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Abstract 
We report optical phase conjugation in C-band by counter-propagating dual pumped non-degenerate four-
wave mixing in a semiconductor optical amplifier (SOA). The co-propagating signal and pump waves create a 
grating inside SOA which diffracts counter-propagating pump and generates the conjugate wave. Since the 
signal and conjugate waves appear at opposite ends, the conjugate is easily filtered out from the rest of 
spectrum with minimal spectral shift of the conjugate with respect to the incoming signal. With pump powers 
of 3.2 dBm each and signal input power of 7 dBm, conjugate power was of 27.2 dBm, giving a conversion 
efficiency of 1% at 18 GHz pump-signal detuning. By modulating the signal by a periodic pattern ‘1000’ at 10 
Gbps using a non-zero chirp intensity modulator and resolving the temporal profile of the electric field 
envelope of the conjugate wave, we demonstrate spectral in-version. 
 
 

 

1.  Introduction 
 
Optical phase conjugation (OPC) is used in several applications such as spectroscopy, interferometry, optical 
squeezing, and op-tical data processing (see [1] and references therein). In the con-text of optical fiber 
communications, OPC is used to mitigate fiber dispersion and nonlinearities by mid-span spectral inversion in 
which impairments due to fiber dispersion and nonlinearities in the first half of the fiber are inverted by OPC, 
and compensated by subsequent transmission through the second half of the fiber [2– 5]. 
 
OPC can be generated in many ways; three-wave mixing in periodically poled LiNbO3, four-wave mixing in 
fibers and SOAs, and backward stimulated Raman and Brillouin scattering in fibers [1,2,6]. In [7,8], a 
bidirectional pumping scheme in a SOA to generate OPC was theoretically proposed and the appearance of a 
signal and conjugate at opposite ends of the SOA was predicted. In [9], a bidirectionally pumped OPC scheme 
was demonstrated in a SOA using orthogonally polarized counter-propagating pumps of the same wavelength. 
The orthogonally polarized pumps were used to avoid the reflection of the signal at input port due to the 
formation of Bragg grating inside SOA, which can lead to difficulty in filtering of conjugate. The signal and 
conjugate waves appeared at opposite ends of the SOA, also orthogonally polarized. A low conversion 
efficiency of 0.2% was obtained. 
In this paper, we generate OPC in an SOA using counter-propagating dual pumped FWM. Pump1 and signal 
waves are injected into one end of the SOA and a second pump is injected into the other end. The beating 
between pump1 and signal waves creates a refractive index and gain gratings; the pump2 senses this grating 
and scatters, to generate conjugated copy of original signal wave. The conjugate and signal waves appear at 



opposite ends of the SOA; the conjugate wave is filtered out using an optical filter. With pump and injected 
signal powers of -3.2 dBm and -7 dBm respectively, the conjugate power was -27.2 dBm giving the higher 
recorded conversion efficiency of 1% up to 12 GHz pump1-signal detuning [9]. By modulating the signal wave 
with a non-zero chirp intensity modulator and resolving the temporal profile of the electric field envelope of 
the conjugate wave, we demonstrate spectral inversion. 
The rest of the paper is organized as follows. In Section 2, we briefly discuss the theory of counter-propagating 
dual pumped FWM, leading to OPC generation in SOA. The spectrum at the output of SOA shows the 
generation of desired conjugate as well as additional FWM products. We measure the efficiency of conjugate 
generation as a function of pump-signal frequency detuning and compare it to theoretical values. The 
temporal resolution of signal and conjugate waves indicates phase inversion. In Section 3, we discuss our 
experimental setup and results of OPC generation. The spectrum at the output of SOA shows the generation of 
desired conjugate as well as additional FWM products. We measure the efficiency of conjugate generation as a 
function of pump-signal frequency detuning and compare it to theoretical values. The temporal resolution of 
signal and conjugate waves indicates phase inversion. Finally, in Section 4, we conclude by summarizing our 
results. 
 
 

2.  Theory 
 

Fig. 1 shows the schematic diagram of counter-propagating dual-pumped FWM in SOA. The wavelengths λi and 
frequencies ωi, i=1, 2, 3, 4 correspond to pump1, pump2, signal and conjugate waves respectively. The pump1 
and signal waves are injected into one end of the SOA and pump2 is injected into the other end. Beating 
between pump1 and signal creates a complex-valued grating – real part corresponds to gain grating and 
imaginary part corresponds to index grating – in the active layer of the SOA. The origin of the gratings is found 
in the carrier density pulsation able to sustain modulation at 300 GHz well above its cut-off frequency [7]. The 
grating diffracts pump2 to create two sidebands at ω2−Ω and ω2+Ω, where Ω = ω1 − ω3 is the detuning. The 
sideband ω2 + Ω corresponds to wavelength λ4, which is conjugated version of the signal and propagates in the 
direction opposite to signal. The other sideband ω2−Ω is the non-conjugate version of signal, denoted by 
idler3. Conjugate and non-conjugate copies of signal along with the amplified pump2 is present at port 1 as 
shown in box labelled A in Fig. 1. A similar interaction between pump2 and signal waves creates an additional 
weak grating and is neglected. Other possible FWM interaction is between pump1 and signal, which results in 
generation of idler2 which is present along with amplified pump1 and signal at port 2 shown in the box B of 
Fig. 1. We summarize different FWM product in Table 1. 
 
