
Chapter 4

Orchestration from the Cloud to the Edge

Sergej Svorobej (The Irish Institute of Digital Business, Dublin City University,
sergej.svorobej@dcu.ie)

Malika Bendechache (The Irish Institute of Digital Business, Dublin City University,
malika.bendechache@dcu.ie)

Frank Griesinger (Institute for Organization and Management of Information Systems, Ulm
University, Germany, frank.griesinger@uni-ulm.de)

Jörg Domashka (Institute for Organization and Management of Information Systems, Ulm
University, Germany, joerg.domaschka@uni-ulm.de)

Abstract
The effective management of complex and heterogeneous computing environments is one
of the biggest challenges that service, and infrastructure providers are facing in the Cloud-to-
Thing continuum era. Advanced orchestration systems are required to support the resource
management of large-scale cloud data centres integrated to big data generation of IoT
devices. The orchestration system should be aware about all available resources and their
current status in order to perform dynamic allocations and enable short time deployment of
applications. This chapter will review the state of the art with regards to orchestration along
the Cloud-to-Thing continuum with a specific emphasis on container-based orchestration
(e.g. Docker Swarm and Kubernetes) and fog-specific orchestration architectures (e.g.
SORTS, SOAFI, ETSI IGS MEC, and CONCERT).

Keywords: cloud computing, edge computing, fog computing, orchestration, management,
container orchestration, orchestration tools, orchestration standards, orchestration
challenges, orchestration architectures.

6.1 Introduction
Innovation driven inarguable success of cloud computing combined with rapid growth in
adoption of internet services resulted in an unprecedented demand for computing resources.

However, cloud computing performance for many applications depends closely on the network
latency. In particular, the strength of network connectivity is crucial for large data sets. As more
and more data is generated by enterprises and consumers, particularly with the adoption of
Internet of Things (IoT), traditional cloud connectivity may not be sufficient (Carnevale et al.
2018). To make up for the lack of speed and connectivity with cloud, processing for mission-
critical applications will need to occur closer to the data source. Processing the data close to
where it originated is referred to as edge computing and fog computing.

Edge computing is pushing computing applications, data, and services away from centralized
cloud data centre architectures to the edges of the underlying network (Barika et al. 2019). It
is defined by NIST (Iorga et al. 2018): “as a local computing at the network layer encompassing
the smart end-devices and their users. It runs specific applications in a fixed logic location and
provides a direct transmission service.” It promises to reduce the amount of data pushed to
centralised cloud data centres avoiding load on the network and therefore is beneficial for
analytics and knowledge-based services. Edge computing also leads to lower latencies, hence
increasing communication velocity, reducing wider network footprints and avoiding
congestion. As it reduces the distance the data must travel, it boosts the performance and
reliability of latency-critical applications and services.

Service orchestration is an arrangement of auxiliary system components that Cloud providers
can use for coordination and management of computing resources to ensure service provision
to Cloud consumers (Bohn et al. 2011). Orchestration can also be defined as the use of
programming technology to manage the interconnections and interactions among workloads
on distributed edge-cloud infrastructure (Mahmoudi, Mourlin, and Battou 2018). This is
accomplished through the three main attributes of orchestration, which are closely related:
service orchestration, workload orchestration, and resource orchestration. An orchestration
platform usually integrates permission checks for security and compliance (Ranjan et al.
2015). Orchestration may also integrate components from various domains, e.g. provide
connections between network-deployed components and fixed applications and resources.
For some applications, the integration of virtualized components with the data centre is the
only needed orchestration type.

Cloud-to-Edge orchestration is a crucial feature for many IT organizations and DevOps
adopters as a way to speed the delivery of services, simplify optimisation and reduce costs
(Nygren, Sitaraman, and Sun 2010). A cloud orchestrator automates the management,
coordination and organization of distributed computer systems, services and middleware. In
addition to reduced personnel involvement, orchestration eliminates the potential for errors
introduced into provisioning, scaling or other cloud processes. Orchestration supports the
delivery of cloud resources to customers and end users, including in a self-service model
where users request resources without IT's involvement (Carnevale et al. 2018).

