RAINFALL-RUNOFF MODELING USING HEC-HMS

Ву

SITI MUNIRAH BT ISMAIL

Report is submitted as the requirement for the degree of Bachelor Engineering (Hons.) (Civil)

UNIVERSITI TEKNOLOGI MARA November 2006

DECLARATION BY THE CANDIDATE

I (Siti Munirah Bt Ismail, 2003339917) confirm that the work is my own and that appropriate credit has been given where reference has been made to the works of others.

DATE: 15th NOVEMBER 2006

ABSTRACT

The changes of natural hydrology characteristic due to the replacement of natural vegetation to a high percentage of impervious surfaces in the watershed will effect to the volume of runoff in receiving water. It is due to the increasing of surface runoff and flow velocities which will cause to decrease in flow travel time. This phenomenon has alleviate problems regarding the local runoff impacts on receiving water flow and lead to increase in flood peak. In Malaysia, flooding is one of the natural hazards that affect the communities and have caused damages worth of million every year. For more than thirty years, computer models have been used as an essential tool for flood analysis. This report depicts a hydrologic engineering study carried out at Sg. Junjung, Penang, Malaysia for rainfall runoff modelling using HEC-HMS. The Hydrologic Modeling System is designed to simulate the rainfall-runoff processes of dendritic watershed systems. HEC-HMS model was used to predict design flow for major system (ARI 50 and ARI 100 years). The data collected were used to develop flow rating curve and to derive historical and predicted flood hydrograph. The historical flood hydrograph for the 20th-21st October 2005 was used to calibrate with the predicted flood hydrograph (HEC-HMS model). The calibrated model was validated with historical flood hydrograph on storm event 15th-17th July 2005. Hydrographs produced by this study can be used directly or in conjunction with other software for studies of water availability, urban drainage, flow forecasting, future urbanization impact, weir design, flood damage reduction, floodplain regulation, wetlands hydrology, and systems operation.

TABLE OF CONTENTS

DECLARATION ACKNOWLEDGEMENTS V LIST of TABLES VI LIST of FIGURES ABBEVIATION X LIST of SYMBOLS XII ARREST ACT	i		
ACKNOWLEDGEMENTS v LIST of TABLES vi LIST of FIGURES vii ABBEVIATION x LIST of SYMBOLS xiii	i		
LIST of FIGURES vii ABBEVIATION x LIST of SYMBOLS xii	i		
LIST of FIGURES vii ABBEVIATION x LIST of SYMBOLS xii	i		
LIST of SYMBOLS xii			
A D CTD A CT	ii		
ABSTRACT			
CHAPTER			
1 INTRODUCTION			
1.1 Background 1			
1.2 Problem Statement 3			
1.3 Objectives 4			
1.4 Scope of Research 5			
1.5 Significant of Research 5			
1.6 Study Area 6			
1.7 Structure of Proposal 9			
LITERATURE REVIEW			
2.1 Introduction 10			
2.2 Flash floods 10			
2.3 Site Observation at Sg. Junjung 13			
2.4 Computer Modeling 22			
2.5 Rainfall-Runoff Modeling 22			
2.6 HEC-HMS Model 25			
2.6.1 Using the HEC-HMS Model 31			
2.7 Calibration and Validation 38			
2.8 Conclusion 39			
3 RESEARCH METHODOLOGY			
3.1 Introduction 40			
3.2 Staging of Research Process 40			
3.3 Conceptual Framework 40			
3.4 Primary Data 44			
3.4.1 Velocity Measurement 44			
3.4.2 Water Level Measurement 46			
3.4.3 Energy Gradient 47			
3.4.4 Bed Material Sampling 49 3.4.4 Bed Roughness Coefficient (Manning's n) 53			

	5.5	Secondary Data	36
		3.5.1 Rainfall Data	56
		3.5.2 Water Level	57
		3.5.1 Channel Geometry Data	51
		3.5.2 Maps, Flood report and Picture of Flood	52
		3.5.3 Channel Geometry Data	58
		3.5.4 Maps, Flood report and Picture of flood	58
	3.6	Development of Flow Rating Curve	58
	3.7	Data Preparation for HEC-HMS	63
	3.8	Rainfall-Runoff Modeling using HEC-HMS	68
		3.8.1 Models Included in HEC-HMS Program	69
	3.9	Procedure of HEC-HMS Application	81
	3.10	Calibration and Validation	87
	3.11	Simulation for design hydrograph	87
	3.12	Conclusion	87
4	RESULT AN	ND DISCUSSION	
	4.1	Introduction	88
	4.2	Discharge Estimation at Simpang Empat Bridges	88
	4.3	Calibration	90
	4.4	Validation	93
	4.5		95
	4.6	Conclusion	101
5	CONCLUSIO	ON AND RECOMMENDATION	
	5.1	Introduction	102
	5.2	Rainfall Runoff Modeling	102
	5.3	Calibration and Validation	103
	5.4	Discharge Hydrograph for ARI 50 and ARI 100 Years	103
	5.5	Further Research	104
	5.6	Concluding Remarks	105
REFE	RENCES		
APPE.	NDIXES		
	Appendix A	Schedule of Final Year Report	
	Appendix B	Field Data Measurement Form	
	Appendix C	Particles Distribution Curve	
	Appendix D	Channel Geometry	
		•	