 
The equations governing temporal evolution of signal and generation of conjugate wave can be obtained by 
substituting the total electric field E = ∑i

4
= 1 Ai ( z , t ) exp ( j ( ωi t + ( − 1)i kiz) ) into the nonlinear Schrödinger 

equation [10] : 
 

 
 
 

where PNL denotes the induced non-linear polarization. For simplicity of analytical solution we neglected the 
contribution of idler2 and idler3. Using SOA-FWM analysis outlined in [10], the propagation equation for the 
forwards and backwards travelling conjugate waves are assuming that the gain saturation is dominated by the 
pumps: 
 



 
 

α4, κ3, and κ4 are given in [10]. These equations are valid for small pump-signal detuning. In our experiments 
we initially keep the pump-signal detuning to within 10 GHz; The detuning is varied up to 40 GHz to study its 
effect on FWM conversion efficiency. Solving subject to boundary conditions, A3(0) = A30 and A4 (L) = 0, we 
obtain 

 
 

where μ = ( α 3 + α4
* + k)/2 and ζ =sqrt( ( 2μ )2 − κ3 κ4)/2. This shows that A4(z) is conjugate of A30. The 

boundary condition for the backwards travelling conjugate is A4(z = L) = 0; therefore this back-ward travelling 
idler builds up from the right-hand side of (3) which is proportional to the complex conjugate of the input 
signal A3. We define conversion efficiency as ratio of output conjugate power at z=0 to input signal power at 
z=0 

 
 
Putting the value of |A3 ( 0) |  and |A4 ( 0) |  from (3) 
 
We observe that the conversion efficiency η depends upon detuning Ω through κ in μ and ζ. The expression of 
efficiency η looks similar to the reflectivity R in [10], but their values differ in magnitude as the parameters are 
different in the two expressions. 
 
 

3.  Experimental setup and results 

3.1. Setup 
 

Fig. 2 shows our experimental setup to generate phase con-jugated wave. The setup consists of an SOA (CIP 
SOA-XN-OEC-1550) as nonlinear medium to realize FWM. The small signal gain of the SOA is 34 dB with <1 dB 
polarization dependence. The CW optical signal from a tunable laser (TL1) at λ3 = 1558.08 nm is fed to port 1 
of the SOA along with a pump1 ( λ1 = 1557.89 nm) from other tunable laser (TL3) through a 3 dB coupler and a 
circulator CIRC1. Another tunable laser TL2 ( λ2 = 1559.01 nm), acting as pump2, is fed to port 2 of the SOA 
through a circulator CIRC2. A polarization controller PC1 was used to align the polarization of the signal wave 
to maximize transmission through Mach–Zehnder modulator (MZM). PC2 was used to align the polarization of 
pump1 and signal waves to achieve maximum FWM efficiency, whereas pump2 can be of any arbitrary 
polarization. A part of signal is reflected, when the two pumps are off, thereby confirming that signal is 
reflected due to end facet reflectivity of SOA rather than due to Bragg grating [9]. An optical tunable filter 
(OTF), Yenista XTM-50 with a variable bandwidth set to 0.2 nm and sharp roll-off greater than 100 dB/nm was 
used to isolate the conjugate. The optical spectrum was measured at the circulator ports I and II as well as the 
port 1 and 2 of the SOA using complex optical spectrum analyzer OSA1,2 (APEX AP2443B). 



In order to observe phase conjugation, we introduce chirping by modulating the signal with the aid of an MZM, 
driven with the repetitive bit pattern of ‘1000’ at a bit rate of 10 Gbps. The repetition of the 4 bit pattern 
creates harmonics at multiples of 2.5 GHz, which is required by the complex OSA for spectral ana-lysis [11]. 
MZM used is z-cut fixed-chirp intensity modulator, in which optical or RF power unbalancing results in the 
chirping. The optical spectrum at port I and port II of the circulators, CIRC1 and CIRC2, at the two ends of the 
SOA, as well as the chirping of input signal and conjugate was measured using a complex OSA. The complex 
OSA was synchronized to the data pattern by feeding it with a 10 GHz clock from the pattern generator. 
 

In our experiments, the SOA is driven at 400 mA bias current. Pump1 (and Pump2) and signal power are kept at   
-3.2 dBm and -7 dBm respectively. Detuning between pump1 and signal is kept small (0.2 nm) to achieve a high 
conjugate power. 

