number of division operations is also recorded.

Figure 5.7 presents an example of storing feature values. In the example, the maximum
size of the index tree is limited to three. In the nodes of the tree, the feature value is shown
in the upper part, while its index in the lower part. In Figure 5.7a, a feature value 36 is
added. As there is no need for quantization at this point, the value 36 is added as is to the
index tree and assigned an index of 3. The index 3 is also appended to the index list. In
Figure 5.7b, a new value 11 is captured. As the index tree has reached its maximum size, the
values in the tree are quantized until there are less than three unique values. After dividing
the values twice by two, the number of unique values is reduced to two. In Figure 5.7c,
nodes with similar values are merged in the index tree. The indices are also updated in the
index tree and the index list. Now, the new value 11 can be added, as shown in Figure 5.7d.
After quantization, the value is stored as two. Note, the index tree is also shuffled to achieve
balance between its subtrees.

Distinguishing patterns at runtime

Different segments in an application run can have widely different feature values. If the
feature values of all the segments are stored together, because of quantization, variation
among features values that are important to distinguish different patterns can be lost. To
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Figure 5.8: Reconstructing profile from data on disk.

avoid such a scenario, at runtime, LWM2 groups profiles based on their communication and
file-I/O features. Other than the numbers of bytes communicated or read/written, LWM2

uses the same feature set as described in Section 5.1.1 to create groups of segments on the fly.
Feature values for each group are then stored separately. LWM2 also records a separate trace
that captures the order in which segments belonging to different groups execute at runtime.

Merging per-process feature values

At the end of the execution, the per-process groups are merged into application-wide groups.
The trace recording the order of the groups is also merged into an application-wide trace.
Similarly, the index trees of individual features in the groups are also merged into application-
wide index trees with a maximum of 512 unique values. If there are more than 512 unique
values, they are merged by dividing the values by two until at most 512 unique bins remain,
similar to the process described before. Node indices are also regenerated. Then, the index
list is first updated on every process and later combined together into an application-wide
index list. The combined data is written to disk. Interference is estimated postmortem.

Reconstructing a profile from data on disk

In a profile, features of a segment are recorded and stored separately. The segments them-
selves are grouped separately based on their pattern. While such a structure reduces storage
requirements, it complicates the recreation of a profile from data. We explain the reconstruc-
tion using the example in Figure 5.8. First, we read the pattern trace, which records the order
of execution of different patterns. In the figure, the first entry in the trace is 1, indicating the
first pattern. We therefore access the index list of pattern 1 and read its first entry. The value
4 in the list indicates value at that index in the index tree. We fetch the corresponding value
(which is Vi4 in our example) and load it into the profile. Similarly, the second entry in the
pattern trace points to the second pattern. Following the same procedure, the value Vi6 is
loaded into the profile. When pattern 1 is read the second time in the pattern trace, we fetch
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the value pointed to by the second entry in its index list (value Vi3 in our example) and load
it into the profile. This process is continues until the whole pattern trace file is read.

5.1.3 Estimating interference

We estimate the impact of interference based on the segmented profile of a single run. First,
we cluster the segments according to their computation features, and group them according
to their communication and file-I/O features. Afterwards, we combine the clusters and groups
into hybrid clusters, as described earlier. The segments in each of the resulting clusters are
assumed to exhibit similar behavioral characteristics and consume about the same intrinsic
execution time.

Any segment in a group that has a significantly higher execution time is considered
to be affected by interference. More precisely, we classify a segment as interfered if its
execution time is four MAD greater than the median of the group, with MAD (Median
Absolute Deviation) being MAD = median(|Xi−median(X)|). Median and MAD are known
for their robustness to variability. The threshold of four MAD greater than median gives a
confidence interval of more than 99.5%. The impact of interference on a segment is estimated
as the portion of execution time of the segment in excess of the threshold. Adding the
interference impact computed for all segments yields the interference impact for the entire
program and is provided as a percentage of the (interfered) execution time.

Separating instantaneous interference from continuous interference

Execution time variation can arise from either high-frequency but usually low-impact in-
terference such as certain types of OS jitter or from low-frequency but often high-impact
interference such as sudden I/O contention. We call the former kind continuous interference
and the latter kind instantaneous interference. Continuous interference affects almost all seg-
ments of a profile and as a result also affects the median in a group. In contrast, instantaneous
interference only affects selected segments and the median remains largely unaffected. While
both kinds of interference prolong execution time, instantaneous interference is more likely
to create undesirable artifacts in performance measurements a performance analyst may wish
to remove. In contrast, continuous interference is often seen as an unavoidable evil one has
to live with on a given system. Our approach only reports instantaneous interference as it
classifies segments as interfered based on median and MAD. Under continuous interference,
the medians in segment profiles are also displaced which ensures that it leaves no imprint on
our estimates.
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Figure 5.9: A timeline of a run of lammps on Hazel Hen. In the timeline depicting the number
of completed instructions, the first segment completes more than 8.5 × 108 instructions.
However, the y-axis is cut at 7× 107 to show the variation among the rest of the segments.

5.1.4 Interference estimation in depth

We take a deeper look at how interference is estimated in our method. We first analyze a
run of lammps, a benchmark in the SPEC MPI2007 suite, and demonstrate how to extract
the intrinsic behavior of an application. We then briefly compare two runs of Sweep3D to
verify our estimated impact of external interference. Both of the applications were executed
on Hazel Hen, a Cray XC40 machine, using 16 nodes, with 24 processes on each node.
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Figure 5.10: A histogram of lammps showing the duration and the number of instructions
completed in the segments. The histogram of completed instructions is skewed towards
lower values, that is the bars are concentrates on the left side, as the first segment completes
more than 8.5× 108 instructions.
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Figure 5.11: A boxplot showing the spread of the identified clusters. The y-axis is logarithmic
in scale. Clusters with less than 5 segments are not shown.

