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A B S T R A C T

Carbon detection is usually difficult to carry out with high sensitivity and minimally destructive effect. While the
conventional laser induced breakdown spectroscopy (LIBS) method operated with atmospheric ambient air is
well known as a powerful and versatile analytical tool, it suffers nevertheless from the low sensitivity of C
detection when measured in both atmospheric and low pressure ambient air with the more adverse effect found
in the former case. This was shown to have its origin in the serious time mismatching effect between the for-
mation of the shock wave plasma by the ablated major host elements and the premature fast passage of the much
lighter ablated C atom. However, this study shows the result of high sensitivity C analysis of stone samples using
LIBS technique with relatively low laser pulse energy of 60 mJ and low pressure He ambient gas without showing
visible surface damage. The helium gas provides the additional delayed excitation by the He metastable excited
states through the Penning-like ionization process. The C emission intensities measured from the jasper and
black stone in 2.6 kPa He ambient gas are in general significantly higher than those measured in 0.5 kPa ambient
air. The enhancement is shown to increase reaching an 8 fold enhancement with increased laser energy up to
60 mJ before undesirable surface damage is created. A further measurement of C emission using pelletized KBr
mixtures with various CaCO3 concentrations reveals a straight calibration line of rather large slope with ex-
trapolated zero intercept and estimated detection limit of around 0.6 ppm, demonstrating its potential appli-
cation for highly sensitive quantitative analysis of C with minimal destructive effect.

1. Introduction

Carbon is one of the essential elements that determine the physical,
mechanical and chemical properties of both metals such as steel as well
as non metals such as stones and foods. The analytical methods com-
monly used for the detection and analysis of C in steel and other me-
tallic samples are the spark discharge optical emission spectrometry
and the classical combustion C analysis [1–2]. Meanwhile the analysis
of C content in shale rock is normally carried out by means of instru-
mental neutron activation analysis (INNA), X-ray fluorescence (XRF),
and inductively coupled plasma-optical emission spectroscopy (ICP-
OES) [3–5]. However, INNA is not commonly available and it is time

consuming while the detection limit attained by XRF is relatively poor.
Despite its reputation for uncomparably high accuracy, analysis using
ICP-OES is both time and sample consuming as well as being totally
destructive in nature. Thus, a more practical, minimally destructive and
less expensive analytical tool with offering comparable high perfor-
mance is very much in demand for C analysis of solid samples.

A potential alternative is basically offered by the laser-induced
breakdown spectroscopy which is widely known as a powerful, versatile
and practical analytical tool applicable to a large variety of samples in
the forms of solid, liquid and gas [6–12]. It is also relatively free from
tedious sample preparation and capable of performing rapid simulta-
neous multi-elemental analysis of samples having complex
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compositions. The problem of weak emission and poor sensitivity in the
detection of light elements such as hydrogen and deuterium in con-
ventional LIBS due to the time mismatch effect in atmospheric ambient
air has been overcome by the use of low pressure ambient He gas,
thanks to the role of metastable excited He atoms created in the process.
These excited He atoms were shown to provide the He assisted ex-
citation (HAE) mechanism for the delayed excitation and emission of
the ablated analyte atoms when the plasma becomes relatively cooled
and free from the charged particles [13–26]. The benefits of using
ambient He gas in LIBS applications have been amply demonstrated in a
number of cases according to our previous works, [15–28] including C
analysis of steel products [29–30]. Nevertheless its application to C
analysis of stones has yet to appear in the literature.

