
Object Oriented Metrics to measure the quality of

software upon PHP source code with PHP_depend
Study case Request online System application

Sarwo1, Harco Leslie Hendric Spits Warnars2, Ford

Lumban Gaol3

Doctor of Computer Science

Bina Nusantara University

Jakarta, Indonesia

sarwo@binus.ac.id1,shendric@binus.edu2, fgaol@binus.edu3

Richard Randriatoamanana

Institut de Calcul Intensif

Ecole Centrale de Nantes

Nantes, France

richard.randriatoamanana@ec-nantes.fr

Abstract—Nowadays, a company should be equipped with

information technology and one of them is business application

either web based or non web based which is built with object

oriented programming in order to help the management to run

their daily business processes. In order to supports a company

with best excellent software applications then we need to make

sure the quality of software application in term of easy to

maintenance, understandability, reusability and so on. In term to

measure the quality of software, there are many software metrics

applications either free or proprietary which can be downloaded

on Internet and one of them is PHP_depend. PHP_depend is

software metrics which measure the quality of software based on

PHP source code, by taking the PHP source code and parses it

into Abstract Syntax Tree (AST). This paper will investigate how

to measure quality of software based on PHP source code with

PHP_depend software metrics. The investigation will examine

codes from Request online system application which supports

improvement or update request upon SAP application in Astra

Graphia Information Technology PT. The measurement will be

assessed based on metrics which is categorized into project,

package, file, class and methods.

Keywords—Object Oriented Metrics; PHP Metrics; Software

Metrics; Software Quality; Software Measurement.

I. INTRODUCTION

Astra Graphia Information Technology PT. is an
Information Technology (IT) consultant company which sale,
distributed, and maintain both hardware and software for all
level customer with either in-house or reseller software. Astra
Graphia run SAP application from www.SAP.com which
supports their daily business activity processes. However, there
are some improvement and update on implemented SAP
application on daily basis, which is needed by departments in
order to supports their business activity processes. Request
online system is a web based application which is built with
Personal Home Page (PHP) language programming in order to
record and control all improvement or update request in SAP
application. For future implementation, the intelligent of this
application will be extended with such as technology such as
Data Warehouse [19,20,21,22,23] or Data Mining with some
options algorithms such as Attribute Oriented
Induction(AOI)[24,25,26,27,28,29,30,31] or Attribute

Oriented Induction High level Emerging Patterns (AOI-
HEP)[32,33,34,35,36].

Meanwhile, Open Source Software has impacted software
industry and recently became extremely popular such as
Personal Home Pages (PHP), Java Server Pages (JSP), Java
and so on. This paper will investigate how to measure PHP
source code with PHP_depend. The investigation will examine
32 PHP source codes from Request online system application
which supports improvement or update request upon SAP
application, PHP_Depend is a small program that performs
static code analysis on a given source base , According to G.
Kour and S. Evolution PHP_Depend can generate a large set
of software metrics from a given code base and identify parts
of an application where refactoring should be applied [1].

Object Oriented that makes designs more powerfull, more
maintainable, and more reusable for design system. Recently,
almost all system design already uses a technique Object
Oriented, in the design of a system designed to ensure software
quality meet the standard Object Oriented Programming (OOP)
need be tested to detect and subsequently handle all errors in it.
A number of schemes are used for testing purpose and this
measurement will make the result software which easy
maintenance, understandability and reusability. This paper
present how to perform a software measurement and presents
the results in the a report that is easily understood by
management, with this report can be used to predict the level
of error and how much cost to spend on developing the
program

II. RELATED WORK IN THE LITERATURE

Measuring the discriminative power of object-oriented class
cohesion metrics [2], this paper obtain the same cohesion
values for different classes that have the same number of
methods and attributes but different CPCIs. Software Quality
Estimation through Object Oriented Design Metrics [3], this
paper obtain how these metrics are useful in determining the
quality of any software designed by using object oriented
paradigm. Critical Analysis of Object Oriented Metrics in
Software Development [4], this paper obtain to a review and
analysis of object oriented metrics is presented for
identification and validation of object oriented metrics and out
of various metrics. Evaluating the impact of different types of