Extracting intrinsic behavior

Figure 5.9 presents the timeline of the run. The x-axis represents all the segments of the run,
sorted in the order of their occurrence. In Figure 5.9a, the y-axis represents the duration
of the segment in microseconds, while in Figure 5.9b, the y-axis represents the number of
instructions completed in the segment. We do not consider communication and file I/O
operations when counting the number of instructions completed. The figures show that the
duration of the segments (as well as the numbers of completed instructions) vary significantly,
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Figure 5.12: The number of segments in the identified clusters. Clusters with less than 5
segments are not shown.

making it challenging to identify any groups of similar segments.

Figure 5.10 shows the histogram of the two metrics. The histogram of segments duration
in Figure 5.10a has two peaks, indicating a bi-modal distribution of segments. At the same
time, it is not possible to distinguish whether the segments in the bins other than the peak are
interfered or that they are exhibiting their natural variation. The histogram of the number of
instructions completed (shown in Figure 5.10b) also suggest a bi-modal distribution. However,
there are a number of segments that fall in the bins between the two peaks, suggesting that
those segments are not interfered and are exhibiting their intrinsic variation. The challenge
now is to identify interfered segments in the presence of such intrinsic variation.

Figure 5.11 presents the clusters of segments identified by our approach. A boxplot is used
to show the spread of the clusters. In the figure, the y-axis represents time in microseconds
and is logarithmic in scale. Figure 5.12 plots the size of each cluster, that is the number of
segments belonging to that cluster. Clusters with less than 5 segments are considered as noise
and are not shown. The two figures identify two large clusters, 38 and 46, confirming the
bi-modal distribution. They also identify other clusters will small number segments. These
are the segments that have intrinsic variation in their behavior. The figures also reveal outliers
in Cluster 46.

In Figure 5.13 and 5.14, we take a deeper look at Cluster 46. The timeline of the duration
of the segments show that, except for a few, most of the segments have similar execution time.
On the other hand, in the timeline of the number of instructions completed, all segments
have similar count, even those that take longer time to execute. Based on this difference, we
conclude with confidence that the elongated time of the few segments is caused by external
interference.
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(b) The number of instructions completed in segments belonging to cluster 46

Figure 5.13: Timeline of Cluster 46. Some segments have longer execution time and
are considered to be impacted by external interference. The dashed red line shows the
threshold beyond which segments are considered interfered.

We apply our method to estimate the impact of interference. Using the median and the
MAD of the cluster, we derive the threshold beyond which a segment is considered interfered.
It is represented by the dashed red line in Figure 5.13a and 5.14a. The impact of interference
is estimated in Table 5.1. 58 segments out of 853 are interfered while the impact is 178
milliseconds.
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Figure 5.14: Histograms of Cluster 46 of lammps, showing the duration and the number of
instructions completed in the segments. The dashed red line shows the threshold beyond
which segments are considered interfered.

Median [µs] MAD [µs] Interference # of segments estimated
threshold [µs] above threshold interference [µs]

26951 294.14 28127.48 58 178221

Table 5.1: The estimated impact of interference on segments in Cluster 46.

Verifying our estimate of interference

We compare two runs of Sweep3D, listed in Table 5.2. Run 1 took 326 seconds to finish while
run 2 took 293 seconds. As run 2 has shorter execution time, we take it as the baseline run,
even though we cannot be sure whether the run itself was interfered or not. Taking run 2 as
the baseline, run 1 has a measured interference of 33 seconds. Now we apply our method to
estimate the impact of interference.

We first look at the identified clusters of segments of the first run, which are shown in

Run Exec time of run [s] measured interference [s]

1 326 33
2 293 zero

Table 5.2: Comparing two runs of Sweep3D on Hazel Hen. Run 1 is interfered and has a
runtime dilation of 33 seconds.
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Figure 5.15: Comparing the identified clusters of segments of two runs of Sweep3D. Run
2 took longer to finish compared to run 1. Cluster 14 of run 2 has an outlier which took
significantly longer to finish.

Figure 5.15a. Cluster 14 has an outlier segment which took significantly longer time to finish.
As the identified clusters in a run are supposed to have similar execution time, our method
considers this outlier segment as interfered. For confirmation, we look at the identified
clusters in the second run in Figure 5.15b. All clusters are similar between the two runs,
except for Cluster 14, which does not have the outlier segment in the second run. Its absence
indicates that its deviation in the first run is not an intrinsic behavior but rather the result of
external influence.

We estimate the impact of interference for both runs in Table 5.3. For simplicity, we
focus on Cluster 14 only. It is one of the two large clusters in the run, its segments have the
longest execution time, and it also has the large outlier segment in the first run, indicating
that it should account for most of the deviation in execution time. We estimate the impact
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Run Median MAD Interference # of segments estimated
[s] [s] threshold [s] above threshold interference [s]

1 1.16 0.012 1.21 49 35
2 1.15 0.005 1.17 45 5

Table 5.3: The estimated impact of interference for Cluster 14 of two runs of Sweep3D. Run
2 is impacted to a higher degree. The median of the cluster remain stable and is similar for
both the runs.

of interference for the first run as 35 seconds, while for the second run as 5 seconds. The
measured interference for run 1 is 33 seconds. As run 2 is taken as the baseline when
calculating the measured interference, it is assumed that run 2 is interference free. The result
show that our method is able to estimate the impact of interference, just from a single run,
up to a high degree of accuracy. Our results also suggest that run 2 is also interfered to a
small degree, which can be verified by taking more runs. Another aspect can be that a certain
degree of interference is unavoidable on Hazel Hen.

5.2 Evaluation

To evaluate our approach, we use the following benchmarks:

1. Those seven codes from the SPEC MPI 2007 V2.0 suite that are bulk-synchronous
according to our definition and that have a large data set available.

2. Sweep3D, a time-independent 3D neutron transport simulation.

3. HACC, an application that simulates the formation of collision-less fluids and whose
regular checkpointing behavior makes it a popular I/O benchmark.

Table 5.4 lists the collective call rates of the benchmarks, that is the frequency at which the
benchmarks perform the MPI collective operation. We test our method both in a controlled
environment with artificially injected interference, and on a production system with real
interference.