Recently there is a rising trend in Indonesia of collecting typical
Indonesian precious stones of partially organic origin (jasper).
Thousands of stone shops have recently sprout up all over the country
to meet the growing market demand for this commodity. The most
favorite choice of the collectors is a jasper with rather high content of C
for spiritual need and other unexplained purposes. Therefore the stones
of higher C concentration are the more expensive and sought after ones.
In anticipation of its rapidly increasing commercial need, a fast and
reliable C detection method with minimal destructive effect is highly
desirable. The sensitive C detection for its concentration variation of
less than 1% is generally required as the C content in jasper is known to
vary from 0.5 to 3%. It is in response to this market need that the ap-
plicability of LIBS technique is investigated in this work. The work is

carried out by taking advantage of low pressure He ambient gas men-
tioned earlier and exploring the optimal irradiation energy and ambient
He gas pressure for the most sensitive detection with least destructive
effect. Further, the possibility for quantitative C analysis will also be
examined.

2. Experimental procedures

The experimental setup employed in this work is basically similar to
those used in our previous works, [21–22] which is schematically
presented in Fig. 1 for easy reference. The laser source is a nanosecond
Nd:YAG laser Quanta Ray; LAB SERIES; λ = 1.064 nm, 8 ns, 10 Hz with
a maximum energy of 500 mJ which is operated in a Q-swicthed mode
at 10 Hz repetition rate. In order to avoid undesirable surface damage
marked by the appearance of crater size larger than100 μm diameter,
the laser output energy is lowered and varied below 60 mJ using a
proper set of filters. The laser beam is focused by a moveable high
density lens of f = +150 mm and directed perpendicularly onto the
sample surface.

Two stone samples used in this experiment are prepared from jasper
(green stone of about 1% C content) and black stone of about 0.2% C
content. Each sample is cut into a small slice of
20 mm × 20 mm × 5 mm and mounted on a sample holder in the metal
chamber. The chamber is equipped with several windows allowing
flexible observation and detection of the plasma emission as well as for
the inlet and outlet of the gas line. The sample chamber is evacuated

Fig. 1. (a) Diagram of the experimental set up and (b) ICCD gate delay dependent of S/N ratios of C I 247.8 nm emission intensities detected using 60 mJ laser
irradiation from black stone sample in He ambient gas at 2.6 kPa. The gate width of the ICCD is set at 50 μs.
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prior to its use and filled with certain ambient gases, including the high
purity He gas (Air Liquid, 5 N) and ambient air at the desired pressures
for comparison.

The plasma emission is collected by one end of an optical fiber
positioned side wise at a distance of 80 mm from the plasma center with
the other end of the fiber connected to the input port of the detection
system consisting of an Echelle spectrograph (Mechelle M5000 made by

Andor) and intensified charged couple device (ICCD) detector (Andor
iStar). Prior to its operation, a special experiment is carried out to as-
certain the most favorable ICCD gating time. The resulted variation of
the S/N ratio of C I 247.8 nm emission from the black stone versus the
gating delay is displayed in Fig. 1(b). It is seen that the maximum S/N
ratio is attained with 200 ns gate delay and followed by a gradual de-
crease thereafter. The 200 ns gate delay and 50 μs gate width are chosen
for the following experiment. The detection system has a spectral
window covering the wavelength range from 200 nm to 975 nm. For the
measurements aimed at exploring the possible existence of calibration
curve, the Echelle spectrograph and the ICCD are replaced by Czerny
Turner spectrograph (McPherson model 2061 with 1 m focal length,
1800 g/mm grating and f/8.6) and a different ICCD (Andor iStar
1024 × 256 pixels) in the detection system, respectively, in order to
attain a wavelength resolution of 0.01 nm. The accumulated data of 10
spectra obtained successively from each irradiated spot are monitored
on a computer screen, and recorded to yield the averaged spectral re-
sults presented in this report.

3. Experimental results and disscussion

Since the He gas of high purity is relatively expensive and not
readily available compared to air, it is necessary to show that the use of
ambient He does offer the convincingly larger advantages over the use
of ambient air. The emission spectra from the samples are separately
measured by focusing 60 mJ laser irradiation onto the sample surface in
2.6 kPa He ambient gas and alternatively in 0.5 kPa ambient air for
comparison. The He gas and air pressures are chosen on the basis of the
pressure dependent intensity variations of the related plasma emission
measured in a preliminary experiment. The result presented in Fig. 2
clearly shows the highest S/N ratios of the C I 247.8 nm emission line at
the two gas pressures cited above. It should be noted that apart from the
highest S/N ratios of the ambient air and helium gas, the different
pressures also give the same gas density and the resulted plasma size as
shown in Fig. 2(b).