2017 International Conference on Applied Computer and Communication Technologies (ComCom), Jakarta, Indonesia

978-1-5090-4048-3/17/$31.00 ©2017 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Binus University Repository

https://core.ac.uk/display/328807677?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

inheritance on the object oriented software metrics [5], this
paper discuss focuses on effects of inheritance on object
oriented metrics. Implementation of ISO 9126-1 quality model
for asset inventory information system by utilizing object
oriented metrics[6], this paper aim Proposed ISO 9126-1
quality model has been internally evaluated by object oriented
metric using case study on Politeknik Caltex Riau (PCR) which
is one of the organization that engaged in academic area.
Software Product Quality[7], this chapter by Martin Glinz
discus about software product quality. Effectiveness of
encapsulation and object-oriented metrics to refactor code and
identify error prone classes using bad smells [8], this research
develop a metrics model to identify smelly classes to improve
Encapsulation and Object-oriented Metrics. Applying the ISO
9126 quality model to test specifications [9], this paper apply
ISO 9126 for model to test specifications. An ISO 9126-based
Quality Model to Assess the Quality of TTCN-3 Test
Specifications 2 Software Quality Models [10], this chapter
apply ISO 9126 to Assess the Quality of TTCN-3 Test
Specifications, TTCN-3 is ETSI Centre for Testing and
Interoperability.

III. PHP_DEPEND SOFTWARE METRIC MEASUREMENT

EXPERIMENTS

The experiments used source codes of Request online
system application (ROLIS) which was allocated in sub
directory C:\PEAR\proyektoPHP\rolisdev as PHP project. The
experiments were carried on windows 7.0 operating system and
used PHP version 5.2.3, including PEAR (PHP Extension and
Application Repository) package which provide library PHP
open source code. This PHP project will be measured with
PHP-depend software metrics with such as next steps[13]:

Install PHP minimum version of 5.2.3 by downloading

XAMPP for windows v.5.6.23(PHP 5.6.23) from

https://www.apachefriends.org/index.html

Download PEAR package manager go-pear.phar from

https://pear.php.net/manual/en/installation.getting.php and

save to computer.

Running go-pear.phar with PHP and typed PHP statement to

run file go-pear.phar. Running this file will download needed

files in drive C:\PEAR.

In order to check if PHP_depend is working in your machine

then type statement: “pdepend –version” with command

prompt in directory C:/PEAR. Figure 1 shows the statement

process.

Fig.1 Check version Software

There are 3 types PHP_depend experiments which will be
carried on such as summary XML, Pyramid report and Charts.

The execution time for each experiment will be different which
depend on your computer size and allocation process in your
computer. Next is explanation for each PHP_depend
experiment and they are:

A. Summary XML.

This PHP_depend experiment will be executed in sub
directory PEAR by giving statement: php pdepend --summary-
xml=C:\PEAR\results\summary.xml
C:\PEAR\proyektoPHP\rolisdev. Figure 2 shows the statement
execution and was executed in 3.22 minutes with memory
allocation 94.50 MB and the result shows:

• Parsing source files : 657

• Executing Cyclomatic Complexty-Analyzer:5629

• Executing Class Level-Analyzer: 6240

• Executing Code Rank-Analyzer: 1410

• Executing Cohesion-Analyzer:10716

• Executing Coupling-Analyzer: 5639

• Executing Hierarchy-Analyzer: 5375

• Executing Inheritance-Analyzer: 1405

• Executing NPatch Complexity-Analyzer:5685

• Executing Node Count-Analyzer : 3692

• Executing Node Loc-Anlyzer: 3947

Moreover, file log summary.xml will be generated based on
this statement execution and saved in sub directory
C:\PEAR\results and consist of 21 metrics in PHP_depend with
each score and they are : AHH=0.242, ANDC=0.588,
CALLS=9412, CCN=16010, CCN2=17457, CLOC=114,
CLSA=0, CLSC=254, ELOC=59994, FANOUT=346,
LEAFS=213, LLOC=49466, LOC=86583, MAXDIT=3,
NCLOC=70100, NOC=254, NOF=281, NOI=0, NOM=3152,
NOP=5, ROOTS=3.