Major cloud providers, such as Microsoft and Google, as well as third-party vendors, provide
tools for orchestration as part of their service (AWS Cloud Formation, Google Cloud
Composer, Azure Automation). With orchestration, the overall goal is to ensure successful
hosting and delivery of applications. Currently provided functionality is still lacking focus on
Quality of Service (QoS) requirements, however meeting the QoS objectives of users will gain
further importance in the future. An example of QoS functional and non-functional attributes
includes: performance statistics, consistency, security, integrity, reliability, renting cost,
scalability, availability, legal and regulatory concerns (Pahl et al. 2019).

The rest of the chapter is organised as follows. The Orchestration challenges section provides
summary overview of day to day challenges of edge-to-cloud continuum orchestration. Next,

the Standards section outlines current industry standards for Orchestration Architectures
and Orchestration Tools within their respective subsections. Finally, the Conclusion section
provides closing remarks on the topic.

6.2 Orchestration challenges
The orchestration of virtualized environments is challenging due to the scale, heterogeneity,
and diversity of resource types and the uncertainties of the underlying cloud environment. The
uncertainties arise from a number of factors including resource capacity demand (e.g.,
bandwidth and memory), failures (e.g., failure of a network link), user access pattern (e.g.,
number of users and location) and lifecycle activities of applications. In particular, cloud
resource orchestration is challenging because applications are composed of multiple,
heterogeneous software and hardware resources, which may have integration and
interoperation dependencies (Barika et al. 2019).

Orchestration along the edge-to-cloud continuum adds another layer of complexity and
challenges. In the cloud-to-thing era, applications as well as storage are geo-distributed.
Therefore, applications will need to be restructured to distribute logic across the network.
Storage will likewise need to be decentralized. This creates new issues of reliability and data
integrity that are inherent in broadly decentralized networks. Cloud servers become control
nodes for intelligent edge devices, performing summary analytics while leaving real-time
decision making to edge servers (Jiang, Huang, and Tsang 2018). Therefore, there is a need
for comprehensive orchestration techniques that can coordinate and schedule network
services simultaneously through different technologies across the edge-to-cloud network
(Vaquero et al. 2019). Table 1 summarises the emerging orchestration needs in the Edge/fog
computing technologies and the corresponding requirements for each need.

Table 1: Emerging orchestration needs in Edge/fog computing (Vaquero et al. 2019)

Functional orchestration needs Requirements per need

§ Dynamic coalitions of edge devices and
cloudlets

§ Locality-awareness, Dynamism, Churn,
Scalability, replacement, recovery

§ Going beyond shadow devices for
reliability.

§ Device churn

§ Dynamic end-to-end service availability. § Multi-tenant, Multi-domain

§ Smaller execution units, smaller state § Larger scale, Finer grain

§ Diversity. § Heterogeneity

§ M2M confidentiality, wireless-based
attacks, trust management § Security

§ AAA, privacy-leakage § Privacy

§ Ensure quality-of-service on a variety of
infrastructure elements § Heterogeneity, Multi-domain

In order to orchestrate distributed system as cloud to edge computing, new architecture needs
to be defined taking into account the above edge orchestration needs and requirements.

The orchestration and management of edge cloud architecture is mostly realised through
virtualisation. The evolution of virtualisation has moved away from virtual machines and
resulted in more lightweight solutions such as containers. This is specifically relevant for
application packaging at a software platform and application level. Different application
packages such as containers have been proposed to cluster edge clouds and solutions such
as Docker container and Kubernetes architectures can be used. Yet, there is still a need for a
topology specification and a derived orchestration plans for cloud edge computing.

6.3 Industry Standards
Network Function Virtualisation (NFV) is a constantly evolving paradigm which enables the
virtualization of chains of communication services thus replacing purpose-built hardware
appliances. With the increase in network traffic diversity and capacity growth in 5G NFV
concept offers greater degree of flexibility for network, cloud and mobile service providers
(Barakabitze et al. 2019). The benefits of virtualization include scalability, elasticity and cost
savings to the service however the management of NFV chains becomes a challenge. The
European Telecommunications Standards Institute (ETSI) Industry Specification Group for
NFV (ETSI ISG NFV) have proposed an Open Source NFV Management and Orchestration
(MANO) framework which provides NFV operators with the standard tools and framework for
NFV orchestration (ETSI 2019). The NFV-MANO architecture is defined by three main
functional blocks (ETSI 2014):