5.2.1 Experimental setup

Because of its low OS jitter, we chose JUQUEEN, an IBM Blue Gene/Q system, as our controlled
environment [62]. JUQUEEN was decommissioned on May 24, 2018. It housed 28,672
compute nodes, with each consisting of a 16 core IBM PowerPC®A2 processor and 16 GB of
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Collective call rate (Hz)

Tera_tf GAPgeofem Lammps Leslie POP MILC Sweep3D Zeusmp2 HACC

JUQUEEN

1.14 305.52 64.31 1.71 42.27 0.54 0.30 0.11 0.45

Hazel Hen

15.25 4848.50 71.73 8.70 339.65 1.66 15.0 0.98 32.4

Table 5.4: Collective call rate of bulk-synchronous SPEC MPI2007 benchmarks on
JUQUEEN and Hazel Hen systems.

memory. It had a 5D Torus communication interconnect and minimized network interference
by making node boards with 512 cores the smallest allocation unit. Since its GPFS file system
was shared, JUQUEEN cannot be considered controlled for I/O intensive workloads though,
which, however, among our benchmarks only affects HACC.

For our tests under production conditions, we use Hazel Hen, a Cray XC40 system. Hazel
Hen was decommissioned on February 25, 2020. It consisted of 7712 compute nodes, each of
them featuring two 12-core Intel Haswell E5-2680v3 processors and 128 GB of memory [47].
Applications running on Hazel Hen were known to experience significant run-to-run variation,
majorly due to cache misses in the Aries chip under heavy network load from multiple
applications [46].

5.2.2 Overhead

We first evaluate the profiling overhead of LWM2. It was less than 1% in our evaluation in
Section 2.2.1. However, for our work in this chapter, LWM2 has been substantially extended.
Especially the direct recording of time in communication and file I/O operations, segment
identification, pattern identification and grouping, and data compression using index trees
and lists require many operations at runtime. We therefore evaluate the overhead of LWM2

after the extensions. We use the same set of benchmarks as used for evaluating the accuracy
of our interference estimation approach.

We executed the benchmarks on Hazel Hen, using 16 nodes with 24 processes per node.
We executed each benchmark 9 times with LWM2 and 9 times without profiling. We alternated
between the two types to even out, as much as possible, the system load variation. The
median execution time of the runs without profiling was used to find the minimum, median,
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Figure 5.16: Overhead of profiling with LWM2.

and maximum overhead of LWM2. The overhead is calculated as:

overhead = (
Tli

Tũ

− 1)× 100

where Tl are the runs that were profiled with LWM2, Tli is the execution time of the run i, Tu

are the uninstrumented runs, and Tũ is the median execution time without profiling.

Figure 5.16 presents the overhead for the set of benchmarks. The median overhead is
represented by the bars, while the error bars represent the minimum and maximum overhead.
For example, in the figure, MILC has a maximum overhead of around 3% and a minimum
overhead of around 1%. The median overhead is around 1.5%. To highlight the variation in
execution time of the non-profiled runs, we also draw their minimum and maximum execution
times as a percentage of their median.

The figure shows that median overhead of LWM2 remains below 2%. Some benchmarks
show variation of ± 2%, however that is observed for both profiled and non-profiled runs.
Such a degree of variation might be natural on Hazel Hen. The negative overhead of certain
benchmarks can also be attributed to the natural run-to-run variation on Hazel Hen. Overall,
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Figure 5.17: Multiple runs of tera_tf on JUQUEEN, with measured and estimated interfer-
ence classified as low, medium, or high. Runs are sorted by execution time in descending
order.

our measurements indicate that LWM2 maintains low overhead.

5.2.3 Evaluation methodology

With the exception of the file system, our controlled environment is without any significant
natural interference. This is why the runtime of a job is usually close to its intrinsic execution
time, providing us with a ground truth for interference-free execution. To test our method,
we inject artificial interference into application runs using a tool called intM (interference
Modeler), which we have developed for this purpose. intM sits as an interposition wrapper
between an application and the runtime, and mimics network and file I/O interference by in-
troducing delays in function calls. intM supports interference injection in MPI communication
and I/O functions, as well as in POSIX I/O. The interference added to the regular execution
time follows a Gaussian distribution, with configurable mean and standard deviation. The
probability of when an interference event strikes a communication or file I/O operation is
also configurable.

Specifically, we inject gradually increasing interference into multiple runs of a benchmark.
Figure 5.17 shows such runs for the SPEC MPI2007 benchmark tera_tf as an example. We
compare the estimated with the measured impact of interference on each run. Measured inter-
ference is the execution-time difference between a run and the fastest run of the benchmark,
in percent of the (interfered) runtime. Estimated interference is calculated individually for
each run as percentage of its runtime using our approach without considering any other
run. To clean the measured interference from effects of continuous interference and other
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Figure 5.18: Logistic function and the highly interfered run probabilities, when the function
is applied on the tera_tf runs.

Runs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Interference [%]

M 56.4 48.7 33.5 27.2 21 18.5 14.8 14.4 12.4 11.3 8.5 8.4 7.6 5.5 4.6
E 47.4 41.6 29.7 22.4 17.4 16.7 14.4 12.8 11.9 10.2 7.7 7.3 7 4.8 4.2
δ 9.1 7.1 3.9 4.8 3.6 1.8 0.5 1.6 0.5 1.1 0.8 1.1 0.6 0.7 0.5

Run classification

M H H H H H H M M M M M M M L L
E H H H H H H M M M M M L L L L

Table 5.5: Measured (M ) and estimated (E) interference for runs of tera_tf as percentages
of their runtime. The difference between the two percentages is also listed (as δ). Only runs
1-15 are shown. The runs are also classified to indicate high (H), medium (M), and low (L)
degree of interference. Even though the estimated interference for runs 12 and 13 is only
about 1% lower, they are misclassified, demonstrating that such a hard classification is not
a suitable metric for evaluating the accuracy of our method.

influences that are largely constant across the entire duration of a run but may vary between
runs, such as different process-to-node mappings, we reduce the measured interference by
the amount of time the medians in segment profiles are displaced. We observe the median
displacement during clustering, and attribute it to continuous interference.