Fig.2 generate Summary.xml

2017 International Conference on Applied Computer and Communication Technologies (ComCom), Jakarta, Indonesia

Fig.3 generate Pyramid Report

Fig.4 Pyramid Report

B. Pyramid report.

This PHP_depend experiment will be executed in sub
directory PEAR as well and by typing statement:

Phppdepend--overview-
pyramid=c:PEAR\results\pyramid.svg
:\PEAR\proyektoPHP\rolisdev. Figure 3 shows the statement
execution and was executed in 2.19 minutes with memory
allocation 93.50 MB and the result will shows:

• Parsing source files : 657

• Executing Coupling-Analyzer: 5629

• Executing Cyclomatic Complexty -Analyzer:5681

• Executing Inheritance-Analyzer: 1405

• Executing Node Count-Analyzer : 3692

• Executing Node Loc-Anlyzer: 3947

File log pyramid.svg will be generated based on this
statement execution and saved in sub directory
C:\PEAR\results and will be showed with browser as shown in
figure 4.

C. Charts.

This PHP_depend experiment will be executed in sub
directory PEAR as well by giving statement: php pdepend --
jdepend-chart = \ PEAR \ results \ jdepend.svg : \ PEAR \
proyektoPHP \ rolisdev. Figure 5 shows the statement
execution and was executed in 00.15 minutes with memory
allocation 88.25 MB and the result will shows:

• Parsing source files : 657

• Executing Dependency-Analyzer: 3411

File log jdepend.svg will be generated based on this statement

execution and saved in sub directory C:\PEAR\results and will

be showed with browser as shown in figure 6.

Fig.5 generate Charts Report

Fig. 6 Chart Report

IV. INTERPRETATION OF PHP_DEPEND SOFTWARE

METRICS MEASUREMENT EXPERIMENTS

After running the PHP_depend software metric then we
need to interpret the result as the conclusion of software metric
measurement upon Request online system application as PHP

2017 International Conference on Applied Computer and Communication Technologies (ComCom), Jakarta, Indonesia

project which was allocated in sub directory
C:\PEAR\proyektoPHP\rolisdev will generate Pyramid Report
shown in Figure 4 and Chart report shown in Figure 6.

• LOC = CYCLO/LOC (1)

• NOM = LOC/NOM (2)

• NOC = NOM/NOC (3)

• NOP = NOC/NOP (4)

• CALLS = FANOUT/CALLS (5)

• NOM = CALLS/NOM (6)

The score for each of metrics in these 3 categorization of
metric are shown in figure 4 as result of running pyramid
report experiment and they are ANDC=0.588, AHH=0.242,
NOP=5, NOC=254, NOM=3433, LOC=59994,
CYCLO=17457, CALLS=9412 and FANOUT=346 as shown
in figure 4. In order to find the software size then we need to
score all these metrics with equations (1) to (6) where the
number of dividend and divisor in each equation will refer to
number its metric as shown in figures 4 or 8. The scoring only
applied to size and complexity, and coupling categorization
metrics as shown in figure 7, where inheritance categorization
metrics such as ANDC and AHH didn’t include since they
have already their scores.As shown in figures 4 or 8, metrics
CYCLO and LOC in equation (1) will have number 17457 and
59994 respectively, metrics LOC and NOM in equation (2)
have number 59994 and 3433 respectively. Metrics NOM and
NOC in equation (3) have number 3433 and 254 respectively,
metrics NOC and NOP in equation (4) have number 254 and 5
respectively. Meanwhile, Metrics FANOUT and CALLS in
equation (5) have number 346 and 9412 respectively, metrics
CALLS and NOM in equation (6) have number 9412 and 3433
respectively.