• VNF Manager (VNFM)
• NFV Orchestrator (VNFO)
• Virtualised Infrastructure Manager (VIM)

The VNFM is responsible for the lifecycle management of the VNF instances such as image
template instantiation, software upgrades, scaling and instance termination. The VNFO is
responsible for orchestrating numerous VIMs to fulfil more complex function objectives across
multiple VNF groups. Finally, VIM is an interface for a single infrastructure domain that is
responsible for control and management of resources such as compute, storage and network
at that particular location. The latest implementation of Open Source Mano (OSM) Release 6
deploys the framework as a cohort of configurable Docker containers which provide VNF
management capabilities and can integrate with multiple VIMs using plugins.

In a bid to bring unity to the NFV environment, the Open Platform for NFV (OPNFV) was
launched through Linux Foundation (OPNFV 2019). The OPNFV project goal is to establish
an ecosystem for NFV solutions that integrate together through joint collaboration of
development and testing. The OPNFV is a midstream project that drives new features based
on the upstream user feedback, and also ensures component continuous integration
downstream through composition deployment and testing (Brockners 2016).

To standardize and promote the use of the fog computing paradigm across various disciplines
the OpenFog consortium 1 was founded by the industry and academia in the
telecommunication field. The OpenFog consortium working group created the OpenFog
Reference Architecture (RA) for fog computing which then was adopted by the IEEE
Standards Association (OpenFog Consortium 2018). The reference architecture provides an
overview of fog opportunity areas, use cases and introduces eight pillars of OpenFog RA:

• Security – trust, attestation, privacy
• Scalability – localized command control and processing, orchestration and analytics,

avoidance of network taxes
• Openness – resource visibility and control, white box decision making, interop and data

normalization
• Autonomy – flexible, cognition and agility, value of data
• Programmability – programmable SW/HW, virtualization and multi-tenant, app fluidity
• RAS - Reliability, Availability, and Serviceability
• Agility – tactical and strategic decision making, data to wisdom
• Hierarchy – fully cloud enabled, computational and system, autonomy at all levels

The pillars provide guidance and describe requirements for hardware manufacturers, software
developers, system vendors and other parties in the fog supply chain. This view aligns well
with the ISO/IEC CD 30141 that defines an Internet of Things RA (International Organization
for Standardization 2018). It points out several necessary capabilities of IoT systems including
the realisation of automated network management; ensuring of maintainability over long
periods of time and large geographical region, including the need for configuration changes;
reliability and resilience of the system; and the need for availability and therefore scalability.
The realisation of all of these capabilities requires a huge degree of automation and hence,
are well-suited for the use of an orchestrator.

6.3.1 Orchestration Architectures
Multiple resource orchestration and provisioning architectures were developed to take
advantage of cloud to edge infrastructure and its feature (Munoz et al. 2015) present a
management and orchestration architecture based on Software Defined Networking (SDN)
and NFV. This architecture allows dynamic deployment of virtual tenant networks (VTN) and
required corresponding SDN controllers in distributed data centre network as NFVs. The
proposed solution is compatible with NFV MANO and consists of the following main functional
blocks: Multidomain SDN Orchestrator, Multidomain Network Hypervisor, Intra-DC Cloud and
Network Orchestrator and Global Cloud and Network Orchestrator. The Multidomain SDN
Orchestrator mechanism acts as a “controller of the controllers” of end-to-end provisioning

1 Merged with Industrial Internet Consortium in January 2019

services using Control Orchestration Protocol (COP). It orchestrates end-to-end provisioning
services across heterogeneous network layer components at a higher abstraction level thus
supporting multiple lower level technologies. The Multidomain Network Hypervisor aggregates
and partitions physical network resources into virtual resources forming multiple connections
among VTNs. The network hypervisor can dynamically create, change and delete network
resources based on matrix of QoS requirements. The Intra-DC Cloud and Network
Orchestrator is responsible for VM lifecycle management i.e. creation, migration and deletion
within a data centre. In a distributed data centre network, there is a need for an integrated
orchestration the Global Cloud and Network Orchestrator architecture component is
responsible for global network and resource provisioning. It ensures of VM migration and end-
to-end connectivity links setup between distributed data centre site locations. The Integrated
SDN/NFV Management and Orchestration Architecture was validated by an implementation
that was deployed across three data centres in Spain and Poland.