From a performance analysis perspective, the impact of interference can be categorized

90



Class True Positive False Positive False Negative Precision Recall F1 Score

High 6 0 0 1 1 1
Medium 5 0 2 1 0.71 0.83
Low 6 2 0 0.75 1 0.86

Table 5.6: The F1 score of tera_tf runs. Runs 12 and 13 are misclassified (despite about
only 1% error in the estimated interference), which reduces the F1 score of classifying
medium and low runs.

Runs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Interference probability

M 1 1 1 1 0.97 0.93 0.78 0.75 0.6 0.5 0.28 0.27 0.22 0.12 0.09
E 1 1 1 0.98 0.9 0.87 0.75 0.63 0.56 0.41 0.22 0.2 0.18 0.09 0.08
δ 0 0 0 0.02 0.07 0.06 0.03 0.12 0.04 0.1 0.05 0.07 0.03 0.02 0.01

Table 5.7: Measured (M ) and estimated (E) probability of interference of tera_tf runs, as
well as their difference (δ). Only runs 1-15 are shown. For runs 12 and 13, the different in
probability of interference is low.

into the classes low, medium, and high, as shown in Figure 5.17. A low-interference run
is perturbed to a negligible degree and can be used for performance analysis, whereas a
high-interference run is heavily perturbed and should be discarded. The medium category is
between these extremes: It might be worthwhile to invest in a new performance measurement,
while, at the same time, the run can be used to gauge performance at large. Using the analogy
of a traffic light, low means green light for performance analysis, medium means yellow light,
and high red light. We have set the threshold for low interference to below 7.5%, for high
interference to above 15%, and classify everything in-between as medium.

To evaluate our approach, one method can be to categorize the measured and estimated in-
terference into the above mentioned interference classes, and use methods like F1 score [106]
to evaluate accuracy. While such categorization is useful to distinguish runs in practice,
accuracy evaluation via hard classification into these three categories can run into pitfalls. In
the following example, we demonstrate that hard classification is not suitable for evaluating
the accuracy of our approach.

Table 5.5 lists the measured (M) and estimated (E) interference for the tera_tf runs as
percentages of their execution time. Their percentage-point difference, that is the difference
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between the percentage of measured and estimated interference, is also listed as δ. The table
also groups the runs into the classes high (H), medium (M), and low (L). Even though the
differences for runs 12 and 13 are 1.1% and 0.6%, respectively, the measured and estimated
interference fall into different categories. In Table 5.6, we calculate the F1 score for the runs.
F1 score is calculated as:

F1 = 2× p× r

p+ r

p = precision =
TP

(TP + FP )

r = recall = TP

(TP + FN)

where TP is the number of true positives, FP the number of false positives, and FN the
number of false negatives.

As runs 12 and 13 are misclassified, the precision and recall for classifying runs as medium
and low is reduced, resulting in an F1 score of 0.83 and 0.86 respectively. As the percentage-
point difference for the runs 12 and 13 is quite low, we conclude that the F1 score is not the
right metric for our evaluation.

An alternative way of measuring accuracy can be using the percentage-point difference
itself. Even though this method provides a good insight into the accuracy of the estimated
interference, one downside of this approach is that for highly interfered runs, the percentage-
point difference is not that critical as long as both agree on the judgment that the run is highly
interfered. Runs 1 and 2 in Table 5.5 are such cases, where the percentage-point difference is
high. Without the knowledge that both measured and estimated interference judge the runs
as highly interfered, one would assume low accuracy for the estimation method. Therefore, to
present a complete picture, we compliment the percentage-point difference with the following
method.

Based on the intuition that the impact of interference is a measure of the suitability of a
run for performance analysis, we convert the interference magnitude into probability of a
run being interfered. A run with high probability value is considered unsuitable for analysis.
For this purpose, we use a logistic function as a soft classifier to convert the magnitude of
interference into interference probability. Using soft classification, the probability that a run
previously categorized as low is actually highly interfered should be close to zero, while for
runs categorized as high it should be near one. Similarly, at the mid-point of the medium
category, the probability should be exactly 0.5. Figure 5.18a shows a logistic function that
we have designed for this purpose, while Figure 5.18b shows the corresponding probabilities
for the tera_tf runs.

Table 5.7 shows the interference probabilities for the tera_tf runs determined using the
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logistic function. We see that for runs 1 and 2, the difference in probabilities is zero, as both
methods judge the runs as highly interfered. Similarly, the difference in probabilities for runs
12 and 13 is small, as the percentage-points difference between measured and estimated
interferences is also small.

Formally, a logistic function is an “S” shaped function that maps values from (−∞,∞)

onto (0, L). It is defined as

f(x) =
L

1 + exp−k(x−x0)

where k is the steepness, x0 is the inflection point, and L is the maximum. As explained
before, we define the inflection point, x0, to be 11.25, the mid-point of the medium class.
Similarly, setting the maximum value, L, to 1, and steepness, k to 0.35, the probabilities at
interference magnitudes of 7.5%, 11.25%, and 15% are 0.21, 0.5, and 0.79, respectively.

Using this logistic function, we derive probabilities for measured and estimated inter-
ference for each run of a benchmark. The difference between the two probabilities is the
inaccuracy of interference prediction, and its compliment is the accuracy. We determine the
accuracy of our approach for all the runs of each benchmark and draw the results as boxplots
(Figure 5.20). As the logistic function in Figure 5.18a shows, an accuracy of less than 0.5
means a significant deviation between measured and estimated interferences. To also give a
more direct impression of the results, we complement probability differences with boxplots
of the percentage-point difference between measured and estimated interference.

5.2.4 Results

On JUQUEEN, our controlled environment, each benchmark was executed at least 15 times
with a gradually increasing amount of artificial interference injected. Figure 5.17 shows the
series for tera_tf as an example. The interference was adjusted in such a way that multiple
runs were produced for each interference class. We executed each benchmark on 256 nodes,
with 4 processes running on each node. Figure 5.19b presents on the left how accurately
we predict the interference probabilities and on the right the percentage-point difference
between measured and estimated interference. Except for GAPgeofem, the median accuracy
for all the benchmarks on JUQUEEN is above 0.9. Similarly, for most benchmarks, the
minimum accuracy is above 0.8. This shows that in most cases, estimated and measured
interference leads to the same conclusion. That the accuracy of our predictions for certain
runs of GAPgeofem was low can be attributed to its high collective-call rate of around 300 Hz,
as shown in Table 5.4. At such a high frequency, large numbers of small execution segments
are created, easily leading to measurement artifacts that disturb our analysis.
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Figure 5.19: JUQUEEN: Prediction accuracy as difference of soft classification probability
and percentage-point difference between measured and estimated interference.

