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Abstract—Single-objective bilevel optimization is a specialized form of constraint optimization problems where one of the constraints 

is the optimization problem itself. These problems are typically non-convex and strongly NP-Hard. Recently, there has been an increased 

interest from evolutionary computation community to model bilevel problems due to its applicability in the real world applications for 

decision-making problems. In this work, we are utilizing a partial nested evolutionary approach with local heuristic search to solve the 

benchmark problems and have outstanding results. This approach relies on the concept of intermarriage-crossover in search for feasible 

regions by exploiting information from the constraints. We are also proposing new variants to the commonly used convergence 

approaches, i.e., optimistic and pessimistic. The experimental results demonstrate the algorithm converges differently to known optimum 

solutions with the optimistic variants. Optimistic approach also outperforms pessimistic approach. Comparative statistical analysis of 

our approach with other recently published partial to complete evolutionary approaches demonstrates very competitive results. 

Index Terms—bilevel optimization, evolutionary computation, intermarriage-crossover, optimistic and pessimistic, decision-making  

1. INTRODUCTION 

Optimization problems are very common in many fields such as engineering, operations research, economics, and games, to get 

the most favorable solution from a feasible set of solutions. Bilevel optimization problem is structured as a nested optimization 

problem in the form of constraint optimization problem (COP) where a solution must satisfy a set of constraints. These constraints 

can be either scalar/vector or static/dynamic functions [18]. In bilevel problems, one or more constraints are the COP themselves. 

This makes bilevel programming combinatorial and strongly NP-hard [8, 9]. Bilevel programming was motivated by [28] who 

used game theory to solve unbalanced economic market problem with multilevel optimization. Here, upper-level is called the 

leader and the lower-level is called the follower. The earliest formalization of bilevel problem using mathematical programming 

was published in [3] where bilevel problem was called two-sided optimization with outside optimizer and inside optimizer in a 

hierarchical setup.  

Bilevel problem formulations employ either optimistic or pessimistic convergence approach where both have different selection 

criteria for selecting promising solutions; consequently, they result in different convergence [27, 29, 33, 34]. We have analyzed 

these convergence strategies in this paper and proposed new variants for better convergence for selected problems. Recently, there 

has been an increase in interest in solving bilevel optimization problem where many new classical and evolutionary approaches 

have been proposed [5, 7, 10, 22–27]. We concisely describe some commonly used methodologies for solving bilevel problems in 

the following section. Readers may find the detailed survey in [5, 27, 31].  

A commonly used approach in mathematical programming is to convert bilevel optimization problem into a single level COP 

with Karush-Kuhn-Tucker (KKT) conditions, however, it may not necessarily be simple to handle especially when the upper-

level’s constraint functions are in an arbitrary linear form [2, 22]. Another commonly used approach is the penalty function methods 

where constraints are transformed into penalty terms, which in turn are used for reward and/or punishment for satisfying and/or 

violating the constraints, respectively [32]. However, its main shortcoming is that penalty factors that determine the severity of the 

punishment must be set by the user and their values are problem dependent [19]. Similar to penalty functions, a trust region method 

uses an initial approximation of a trust-region that expands (reward) if the approximation is good or contracts (punishment) 

otherwise. This can be called an iterative guided approach through trust-regions [13]. Another iterative reduction of approximation 

error is done with gradient descent approach [16]. The direction of descent leads towards optimization (least error) of the upper-

level function while keeping the lower-level feasible. Gradient descent is commonly used in machine learning algorithms [1]. 

 Finally, Evolutionary Algorithms (EAs) have also been used either in upper-level or both levels of bilevel problems [11, 14]. 

EAs are known to give reasonable solutions for NP-Hard optimization problems and they have been successfully applied to various 

forms of COPs [18]. Li et al. [11] have proposed a hierarchical particle swarm optimization for solving bilevel programming 
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(HPSOBLP) that simulates the decision process of bilevel programming on both levels using Particle Swarm Optimization. 

However, this technique may have high time complexity because of the nested nature of the algorithm. Recently, some hybrid 

approaches of EAs with other mathematical techniques have been proposed in [26] and [10] where upper level is an EA and lower 

level is a local search. Sinha and Deb [23–27] have done an extensive work for evolutionary bilevel problems. They have proposed 

a Bilevel EA based on quadratic approximation (BLEAQ) that reduces the bilevel optimization problem to a single level 

optimization problem using quadratic functions [26]. They have also prepared a set of ten benchmark problems from the literature 

[26]. Kieffer et al. [10] have used Differential Evolution based Bayesian Optimization for Bilevel Problems (BOBP). BOBP has 

focused more on efficiency of the algorithm that also shows competitive results compared to BLEAQ.  

