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We report the results of experimental study on CN 388.3 nm and C I 247.8 nm emission

characteristics using 40 mJ laser irradiation with He and N2 ambient gases. The results obtained

with N2 ambient gas show undesirable interference effect between the native CN emission and the

emission of CN molecules arising from the recombination of native C ablated from the sample

with the N dissociated from the ambient gas. This problem is overcome by the use of He ambient

gas at low pressure of 2 kPa, which also offers the additional advantages of cleaner and stronger

emission lines. The result of applying this favorable experimental condition to emission

spectrochemical measurement of milk sample having various protein concentrations is shown to

yield a close to linear calibration curve with near zero extrapolated intercept. Additionally, a low

detection limit of 5 lg/g is found in this experiment, making it potentially applicable for

quantitative and sensitive CN analysis. The visibility of laser induced breakdown spectroscopy

with low pressure He gas is also demonstrated by the result of its application to spectrochemical

analysis of fossil samples. Furthermore, with the use of CO2 ambient gas at 600 Pa mimicking the

Mars atmosphere, this technique also shows promising applications to exploration in Mars. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4915344]

I. INTRODUCTION

Thanks to the continued improvements of laser system and

spectroscopic detection techniques, the Laser Induced

Breakdown Spectroscopy (LIBS) has quickly emerged as a

widely adopted modern technique for practical, versatile, and

rapid multi-element analysis. Nowadays, it has found a large

variety of applications in the scientific research laboratories and

industrial laboratories as well as for in situ, real time, or stand-

off measurements.1 In fact, it has found its way into field appli-

cations with the development of its portable system. While

most of the earlier applications are focused on inorganic materi-

als, its possible extension to organic materials has attracted

growing interest of research since around the turn of the cen-

tury. Reports are available in the literatures on the applications

of LIBS to polymer classification or identification,2–6 analysis

of pharmaceutical materials,7 organic explosives,8–12 inspection

and investigation of environmental contamination13–17 as well

as biomedical applications.18–21

Most organic and biological materials are known to con-

tain the four common basic elements of H, C, N, and O. The

uses of these atomic lines for polymer analysis have been

reported in the literature.22,23 However recent studies have

demonstrated the more favorable discriminating power by

means of measuring both the atomic and molecular emission

lines and their intensity ratios.3–5,24,25 Among the most cited

examples are the H, C, N, and O atomic emission intensities,

and the C/H, C/O, C/N, and O/N intensity ratios, as well as

the diatomic molecular bands of C2, CN, and their

a)Author to whom correspondence should be addressed. Electronic mail:

kurnia18@cbn.net.id
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appropriate intensity ratios which are expected to provide

direct molecular information of the related materials.

However, the use of molecular emission bands is not without

problem. It has been shown for instance, that CN molecules

can be formed as a product of recombination between the

ablated C in the plasma plume and the dissociated N in the

ambient air.2,26–32 Therefore, a clear separation of the two

different contributions must be made in order to achieve a

reliable analysis for the native molecules of interest. A sys-

tematic study by Russo et al.27,32 using time resolved emis-

sion spectra of CN band under different laser energies

demonstrated the importance of proper control of the laser

fluence for the exclusive detection of native CN bonds.

UV-LIBS with low laser fluence allows the detection of

native CN bond without complication from the ambient air.

In most of those studies mentioned above, no serious

attempt was made on the quantitative analysis utilizing the

CN band emission. This is likely due to the weak intensity of

CN emission in the atmospheric pressure regime and in the

ambient air. In a previous study dedicated to the H and D

analysis in metal samples, combination of low pressure

plasma with the use of helium ambient gas was employed,

taking advantage of the role of helium metastable excited

state for the clean detection of the delayed emission lines.