Yannuzzi et al., (2017) propose a novel converged architecture called the Digital IoT Fabric,
that complies with both OpenFog and MANO standards. The design of the Digital IoT Fabric
aims to deliver a uniform management to NFV and IoT services with the deployment options
from cloud to edge. The architecture is logically separated in to four components:

i. the sensors, actuators and control layer,
ii. the system view of hardware resources and software view of virtualisation layer

components,
iii. five perspectives that comprise of platform capabilities i.e. manageability, security,

performance and scale, data analytics and control, IT business and cross-fog
applications,

iv. the User Interface (UI) and cloud and OpenFog services layer.

The logical connection between OpenFog and VNF MANO is achieved through the link
between the OpenFog Node Management component and the MANO VIM component, both
of which manage virtual functions and virtual infrastructures. Yannuzzi et al., (2017) argue that
such an architecture allows automated orchestration across the edge-to-cloud continuum and
can play a key role in merging of operational technology and information technology.

SmartFog is another novel fog architecture which designed to resembles human brain function
where fog devices and network communication channels are analogous to neurons and
synapses (Kimovski et al. 2018). This nature-inspired fog architecture makes use of graph
theory, machine learning, and multi-criteria decision-making to make fast decisions and
architecture structuring. The architecture enables self-clustering of fog devices based on
functional areas, further extending parallels with nature e.g. temperature sensors forming a
group of thermoreceptors or camera sensors forming a group of photoreceptors. The proposed
architectural model can be logically divided into three distinctive layers: Cloud layer, Fog layer,
and IoT layer. The cloud layer is the top layer where IoT application components are deployed
and governed by functional requirements. The fog layer is the intermediary tier between the
Cloud and IoT layers where the SmartFog architecture evolves around. SmartFog manages
fog layer resources available within fog devices to create data transmission and processing
paths through establishing communication gateways and assigning resources needed to host
IoT application components and temporary storage blocks. The spectral clustering approach

is applied to the lower IoT layer to classify and group fog devices based on their functional
resemblance. Such groups are then connected to cloud applications in the upper cloud layer
through dynamic communication gateways in the intermediary tier of the fog layer. The
SmartFog architecture concept was validated via simulation only and as such, remains only a
theoretical contribution.

Velasquez et al. (2017) recognises the difference between Cloud computing and Fog
computing requirements and proposes the Supporting the Orchestration of Resilient and
Trustworthy Fog Services (SORTS) framework which introduces new mechanisms for
services and resources orchestration specifically in Fog environment. SORTS aims to
maintain acceptable levels of QoS through ensuring resilience, trustworthiness and low
latency within the dynamicity of a Fog environment. The framework proposes a hybrid
approach by using service orchestration and choreography management approaches. The
orchestration is defined as a centralized management mechanism for cloud level resource
management in the upper tier of the architecture. While the choreography mechanism is
dedicated to the lower architecture tier covering management of IoT device virtual clusters
and Fog instances. Such operational decoupling in management levels allows quicker reaction
to the changes to virtual clusters without intervention of higher-level service management.

A Service Orchestration Architecture for Fog-enabled Infrastructures (SOAFI) is proposed by
de Brito et al. (2017) which is based on the core requirements of Fog Computing focusing on
heterogeneity and dynamics of IoT devices. Authors of SOAFI consider every exposed
computer interface as a resource, and therefore in control by a resource manager resource
examples include microservices, sensors CPU, memory, network, VMs, accelerators. The
framework itself is split in two tiers Fog Orchestrator (FO) and Fog Agent (FA). The FO
manages infrastructure of connected Fog nodes, it keeps a database of available resources
through a built discovery service. The FA is running on a Fog node and provides monitoring
and local access to resource management through the interface to the FO. The authors were
successful in implementing and initial working prototype of SOAFI which was deployed in their
IoT testbed.