Bilevel problem can have either single-objective optimization (SOO) or multi-objective optimization (MOO) for both the levels. 

We have focused on SOO for both the levels in this paper where a variation of EA has been applied to various convergence 

methodologies described for bilevel problems. For rest of the paper, we will refer single-objective bilevel optimization problem as 

bilevel problem only. We have enhanced Intelligent Constraint Handling Evolutionary Algorithm (ICHEA) [18, 19] that uses 

intermarriage-crossover twice in a generation; once each for both the levels of bilevel problems unlike BLEAQ, BLOP and 

HPSOBLP. ICHEA was designed to solve static and dynamic constraints effectively [18–21], however, it was never tested for a 

bilevel problem which is a special kind of COP. The enhanced ICHEA uses an evolutionary approach at the upper level and 

heuristic local search at the lower level with very promising test results. We have used ICHEA to analyze various kinds of 

convergence approaches on benchmark bilevel problems.  The remainder of this paper is organized as follows: Section 2 describes 

the mathematical formulation of bilevel problems. Section 3 establishes the existing and our proposed variants for convergence 

techniques applicable for bilevel problems. Section 4 formalizes and describes the complete evolutionary approach to solve bilevel 

problems with ICHEA. Section 5 elaborates experimental results of our approach with three other recent partial and complete 

evolutionary approaches on benchmark problems and Section 6 concludes the paper by proposing future investigations. 

2. FORMULATION OF BILEVEL PROBLEMS

Generally, a Bilevel problem is a two-level nested constraint optimization problem (COP). Hence, we initially define the 

formulation of COP. A COP is simply an optimization problem with a set of constraints. We have assumed that both levels are 

minimization problems for simplicity. Eq. (1) is minimization of COP’s objective function ����� that has an �-dimensional input 

vector �� � � 	�
� ��� ���� that is defined in a search space �. 

���������     

More specifically, �� � �� � �, where  �  being the feasible region on the search space �� � ���. The domain of variables is 

defined by their lower bounds �� and upper bounds���: 
�� � �� ���� ������� � � � �     

The feasible region � with bounds on each dimension is further restricted by a set of � additional constraints that can be given 

in two relational forms – equality and inequality [6, 12, 17, 30]. 

������  !������������ � ��  � "     

#$���� � !������% � " & �� ��     

The equality constraints #$���� cannot be solved directly using EAs so it is converted into inequality constraints by introducing 

a positive tolerance value '. 

�$���� � �' ( )#$����)  !     

A set of individual feasible regions 	�
� ��� * * �+� for each constraint can also be defined as: 

�� � � 	�� � ��,������� � !� � � � � �� � � -�     

where - is the set of integers. Many EAs use a distance function as their fitness function to rank individuals. The distance function 

indicates how far a chromosome is from the feasible region [15]. This fitness function tries to bring the chromosomes closer to the 

feasible region using the following function for�.� / 	� � � � ��: 
��0�122����� � � 3���������������������������� 4 !!������������������������������  !     

1 � �5 ,��0�122�����,+�6
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The fitness function ��0�122�  in Eq. (7) is a measure of infeasibility of  78� from a feasible region �9. The error function 1 is the 

summation of all the fitness functions as shown in Eq. (8). Minimizing the error value�1 leads toward a constraint satisfaction 

problem’s (CSP) solution where the objective function ����� is not needed. A solution to CSP is found when�1 � ! or : ��+�6
 ;<. To get a COP solution, CSP solutions are further processed to get optimum value of 78� that optimizes the objective function �����. 
Bilevel problem is simply a hierarchical set up of nested COP where the upper level is commonly known as the leader while the 

lower level is known as the follower. We have used the same variable names discussed above only with addition of subscripts �
and�= to indicate upper and lower level, respectively. The formulation is described below: 

����>���?� ��@�  
Such that: 

   ABC���D�E
F
���?� ��@�  

   Such that:       

�����?� ��@�  !������ � �� � "@ �  #$���?� ��@� � !�����% � "@ & �� ��@  F����?� ��@�  !������� � G� � "?  

H$���?� ��@� � !������% � "? & �� ��?  

where >���? � ��@� is the upper level objective function with �? constraints that has one constraint in the form of lower level objective 

function given as ABC���D�E
F
���? � ��@�* It is generally written as ABC���D�E

����? � ��@� to be consistent with the upper level objective 

function [5, 10, 27]. 