The result shows a greatly improved spectral quality of those

fully resolved emission lines.33,34 It is the purpose of the cur-

rent experiment to study the possibility of producing

improved spectral quality of CN molecular band without dis-

turbance from the ambient gas by employing the same exper-

imental conditions adopted in those previous works. Having

demonstrated the desirable results, the possibility of doing

quantitative analysis utilizing CN molecular band emission

is investigated by repeating the experiment using milk pow-

der samples containing different protein concentrations. It is

shown that a calibration curve close to a linear line is

obtained for a reasonable range with extrapolated zero inter-

cept. This result is further shown to offer the potential appli-

cation of CN analysis to carbon dating of fossils as well as

for its applications in Mars.

II. EXPERIMENTAL PROCEDURE

The schematic diagram of the experimental arrangement

is similar to our previous works.34 In this experiment, the ns

1064 nm Nd:YAG (Quanta Ray, LAB 130-10, 8 ns maxi-

mum energy of 450 mJ) is operated in a Q switched mode at

a repetition rate of 10 Hz with the laser output energy fixed

at 40 mJ yielding a power density of around 25 GW/cm2. In

the experiment for studying the CN band emission character-

istics, a carbon stamp, which is usually used for calligraphy

in China and Japan as the sourse of black ink (98% C and

2% of glue mixture containing 20% animal protein mole-

cules having CN bands) is used as the sample. This sample

has a good compositional uniformity and it is also very

hard and available in a large size of around 3 cm � 3 cm

� 0.5 cm. As such it can be irradiated in both rotated or fix

position. In the experiment performed for exploring and veri-

fying the favorable condition for desirable spectrochemical

analysis of CN band emission and its applicability to

quantitative analysis, a number of milk powder samples with

different protein concentrations are employed. The possibil-

ity of measuring total C content in a sample for radio active

dating is investigated using samples of buffalo horn fossil of

400 000 years and leaf fossil of 1 000 000 years.

The spectral measurement of the secondary plasma

emission is carried out by employing an optical multichannel

analyzer (OMA system, Andor I*Star intensified CCD 1024

� 256 pixels) of 0.012 nm spectral resolution at 500 nm. This

system is attached on one side to a spectrograph (McPherson

model 2061 with 1000 mm focal length f/8.6 Czerny Turner

configuration) which is connected to an optical fiber on the

other end.

III. RESULTS AND DISCUSSION

A. Emission characteristics of CN band from different
origins

Prior to the spectroscopic experiment, a preliminary

inspection is conducted on the plasma generated by 40 mJ

laser irradiation on the carbon stamp sample in (a) He ambi-

ent gas at 2 kPa and (b) N2 ambient gas at 101 kPa, both in

tight focus setup. In the first case, as shown in Fig. 1(a), the

plasma is found to exhibit a typical hemispherical shape con-

sisting of a small primary and an extended secondary plasma

regions as observed previously.33,34 The relatively tiny pri-

mary plasma shows a very dense white color, while the

much larger secondary plasma extending far beyond the pri-

mary plasma displays a bright red and green colour. The ra-

dius of the secondary plasma is estimated to be around

15 mm. Meanwhile in the case of LIBS employing atmos-

pheric ambient air as shown in Fig. 1(b), one only observes

that the very dense plasma of much smaller size exhibits a

bright white colour associated with strong continuum emis-

sion of the sample. The related spectra in the two cases are

represented in Fig. 2 in which the CN band emission at

388.3 nm appears significantly higher and narrower in the

case of 2 kPa He ambient gas compared to that detected in

101 kPa ambient N2 which approximately corresponds to the

condition encountered in LIBS. This unfavorable character-

istics of CN emission are probably the reason for the lack of

published report on the quantitative CN analysis using the

LIBS technique. Nevertheless, it remains to be clarified

FIG. 1. Photograph of the plasmas generated by irradiation of Nd-YAG laser

of 40 mJ output energy on carbon stamp sample in (a) He ambient gas at

2 kPa and (b) ambient N2 at 101 kPa.

