

SIMULATION OF HEAT TRANSFER EFFICIENCY FOR NOVEL AIR COOLING CHANNELS OF A FUEL CELL BIPOLAR PLATE

WIMI AKAM

(2006863727)

A thesis submitted in partial of the requirement for the award of Bachelor Engineering (Hons.) Mechanical

Faculty of Mechanical Engineering

Universiti Teknologi MARA (UiTM)

MAY 2009

ACKOWLEDGEMENT

I would like to express my sincere gratitude to my project advisor En. Azli Abd. Razak, and co-advisor En Wan Ahmad Najmi bin Wan Mohamed; for their continuous help, advises, guidance, support and cooperation for guiding me in the process of making this final year project. Without their guidance, the project can not be materialized.

I also would like to thanks my beloved friends for their support. All viewpoints and kindness of these peoples will always be remembered as guidance for present and future day.

ABSTRACT

This study focused on designing and simulating a suitable air cooling for fuel cell bipolar plate with power rating of 3kW. For 3kW application, normally the fuel cells uses water as a medium to remove the heat generated. Instead of using water, air is to be used as a cooling medium. Simulation works are conducted to determine which design will gives the better result of heat transfer rate using air cooling. Two of the alternative design are zigzaged and inclined 2 degree channels. The lower the temperature at outlet will result in higher heat tansfer effeciency of the fuel cells. To obtain the result, two dimension steady state computational fluid dynamic analysis using two equation turbulence model (k- ϵ model). The work uses Star Design; an CFD software to estimate the temperature distribution at the surface of the bipolar plate. The result shows that design 2 which is having slightly inclined of 2 degree gives the most highest heat transfer rate.

TABLE OF CONTENTS

CONTENTS	PAGE
PAGE TITLE	i
ACKNOWLEDGEMENT	ii
ABSTRACT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	viii

CHAPTER 1 INTRODUCTION

1.1	Introduction	Ţ
1.2	Background and Problem Statement	2
1.3	Objectives	3
1.4	Scopes of study	3
1.5	Significance of study	4

CHAPTER 2 LITERATURE REVIEW

2.1	1 Introduction		5
2.2	Hea	t transfer fundamental	6
	2.2.1	Nusselt number	7
	2.2.2	Prandtl number	8
	2.2.3	Reynolds number	8
2.3	3 Computational fluid dynamic		9
2.4	2.4 Thermal management		10

CHAPTER 3 METHODOLOGY

3.1	Introd	uction	14
3.2	Work	15	
3.3	Project methodology		15
	3.3.1	Comparative method	15
	3.3.2	Numerical method	15
3.4	Geometry generation		17
3.5	Simulations		

CHAPTER 4 CHANNEL DESIGN & BOUNDARY CONDITIONS

4.1	Introduction		19
4.2	Air cooling channel design		20
	4.2.1	standard design cooling channel	21
	4.2.2	First design of cooling channel	22
	4.2.3	Second design of cooling channel	23
4.3	Boundry condition		24
4.4	Assumption		25
4.5	Theoretical calculation		

CHAPTER 5 RESULT AND DISCUSSION

5.1	Introduction	29
5.2	Plate temperature distribution for plate initial temperature of 50°C	31
5.3	Plate temperature distribution for plate initial temperature of 80°C	32
5.4	Comparison for each results	33
5.5	Analysis on percentage of plate surface for t=80°C reduced to50°C	38
5.6	Pressure analysis	39
5.7	Discussion	40