3. VARIANTS OF CONVERGENCE TECHNIQUES FOR BILEVEL PROBLEMS

Two widely discussed optimization variants are the optimistic and the pessimistic models [27, 29, 33, 34]. We discuss these 

variants with our proposed variants that an EA can use in a given generation in the following section. These variants demonstrate 

variable extent of greediness in their choice for selecting a solution. The population converges differently with these strategies 

demonstrated in Section 5. 

3.1. Optimistic w.r.t upper level (OF) 

In this greedy approach, the follower altruistically chooses a feasible solution that benefits the leader the most.  

I���?� � J��@K ��@ � ABC���D�E
����? � ��@� K ���? � ��@� � �@L

If I���?� is not a singleton then:  

IM���?� � J��@ � ABC���D�E
>���? � ��@�K ��@ �I���?�L

Again, we may not get a singleton set but the “best” is picked at random. The overall optimistic model w.r.t upper level can be 

defined as: ����>���? � ��@�  
Such that: ��@ � IM���?�  ���? � ��@� � �?  

To illustrate further, a numerical example is given in TABLE I, which shows sample fitness values for a given ��? and its 

corresponding parameter ��@N  where �� � ��5. The minimum lower level fitness is 100 and the corresponding minimum upper 

level fitness is 22. Hence, OF approach will result in the selection of ���? � ��@O�. 
SAMPLE DATA FOR CONVERGENCE VARIANTS����?� ��@N� >���?� ��@N�

         PF→ ��? � ��@P 100 25 

         OF→ ��? � ��@O 100 22 

��? � ��@Q 100 23 

��? � ��@R 112 11 ← EOF

��? � ��@S 115 50 

Conversely, the other variant for optimistic w.r.t lower level (Of) can also be easily formulated where a solution chosen by the 

leader will benefit the follower the most. 



4

3.2. Pessimistic w.r.t upper level (PF) 

On this convergence approach, the follower shows no cooperation to the leader and gives the worst feasible solution from the 

lower level.  

I���?� � J��@K ��@ � ABC���D�E
����? � ��@� K ���? � ��@� � �@L

If I���?� is not a singleton then:  

IT���?� � J��@ � ABC�A7D�E
>���? � ��@�K ��@ �I���?�L

The complete pessimistic PF model would be: 

����>���? � ��@�  
Such that: ��@ � IT���?�  ���? � ��@� � �?  

In TABLE I, the worst feasible solution for the upper level would be produced by 

parameters��88�? � ��@P . Fig.1 illustrates the difference between OF and PF when I���?� is not a 

singleton. 

Wiesemann et al. [33] has defined that the follower may choose to give any possible 

feasible solution not necessarily the best or the worst. In this case:  IT���?� � .	��@ � I���?��
In this variant, a set of solutions for PF in TABLE I would be ���? � ��@N��with �� � � 3 where any one of the solution can be 

picked randomly.  

3.3. Extreme optimistic w.r.t upper level (EOF)  

In this extremely greedy model, w.r.t upper level, the follower blindly chooses a partially feasible solution U��? � ��@VW that benefits 

the leader the most, disregarding the other more promising solutions available for himself at a given generation. However, the 

chosen lower level solution should not be worse than the previously found lower level solution in anticipation that optimum solution 

may be found later on. 

X���?� � Y��@VK �U��? � ��@VW � ����? � ��@�K ���? � ��@V� � �@ ( �@PZ
where ��@V and ��@  are the solutions of current and previous generations, respectively. �@Pis a feasible region produced by the 

lower level optimization function. If X���?� is not a singleton then:  

X[M���?� � J��@ � ABC���D�E
>���? � ��@�K ��@ �X���?�L

In this case, we may not get a singleton set so we pick the “best” at random. The overall extreme optimistic model w.r.t upper 

level can be defined as: ����>���? � ��@�  
Such that: ��@ � X[M���?�  ���? � ��@� � �?  

According to TABLE I, sample data ���? � ��@R� will be picked for EOF if previous lower level fitness is more than or equal to 112.  