The metrics LOC, NOM, NOC and NOP in left side in
figure 8 as size and complexity categorization metric as shown
in figure 7 with equations between (1) and (4). The score of
metric LOC is executed with equation (1) =
CYCLO/LOC=17457/59994 = 0.291. The score of metric
NOM is executed with equation (2) =LOC/NOM
=59994/3433=17.476. The score of metric NOC is executed
with equation (3) =NOM/NOC=3433/254=13.516 and the
score of metric NOP is executed with equation (4) =
NOC/NOP=254/5=50.8. Figure 4 shows these 4 size and
complexity categorization metrics’ score such as LOC=0.291,
NOM=17.467, NOC=13.516 and NOP=50.8 in the left side.

Meanwhile, the score for metrics CALLS and NOM in
right side in figure 8 as coupling categorization metric as
shown in figure 7 will be executed with equations (5) and (6).
The score of metric CALLS is executed with equation (5)
=FANOUT/CALLS=346/9412=0.037 and the score of metric
NOM is executed with equation (6) =CALLS/NOM
=412/3433=2.742. Figure 4 shows these 2 coupling
categorization metrics score such as CALLS=0.037 and
NOM=2.742 in the right side.

Moreover, in order to give easy understanding the software
size measurement based on PHP_depend software metrics as
shown in pyramid report in figure 4, then the metrics scores
will be categorized into 3 different colour such as black, green

and orange colours. The black, green and orange colours refer
to low, average and high scores based on reference value on
table 1, where each number as minimum score. For example,
AHH metric has minimum low score 0.09 with range score
between 0.09-0.209, minimum average score 0.21 with range
score between 0.21-0.319 and minimum high score 0.32 with
range score start from 0.32.

REFERENCE METRIC VALUES [16]

Metric Low Average High

LOC=CYCLO/LOC 0.16 0.20 0.24

NOM=LOC/NOM 7 10 13

NOC=NOM/NOC 4 7 10

NOP=NOC/NOP 6 17 26

CALLS=FANOUT/CALLS 0.56 0.62 0.68

NOM=CALLS / NOM 2.01 2.62 3.2

ANDC 0.25 0.41 0.57

AHH 0.09 0.21 0.32

The colouring metrics scores as shown in figure 4 are

mapping based on metric categorization as shown in figure 7
where there are 3 metric categorization such as inheritance,
size and complexity, and coupling categorization metric. Next
are the details.

• Firstly, based on table 1, then Inheritance categorization
metric such as ANDC=0.588 and AHH=0.242 as shown
in figure 4 or 8 are categorized as high and average
scores then they are coloured with orange and green
respectively as shown in figure 4.

• Secondly, figure 4 mapping the metrics’ scores of size
and complexity categorization metric as results from
equations (1) to (4) and they are LOC=0.291,
NOM=17.467, NOC=13.516 and NOP=50.8 in the left
side of figure 4. Based on table 1, these 4 size and
complexity categorization metrics are categorized as
high score, then all of them have orange colour as
shown in figure 4.

• Thirdly, metrics scores of coupling categorization metric
as results from equations (5) and (6) and they are
CALLS=0.037 and NOM=2.742 in the right side of
figure 4. Based on table 1, these 2 coupling
categorization metrics such as CALLS=0.037 and
NOM=2.742 are categorized as low and average scores,
then they have black and green colour respectively, as
shown in figure 4.

CONCLUSION

This paper presents how to perform measurements based on
Object Oriented Metrics for PHP programming language,
many tools that can be used to measurements for this paper
used PHP_depend and source codes of Request online system
application for testing, PHP_depend experiments generate
summary XML, Pyramid report and Report Charts. The
conclusion of after testing we suggest Request online

2017 International Conference on Applied Computer and Communication Technologies (ComCom), Jakarta, Indonesia

application system developed using PHP framework such as
Codeigniter Framework, Laravel Framework or Zend
framework, so we get a system that is more reliable and easier
to develop. For PHP_Depend we suggest for Pyramid report
and Chart Report continue to be developed to make it more
easier to understand for user.

REFERENCES

[1] G. Kour, A. Laws, and S. Evolution, “Using Lehman ’ s Laws to
Validate the Software Evolution of Agile Projects,” pp. 716–722, 2016.

[2] J. Al Dallal, “Measuring the discriminative power of object-oriented
class cohesion metrics,” IEEE Trans. Softw. Eng., vol. 37, no. 6, pp.
788–804, 2011.