A Cloud-Based Architecture for Next-Generation Cellular Systems named CONCERT is
proposed by Jingchu Liu et al. (2015). As the name suggests the architecture is targeted for
management of cellular edge infrastructure embracing NFV services. The CONCERT
approach is based on the concept of control and data plane decoupling where data plane
embodies physical resources of edge infrastructure and the control plane coordinates physical
resources through virtualization. In addition, CONCERT allows for physical resource
placement and task scheduling in a bit for better service orchestration. The control plane entity
called the Conductor is at the centre of the proposed architecture design. It orchestrates and
virtualizes data plane resources as well as controlling software defined switches through
centralized packet forwarding tables. This way the Conductor manages physical data plane
resources as a central entity by provisioning them to a required VNF.

In an effort to bridge the gap between theory and practice, Santos et al., (2017) propose a
container-based fog computing orchestration architecture. The proposed architecture was
implemented using Kubernetes, an open source management solution for containerized
applications, which was extended with network-aware scheduling (NAS) (Santos et al. 2019)
and Integer Linear Programming (ILP) decision support for IoT service placement (Santos et
al. 2017). The network-aware scheduling makes resource provisioning decisions by taking in

consideration current load status of available network infrastructure and the target location of
service. The ILP ensures close placement proximity of IoT application services to the end
devices which use these services. The smart city scenario-based experiments show a 70%
network latency reduction compared to the default Kubernetes scheduling setup with 1.22ms
scheduling decision time overhead.

6.3.2 Orchestration Tools
Industry standard and proposed orchestration architectures define high level system design
best practices for multiple integrated functional components. However, in order to use any of
the system design features in real world scenarios, an actual implementation has to take place.
A wide range of resource management tools are available to orchestrate cloud to edge
infrastructure which are outlined below.

Since edge site resources are considered to be limited due to constraints in physical hosting
space, we focus primarily on container supporting tools as containers have leaner resource
overhead profiles when compared to virtual machines. A container is technology that provides
lightweight virtualisation at the kernel level. It is a packaged, self-contained, ready-to-deploy
set of parts of applications, that might include middleware and business logic in the form of
binaries and libraries to run the applications (Pahl and Lee 2015). Containers address
concerns at the cloud PaaS level allowing to spawn self-contained applications on demand.
Containers are often called building blocks of PaaS due to flexibility to be spawned on both
physical and virtual infrastructures. Containers also relate to the IaaS level through sharing
and isolation aspects that exemplify the evolution of OS and virtualisation technology. Docker
is one of the most popular container tools for the Linux and Windows operating system with
about 83% of market share followed by CoreOS rkt (12%), Mesos Containerizer (4%) and Li
Linux Containers (LXC) (1%) (Carter 2018). Dockers are frameworks built around container
engines (Turnbull 2014). They make containers a portable way to package applications to run
in containers. The Open Container Initiative2 is making a push to create de-facto standards
for container runtime and image formats. A In terms of a tiered application, a tier can be
represented by a single container or a number of containers depending on application design
and requirements.

Kubernetes is a popular open-source platform for managing containers and their hosted
services. Kubernetes was initially developed by Google and open sourced in 2014; it is
maintained by the Cloud Native Computing Foundation. Kubernetes is a modular platform that
focuses on automation of container management tasks such as service discovery and load
balancing, storage orchestration, deployment roll outs and rollbacks, container bin packing,
self-healing, secret and configuration management. The architecture of Kubernetes is divided
into three distinct component areas – Master Components, Node Components and Add-ons.
The Master Components form the control plane of the cluster making global decisions on
scheduling, backup and ensuring node pod deployments to hardware nodes. The Node
Components form and maintain usable Kubernetes environment on a hardware node. These
components are deployed on each individual node in the data centre that are zoned to be
used for container hosting providing network proxy features, healthy container state and
enable container runtime features. Add-ons are an optional component group that

2 https://www.opencontainers.org/

complements the Master and Node Components by providing additional DNS, web UI and
resource monitoring features (Kubernetes 2019). Kubernetes is used as a base platform for
Red Hat OpenShift3 and Rancher4, which provide additional features for Kubernetes cluster
management, resource provisioning, monitoring and security. Recently Rancher releases K3s
specifically tailored towards low-end infrastructure such as IoT gateways and extreme edge
devices.

