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Abstract 
The effective management of complex and heterogeneous computing environments is one 
of the biggest challenges that service, and infrastructure providers are facing in the Cloud-to-
Thing continuum era. Advanced orchestration systems are required to support the resource 
management of large-scale cloud data centres integrated to big data generation of IoT 
devices. The orchestration system should be aware about all available resources and their 
current status in order to perform dynamic allocations and enable short time deployment of 
applications. This chapter will review the state of the art with regards to orchestration along 
the Cloud-to-Thing continuum with a specific emphasis on container-based orchestration 
(e.g. Docker Swarm and Kubernetes) and fog-specific orchestration architectures (e.g. 
SORTS, SOAFI, ETSI IGS MEC, and CONCERT). 
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6.1 Introduction  
Innovation driven inarguable success of cloud computing combined with rapid growth in 
adoption of internet services resulted in an unprecedented demand for computing resources.  

However, cloud computing performance for many applications depends closely on the network 
latency. In particular, the strength of network connectivity is crucial for large data sets. As more 
and more data is generated by enterprises and consumers, particularly with the adoption of 
Internet of Things (IoT), traditional cloud connectivity may not be sufficient (Carnevale et al. 
2018). To make up for the lack of speed and connectivity with cloud, processing for mission-
critical applications will need to occur closer to the data source. Processing the data close to 
where it originated is referred to as edge computing and fog computing. 



 

Edge computing is pushing computing applications, data, and services away from centralized 
cloud data centre architectures to the edges of the underlying network (Barika et al. 2019). It 
is defined by NIST (Iorga et al. 2018): “as a local computing at the network layer encompassing 
the smart end-devices and their users. It runs specific applications in a fixed logic location and 
provides a direct transmission service.” It promises to reduce the amount of data pushed to 
centralised cloud data centres avoiding load on the network and therefore is beneficial for 
analytics and knowledge-based services. Edge computing also leads to lower latencies, hence 
increasing communication velocity, reducing wider network footprints and avoiding 
congestion. As it reduces the distance the data must travel, it boosts the performance and 
reliability of latency-critical applications and services. 

 

Service orchestration is an arrangement of auxiliary system components that Cloud providers 
can use for coordination and management of computing resources to ensure service provision 
to Cloud consumers (Bohn et al. 2011). Orchestration can also be defined as the use of 
programming technology to manage the interconnections and interactions among workloads 
on distributed edge-cloud infrastructure (Mahmoudi, Mourlin, and Battou 2018). This is 
accomplished through the three main attributes of orchestration, which are closely related: 
service orchestration, workload orchestration, and resource orchestration. An orchestration 
platform usually integrates permission checks for security and compliance (Ranjan et al. 
2015). Orchestration may also integrate components from various domains, e.g. provide 
connections between network-deployed components and fixed applications and resources. 
For some applications, the integration of virtualized components with the data centre is the 
only needed orchestration type. 

Cloud-to-Edge orchestration is a crucial feature for many IT organizations and DevOps 
adopters as a way to speed the delivery of services, simplify optimisation and reduce costs 
(Nygren, Sitaraman, and Sun 2010). A cloud orchestrator automates the management, 
coordination and organization of distributed computer systems, services and middleware. In 
addition to reduced personnel involvement, orchestration eliminates the potential for errors 
introduced into provisioning, scaling or other cloud processes. Orchestration supports the 
delivery of cloud resources to customers and end users, including in a self-service model 
where users request resources without IT's involvement (Carnevale et al. 2018). 

Major cloud providers, such as Microsoft and Google, as well as third-party vendors, provide 
tools for orchestration as part of their service (AWS Cloud Formation, Google Cloud 
Composer, Azure Automation). With orchestration, the overall goal is to ensure successful 
hosting and delivery of applications. Currently provided functionality is still lacking focus on 
Quality of Service (QoS) requirements, however meeting the QoS objectives of users will gain 
further importance in the future. An example of QoS functional and non-functional attributes 
includes: performance statistics, consistency, security, integrity, reliability, renting cost, 
scalability, availability, legal and regulatory concerns (Pahl et al. 2019). 

The rest of the chapter is organised as follows.  The Orchestration challenges section provides 
summary overview of day to day challenges of edge-to-cloud continuum orchestration. Next, 



the Standards section outlines current industry standards for Orchestration Architectures 
and Orchestration Tools within their respective subsections. Finally, the Conclusion section 
provides closing remarks on the topic. 