Figs. 3 and 4 show the emission spectra of jasper and black stone
samples, respectively. In each case the spectra are presented in three
different wavelength ranges covering (a) the C I 247.8 nm and Si I
251.6 nm emission lines, (b) the Ca II 393.3 nm and Ca II 396.8 nm
emission lines and (c) the H I 656.2 nm and He I 667.8 nm emission
lines. Note that different scales are adopted in the three spectral ranges.
It should be noted that Si and Ca are among the major and heaviest host
elements for both stones. The ablated Si and Ca atoms are therefore
responsible for the generation of the shock wave plasma, and the as-
sociated emission lines do not suffer as much as the C emission from the
time mismatch effect in ambient air. This effect was first revealed and
reported in 2004 [31–34,14,17,24]. It was shown that the suppressed of
H I 656.2 nm emission line in zircaloy was mainly due to the ineffective
shock wave induced thermal excitation of the ablated H in the plasma
which was mainly generated by the other heavier host atom of Zr. Since
the passage of the lighter and faster moving H atoms took place before
the full formation of the shock wave plasma, the H atoms are bound to
largely miss the thermal excitation process by the hottest part of the
plasma right behind the shock wave front. That is why the emission
lines of the light elements C and H are visibly weakened as shown in
Figs. 3(a) and 3(c), respectively. Subsequently, a special experimental
study on the time mismatch effect was performed using the agate
sample. The specific measurements of the speeds of the ablated H, O
and Ca yielded the results of 50 km/s, 10 km/s and 2.5 km/s. As ex-
plained above, the Ca atoms which is one of the host element in agate
are among those responsible for the generation of shock wave plasma.
This result therefore confirms the so called time mismatch effect [33].
Meanwhile the emission from both samples detected in ambient He gas

(a)

(b)
Fig. 2. (a) Pressure dependent of S/N ratios of C I 247.8 nm emission intensities
detected from black stone sample using 60 mJ laser irradiation. The gate delay
and gate width of the ICCD is set at 200 ns and 50 μs, respectively and (b)
photograph of the plasma from black stone sample using 60 mJ laser irradia-
tion. Upper part is for the case of 0.5 kPa ambient air and lower part is for the
case of 2.6 kPa ambient He gas.
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Fig. 3. Emission spectra measured from the plasma produced by focusing Nd:YAG laser beam of 60 mJ on a jasper in ambient He gas at 2.6 kPa and ambient air at
0.5 kPa; in the wavelength range of (a) 245 nm–255 nm, (b) 392 nm–400 nm and (c) 650 – 670 nm. The gate delay and gate width of the ICCD are set at 200 ns and 50
μs, respectively.
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Fig. 4. Emission spectra measured from the plasma produced by focusing Nd:YAG laser beam of 60 mJ on a black stone in ambient He gas at 2.6 kPa and ambient air
at 0.5 kPa; in the wavelength range of (a) 245 nm–255 nm, (b) 392 nm–400 nm and (c) 650–670 nm. The gate delay and gate width of the ICCD are set at 200 ns and
50 μs, respectively.
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are seen to be largely enhanced and exhibit generally much stronger
and sharper emission lines. It is most remarkable that the intensity
enhancement of C and H emission lines resulted from the replacement
of ambient air by ambient He gas are marked by eight to ten fold in-
crease as indicated in Figs. 3 and 4, respectively. This is in good
agreement with the previous reports [14–15] of the effective role of
HAE mechanism in the enhancement of light atom emission. This is
further corroborated by the evidence of approximately the same life-
times of the C I 247.8 nm and the metastable triplet He I 587.6 nm
emission line responsible for the HAE process as depicted in Fig. 5.