113302-2 Pardede et al. J. Appl. Phys. 117, 113302 (2015)
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whether the high gas pressure or the N2 ambient gas itself is

responsible for the undesirable emission quality. For this

purpose, measurements are performed on the pressure de-

pendent intensity variations of CN band 388.3 nm emission

along with C I 247.8 nm emission in He as well as in N2 am-

bient gases. The results are presented in Fig. 3. It is clear

from this figure that the CN emission intensity detected in

ambient N2 is consistently higher than that detected in He

ambient gas at the same pressure. Meanwhile, the C I

247.8 nm emission intensity detected in N2 ambient gas is

perceptibly lower than that measured in He ambient gas.

This is indicative of the formation of extra CN molecules

and the presence of additional CN emission other than that

coming from the ablated native CN molecules. This extra

CN molecules are supposedly formed by the reaction

between the C atoms ablated from the sample and the N

atoms dissociated from the ambient gas. This extra CN emis-

sion is on the other not to be expected in the case of using

the high purity He ambient gas, in which case the CN emis-

sion has its sole origin from the ablated native CN mole-

cules. The presence of this extra CN emission is obviously

detrimental to the CN analysis of the sample and hence the

use of N2 ambient gas or ambient air is not recommended for

that purpose.

In addition to the different effects of He and N2 ambient

gas described above, it is also useful to take a look at the dy-

namical behaviors of the CN band and C I 247.8 nm emis-

sion lines in the two ambient gases. To that end, the time

profiles of CN and C emission intensities are measured sepa-

rately in He ambient gas of 2 kPa and N2 ambient gas of

1 kPa. These gas pressures are chosen for the near maximum

CN and C emission intensities as shown in Fig. 3. Fig. 4

shows the time evolution of the two emission intensities in

each of those two ambient gases. It is clear that the CN and

C emission lines generated in He plasma exhibit higher

intensities and last longer than their corresponding emission

lines generated in N2 ambient gas due to the prolonged He

assisted excitation process.34 In the mean time while the CN

and C emission lines display qualitatively similar intensity

time profiles, the former has significantly higher intensity

and sustains a longer decaying process, which is probably

related to the lower excitation energy of CN band. It should

be further noted from Fig. 4 that CN and C emission lines in

the N2 ambient gas show markedly different time dependent

intensity variations. Apparently the two emission processes

are complicated by the C þ N! CN recombination reaction

which results in higher CN emission intensity as well as its

longer lifetime.

B. Quantitative analysis of milk powder using CN band
at 388.3 nm

Having demonstrated the superior result of low pressure

He ambient gas for the detection of native CN emission, we

FIG. 2. Emission spectra of CN band at 388.3 nm produced by Nd-YAG

laser irradiation of carbon stamp at 40 mJ output energy in (a) He ambient

gas at 2 kPa and (b) ambient N2 at 101 kPa. Gate delay and gate width of the

OMA system are set at 100 ns and 50 ls, respectively.

FIG. 3. Variations of CN band at 388.3 nm and C I 247.8 nm emission inten-

sities with respect to increasing gas pressure expressed in logarithmic scale

obtained with the same experimental condition cited in Fig. 2. The maxi-

mum intensities are indicated by an arrow head.

FIG. 4. Time evolution of 388.3 nm CN band and C I 247.8 nm emission

intensities in 2 kPa He gas and 1 kPa N2 gas. The sample is carbon stamp.

Nd-YAG laser of 40 mJ energy is used. Gate width of the OMA system is

set at 500 ns.

113302-3 Pardede et al. J. Appl. Phys. 117, 113302 (2015)
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proceed to investigate the feasibility of quantitative analysis

of CN band by performing an initial semi quantitative experi-

ment employing milk powder samples containing 20% and

10% of protein. The milk sample is prepared by thoroughly

mixing the milk powder with KBr powder and grounded into

an average size of less than 50 lm. The resulted fine powder

is subsequently pressed under 30 atm for 1 min to form a pel-

let of 10 mm diameter and 1.5 mm thickness. This pellet is

then irradiated with 40 mJ Nd-YAG laser in helium gas of

2 kPa. Fig. 5 shows the resulted spectra for wavelength region

around CN band at 388.3 nm. It is seen from the two spectra

that the emission intensities of CN band of milk powder con-

taining 20% protein are almost exactly twice that of milk

powder containing 10% protein.