6.2 Orchestration challenges 
The orchestration of virtualized environments is challenging due to the scale, heterogeneity, 
and diversity of resource types and the uncertainties of the underlying cloud environment. The 
uncertainties arise from a number of factors including resource capacity demand (e.g., 
bandwidth and memory), failures (e.g., failure of a network link), user access pattern (e.g., 
number of users and location) and lifecycle activities of applications. In particular, cloud 
resource orchestration is challenging because applications are composed of multiple, 
heterogeneous software and hardware resources, which may have integration and 
interoperation dependencies (Barika et al. 2019).  

 

Orchestration along the edge-to-cloud continuum adds another layer of complexity and 
challenges.  In the cloud-to-thing era, applications as well as storage are geo-distributed. 
Therefore, applications will need to be restructured to distribute logic across the network. 
Storage will likewise need to be decentralized. This creates new issues of reliability and data 
integrity that are inherent in broadly decentralized networks. Cloud servers become control 
nodes for intelligent edge devices, performing summary analytics while leaving real-time 
decision making to edge servers (Jiang, Huang, and Tsang 2018). Therefore, there is a need 
for comprehensive orchestration techniques that can coordinate and schedule network 
services simultaneously through different technologies across the edge-to-cloud network 
(Vaquero et al. 2019). Table 1 summarises the emerging orchestration needs in the Edge/fog 
computing technologies and the corresponding requirements for each need. 

 

Table 1: Emerging orchestration needs in Edge/fog computing (Vaquero et al. 2019) 

Functional orchestration needs Requirements per need 

§ Dynamic coalitions of edge devices and 
cloudlets 

§ Locality-awareness, Dynamism, Churn, 
Scalability, replacement, recovery 

§ Going beyond shadow devices for 
reliability. 

§ Device churn 

 

§ Dynamic end-to-end service availability. § Multi-tenant, Multi-domain 

§ Smaller execution units, smaller state § Larger scale, Finer grain 

§ Diversity. § Heterogeneity 



§ M2M confidentiality, wireless-based 
attacks, trust management § Security 

§ AAA, privacy-leakage § Privacy 

§ Ensure quality-of-service on a variety of 
infrastructure elements § Heterogeneity, Multi-domain 

In order to orchestrate distributed system as cloud to edge computing, new architecture needs 
to be defined taking into account the above edge orchestration needs and requirements.  

The orchestration and management of edge cloud architecture is mostly realised through 
virtualisation. The evolution of virtualisation has moved away from virtual machines and 
resulted in more lightweight solutions such as containers. This is specifically relevant for 
application packaging at a software platform and application level. Different application 
packages such as containers have been proposed to cluster edge clouds and solutions such 
as Docker container and Kubernetes architectures can be used. Yet, there is still a need for a 
topology specification and a derived orchestration plans for cloud edge computing.  

 

6.3 Industry Standards 
Network Function Virtualisation (NFV) is a constantly evolving paradigm which enables the 
virtualization of chains of communication services thus replacing purpose-built hardware 
appliances. With the increase in network traffic diversity and capacity growth in 5G NFV 
concept offers greater degree of flexibility for network, cloud and mobile service providers 
(Barakabitze et al. 2019). The benefits of virtualization include scalability, elasticity and cost 
savings to the service however the management of NFV chains becomes a challenge. The 
European Telecommunications Standards Institute (ETSI) Industry Specification Group for 
NFV (ETSI ISG NFV) have proposed an Open Source NFV Management and Orchestration 
(MANO) framework which provides NFV operators with the standard tools and framework for 
NFV orchestration (ETSI 2019). The NFV-MANO architecture is defined by three main 
functional blocks (ETSI 2014):  

• VNF Manager (VNFM)  
• NFV Orchestrator (VNFO)  
• Virtualised Infrastructure Manager (VIM) 

The VNFM is responsible for the lifecycle management of the VNF instances such as image 
template instantiation, software upgrades, scaling and instance termination. The VNFO is 
responsible for orchestrating numerous VIMs to fulfil more complex function objectives across 
multiple VNF groups. Finally, VIM is an interface for a single infrastructure domain that is 
responsible for control and management of resources such as compute, storage and network 
at that particular location. The latest implementation of Open Source Mano (OSM) Release 6 
deploys the framework as a cohort of configurable Docker containers which provide VNF 
management capabilities and can integrate with multiple VIMs using plugins. 