[3] D. Arora, P. Khanna, A. Tripathi, S. Sharma, and S. Shukla, “Software
Quality Estimation through Object Oriented Design Metrics,” Int. J.
Comput. Sci. Netw. Secur., vol. 11, no. 4, pp. 100–104, 2011.

[4] M. Bansal and C. P. Agrawal, “Critical Analysis of Object Oriented
Metrics in Software Development,” 2014 Fourth Int. Conf. Adv.
Comput. Commun. Technol., pp. 197–201, 2014.

[5] A. Chhikara, R. S. Chhillar, and S. Khatri, “Evaluating the impact of
different types of inheritance on the object oriented software metrics,”
Int. J. Enterp. Comput. Bus. Syst., vol. 1, no. 2, 2011.

[6] Y. Fitrisia and B. Hendradjaya, “Implementation of ISO 9126-1 quality
model for asset inventory information system by utilizing object oriented
metrics,” Proc. 2014 Int. Conf. Electr. Eng. Comput. Sci. ICEECS 2014,
no. November, pp. 229–234, 2015.

[7] M. Glinz, “Software Product Quality,” 2014.

[8] S. Singh and K. S. Kahlon, “Effectiveness of encapsulation and object-
oriented metrics to refactor code and identify error prone classes using
bad smells,” ACM SIGSOFT Softw. Eng. Notes, vol. 36, no. 5, p. 1,
2011.

[9] B. Zeiss and D. Vega, “Applying the ISO 9126 quality model to test
specifications,” Softw. Eng. 2007, vol. 105, pp. 231–244, 2007.

[10] B. Zeiss, D. Vega, I. Schieferdecker, H. Neukirchen, and J. Grabowski,
“An ISO 9126-based Quality Model to Assess the Quality of TTCN-3
Test Specifications 2 . Software Quality Models,” www.ttcn-3.org, pp.
1–6.

[11] J. Mccabe, “THOMAS J. McCABE,” no. 4, pp. 308–320, 1976.

[12] G. Kaur and D. Sharma, “A Study on Robert C . Martin ’ s Metrics for
Packet Categorization Using Fuzzy Logic,” vol. 8, no. 12, pp. 215–224,
2015.

[13] M. Pichler, “Getting started PHPDepend,”. 2016. accessed from :
https://pdepend.org/documentation/getting-started.html on 17 Agt 2016.

[14] M. Pichler, “Overview Pyramid,”.2016. accessed from :
https://pdepend.org/documentation/handbook/reports/overview-
pyramid.html on 17 Agt 2016.

[15] M. Pichler, “Cyclomatic Complexity,”.2016. accessed from :
https://pdepend.org/documentation/software-metrics/cyclomatic-
complexity.html on 17 Agt 2016.

[16] Springer-Verlag Berlin Heidelberg; ISBN 978-3-540-24429-5; Using
Software Metrics to Characterize, Evaluate, and Improve the Design of
Object-Oriented Systems; Michele Lanza, Radu Marinescu; 2006

[17] M. Pichler, “Software metrics supported by PHP_Depend”,2016.
accessed from : https://pdepend.org/documentation/software-
metrics/index.html on 17 Agt 2016.

[18] M. Pichler, “PHP_Depend”,2016. Accessed from:
https://pdepend.org/documentation/handbook/reports/abstraction-
instability-chart.html on 17 Agt 2016.

[19] H.L.H.S. Warnars,”Desain model data warehouse dengan contoh kasus
perguruan tinggi”, Journal of Industrial Engineering and Management
System (JIEMS), Vol. 3, No. 1, pp. 9-20, February 2010.

[20] H.L.H.S. Warnars, “Tata Kelola Database Perguruan Tinggi Yang
Optimal Dengan Data Warehouse”, Journal Telkomnika, Vol. 8 No. 1,
pp. 25-34, April 2010.

[21] H.L.H.S. Warnars, “Perbandingan penggunaan Database OLTP (Online
Transactional Processing) dan Data Warehouse”, Creative
Communication and Innovative Technology (CCIT) journal, Vol. 8 No.
1, pp. 83-100, September 2014.