The Nebula Container Orchestrator5 is an open-source project designed to manage large
scale clusters of Docker containers. The solution is specifically targeted at large scale
scenarios such as IoT devices or virtual Content Delivery Networks (vCDN) running Docker
containers. The Nebula Container Orchestrator provides a REST API that can be used for
sending management instructions to the deployed container groups such as rolling out
updates, mounting volumes, changing images, monitoring health and performance and
adjusting resource allocation. The architecture consists of two core components, Manager and
Worker, and an optional monitoring component, Reporter. First the IoT device connects to the
manager to retrieve group configuration information, and after configuration obtained the
worker is handling device further. All of the architecture components are using a single
scalable backend database (i.e. MongoDB6) to store configuration states and monitoring data.
Manager is a fully stateless component that serves as an API endpoint to control the system.
Worker is running on the remote container and manages the Worker by periodically pulling
instructions from manager components. The Reporter component is used for collecting the
data from the individual containers in the group to provide monitoring data to the system
administrator. The Nebula Container Orchestrator is designed with scale in mind, and each
component can be scaled to meet the demands of the system. Stress test results suggest a
linear increase in number of IoT devices a single Manager component can handle from 7,780
devices checking manager every 10 seconds to 466,800 devices checking every 600 seconds
(Nebula 2019). Since multiple Manager components can be dynamically deployed the
orchestrator provides a flexible solution for large scale containerized service deployments.

Swarm is an open-source native container orchestration engine build for the Docker platform.
The Docker integration allows Docker Engine CLI to be used directly to issue Swarm
commands providing streamlined Docker container cluster management experience. Since
the Swarm mode is already a part of the Docker engine, no other additional orchestration tools
are needed when working with Docker based containers. The Swarm architecture consists of
manager nodes , distributed state store and worker nodes (Docker Inc. 2019a). The manager
nodes are responsible for maintaining cluster state, schedule services and provide access to
the functionality over web API endpoints. It is recommended to run multiple managers as a
safeguard against failures in order to maintain consistency of the entire swarm. The manager
nodes use Raft (Ongaro and Ousterhout 2014) consensus algorithm for managing replicated
logs via the internal distributed state store where each manager is connected. The worker

3 https://www.openshift.com/

4 https://rancher.com/

5 https://nebula-orchestrator.github.io/

6 https://www.mongodb.com/

nodes’ sole purpose is to execute containers. Worker nodes do not use distributed state
storage and don’t provide services of manager nodes; however, a worker can be promoted to
a manager with a single “promote” command as they are also instances of Docker Engine.
This functionality is useful for node maintenance and failure recovery scenarios. Swarm
includes features as incremental node updates, TLS based authentication and traffic
encryption, internal load balancing specification, and an API to connect external load
balancers with support for the overlay networking and scaling (Docker Inc. 2019b).

6.4 Conclusion
The last decade has brought a rapid emergence of smart devices which encouraged the
development of cloud computing, hardware, networks and mobility. Both the enterprise and
consumer landscape are seeing an increase in these device numbers as the value of rapid
information access is being realised in day-to-day scenarios. The devices are used in
geographically remote locations where access to internet connection as well as the remote
cloud services, is not stable, hence the need to process generated data locally. This introduces
an additional unique layer of heterogeneity with physical form factor variability as well as
unique network data transfer capability. Meanwhile the increasing consumer and enterprise
service demand is creating significant strain on the telecommunication compute and network
infrastructure. Hardware heterogeneity, scalability and latency are some of the main
challenges cloud to edge infrastructure providers are facing on a day to day basis in order to
uphold Quality of Service (QoS) that are expected by customers.

Orchestrators on the other hand have emerged together with cloud computing and provide a
mature approach to coordinate the automated managing tasks for distributed applications
running on IaaS or container environments. The resource orchestration approach and tools
stack play an important role in the distributed service delivery. Considering that edge and fog
applications need to deal with more dynamic and less predictable environments, their
operators are even more dependent on reliable and efficient orchestrators that need to handle
the new challenges: the use of geo-distributed infrastructure demands for more detailed
understanding of application behaviour; support for federation, as there is a high chance that
edge environments will span multiple providers.