 



In a bid to bring unity to the NFV environment, the Open Platform for NFV (OPNFV) was 
launched through Linux Foundation (OPNFV 2019). The OPNFV project goal is to establish 
an ecosystem for NFV solutions that integrate together through joint collaboration of 
development and testing. The OPNFV is a midstream project that drives new features based 
on the upstream user feedback, and also ensures component continuous integration 
downstream through composition deployment and testing (Brockners 2016). 

To standardize and promote the use of the fog computing paradigm across various disciplines 
the OpenFog consortium 1  was founded by the industry and academia in the 
telecommunication field. The OpenFog consortium working group created the OpenFog 
Reference Architecture (RA) for fog computing which then was adopted by the IEEE 
Standards Association (OpenFog Consortium 2018). The reference architecture provides an 
overview of fog opportunity areas, use cases and introduces eight pillars of OpenFog RA:  

• Security – trust, attestation, privacy 
• Scalability – localized command control and processing, orchestration and analytics, 

avoidance of network taxes 
• Openness – resource visibility and control, white box decision making, interop and data 

normalization 
• Autonomy – flexible, cognition and agility, value of data 
• Programmability – programmable SW/HW, virtualization and multi-tenant, app fluidity 
• RAS - Reliability, Availability, and Serviceability 
• Agility – tactical and strategic decision making, data to wisdom 
• Hierarchy – fully cloud enabled, computational and system, autonomy at all levels 

The pillars provide guidance and describe requirements for hardware manufacturers, software 
developers, system vendors and other parties in the fog supply chain. This view aligns well 
with the ISO/IEC CD 30141 that defines an Internet of Things RA (International Organization 
for Standardization 2018). It points out several necessary capabilities of IoT systems including 
the realisation of automated network management; ensuring of maintainability over long 
periods of time and large geographical region, including the need for configuration changes; 
reliability and resilience of the system; and the need for availability and therefore scalability. 
The realisation of all of these capabilities requires a huge degree of automation and hence, 
are well-suited for the use of an orchestrator. 

6.3.1 Orchestration Architectures 
Multiple resource orchestration and provisioning architectures were developed to take 
advantage of cloud to edge infrastructure and its feature (Munoz et al. 2015) present a 
management and orchestration architecture based on Software Defined Networking (SDN) 
and NFV. This architecture allows dynamic deployment of virtual tenant networks (VTN) and 
required corresponding SDN controllers in distributed data centre network as NFVs. The 
proposed solution is compatible with NFV MANO and consists of the following main functional 
blocks: Multidomain SDN Orchestrator, Multidomain Network Hypervisor, Intra-DC Cloud and 
Network Orchestrator and Global Cloud and Network Orchestrator. The Multidomain SDN 
Orchestrator mechanism acts as a “controller of the controllers” of end-to-end provisioning 

 

1 Merged with Industrial Internet Consortium in January 2019 



services using Control Orchestration Protocol (COP). It orchestrates end-to-end provisioning 
services across heterogeneous network layer components at a higher abstraction level thus 
supporting multiple lower level technologies. The Multidomain Network Hypervisor aggregates 
and partitions physical network resources into virtual resources forming multiple connections 
among VTNs. The network hypervisor can dynamically create, change and delete network 
resources based on matrix of QoS requirements. The Intra-DC Cloud and Network 
Orchestrator is responsible for VM lifecycle management i.e. creation, migration and deletion 
within a data centre. In a distributed data centre network, there is a need for an integrated 
orchestration the Global Cloud and Network Orchestrator architecture component is 
responsible for global network and resource provisioning. It ensures of VM migration and end-
to-end connectivity links setup between distributed data centre site locations. The Integrated 
SDN/NFV Management and Orchestration Architecture was validated by an implementation 
that was deployed across three data centres in Spain and Poland. 

Yannuzzi et al., (2017) propose a novel converged architecture called the Digital IoT Fabric, 
that complies with both OpenFog and MANO standards. The design of the Digital IoT Fabric 
aims to deliver a uniform management to NFV and IoT services with the deployment options 
from cloud to edge. The architecture is logically separated in to four components: 

 

i. the sensors, actuators and control layer,  
ii. the system view of hardware resources and software view of virtualisation layer 

components,  
iii. five perspectives that comprise of platform capabilities i.e. manageability, security, 

performance and scale, data analytics and control, IT business and cross-fog 
applications, 

iv. the User Interface (UI) and cloud and OpenFog services layer.  