4. BILEVEL PROBLEM OPTIMIZATION WITH ICHEA

ICHEA, which is a variation of EA, is an effective and versatile constraint handling tool that has been demonstrated to perform 

well for benchmark static and dynamic continuous CSPs in [19, 20] and COPs in [18, 21]. ICHEA uses intermarriage-crossover 

operator that uses knowledge from constraints rather than blindly searching for the solution. In this particular crossover, both 

parents belong to different feasible regions �� and �$ where�� ; %. It is also possible that a parent does not belong to any of the 

feasible regions � ( >. These parents are made to come closer towards the boundary of their corresponding feasible regions to 

locate the overlapping regions that results in more constraints being satisfied. This iterative move can be captured as: 

\
 � �]�� �̂ ( 
̂�    

Fig. 1. A sketch to illustrate optimistic and 

pessimistic conditions w.r.t. upper-level
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where offspring \
 is initially placed at position ]
� �̂ ( 
̂� which is then iteratively moved closer to parent 
̂ until it also 

satisfies the constraint(s) that 
̂ satisfies and similarly offspring�\� is designated. ] is a coefficient in the range �!� �� which is 

generally 0.5 that gives binary traversal for convergence. Exponent � gets incremented from 1 to a threshold value _�in the 

sequence�`��G� * * * � _a. _ is proportional to the “vastness” of the search space which is generally  G. The intermarriage-crossover 

process is shown in Fig. 2 where � mark indicates possible placement for an offspring and × mark indicates the offspring vector 

is unacceptable in that particular position. The generated offspring from intermarriage-crossover contains genes from both parents. 

The purpose is to make a “generic” offspring who tries to satisfy more constraints because his parents are from two different 

feasible regions. The algorithm favors those offspring who satisfy more constraints by utilizing Deb’s ranking scheme based on 

feasibility [6] to rank the individuals. The population is first sorted according to number of satisfied constraints in decreasing order 

then by fitness value in increasing order. The worst time complexity of this crossover is the same as the time complexity of an 

individual objective function evaluation \�bc%>��d� i.e. \�G e _ e bc%>��d� � \�bc%>��d�. 

Fig. 2. Intermarriage-Crossover between parents P1 and P2

The details of complete ICHEA algorithm for bilevel problem, called Bilevel ICHEA (BICHEA) is given in Fig. 3. It has a 

partial nested approach where evolutionary algorithms (ICHEA) is at the upper level and local search (mutation of clones with 

intermarriage-crossover) at the lower level. The rest of the structure does not deviate much from the original ICHEA. BICHEA 

can be described in four major steps: 

Step1: The algorithm starts with the initialization of a set of chromosomes f that evolves for a given number of generations. 

Each chromosome contains upper and lower level input parameters, current fitness values and information about the given 

constraints being violated.  

Step 2: this is a nested local search step where search for more promising lower level parameters happen. Here all feasible 

chromosomes go through exploitation process of hyper mutation with localSearch defined in Fig. 4. localSearch applies the 

optimistic convergence technique for sectors �� and �g and extreme-optimistic otherwise. We have also tried to use different orders 

for convergence techniques but the outcome remains same. Subroutine clone uses the concept of hyper-clone defined in [4]. It 

merely creates ��� h�!� d1�� ij*klk� mn�number of clones in proportion to the order of fitness given by � � 	��  � kfk� and constant 

parameter o which has been set to 0.5 for this work. Here intermarriage happens between a given chromosome with a randomly 

generated boundary values. For a given individual ^ with parameters����? � ��@�, ��? is fixed for the lower-level to get the most suitable ��@ . Intermarriage-crossover creates a clone ^p for this individual that replaces ��@  with its boundary values. Boundary value B for a 

variable ��@ �K � � � � k��@k is either lower bound or upper bound denoted byq+�����@ �� � ������@�� and q+rD���@�� � �s����@ ��, 
respectively. We randomly pick the minimum or maximum for each variable in a vector ��@  given by t����@�. Now the distance '
between ^ and ^p is: 

' � uv��?��@ w ( v
��?t����@�wu � v

xk��@ ( t����@�kw   

^ move towards ^p in a hyper-plane to search for the local best solution. If the boundary values are not given, then any large value 

such as y�!z{ can be used instead. 

Step 3: this is the upper level search with Intermarriage-crossover (interMarCrossover) which tries to explore for more 

promising chromosomes (based on a given convergence strategy) without fixing any of the parameters����? � ��@� contrary to Step 2. 

This step is necessary to get diverse individuals in a population [21]. 

Step 4: lastly, SortAndDiscard filters out promising chromosomes based on given sectors with either upper level objective 

function F or lower level objective function f. �
 ( �| divides the total generations in order from first to fourth sectors. Here 

promising solutions are selected based on a given convergence strategy which causes different convergence for each sector. Sectors 

	�
� ��� and 	�g� �|� sort the population w.r.t upper level fitness, and lower level fitness respectively.  