On Hazel Hen, our production environment, we executed the benchmarks using 16 nodes,
with 24 processes on each node. Each benchmark was executed 12 times. Due to the relative
small scale of the runs and the sporadic nature of interference, many benchmarks were affected
by interference to a smaller degree. Nonetheless, highly interfered runs were encountered
and were accurately classified. On the left, Figure 5.20b shows the prediction accuracy of
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Figure 5.20: Hazel Hen: Prediction accuracy as difference of soft classification probability
and percentage-point difference between measured and estimated interference.

benchmark runs, complemented by the percentage-point difference between measured and
estimated interference on the right. The figures show that, except for GAPgeofem, the impact
of interference was estimated with a high degree of accuracy. GAPgeofem shows again low
accuracy, which may again be attributable to its high collective-call frequency. Since the call
frequency is measurable, we believe that it would be generally possible to warn the user of
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possible inaccuracies in such rare cases. Finding an appropriate threshold, however, is left to
future work.

5.3 Conclusion

We presented a method to estimate the impact of interference on bulk-synchronous applica-
tions from a single run. Our method first splits the execution of an application into segments
that can be analyzed separately. For each segment, we then identify communication, compu-
tation, and file I/O features sufficient to represent its intrinsic performance characteristics.
The segments are then clustered based on these characteristics. Any outliers in the clusters
are caused by interferences. Impact of the interference can then be estimated from the
magnitude of displacement of the outliers from the median. Our evaluation shows that our
method can estimate the impact of interference with high accuracy based on a single run.
Our tool chain now provides a warning light to performance analysts that tells them when
they need to rerun their experiments because the data they have just collected was subject to
interference. It can also be integrated with other performance-analysis tools using the PnMPI
interface [110].
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6 Related work

This dissertation touches different aspects of the broader topic of inter-application interference,
including performance analysis tools, run-to-run variation and its sources, and identifying
and estimating the impact of interference. In this chapter, we present some of the related
work on these topics.

6.1 Performance analysis tools

A number of tools have been developed to capture and analyze the performance of HPC
applications. They capture application events and create a profile [2, 17, 24, 38, 69, 118] or a
trace [13, 20, 41, 95, 105] or both [68, 118]. Some of them [41, 95] are portable but require
application recompilation to profile user functions and OpenMP regions, while others [20]
take advantage of dynamic loading or patching but rely on a specific OpenMP runtime. In
our literature survey, we found IPM [38], PerfSuite [69], Darshan [17], Autoperf [24], and
HPCToolkit [2] to be without these limitations. Similar to LWM2, they have low runtime
overhead and can profile applications without modification.

Most of the performance analysis tools are developed to capture the performance of
a single application. LWM2 is designed for a system-wide deployment on an HPC cluster.
IPM [38], Darshan [17], and Autoperf [24] have also been developed with the same principle.

6.1.1 Automatic screening of applications

IPM, which stands for Integrated Performance Measurement framework, is a lightweight
profiler deployed on NERSC machines [38]. It automatically screens applications executing
on the machines, and captures performance metrics of communication, threading, and file-I/O
events. When an application finishes execution, IPM writes a textual job summary. The level
of detail in the summary is configurable. The basic version of the summary aggregates the
time spent in MPI, OpenMP, and file-I/O operations as percentages. while the full version
breaks down the time by individual functions. Separate profiles are also generated for
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application regions explicitly marked with MPI_Pcontrol. Besides the textual summary,
the performance profiles are stored in a separate database, which can be used for evaluating
performance at the system level.

Autoperf is a lightweight profiling tool developed to screen applications on IBM Blue
Gene/Q systems [24]. It is deployed on systems, Mira and Cetus, at the Argonne National
Laboratory. Autoperf has been developed as a monitor for MPI usage on a system and only
collects the amount of time spent and the number of bytes communicated in individual MPI
operations.

Darshan is another lightweight profiler that automatically screens applications executing
on a production HPC system [17]. It is deployed on Interpid at the Argonne National
Laboratory. Darshan only instruments file I/O and supports MPI I/O, POSIX I/O, HDF5,
and Parallel netCDF interfaces. It captures several metrics, including the number of I/O
operations, the amount of time spent in them, the number of bytes read or written, and the
data alignment.

While IPM, Autoperf, and Darshan share many of the characteristics of our inter-application
interference identification approach presented in Chapter 2, they are focused on screening
individual applications. They lack the semantics to establish simultaneity among performance
events from different applications. Our approach, on the other hand, is fundamentally geared
towards correlating performance across applications.

6.1.2 Segmented profiles

The OpenMP profiler ompP supports incremental profiling [39], a concept similar to our
time-slice approach, based on either a timer, a hardware counter, or a user-specified event.
Yet, it still profiles applications in isolation and does not support the synchronized generation
of incremental profiles across multiple applications. As a consequence, inter-application
interference cannot be identified, as incremental profiles cannot be compared across a system.
LWM2, on the other hand, is geared towards identifying such interferences based on globally
synchronized time slices [115].

6.1.3 System monitoring

There are also numerous tools for system monitoring, such as Ganglia [83], Nagios [96],
VGXP [64], and LDMS [4]. These tools monitor at the system-level and are not aware of the
application perspective. LDMS (Lightweight Distributed Metric Service), which is deployed
at Sandia National Lab, collects system-level information at a subsecond time interval. It can
also combine the information from the scheduler to give an application-level view of system
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utilization. However, it is also not aware of application-level metrics. Our work with LWM2

can compliment the information captured by these tools.