The logical connection between OpenFog and VNF MANO is achieved through the link 
between the OpenFog Node Management component and the MANO VIM component, both 
of which manage virtual functions and virtual infrastructures. Yannuzzi et al., (2017) argue that 
such an architecture allows automated orchestration across the edge-to-cloud continuum and 
can play a key role in merging of operational technology and information technology. 

SmartFog is another novel fog architecture which designed to resembles human brain function 
where fog devices and network communication channels are analogous to neurons and 
synapses (Kimovski et al. 2018).  This nature-inspired fog architecture makes use of graph 
theory, machine learning, and multi-criteria decision-making to make fast decisions and 
architecture structuring. The architecture enables self-clustering of fog devices based on 
functional areas, further extending parallels with nature e.g. temperature sensors forming a 
group of thermoreceptors or camera sensors forming a group of photoreceptors. The proposed 
architectural model can be logically divided into three distinctive layers: Cloud layer, Fog layer, 
and IoT layer. The cloud layer is the top layer where IoT application components are deployed 
and governed by functional requirements. The fog layer is the intermediary tier between the 
Cloud and IoT layers where the SmartFog architecture evolves around. SmartFog manages 
fog layer resources available within fog devices to create data transmission and processing 
paths through establishing communication gateways and assigning resources needed to host 
IoT application components and temporary storage blocks. The spectral clustering approach 



is applied to the lower IoT layer to classify and group fog devices based on their functional 
resemblance. Such groups are then connected to cloud applications in the upper cloud layer 
through dynamic communication gateways in the intermediary tier of the fog layer. The 
SmartFog architecture concept was validated via simulation only and as such, remains only a 
theoretical contribution.   

Velasquez et al. (2017) recognises the difference between Cloud computing and Fog 
computing requirements and proposes the Supporting the Orchestration of Resilient and 
Trustworthy Fog Services (SORTS) framework which introduces new mechanisms for 
services and resources orchestration specifically in Fog environment. SORTS aims to 
maintain acceptable levels of QoS through ensuring resilience, trustworthiness and low 
latency within the dynamicity of a Fog environment. The framework proposes a hybrid 
approach by using service orchestration and choreography management approaches. The 
orchestration is defined as a centralized management mechanism for cloud level resource 
management in the upper tier of the architecture. While the choreography mechanism is 
dedicated to the lower architecture tier covering management of IoT device virtual clusters 
and Fog instances. Such operational decoupling in management levels allows quicker reaction 
to the changes to virtual clusters without intervention of higher-level service management.  

A Service Orchestration Architecture for Fog-enabled Infrastructures (SOAFI) is proposed by 
de Brito et al. (2017) which is based on the core requirements of Fog Computing focusing on 
heterogeneity and dynamics of IoT devices. Authors of SOAFI consider every exposed 
computer interface as a resource, and therefore in control by a resource manager resource 
examples include microservices, sensors CPU, memory, network, VMs, accelerators. The 
framework itself is split in two tiers Fog Orchestrator (FO) and Fog Agent (FA). The FO 
manages infrastructure of connected Fog nodes, it keeps a database of available resources 
through a built discovery service. The FA is running on a Fog node and provides monitoring 
and local access to resource management through the interface to the FO. The authors were 
successful in implementing and initial working prototype of SOAFI which was deployed in their 
IoT testbed.  

A Cloud-Based Architecture for Next-Generation Cellular Systems named CONCERT is 
proposed by Jingchu Liu et al. (2015). As the name suggests the architecture is targeted for 
management of cellular edge infrastructure embracing NFV services. The CONCERT 
approach is based on the concept of control and data plane decoupling where data plane 
embodies physical resources of edge infrastructure and the control plane coordinates physical 
resources through virtualization. In addition, CONCERT allows for physical resource 
placement and task scheduling in a bit for better service orchestration. The control plane entity 
called the Conductor is at the centre of the proposed architecture design. It orchestrates and 
virtualizes data plane resources as well as controlling software defined switches through 
centralized packet forwarding tables. This way the Conductor manages physical data plane 
resources as a central entity by provisioning them to a required VNF.   