There is currently a strong movement to establish cloud and fog computing as business model
and IT operations paradigm towing the development of fog orchestrators. Also, multiple active
initiatives towards standardisation exist. Nevertheless, this chapter shows that the current
state of the art in fog orchestration does not address all challenges and that more work in
research and standardisation needs to be done. Just as the paradigm of cloud-native
applications has given momentum to the development of cloud orchestrators, establishing a
commonly accepted definition of fog-native applications might accelerate the evolvement of
fog orchestrators.

References
Barakabitze, Alcardo Alex, Lingfen Sun, Is-Haka Mkwawa, and Emmanuel Ifeachor. 2019. “A

Novel QoE-Aware SDN-Enabled, NFV-Based Management Architecture for Future
Multimedia Applications on 5G Systems.” ArXiv Preprint ArXiv:1904.09917, April.
http://arxiv.org/abs/1904.09917.

Barika, MUTAZ, SAURABH Garg, ALBERT Y Zomaya, LIZHE Wang, A van Moorsel, and
RAJIV Ranjan. 2019. “Orchestrating Big Data Analysis Workflows in the Cloud: Research
Challenges, Survey, and Future Directions.” ACM Computing Surveys, 1–37.

Bohn, Robert B., John Messina, Fang Liu, Jin Tong, and Jian Mao. 2011. “NIST Cloud
Computing Reference Architecture.” In 2011 IEEE World Congress on Services, 594–96.
IEEE. https://doi.org/10.1109/SERVICES.2011.105.

Brito, Mathias Santos de, Saiful Hoque, Thomas Magedanz, Ronald Steinke, Alexander
Willner, Daniel Nehls, Oliver Keils, and Florian Schreiner. 2017. “A Service Orchestration
Architecture for Fog-Enabled Infrastructures.” In 2017 Second International Conference
on Fog and Mobile Edge Computing (FMEC), 127–32. IEEE.
https://doi.org/10.1109/FMEC.2017.7946419.

Brockners, Frank. 2016. “What Is OPNFV?” OPNFV Summit.

Carnevale, Lorenzo, Antonio Celesti, Antonino Galletta, Schahram Dustdar, and Massimo
Villari. 2018. “From the Cloud to Edge and IoT: A Smart Orchestration Architecture for
Enabling Osmotic Computing.” In 2018 32nd International Conference on Advanced
Information Networking and Applications Workshops (WAINA), 2018-Janua:419–24.
IEEE. https://doi.org/10.1109/WAINA.2018.00122.

Carter, Eric. 2018. “Docker Usage Report.” 2018. https://sysdig.com/blog/2018-docker-usage-
report/.

Docker Inc. 2019a. “How Nodes Work | Docker Documentation.” 2019.
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/.

———. 2019b. “Swarm Mode Overview | Docker Documentation.” 2019.
https://docs.docker.com/engine/swarm/.

ETSI. 2014. “Network Functions Virtualisation (NFV); Management and Orchestration.” Etsi.
Vol. 2.
http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L34467
660.

———. 2019. “ETSI - Open Source Mano | Open Source Solutions | Mano NFV.” 2019.
https://www.etsi.org/technologies/nfv/open-source-mano.

International Organization for Standardization. 2018. “Information Technology – Internet of
Things Reference Architecture (IoT RA).” ISO/IEC130141:20182018. Geneva.
https://www.iso.org/standard/65695.html.

Iorga, Michaela, Larry Feldman, Robert Barton, Michael J Martin, Nedim S Goren, and Charif
Mahmoudi. 2018. “Fog Computing Conceptual Model.”

Jiang, Yuxuan, Zhe Huang, and Danny H. K. Tsang. 2018. “Challenges and Solutions in Fog
Computing Orchestration.” IEEE Network 32 (3): 122–29.
https://doi.org/10.1109/MNET.2017.1700271.

Jingchu Liu, Tao Zhao, Sheng Zhou, Yu Cheng, and Zhisheng Niu. 2015. “CONCERT: A
Cloud-Based Architecture for next-Generation Cellular Systems.” IEEE Wireless
Communications 21 (6): 14–22. https://doi.org/10.1109/mwc.2014.7000967.

Kimovski, Dragi, Humaira Ijaz, Nishant Saurabh, and Radu Prodan. 2018. “Adaptive Nature-
Inspired Fog Architecture.” In 2018 IEEE 2nd International Conference on Fog and Edge
Computing (ICFEC), 1–8. IEEE. https://doi.org/10.1109/CFEC.2018.8358723.