6.2 Visualizing multi-dimensional data

There are general methods that can used to visualize multi-dimensional data. The methods
include independent parallel coordinates [85] and multi-pixel bar graph [66]. However, in
them, the connectivity relationship between individual data points is lost.

Visualizing the Five-dimensional Torus Network of
the IBM Blue Gene/Q
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Fig. 1: Visualization of IBM Blue Gene/Q Five-dimensional torus interconnection network using four linked views.

Abstract—Understanding the interactions between a parallel
application and the interconnection network over which it ex-
changes data is critical to optimizing performance in modern
supercomputers. However, recent supercomputing architectures
use networks that do not have natural low-dimensional repre-
sentations, making them difficult to comprehend or visualize. In
particular, high-dimensional torus networks are common and are
used in four of the top ten supercomputers and eight of the top
ten on the Graph500 list. We present a new visualization of five-
dimensional torus networks. We use four connected views depict-
ing the network at different levels of detail, allowing analysts to
observe general large-scale traffic patterns while simultaneously
viewing individual links or outliers in any specific section of the
network. We demonstrate this approach by analyzing network
traffic for a pF3D simulation running on the IBM Blue Gene/Q
architecture, and show how it is both intuitive and effective for
understanding and optimizing parallel application behavior.

I. INTRODUCTION

Massively parallel applications require many processes
running in a carefully orchestrated and efficient way to achieve
maximum performance. In particular, processes running on dif-
ferent nodes in the network typically exchange large amounts
of data which often causes performance bottlenecks. This is
explained by a number of factors such as the algorithm that

dictates the frequency and overall need for communication,
the mapping of processes onto physical nodes, the MPI calls
and their implementation, and the underlying routing algo-
rithms. The combined effects are difficult to predict making
optimization challenging. Analysts can record the number of
packets sent over each link during execution under different
conditions, and then analyze the traffic to gain more insight
into the observed performance. Visualization tools can aid
in understanding this data by providing topological context
to the variability of network usage. This context can reveal
spatial patterns, such as correlated usage among directions
of the torus, or local behavior arising from imbalanced
communication needs, which are rarely available in purely
statistics-based approaches. Existing visualizations have de-
picted interconnection networks with natural two-dimensional
(2D) or three-dimensional (3D) embeddings such as trees and
low-dimensional meshes and tori. However, newer network
topologies such as higher-dimensional tori do not have this
property, so visualizations have not been available thus far. To
help bridge this gap, we present a visualization of the five-
dimensional (5D) torus network of the IBM Blue Gene/Q.

Each node in the BG/Q has 16 cores capable of up to four
hyperthreads, for a maximum of 64 processes per node, and

Figure 6.1: A Boxfish visualization of a five-dimensional torus network [84] ©2014 IEEE.

In the HPC context, Schulz et al. presented the HAC model that combined metrics from
application, hardware, and communication domains [109]. By projecting the data among the
domains and correlating them, users can gain valuable insights. However, this method is able
to visualize only a three-dimensional torus. Similarly, CUBE4 visualizes a multi-dimensional
torus as a set of cubes, but is limited to node level metrics [52]. Our method on the other
hand is focused on displaying link-level metrics.

Boxfish projects a 3D torus network onto a 2D plane, by looking at the cube from the
middle, forming concentric circles [75]. This makes it possible to visualize network traffic
while maintaining structural integrity. An extension to the tool supports visualizing 5D torus
by projecting hyperplanes onto multiple views [84], as shown in Figure 6.1. The minimaps
view in the bottom left corner project three dimensions of the network as concentric circles.
As only three dimensions are displayed, the minimaps are generated for every combination
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of three dimensions. The hyperplanes view in the top left corner reveals further details
about the selected minimap by visualizing the complete set of projections. The 4D slices view
complements the hyperplane view by showing individual links of the hyperplanes. Finally,
the 3D slice view displays a three-dimensional subtorus. Similar to our approach, Boxfish
displays multiple simultaneous views at different level of details. However, it uses a single
visualization approach, which they apply to summarize data at different levels. Our approach
proposes multiple ways of summarizing data in different views.

Figure 6.2: TorusVizˆND visualizes a torus network by arranging all the nodes in a circle [22]
©2014 IEEE. The ordering of the nodes can either be based on the sequential curve or the
Hilbert curve. Higher traffic on the links is depicted by thicker lines.

TorusVizˆND untangles the nodes of a high-dimensional torus into a string and uses two
numbering schemes, the sequential curve or the Hilbert curve, to order the nodes [22]. It
then uses hierarchical edge bundling [51] to display the network connections among the
nodes. Figure 6.2 shows a sample visualization. The nodes are ordered based on the Hilbert
curve. Higher traffic on the links is depicted by thicker lines. The visualization method of
TorusVizˆND is complimentary to our approach.

Similar to the dual view technique [97], we propose a method that uses multiple simulta-
neous views to display different aspects of the same network section. Our method integrates
zooming and panning [89], but across multiple synchronized views. Our simultaneous views
form a hierarchy that project the same network section at different levels of details.
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6.3 Run-to-run variation

Applications executing on HPC systems experience run-to-run variation. The cause of variation
can be, among others, activities of operating system and contention on shared resources.
Some of related work on the topic is presented below.

6.3.1 Operating system

Until recently, the operating system was considered as the major source of variation, causing
degradation by as much as 50% [104], and has, therefore, been studied extensively. Studies
have looked at the sources of operating system jitter and found that timer interrupts and
scheduling of daemons are major contributors [28, 111, 129]. Furthermore, the unsyn-
chronized nature of these events is also a contributing factor [7, 35], and that these events
also effect the network performance of HPC applications [50]. However, modern operating
systems have reduced their noise footprint [87]. At the same time, some HPC vendors have
developed their own lightweight, low-noise operating system, such as IBM Compute Node
Kernel (CNK) [43] and Cray Compute Node Linux (CNL) [65]. The work presented in this
dissertation is focused on inter-application interference, however the method described in
Chapter 5 is applicable to any low-frequency, high-impact interference.