Feasible 
Region �i

Feasbile 
Region  �j

Parent P1

Parent P2

Offspring  O1

Offspring O2�× 
�
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Function BICHEA(problem, Generations)  

f � initializeChromosomes(problem); 
For each � ��Generations 
f = localSearch(f� �);^ = tournamentSelection(f); \ = interMarCrossover(^); f� � �f� } �\; 
sortBy = � � 	�
 } ����~ byF : byf; f = SortAndDiscard(f, sortBy); 
PrintBest5(f); 
CheckTerminationCriteria(); 

End For

End Function

Fig. 3. Pseudocode for BICHEA

Function f� ��localSearch(f� �) 
f� � <  
For each d � f
H = clones(d); 
Hp� � �<  
For (each # � H) 
#’= InterMarCrossover(#,aBoundaryOf(#)); 
Hp � #p� } Hp  

End for

model = � � 	�� } �g��~ Optimistic : extreme Optimistic;Hp = sort(Hp, model); 
f� � f� } H�.getBest();   

End for

Return f�; 
End Function

Fig. 4. Pseudocode for subroutine blMutation

5. EXPERIMENTS AND DISCUSSION

BICHEA has been tested on ten standard benchmark bilevel problems from [10, 26] to evaluate its performance with other 

recently developed evolutionary approaches discussed in Section 1. TABLE II describes the best known fitness values for upper 

level (F) and lower level (f). The problem set includes combination of linear and non-linear functions with mostly small 

dimensional problems with weak constraint strengths (�) apart from lower level constraint. This shows that feasible regions can 

be identified almost immediately. � is computed offline by using the formula � � ,��A�����������A����, ,�����A����,�  randomly. 

We used a population size of 10,000 to determine the  � value as the average of five successive runs [12, 20].  