In an effort to bridge the gap between theory and practice, Santos et al., (2017) propose a  
container-based fog computing orchestration architecture. The proposed architecture was 
implemented using Kubernetes, an open source management solution for containerized 
applications, which was extended with network-aware scheduling (NAS) (Santos et al. 2019) 
and Integer Linear Programming (ILP) decision support for IoT service placement  (Santos et 
al. 2017). The network-aware scheduling makes resource provisioning decisions by taking in 



consideration current load status of available network infrastructure and the target location of 
service. The ILP ensures close placement proximity of IoT application services to the end 
devices which use these services. The smart city scenario-based experiments show a 70% 
network latency reduction compared to the default Kubernetes scheduling setup with 1.22ms 
scheduling decision time overhead.  

6.3.2 Orchestration Tools 
Industry standard and proposed orchestration architectures define high level system design 
best practices for multiple integrated functional components. However, in order to use any of 
the system design features in real world scenarios, an actual implementation has to take place. 
A wide range of resource management tools are available to orchestrate cloud to edge 
infrastructure which are outlined below.  

Since edge site resources are considered to be limited due to constraints in physical hosting 
space, we focus primarily on container supporting tools as containers have leaner resource 
overhead profiles when compared to virtual machines. A container is technology that provides 
lightweight virtualisation at the kernel level. It is a packaged, self-contained, ready-to-deploy 
set of parts of applications, that might include middleware and business logic in the form of 
binaries and libraries to run the applications (Pahl and Lee 2015). Containers address 
concerns at the cloud PaaS level allowing to spawn self-contained applications on demand. 
Containers are often called building blocks of PaaS due to flexibility to be spawned on both 
physical and virtual infrastructures. Containers also relate to the IaaS level through sharing 
and isolation aspects that exemplify the evolution of OS and virtualisation technology. Docker 
is one of the most popular container tools for the Linux and Windows operating system with 
about 83% of market share followed by CoreOS rkt (12%), Mesos Containerizer (4%) and Li 
Linux Containers (LXC) (1%) (Carter 2018). Dockers are frameworks built around container 
engines (Turnbull 2014). They make containers a portable way to package applications to run 
in containers. The Open Container Initiative2 is making a push to create de-facto standards 
for container runtime and image formats. A In terms of a tiered application, a tier can be 
represented by a single container or a number of containers depending on application design 
and requirements.  

Kubernetes is a popular open-source platform for managing containers and their hosted 
services. Kubernetes was initially developed by Google and open sourced in 2014; it is 
maintained by the Cloud Native Computing Foundation. Kubernetes is a modular platform that 
focuses on automation of container management tasks such as service discovery and load 
balancing, storage orchestration, deployment roll outs and rollbacks, container bin packing, 
self-healing, secret and configuration management. The architecture of Kubernetes is divided 
into three distinct component areas – Master Components, Node Components and Add-ons. 
The Master Components form the control plane of the cluster making global decisions on 
scheduling, backup and ensuring node pod deployments to hardware nodes. The Node 
Components form and maintain usable Kubernetes environment on a hardware node. These 
components are deployed on each individual node in the data centre that are zoned to be 
used for container hosting providing network proxy features, healthy container state and 
enable container runtime features. Add-ons are an optional component group that 

 

2 https://www.opencontainers.org/ 



complements the Master and Node Components by providing additional DNS, web UI and 
resource monitoring features (Kubernetes 2019). Kubernetes is used as a base platform for 
Red Hat OpenShift3 and Rancher4, which provide additional features for Kubernetes cluster 
management, resource provisioning, monitoring and security. Recently Rancher releases K3s 
specifically tailored towards low-end infrastructure such as IoT gateways and extreme edge 
devices. 