6.3.2 Inter-application interference

Besides the activities of the operating system, inter-application interference is another major
source of run-to-run variation, which arises due to contention on shared resources. While
several studies have investigated contention on shared memory subsystem [30, 56, 59, 93, 94,
103], this dissertation is focused on interference caused by the communication interconnect
and the I/O subsystem.

Network interference

The runtime variation caused by network interference is a challenging problem [119], nonethe-
less it has been subject of many studies. Hoelfer et al. studied the impact of network noise on
large-scale parallel applications and found it to degrade communication performance by a
factor of two [48]. They further identified the degree of impact to be effected by network
type, routing schemes, and node allocation policy. Jokanovic et al. estimated a 10% loss in
system performance caused by application contention on slim fat trees [60]. Patki et al. inves-
tigated several factors that influence performance reproducibility, including job placement
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in a fat-tree topology [102]. They found that tasks assigned to a random configuration of
routers resulted in higher run-to-run variation compared to a compact assignment.

Similarly, Bhatele et al. observed significant performance variation on Hopper and identi-
fied contention from neighboring jobs as the most significant factor [8]. Hopper had a 3D
torus network topology and did not enforce mapping of application processes near to each
other. As a result, contention was especially high when application processes were mapped
further apart and there were communication-heavy applications in between.

Dragonfly is another common network topology deployed on large-scale HPC clusters [67].
It uses adaptive routing to avoid hotspots in the network. Yang et al. investigated the effect
of the job placement strategy on dragonfly networks and found that random placement
maximizes network utilization but degrades the performance of jobs with less intensive
communication [137]. On the other hand, contiguous placement alleviates this problem but
creates hotspots in the network. Wang et al. also investigated several factors, such as job
placement, routing policy, communication pattern and external interference, and concluded
that communication characteristics aware job placement results in the best performance
on dragonfly networks [134]. Savoie et al. used Quality of Service (QoS) metrics at the
network level to reduce network interference. Their simulations show an improvement of
up to 27% in individual application performance, with only 5% degradation for competing
applications [108]. These studies are orthogonal to our work and serve as a motivation.

File I/O interference

Interference from contention on the I/O subsystem is another significant factor causing
inter-application interference. However, isolating the cause and effect of performance events
of parallel I/O is challenging [130]. Nonetheless, studies have investigated I/O interference
by either monitoring variation in performance of real applications or using benchmarks, such
as IOR [117]. Lofstead et al. periodically measured the performance of the IOR benchmark
on multiple systems and found that even moderate sharing can cause I/O performance to
vary by up to 43% [81]. They also propose an adaptive I/O approach to mitigate interference.
Luu et al. studied six years of I/O logs from three different systems [82]. They identified
that a few applications dominated the I/O traffic on a system. Furthermore, for most of those
applications, a median job achieved less than 1% of the maximum I/O throughput of the
system. Xie et al. evaluated different factors affecting the data ingestion rate of a Lustre file
system [136]. For concurrent writes by multiple applications, they found significant variance
in aggregate bandwidth, by more than a factor of three. In each of their experiments, some
applications (which changed from one run to another) would experience low bandwidth.
They found that the target storage device was not at fault for the variation. Yildiz et al.
identified different factors influencing I/O interference, including backend storage device,
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access pattern, data distribution policy, and request size [138]. They conclude that I/O
interference arises from interplay among several components in the I/O subsystem. These
studies are orthogonal to our work. We focus on write-write contention and identify file
access pattern as a significant factor [73, 113].

6.3.3 Other sources

There are other factors that also contribute to the run-to-run variation of execution time
of applications. Rountree et al. studied the impact of power capping on performance of
applications [107]. They found that without any power cap, processors occupied by an
application have different power consumption. When a power cap is applied, its effects the
performance of the processors differently and causes performance variation. Gholkar et al.
also observed up to 50% variation in instruction per cycles of different processors under the
same power cap [42].

Similarly, Bilge et al. found the Turbo Boost feature in processors to cause performance
variation [1]. Using a math kernel, their experiments on three different leadership systems
showed a variation of 8% to 16%. These studies show that other factors can also contribute
to run-to-run variation and serve as a future work for our interference estimation method.

6.4 Estimating the impact of inter-application interference

Most of the studies on estimating the impact of external interference on applications have
been carried out by simulating various scenarios. The studies include estimating effects of:
system noise on MPI communication [50], optimum job placement and routing strategy on
dragonfly network [134, 137], and operating system jitter [133]. Similarly, Mondragon et al.
studied inter-application interference using Extreme Value Theory (EVT) [87]. They created
a stochastic model to extrapolate the performance of bulk-synchronous applications under the
influence of external interference, including the operating system, file I/O, and communication
interconnect. Their model successfully predicted the performance of applications under
external influences. In our work, we proposed and implemented a method to estimate the
impact of interference using a single application run [114].

While most studies investigate a single source of run-to-run variation, Chunduri et al. eval-
uated multiple sources on a Xeon Phi based Cray XC system and provided mitigating solutions
where possible [25]. They found the operating system to cause variation in performance on
either the first or the last core. Similarly, they found the MPI collective performance to vary
depending upon the system load, job size, and process-to-node mapping. Furthermore, they
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found the tile feature of the system, where two cores on a processor share the same L2 cache,
causes higher run-to-run variation as the memory footprint of an application increases. Our
interference estimating method can capture any low frequency, high impact interference.

6.5 I/O access patterns and benchmarking

To study I/O interference in detail in Chapter 3, we first identified three typical write
access patterns and then evaluated their interference potential. Several earlier studies have
contributed to different aspects of this topic. Miller et al. found I/O to be bursty and cyclic [86].
They also distinguished three access patterns, namely required I/O, checkpointing, and data
staging as the most common I/O types. These patterns roughly correspond to our aggregate-
write, open-write-close, and write-seek patterns, respectively. However, they were studied
to optimize I/O from a single-application perspective, while we look at their interference
potential when executed concurrently. Byna et al. classified file access patterns to generate
I/O-access signatures of applications [14]. These signatures were then used to improve
data prefetching. Shan et al. created a parameterized I/O benchmark called IOR that can
mimic the file access pattern of realistic applications [116]. Lofstead et al. found six common
read patterns in the analysis part of simulation software [80]. The read patterns were used
to compare end-to-end performance of logically contiguous and log-based files. Congiu et
al. manually analyzed the I/O behavior of applications to identify their patterns [26]. A
framework, transparent to the application, then translated the knowledge of these patterns
into hints to the parallel file system. In our work, we evaluate the interference potential of
I/O access patterns when executed concurrently.