BEST KNOWN FITNESS FOR BENCHMARK PROBLEMS

� Best known Fitness �

� Problem F f �
� TP1 225.0 100.0 0.91 �

� TP2 0.0 100 0.50 �

� TP3 -18.6787 -1.0156 0.51 �

� TP4 -29.2 3.2 0.11 �

� TP5 -3.6 -2.0 0.61 �

� TP6 -1.2091 7.6145 0.04 �

� TP7 -1.96 1.96 0.21 �

� TP8 0.0 100.0 0.61 �

� TP9 0.0 1.0 1.00 �

� TP10 0.0 1.0 1.00 �
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�

BEST FITNESS COMPARISON �

BICHEA Bayesian BLEAQ HPSOBLP

Prob F f F f F f F f 

TP1 225.00009 99.99968 225.0011 99.9984 225.0 100.0 225 100

TP2 0.00003 199.99971 0.0 200.0 5.4204 0.0 0 100

TP3 -18.67869 -1.01559 -18.6786 -1.0156 -18.6787 -1.0156 -14.8 0.21

TP4 -29.19869 3.19633 -29.1991 3.2001 -29.2 3.2 -36.0 0.25

TP5 -3.67982 -2.01346 -3.8998 -2.0039 -2.4828 -7.705 - - 

TP6 -1.20918 7.61450 -1.2099 7.6173 -1.2099 7.6173 - - 

TP7 -1.96001 1.96001 -1.6833 1.6833 -1.8913 1.8913 - - 

TP8 0.00000 100.00000 0.0 200.0 12.2529 0.0007 - - 

TP9 0.00000 1.00000 0.0007 1.0 3.5373 1.0 - - 

TP10 0.00000 1.00000 0.0011 1.0 0.001 1.0 - - 

�

AVERAGE FITNESS COMPARISON�

BICHEA Bayesian BLEAQ HPSOBLP

Prob F f F f F f F f 

TP1 224.96290 99.99192 253.6155 70.3817 224.9989 99.9994 225 - 

TP2 0.00012 199.9989 0.0007 183.871 2.4352 93.5484 0 - 

TP3 -18.67862 -1.01533 -18.5579 -0.9493 -18.6787 -1.0156 -14.0 - 

TP4 -29.15966 2.66120 -27.6225 3.3012 -29.2 3.2 -36.0 - 

TP5 -4.26669 -1.99426 -3.8516 -2.2314 -3.4861 -2.569 - - 

TP6 -1.21052 7.61467 -1.2097 7.6168 -1.2099 7.6173 - - 

TP7 -1.96173 1.96173 -1.6747 1.6747 -1.9538 1.9538 - - 

TP8 0.36679 92.69204 0.0008 180.645 1.1463 132.559 - - 

TP9 0.00000 1.00000 0.0012 1.0 1.2642 1.0 - - 

TP10 0.00000 1.00000 0.0049 1.0 0.0001 1.0 - - 

�

BEST FITNESS STATISTICS FOR BICHEA�

 Prob F Variance for F f Variance for f 

TP1 225.00009 0.033 99.99968 0.077 

TP2 0.00003 0.000 199.99971 0.002 

TP3 -18.67869 0.000 -1.01559 0.000 

TP4 -29.19869 0.122 3.19633 0.174 

TP5 -3.67982 0.621 -2.01346 1.034 

TP6 -1.20918 0.000 7.61450 0.000 

TP7 -1.96001 0.000 1.96001 0.000 

TP8 0.00000 5.204 100.00000 834.887 

TP9 0.00000 0.000 1.00000 0.000 

TP10 0.00000 0.000 1.00000 0.000 

PARAMETER SETTINGS FOR BICHEA 

Parameters Values 

Population size 100 

Generations 500 (S1: 1-125; S2: 126-250; S3: 

251 – 375; S4: 376 – 500) 

T 2 

o  0.5 

blMutation rate 1.0 

Crossover rate 0.8 

Runs 30/problem 

Upper/lower bounds ±10,000.00 (if not specified) 
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Fig. 5. Fitness accuracy of best found solutions 
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Parameter settings for BICHEA is shown in TABLE III where S1-S4 indicates four equal sectors with given ranges to test 

different convergence approaches. Sectors S1 with generations 1-125,  S2 with generations 126-250, S3 with generations 251-375 

and S4 with generations 276-500 have been used to test convergence approaches EOF, OF, Of and EOf respectively. In case, a finite 

range for a variable is not defined, we used upper/lower limit of value ±10,000.00. Overall, each problem was executed 30 runs 

consecutively to have a comparative analysis with the published results of BLEAQ, Bayesian and HPSOBLP from [10, 11]. Value 

of parameter _ can be adaptive but currently a constant value 2 has been used as it gives more promising results compared to other 

values. Fig. 6 shows the behavior of  _ on the quality of solutions i.e. (,> ( >�, & ,� ( ��,), where 	>� � ��� are known optimum 

solutions. The higher values shows degradation in the quality of the solutions which are also inefficient as the computations 

increases many folds for intermarriage crossover.  

TABLE IV and TABLE V show the list of best and average results, respectively from all the tested algorithms. Bold values 

indicate the best (or almost best) among the tested algorithms and ‘-’ indicates the unavailability of the result. BICHEA has also 

produced competitive results when only average fitness is considered, however, it has performed very well for best fitness values 

for all the testing problems except for lower level fitness in problems TP2 and TP5. For most of the problems, BICHEA has found 

the known best solutions. Fig. 5 shows the deviation of the best found solution 	>� �� from known optimum solutions 	>� � ��� i.e. ,>� ( >, for upper level and ,�� ( �, for lower level. Deviation of more than y!*� is considered an unacceptable solution, thus 

terminated to 0.1. BICHEA shows very few or smaller bars of deviation compared to the other algorithms. Overall, BICHEA 

performs almost equally well for most of the problems in every test runs with low variations as shown in TABLE VI. Only TP8 

and somewhat TP5 do not show consistency with high variance which is also observed in TABLE V for average result. 

Fig. 6. Analysis on the values of threshold T w.r.t the quality of a solution 

Since BICHEA runs with different convergence strategy in each sector of the total generations, we have plotted fitness landscape 

of the best five individuals (since the best upper level fitness value fluctuates once better lower level fitness is found) on typical 

runs for each of the test problems in Fig. 6 to show their impact on different convergence strategies. It can be observed that each 

strategy is behaving differently for the given benchmark problems to reach towards the known best solution. Optimum solutions 

close to best known solutions for the problems (TP1 and TP4-TP10) have been obtained in sector 2 i.e. with convergence approach 

of OF. Notably, the convergence approaches EOF and Of have produced optimum solutions for problems {TP2, TP8-TP10} and 

TP3, respectively. We do not have one common convergence strategy that works best for all the problems. All but EOf have 

converged to known optimum solution for one or more test problems. It can also be observed that decision makers can have more 

than one choice of solutions as in TP1 with solution sets of (112.5, 112.5) and (225.0, 100.0) because of bimodal or multimodal 

nature of the problem. Similarly, (-26.2, 9.8) and (-18.7,-1.0) for TP3 and (0.0, 88.3) and (0.0, 100.0) or even (0.0, 200.0) in some 

cases for TP8.  