Encouraged by those results, we proceed with the fol-

lowing experiment aiming at verifying the possibility to do

quantitative analysis using the CN band. For this experiment,

a number of liquid samples are prepared with different pro-

tein concentrations. This is done by putting the same amount

of each milk liquid sample onto the surface of each an alu-

mina plate (15� 15 mm with thickness of 10 mm). The sam-

ple is then heated at 120 �C for 5 min before being mounted

on the sample holder inside the chamber for laser irradiation.

The resulted CN emission intensities for the corresponding

protein concentrations are plotted to give the calibration

curve presented in Fig. 6. The calibration curve is quite

smooth and nearly linear with extrapolated zero intercept.

Each point in the calibration curve is a average result of 10

consecutive measurements. The detection limit is further

determined from the spectrum of a sample containing 0.25%

protein and the result is shown in Fig. 7. Based on the crite-

rion of three times noise level, the detection limit of CN

band at 388.3 nm is estimated around 5 ppm. It should be

pointed out that this quantitative result cannot be obtained

using LIBS technique at atmospheric ambient air since the

large amount of N2 in air will seriously disturb the native CN

emission signal and hence reduce the sensitivity of its

detection.

FIG. 5. Emission spectra of milk powder samples containing 10% and 20%

protein presented in the 388.3 nm CN band wavelength region which is

obtained with He ambient gas at 2 kPa, Nd-YAG laser of 40 mJ energy,

gate delay, and gate width of the OMA system set at 100 ns and 50 ls,

respectively.

FIG. 6. The 388.3 nm CN band emission intensity plotted as a function of pro-

tein concentration in liquid milk. He gas at 2 kPa is used as the ambient gas.

FIG. 7. Emission spectra from liquid milk containing 0.25% protein depos-

ited on an alumina plate detected in He ambient gas at 2 kPa. The curve rep-

resents an averaging result of 10 consecutive measurements.
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C. Application of CN emission for fossils analysis

Given the encouraging result described above, an explo-

ration is conducted on its possible application to carbon dat-

ing of fossils. The detection of C along with CN emission

intensities can provide information of the total C content of

the sample by means of relatively simple and rapid method

of LIBS. The following dating process can then be deter-

mined on the basis of standardized emission intensity of radi-

oactive 14C in the sample. The highly sensitive and rapid

elemental analysis of fossils using the LIBS technique natu-

rally lends itself to the rapid determination of the associated

fossilization process in situ. While the techniques of radio-

carbon dating developed by Krueger35 and others during the

1960s have laid the groundwork for subsequent development

on stable carbon, nitrogen, oxygen, and strontium isotope

analysis, so far no report is available on its application for

in-situ analyses.36 Meanwhile, portable X-ray fluorescence

equipment which has become a popular technique for

elemental analysis in many fields cannot be applied to H and

C analysis because of their light atomic weights.33,34

In this experiment, we perform the spectrochemical

analysis of C and CN of fossil samples using the low pres-

sure He plasma. The samples (buffalo horn fossil dated

400 000 years and leaf fossil dated 2.4 million years) are col-

lected from the Sangiran region of Central Java, which is

one of only a few hominid sites in the world.

Fig. 8 shows the emission spectra of buffalo horn fossil

covering the CN band and C I 247.8 nm emission wavelength

region measured separately in He ambient gas at 2 kPa and at

atmospheric pressure. It is seen that the emission intensities

detected at the lower pressure are generally much higher.