Kubernetes. 2019. “Kubernetes.” 2019. https://kubernetes.io.

Mahmoudi, Charif, Fabrice Mourlin, and Abdella Battou. 2018. “Formal Definition of Edge
Computing: An Emphasis on Mobile Cloud and IoT Composition.” In 2018 Third
International Conference on Fog and Mobile Edge Computing (FMEC), 34–42. IEEE.
https://doi.org/10.1109/FMEC.2018.8364042.

Nebula. 2019. “Scaling - Nebula Container Orchestrator.” 2019.
https://nebula.readthedocs.io/en/latest/scaling/.

Nygren, Erik, Ramesh K. Sitaraman, and Jennifer Sun. 2010. “The Akamai Network.” ACM
SIGOPS Operating Systems Review 44 (3): 2. https://doi.org/10.1145/1842733.1842736.

Ongaro, Diego, and John Ousterhout. 2014. “In Search of an Understandable Consensus
Algorithm.” In 2014 Annual Technical Conference, 305–19.

OpenFog Consortium. 2018. “IEEE Standard for Adoption of OpenFog Reference Architecture
for Fog Computing.” IEEE Std 1934-2018, August, 1–176.
https://doi.org/10.1109/IEEESTD.2018.8423800.

OPNFV. 2019. “Software - OPNFV.” 2019. https://www.opnfv.org/software.

Pahl, Claus, Antonio Brogi, Jacopo Soldani, and Pooyan Jamshidi. 2019. “Cloud Container
Technologies: A State-of-the-Art Review.” IEEE Transactions on Cloud Computing 7 (3):
677–92. https://doi.org/10.1109/TCC.2017.2702586.

Pahl, Claus, and Brian Lee. 2015. “Containers and Clusters for Edge Cloud Architectures -- A
Technology Review.” In 2015 3rd International Conference on Future Internet of Things
and Cloud, 379–86. IEEE. https://doi.org/10.1109/FiCloud.2015.35.

Ranjan, Rajiv, Boualem Benatallah, Schahram Dustdar, and Michael P. Papazoglou. 2015.
“Cloud Resource Orchestration Programming: Overview, Issues, and Directions.” IEEE
Internet Computing 19 (5): 46–56. https://doi.org/10.1109/MIC.2015.20.

Santos, Jose, Tim Wauters, Bruno Volckaert, and Filip De Turck. 2017. “Resource
Provisioning for IoT Application Services in Smart Cities.” In 2017 13th International
Conference on Network and Service Management (CNSM), 2018-Janua:1–9. IEEE.
https://doi.org/10.23919/CNSM.2017.8255974.

Santos, Jose, Tim Wauters, Bruno Volckaert, and Filip De Turck. 2019. “Towards Network-
Aware Resource Provisioning in Kubernetes for Fog Computing Applications.” In IEEE
Conference on Network Softwarization (NETSOFT). Paris.

Turnbull, James. 2014. The Docker Book: Containerization Is the New Virtualization. James
Turnbull.

Vaquero, Luis M., Felix Cuadrado, Yehia Elkhatib, Jorge Bernal-Bernabe, Satish N. Srirama,
and Mohamed Faten Zhani. 2019. “Research Challenges in Nextgen Service
Orchestration.” Future Generation Computer Systems 90 (January): 20–38.
https://doi.org/10.1016/j.future.2018.07.039.

Velasquez, Karima, David Perez Abreu, Diogo Goncalves, Luiz Bittencourt, Marilia Curado,
Edmundo Monteiro, and Edmundo Madeira. 2017. “Service Orchestration in Fog
Environments.” Proceedings - 2017 IEEE 5th International Conference on Future Internet
of Things and Cloud, FiCloud 2017 2017-Janua: 329–36.
https://doi.org/10.1109/FiCloud.2017.49.

Yannuzzi, M., R. Irons-Mclean, F. van Lingen, S. Raghav, A. Somaraju, C. Byers, T. Zhang,

et al. 2017. “Toward a Converged OpenFog and ETSI MANO Architecture.” In 2017 IEEE
Fog World Congress (FWC), 1–6. IEEE. https://doi.org/10.1109/FWC.2017.8368535.