In view of its purpose for spectrochemical analysis of precious
stones, it is important to minimize the destructive effect on the sample
surface due to excessive irradiations. Therefore it is necessary to in-
vestigate the possibility of retaining the appropriate emission in-
tensities with lower ablation energies. Fig. 6 exhibits the energy de-
pendent intensity variations of C I 247.8 nm emission from jasper and
black stone samples measured separately in 2.6 kPa ambient He gas and
0.5 kPa ambient air. Apart from being obviously much weaker, the C
emission intensities from both samples measured in ambient air are
shown to be little affected by the pulse energy variation. In contrary,
those emission intensities measured in ambient He gas are drastically
reduced with decreasing pulse energy. This is clearly the result of re-
duced number of incoming photons for the excitation of He atoms. This

leads inevitably to less effective HAE mechanism at low ablation en-
ergies. Clearly, 60 mJ laser irradiation energy should be the optimal
choice as it is the highest energy without causing unacceptable damage
on the sample surface marked by craters exceeding 100 μm in diameter.

Since the quality and hence the price of the precious stone are lar-
gely determined by the C concentration in the stone, it is desirable to
investigate the feasibility of applying our experimental setup for
quantitative analysis of C in the stone samples. Unfortunately, stone
samples with different known C concentrations are hard to come by.
The samples used for this experiment are instead prepared by mixing
KBr powder with CaCO3 at various concentrations before being pelle-
tized. These pellet samples are verified to show similar C emission lines
from the black stone sample. Fig. 7 displays the resulted calibration
curve for C in the pellet samples. It is seen to exhibit a linear re-
lationship between C concentration and C I 247.8 nm emission intensity
with extrapolated zero intercept and reasonably large slope for sensitive
C detection. Depicted in the inset of Fig. 7 is the C emission line de-
tected from KBr + CaCO3 pellet, containing 0.3125% of CaCO3 powder
equivalent to a C concentration of about 5 ppm. The detection limit
estimated from this spectrum is approximately 0.6 ppm. It is worth
noting that the plasma temperatures and electron densities of the
plasma generated from the black stone and the pelletized samples are
found to be 9000 K and 1017 cm−3 and 8500 K and 4 × 1016 cm−3,
respectively. This result clearly shows the possibility of C analysis in
precious stones using LIBS with low pressure He ambient gas.

4. Conclusion

We demonstrate in this study the significant intensity enhancement
(8×) of C emission line from jasper and black stone samples employing
LIBS with low pressure ambient He gas compared to the results ob-
tained with low pressure ambient air. This remarkable advantage is
attributed to the He assisted excitation (HAE) mechanism due to the
presence of metastable excited He atoms created in the plasma, and
hence eliminating the time mismatch problem in the shock wave in-
duced thermal excitation process. It is shown that 2.6 kPa low pressure
ambient He gas provides the most favorable C emission intensity and
highest S/N ratio. The intensity increases rapidly and monotonously in
both samples with increased laser energy up to 60 mJ before surface
damage begins to occur. Finally, repeating the experiment with KBr
pellet of CaCO3 also exhibits a linear calibration line with extrapolated
zero intercept and reasonably high slope for the sensitive detection of C
emission line as corroborated by an estimated detection limit of
0.6 ppm.

Fig. 5. Duration or emission life times of C I 247.8 nm and He I 587.6 nm lines.
The He emission line is associated with transition from the metastable triplet
excited state of He responsible for the HAE mechanism. The gate width of the
ICCD is set at 500 ns.

Fig. 6. Energy dependent of the emission intensity of carbon (C I 247.8 nm) detected from black stone and jasper samples in ambient He gas at 2.6 kPa and ambient
air at 0.5 kPa. The gate delay and gate width of the ICCD is set at 200 ns and 50 μs, respectively.
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