The Nebula Container Orchestrator5 is an open-source project designed to manage large 
scale clusters of Docker containers. The solution is specifically targeted at large scale 
scenarios such as IoT devices or virtual Content Delivery Networks (vCDN) running Docker 
containers. The Nebula Container Orchestrator provides a REST API that can be used for 
sending management instructions to the deployed container groups such as rolling out 
updates, mounting volumes, changing images, monitoring health and performance and 
adjusting resource allocation. The architecture consists of two core components, Manager and 
Worker, and an optional monitoring component, Reporter. First the IoT device connects to the 
manager to retrieve group configuration information, and after configuration obtained the 
worker is handling device further. All of the architecture components are using a single 
scalable backend database (i.e. MongoDB6) to store configuration states and monitoring data. 
Manager is a fully stateless component that serves as an API endpoint to control the system. 
Worker is running on the remote container and manages the Worker by periodically pulling 
instructions from manager components. The Reporter component is used for collecting the 
data from the individual containers in the group to provide monitoring data to the system 
administrator. The Nebula Container Orchestrator is designed with scale in mind, and each 
component can be scaled to meet the demands of the system. Stress test results suggest a 
linear increase in number of IoT devices a single Manager component can handle from 7,780 
devices checking manager every 10 seconds to 466,800 devices checking every 600 seconds 
(Nebula 2019). Since multiple Manager components can be dynamically deployed the 
orchestrator provides a flexible solution for large scale containerized service deployments.  

Swarm is an open-source native container orchestration engine build for the Docker platform. 
The Docker integration allows Docker Engine CLI to be used directly to issue Swarm 
commands providing streamlined Docker container cluster management experience. Since 
the Swarm mode is already a part of the Docker engine, no other additional orchestration tools 
are needed when working with Docker based containers.  The Swarm architecture consists of 
manager nodes , distributed state store and worker nodes (Docker Inc. 2019a). The manager 
nodes are responsible for maintaining cluster state, schedule services and provide access to 
the functionality over web API endpoints. It is recommended to run multiple managers as a 
safeguard against failures in order to maintain consistency of the entire swarm. The manager 
nodes use Raft (Ongaro and Ousterhout 2014) consensus algorithm for managing replicated 
logs via the internal distributed state store where each manager is connected. The worker 

 

3 https://www.openshift.com/ 

4 https://rancher.com/ 

5 https://nebula-orchestrator.github.io/ 

6 https://www.mongodb.com/ 



nodes’ sole purpose is to execute containers. Worker nodes do not use distributed state 
storage and don’t provide services of manager nodes; however, a worker can be promoted to 
a manager with a single “promote” command as they are also instances of Docker Engine. 
This functionality is useful for node maintenance and failure recovery scenarios. Swarm 
includes features as incremental node updates, TLS based authentication and traffic 
encryption, internal load balancing specification, and an API to connect external load 
balancers with support for the overlay networking and scaling (Docker Inc. 2019b).  

6.4 Conclusion 
The last decade has brought a rapid emergence of smart devices which encouraged the 
development of cloud computing, hardware, networks and mobility. Both the enterprise and 
consumer landscape are seeing an increase in these device numbers as the value of rapid 
information access is being realised in day-to-day scenarios. The devices are used in 
geographically remote locations where access to internet connection as well as the remote 
cloud services, is not stable, hence the need to process generated data locally. This introduces 
an additional unique layer of heterogeneity with physical form factor variability as well as 
unique network data transfer capability. Meanwhile the increasing consumer and enterprise 
service demand is creating significant strain on the telecommunication compute and network 
infrastructure. Hardware heterogeneity, scalability and latency are some of the main 
challenges cloud to edge infrastructure providers are facing on a day to day basis in order to 
uphold Quality of Service (QoS) that are expected by customers.  

Orchestrators on the other hand have emerged together with cloud computing and provide a 
mature approach to coordinate the automated managing tasks for distributed applications 
running on IaaS or container environments. The resource orchestration approach and tools 
stack play an important role in the distributed service delivery. Considering that edge and fog 
applications need to deal with more dynamic and less predictable environments, their 
operators are even more dependent on reliable and efficient orchestrators that need to handle 
the new challenges: the use of geo-distributed infrastructure demands for more detailed 
understanding of application behaviour; support for federation, as there is a high chance that 
edge environments will span multiple providers. 

There is currently a strong movement to establish cloud and fog computing as business model 
and IT operations paradigm towing the development of fog orchestrators. Also, multiple active 
initiatives towards standardisation exist. Nevertheless, this chapter shows that the current 
state of the art in fog orchestration does not address all challenges and that more work in 
research and standardisation needs to be done. Just as the paradigm of cloud-native 
applications has given momentum to the development of cloud orchestrators, establishing a 
commonly accepted definition of fog-native applications might accelerate the evolvement of 
fog orchestrators. 
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