We have also done non-parametric Wilcoxon test for ranking (two-tailed) with significance difference of � 4 !*!� for all 

convergence strategies on every tested problem. The results for fitness values F and f are shown in TABLE VII and TABLE VIII, 

respectively. The results show that the difference in behavior of the convergence strategies are statistically significant in most of 

the cases. Especially, the prominent convergence strategies EOF, OF and Of have shown the significant difference for fitness F. 

Similar results have been obtained for fitness f, however, problems TP9 and TP10, in particular, are not showing significant 

difference for varying strategies.   
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All the results discussed above are based on four variations of optimistic convergence strategies. Next, we evaluate performance 

of pessimistic convergence strategies and compare them with optimistic convergence strategies. TABLE X and TABLE IX 

compares optimistic and pessimistic approaches for the best and average fitness values obtained over 30 run on each test problem 

under the same conditions described in TABLE III. Bold values show better (or almost equal) result. Even though the best and 

average fitness values with pessimistic approaches of almost half of the test problems are matching with optimistic approaches the 

high variance of best fitness value on 30 runs of pessimistic approach is a concern. Fig. 8 shows the difference of variance �=s]�>� � =s]�>�� ( =s]�>�� and �=s]��� � =s]���� ( =s]���� where subscripts \ and ^ refer to optimistic and pessimistic 

Fig. 7. Plot of best 5 fitness values w.r.t given optimistic convergence strategy in every generation 
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approach respectively. The positive value indicates that the variance of optimistic approach is high and vice versa for negative 

value. Pessimistic approach has higher variance for all the problem except for TP8 where it has produced a very high variance. 

Difference of variance of more than y� is terminated to y�. TP9 and TP10 have a variance value of 0.0.   

�

CROSS EVALUATION MATRIX OF CONVERGENCE STRATEGIES  FOR FITNESS >
BASED ON WILCOXON RANK TEST (� 4 !*!�) 

Conv. EOF OF Of EOf

EOF - 
TP1-TP7, TP9,  

TP10 
TP1-TP10 TP1-TP10 

OF

TP1-TP7, 

TP9,  TP10 
- TP1-TP8 TP2-TP8 

Of TP1-TP10 TP1-TP8 - 
TP1,TP2, 

TP4,TP6,TP8 

EOf TP1-TP10 TP2-TP8 
TP1,TP2, TP4, 

TP6, TP8 
- 

�

CROSS EVALUATION MATRIX OF CONVERGENCE STRATEGIES FOR FITNESS �
BASED ON WILCOXON RANK TEST (� 4 !*!�) 

Conv. EOF OF Of EOf

EOF - TP1-TP7 TP1-TP8 TP1-TP8 

OF TP1-TP7 - TP1-TP8 TP1-TP8 

Of TP1-TP8 TP1-TP8 - 
TP1-TP4, TP6, 

TP8 

EOf TP1-TP8 TP1-TP8 
TP1-TP4, TP6, 

TP8 
- 

�

AVERAGE FITNESS COMPARISON OF OPTIMISTIC VS PESSIMISTIC 

APPROACHES

Pessimistic Optimistic  

Prob F f F f 

TP1 205.06778 87.70457 224.96290 99.99192 

TP2 0.00012 199.99894 0.00012 199.9989 

TP3 -18.67884 -1.01559 -18.67862 -1.01533 

TP4 -29.06566 4.27437 -29.15966 2.66120 

TP5 -3.12431 1.80181 -4.26669 -1.99426 

TP6 -1.11267 7.6301 -1.21052 7.61467 

TP7 -1.90907 1.90907 -1.96173 1.96173 

TP8 0.3518 106.28977 0.36679 92.69204 

TP9 0.0000 1.0000 0.00000 1.00000 

TP10 0.0000 1.0000 0.00000 1.00000 

�

BEST FITNESS COMPARISON OF OPTIMISTIC VS PESSIMISTIC 

APPROACHES

Pessimistic Optimistic  

Prob F f F f 

TP1 223.62584 99.64207 225.00009 99.99968 

TP2 0.00002 199.99983 0.00003 199.99971 

TP3 -18.6787 -1.01559 -18.67869 -1.01559 

TP4 -29.27955 3.55248 -29.19869 3.19633 

TP5 -4.28568 -0.32331 -3.67982 -2.01346 

TP6 -1.21742 7.62715 -1.20918 7.61450 

TP7 -1.9612 1.9612 -1.96001 1.96001 

TP8 0.00000 100.00000 0.00000 100.00000 

TP9 0.00000 1.00000 0.00000 1.00000 

TP10 0.00000 1.00000 0.00000 1.00000 
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Fig. 8. Comparison of difference of variance for optimistic and pessimistic approaches.  