Similarly, as part of the SIO initiative, Smirni et al. classified I/O patterns according
to their spatial and temporal features [120, 121]. Nieuwejaar et al. classified file accesses
with respect to access size, file size, access frequency, sequentiality, etc. in the CHARISMA
project [98]. These studies are orthogonal to our work and part of the broader field of
file-access characterization.

I/O performance has been the subject of several studies, looking at the performance from
a single application perspective [12], from the file-system perspective [71], and from the
overall system perspective [76, 140]. Furthermore, Uselton et al. statistically analyzed the
I/O behavior of HPC applications and identified a bottleneck in the read-ahead window of
the Lustre file system [130].

In our work, we analyze how file writes of concurrently running jobs interfere and
determine factors that influence the magnitude of interference. [73, 113]. While application
process count is already known as one of the factors [33], we consider process count in
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the context of access patterns and examine the influence of further parameters such as
write-chunk size and access frequency on write performance.

SIOX records I/O accesses at each level of the the I/O stack, identifies access patterns, and
characterizing the I/O subsystem [135, 141] with the objective of pinpointing I/O bottlenecks.
Our work contributes insights into write performance variation as a result of access patterns
and request sizes.
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7 Summary

In this dissertation, we have presented methods to identify and quantify inter-application
interference. In Chapter 1, we introduced the run-to-run variation in execution time observed
on HPC clusters and identified the major contributing factors. We also showed that inter-
application interference is a significant source of the variation. We motivated the topic by
presenting the design of a supercomputer and by describing how applications executing on it
are susceptible to inter-application interference. Finally, we laid out the contribution of the
dissertation.

We then presented our first contribution, a novel approach to correlate the performance
behavior of applications running side by side. To accomplish this, we divided the application
runtime into fine-grained time slices whose boundaries are synchronized across the entire
system. Mapping performance data related to shared resources onto these time slices, we
were able to establish the simultaneity of their usage across jobs, which is indicative of inter-
application interference. We applied our approach on a production system and identified
inter-application interference when simultaneously accessing the communication interconnect,
the I/O subsystem and the shared GPU attached to a node. Our experiments showed that our
approach can identify interference among applications.

Later, we focused on file I/O and used our method to analyze the influence of file-access
patterns on the degree of interference. As it is by experience most intrusive, we focused
our attention on write-write contention. We observed considerable differences among the
interference potentials of several typical write patterns. In particular, we found that if one
parallel program writes large output files while another one writes small checkpointing files,
then the latter is slowed down when the checkpointing files are small enough. The trend is
reversed and the former is slowed down when the checkpointing files are large. Moreover,
already applications with few processes writing large output files can significantly hinder
applications with many processes from checkpointing small files. Such effects can seriously
impact the runtime of real applications—up to a factor of five in one instance. Overall, we
found out that there is an interference trend between simultaneously writing small and large
files.

At the end, we presented our second contribution, a novel approach to estimate the
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impact of sporadic and high-impact interference on bulk-synchronous MPI applications. We
introduced the concept of application execution segments that are independent of each other
in terms of wait states. Using features considered sufficient to capture intrinsic performance
characteristics, we grouped the segments that should have similar execution time. Any
deviation in the execution time in the group is considered as the result of external interference.
Evaluating in a controlled environment and on a production system, we demonstrated that
our methodology can estimate the impact of external interference from a single run.

Inter-application interference is a prevalent issue in HPC clusters, causing run-to-run
variation and wastage of system resources. The methods proposed and implemented in
this dissertation can help determine the interference at the system level, helping identify
underutilization of system resources. We also used our interference identification method to
find a trend between simultaneously writing small and large files. Finally, our approach to
estimating the impact of interference on individual applications gives valuable insight to users
and performance analysts. The contributions of this work will help uncover inter-application
interference and enable users make informed decisions.

7.1 Outlook

Run-to-run variation and inter-application interference is becoming prevalent. This disser-
tation presents methods to identify them at the system level and at the application level.
However, there is still much work left.

At the application level, our method to estimate the impact of external interference is
focused on bulk-synchronous applications with blocking semantics. The method can be
extended to cover non-blocking collectives. Such collectives have a non-blocking call, followed
by a wait call that ensures that the operation has completed. Our method can be adapted
by consider the wait call as segment boundaries. Furthermore, an even more generic model
that captures repeating patterns in an application to identify execution segments should be
investigated. The methodology should also be extended to handle performance variation
caused by power saving features, such as reducing CPU frequency. Finally, the methodology
can be incorporated into performance analysis tools to identify regions of interference. This
will help performance analysts discard parts of measurements that are not reliable, leading
to analysis with higher confidence.

For investigating I/O interference, we focused on three typical write patterns. The patterns
can be extended to cover more generic patterns, such as writes followed by reads and seeks
of different sizes. Similarly, other I/O interfaces, such as HDF5 should also be evaluated.

As inter-application interference is a system-level phenomenon, we consider it natural to

108



identify it and mitigate it at the system level. In this regard, we consider the contributions
in Chapter 2 to be of critical importance. While there are systems that either screen every
application on a system (Autoperf [24], IPM [38]), capture the I/O behavior (Darshan [17]),
or monitor system resource usage (LDMS [4]), what is needed is a holistic approach to
capture performance metrics at every level and in a way to establish simultaneity. Therefore,
the implementation in Chapter 2 should be extended in the future with system-level metrics
and deployed on a production grade system. Furthermore, the gathered information should
be analyzed to identify application behaviors and establish interference trends (such as the
trend between simultaneously writing small and large files, described in Chapter 3). Finally,
the trends can be translated into scheduler decisions and adaptive routing of network and
I/O traffic to reduce and mitigate inter-application interference.
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