[22] H.L.H.S. Warnars, E. Suria, D.K. Jeremy, ”Pemahaman teori Data
Warehouse bagi Mahasiswa tahun awal jenjang strata satu bidang ilmu
komputer”, jurnal informatika, Vol. 13, No.1, Mei 2015, pp. 20-24.

[23] H.L.H.S. Warnars, R. Randriatoamanana. Datawarehouser: A Data
Warehouse artist who have ability to understand data warehouse schema
pictures. IEEE International Conference TENCON 2016 (Technologies
for Smart Nation), pp. 2207-2210, 22-25 Nov 2016, Singapore

[24] H.L.H.S. Warnars. Attribute Oriented Induction with simple select SQL
Statement. The 1st Int. Conf. on Computation for Science and
Technology (ICCST-I), Chiang Mai, Thailand, 4-6 August 2010.

[25] H.L.H.S. Warnars. Measuring Interesting rules in characteristic rule. The
2nd International Conference on Soft Computing, Intelligent System and
Information Technology (ICSIIT), pp. 152-156, Bali, Indonesia, 1-2 July
2010.

[26] H.L.H.S. Warnars. Classification rule with simple select SQL statement.
National seminar Budi Luhur University 2010, Budi Luhur University,
Jakarta, 5 August 2010.

[27] H.L.H.S. Warnars. Attribute oriented induction with star schema. Int.
Journal of Database Management system (IJDMS), 2(2), 20-42, 2010.

[28] H.L.H.S. Warnars. Star Schema Design for Concept Hierarchy in
Attribute Oriented Induction. Internetworking Indonesia Journal,
2(2),33-39, 2010.

[29] H.L.H.S. Warnars. Mining Patterns with Attribute Oriented Induction.
The Int. Conf. on Database, Data Warehouse, Data Mining and Big Data
(DDDMBD2015), Tangerang, Indonesia, pp. 11-21, 2015.

[30] Warnars, H.L.H.S., M.I. Wijaya, H.B. Tjung, D.F. Xaverius, D.V.
Hauten, Sasmoko. Easy understanding of Attribute Oriented Induction
(AOI) characteristic rule algorithm. International journal of Applied
Engineering Research (IJAER), 11(8), 5369-5375, 2016.

[31] A. Wibowo, H.L.H.S. Warnars. Pengembangan learning characteristic
rule pada algoritma data mining attribute oriented induction. Jurnal
Sistem Komputer, 6(1), 17-29, 2016.

[32] H.L.H.S. Warnars. Attribute Oriented Induction of High-level Emerging
Patterns. International Symposium on Foundations and Frontiers of Data
Mining in conjunction with IEEE Int. Conf. on Granular Computing
(IEEE GrC2012), Hangzhou, China, 11-13 August 2012.

[33] H.L.H.S. Warnars. Attribute Oriented Induction High Level Emerging
Pattern (AOI-HEP) future research. The 8th Int. Conf. on Information &
Communication Technology and Systems (ICTS), Surabaya, Indonesia,
pp. 13-18, 24-25 September 2014.

[34] H.L.H.S. Warnars. Mining Frequent Pattern with Attribute Oriented
Induction High level Emerging Pattern (AOI-HEP). The 2nd Int. Conf.
on Information and Communication Technology (IEEE ICoICT 2014),
Bandung, Indonesia, pp. 144-149, 28-30 May 2014.

[35] H.L.H.S. Warnars. Mining Frequent and Similar Patterns with Attribute
Oriented Induction High Level Emerging Pattern (AOI-HEP) Data
Mining Technique. Int. Journal of Emerging Technologies in
Computational and Applied Sciences (IJETCAS), 3(11), 266-276, 2014.

[36] H.L.H.S. Warnars. Using Attribute Oriented Induction High level
Emerging Pattern (AOI-HEP) to mine frequent patterns. Int. Journal of
Electrical and Computer Engineering (IJECE), 6(6), 3037-3046, 2016.

2017 International Conference on Applied Computer and Communication Technologies (ComCom), Jakarta, Indonesia