Additionally, the statistical significance of the difference between these two approaches on BICHEA is tabulated in TABLE XI 

and TABLE XII for fitness > and��, respectively, with two-tailed Wilcoxon rank test with significance difference of � 4 !*!�. Gens 

indicate the generation number on which the fitness values are collected for statistical analysis. Major difference is observed 

between PF and OF where majority of the best fitness values have been obtained as described earlier, however, EPF and EOF, and 

Pf and Of did not show any major difference for most of the problems. EPf and EOf show difference in convergence but both are 

weak convergence techniques as far as attaining close to optimum solution is concerned. We have plotted average fitness of both 

levels vs generation graph for convergence strategies PF and OF for some of the problems in Fig. 9 and Fig. 10 to show how these 

most prominent convergence strategies behave differently on the same problem. The graph of the selected problems TP1 and TP6 

shows that PF is generally stuck in local best for most of the generations because of its greedy behavior of selecting the best � value 

that gives worst > solution. On the other hand, OF’s greediness towards better > solution leads it towards the known best solution.

For TP1, major difference in fitness > can be observed while in TP6, both strategies eventually converge close to known best, 

however, they differ a lot in their convergence approaches. OF can also be observed converging faster than PF. 

Fig. 9. Plot of average fitness values for problem TP1 w.r.t. optimistic strategy OF and pessimistic strategy PF  

(a) Upper-level fitness (F) vs generations  

(b) Lower-level fitness (f) vs generations 
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Finally, the efficiency of BICHEA can be formulated with the average time complexity of blMutation for _ � G!. It evaluates 

to \���G! e bc%>��d & G!�b�G!�� � \�� e bc%>��d� where N is population size and average sorting time complexity of �
sized problem is taken as ��b��. Thus the time complexity of overall BICHEA is�\UF�G�bc%>��d & ��b�� & G��W �\U�F�bc%>��d & �b���W where G is the total generation, which can be inversely proportional to � in many general cases for 

EAs. In that case, the time complexity would be simply \�bc%>��d & �b��� or \�bc%>��d� when tested with constant population 

size �.  

�

COMPARISON OF OPTIMISTIC VS PESSIMISTIC APPROACHES FOR 

FITNESS > WITH WILCOXON RANK TEST

Conv. Gens Wilcoxon rank test (� 4 !*!�) 

EPF | EOF 125 TP4, TP7 

PF | OF 250 TP1 - TP7 

Pf | Of 375 TP7, TP8 

EPf | EOf 500 TP1, TP2, TP4 - TP6, TP8 

�

COMPARISON OF OPTIMISTIC VS PESSIMISTIC APPROACHES FOR 

FITNESS � WITH WILCOXON RANK TEST

Conv. Gens Wilcoxon rank test (� 4 !*!�) 

EPF | EOF 125 TP4, TP7 

PF | OF 250 TP1 - TP7 

Pf | Of 375 TP2, TP4, TP7 

EPf | EOf 500 TP1,TP3, TP4, TP6 

Fig. 10. Plot of average fitness values for problem TP6 w.r.t. optimistic strategy OF and pessimistic strategy PF

(a) Upper-level fitness (F) vs generations 

(b) Lower-level fitness (F) vs generations 
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6. CONCLUSION AND FUTURE WORK

Bilevel problem is a class of constraint optimization problem where one of the constraints is an optimization function. Earlier 

mathematical programming was used to solve these problems, but recently, few partial and complete evolutionary computation 

approaches have been proposed. Our proposed algorithm BICHEA is a complete evolutionary approach with a single level 

optimization structure with intermarriage-crossover. It was compared with BLEAQ and Bayesian as partial evolutionary 

approaches and HPSOBLP as a complete evolutionary approach. BICHEA has outperformed other algorithms in terms of quality 

of solutions. BICHEA was able to reach towards known global (or near global) optimum solution for all the tested benchmark 

problems. In this paper, we have realized that different forms of convergence approaches behave differently; however, we have 

only tested the optimistic approach and its variants. It was demonstrated that our proposed optimistic variants, namely EOF and Of, 

have produced global optimal solutions with BICHEA for some of the problems where OF was unable to do so. Future work would 

be considered for BICHEA for multi-objective bilevel optimization, which is even a more complex to deal with, as both levels can 

have multiple objectives to solve. Here, feasibility of any given upper level variable is determined by producing lower level pareto 

front. Upper level needs to produce the optimal pareto front for the final solution. Some other forms of bilevel problem can be 

dynamic lower level constraints and discrete search space.  
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