Interestingly, the spectrum also shows strong Si emission

lines indicating that some exchange process may have taken

place between C from the horn and Si from the soil. For a

comparison, leaf fossil is also used as an sample and the

FIG. 8. Emission spectra of buffalo horn fossil (400 000 years) covering sep-

arately CN band of 388.3 nm and C I 247.8 nm wavelength regions. He at

2 kPa and 101 kPa are separately used as an ambient gas. The same laser

energy, gate delay, and gate width of the OMA system are used.

FIG. 9. Emission spectra of leaf fossil (2 400 000 years) covering separately

the 388.3 nm CN band and C I 247.8 nm wavelength regions measured with

He ambient gas at 2 kPa and the same laser energy as well as the same gate

delay and gate width of the OMA system, as cited for Fig. 3.

113302-5 Pardede et al. J. Appl. Phys. 117, 113302 (2015)
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resulted emission spectra are presented in Fig. 9 for the case

of using He ambient gas at 2 kPa. Strong CN band emission

at 388.3 nm and C emission at 247.8 nm as well as Si emis-

sion are fully exhibited.

It is important to remember that CN emission is not

always in the emission spectrum of organic sample. This is

verified by an experiment on volcano stone which is free

from N content. Fig. 10 shows the measured emission spec-

tra obtained with ambient N2 at 1 kPa covering separately

the wavelength regions of CN band at 388.3 nm and C I

247.8 nm. It is obvious that no CN band is visible whereas a

sharp C emission line appears very clearly.

D. Potential application in Mars

Finally, preliminary work exploring the possibility for

tracing possible sign of life in Mars is conducted by the

detection of CN band with low pressure CO2 ambient gas of

600 Pa mimicking the Mars atmospheres and using the car-

bon stamp as an sample. The resulted spectrum is presented

in Fig. 11. A strong CN band clearly appears in the spectrum.

In order to clarify the origin of this emission band, the mea-

surement is repeated on a sample of pelletized GaN and KBr

powder mixture. The resulted spectrum given in Fig. 12 does

not turn up the CN band. This implies that no CN molecule

is produced as a result of reaction between N ablated from

the sample and C dissociated from the CO2 ambient gas.

This result has thus shown the promising application of

LIBS for CN band detection in Mars.

IV. CONCLUSION

We have shown in this experimental study the CN emis-

sion characteristics in N2 ambient gas or equivalently N2 rich

ambient air which are complicated by the formation of extra

FIG. 10. Emission spectra of volcano stone covering the 388.3 nm CN band

and C I 247.8 nm wavelength regions. N2 at 1 kPa is used as an ambient gas.

The same laser energy as well as the same gate delay and gate width of the

OMA system employed.

FIG. 11. Emission spectra from carbon stamp sample in CN band of

388.3 nm wavelength region. CO2 ambient gas at 600 Pa is used as an ambi-

ent gas. Nd-YAG laser of 40 mJ energy is used. Gate delay and gate width

of the OMA system are set at 100 ns and 50 ls, respectively.

FIG. 12. Emission spectra from a pellet of 50% GaN and 50% KBr powder

mixture obtained with CO2 ambient gas at 600 Pa and the same Nd-YAG

laser energy of 40 mJ, gate delay, and gate width of 100 ns and 50 ls,

respectively.
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CN molecules and making it undesirable for CN analysis.

On the other hand, our experimental results demonstrate a

clean emission and other favorable emission characteristics

observed with He ambient gas at low pressure (2 kPa). The

results further show its potential application to quantitative

and sensitive CN analysis as supported by a near linear cali-

bration curve with extrapolated near zero intercept. The

applications to fossil samples yield very clean C I 247.8 nm

and CN 388.3 nm emission signals which provides the infor-

mation of total C content in the sample and may be useful

for in situ radiocarbon dating. Finally, the use of CO2 ambi-

ent gas at very low pressure simulating the Mars atmosphere

also succeeds to produce the expected CN emission lines of

excellent spectral quality.
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