3.2.  Results and discussion 
 

Fig. 3a shows the spectrum of the FWM products with the modulated input signal with ‘1000’ pattern at 10 
Gbps as ex-plained earlier at port 1 of SOA. Sidebands about signal frequencies appear at spacing of 2.5 GHz. 
Fig. 3b shows the spectrum of the conjugate after filtering. Spectrum of the backward travelling conjugate 
wave is reversed to that of input signal, indicating phase conjugation. Idler3 is backward travelling but non-
conjugate copy of the signal. These conjugate and non-conjugate copies of signal along with amplified pump2 
is obtained at port 1 as shown in the box A, as described in Fig. 1. Idler2 is also present at port 1 together with 
pump1 and signal due to reflection from the end facet of SOA as shown in the box B of Fig. 3. We see that 
sideband is present in pump1, pump2, idler2, and idler3. This is due to the generation of additional FWM 
products by the interaction of sidebands of signal with pumps. 
 

 

The signal power input from the TL1 was kept at -7 dBm. The output conjugate power was measured to be -
27.2 dBm, thus giving an overall conversion efficiency η of 1%. The SOA used in our experiment is driven at 
high bias current at 400 mA due to long active region, resulted in the five times higher efficiency than the 
previously reported value in [9]. 
 
Fig. 3 c shows measured conversion efficiency η, of the back-ward travelling conjugate as a function of 
detuning between the signal and pump1. We compared the experimental value of conversion efficiency with 
the theoretical value obtained from (4). We observed that the conjugate efficiency decreases with detuning in 
both experiment and theory, with 3 dB bandwidth of 12 GHz and 9 GHz respectively. However, in theoretical 
prediction of efficiency obtained from (4), we considered only the backward travelling conjugate and 
neglected the other FWM products, which was present in the experimental spectrum according to Fig. 3a. This 
results in the smaller experimental value of efficiency than that of theoretical prediction given in (4). 
 
Fig. 4 shows plot of temporal profile of intensity and phase of signal and conjugate waves versus time as 
displayed by the OSA. Dashed line in Fig. 4a shows intensity modulation of signal at 10 Gbps by MZM and solid 
line shows the chirping introduced in signal by modulator. The ‘1000’ intensity modulation pattern is clearly 
visible along with the phase variation shown by the solid line. A noticeable amount of phase change occurs 
during the bit transition from the lower to the upper level. Fig. 4b displays a similar intensity variation of the 
conjugate wave shows modulation information transfer from signal. We also observe phase inversion in the 
conjugate wave, though there is spurious phase variation in conjugate waves, which results in approximate 
phase inversion in signal. This approximate phase inversion is further support by comparing the phase slope ( 

1/(2) ∂ϕ/∂t) of signal and conjugate waves at AB and CD with AB′′ and C′D′ , which are 24 GHz and 25 GHz 
respectively. The spurious phase variation in conjugate wave is possibly due to the cross gain modulation on 
the pump that interferes with the conjugate and non-linear dependence of conversion efficiency on detuning, 
which causes the extra oscillations in the phase waveform or small signal and conjugate power results in small 
peak-to-peak chirp. By introducing large chirp in signal, we can neglect the small oscillation in phase and a 
clear phase inversion is observed. 
 



 
 

4.  Conclusion 
In summary, we have shown experimentally that dual counter-propagating pumped FWM in SOA can be used 
to generate optical phase conjugation with signal and conjugate appearing at opposite ends of the SOA. This 
spatial separation between signal and conjugate facilitates the filtering of the conjugate and allows for the 
reduction of the spectral separation between the signal and conjugate waves. We observe that the reflected 
signal is present even when the two pumps are turned off, confirms that the signal is reflected due to end 
facet reflectivity of SOA. This restricts us to achieve phase conjugation at the signal wavelength. In principle by 
using SOA with small end facet reflectivity (<10−4) and placing pump wavelengths symmetrically around signal, 
wavelength-shift free phase conjugation can be achieved. 
 
Phase conjugation was obtained with an overall FWM efficiency of 1% at 18 GHz of pump1-signal detuning. 
Time resolved measurement of electric field using complex OSA shows that phase of conjugate wave is 
approximately inverted with respect to signal phase. Cross gain modulation and residual chirp present in signal 
and conjugate, restricts the exact inversion of phase in conjugate, which can be avoided by increasing chirp in 
the signal. 
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Fig. 1. Block-diagram of dual pumped counter-propagating FWM in SOA. Pumps are detuned from symmetrical 
position of signal to facilitate optical filtering of conjugate. λ1 and λ2: forward and backward pump wavelength, 
λ3: signal, and λ4: conjugate wavelength 
 



 
 
 

 
 
 
 
Fig. 2. Generation of phase conjugated wave using counter-propagating dual pumps in SOA. TL1,2,3: tunable 
laser, MZM: Mach–Zehnder modulator, PPG: pulse pattern generator, CIRC1,2: circulator, SOA: semiconductor 
optical amplifier, OTF: optical tunable filter, OSA1,2: complex optical spectrum analyzer. 



 
 
 
 
 
 
 
 
 

 
 
 
 
Fig. 3. (a) Spectrum of FWM products with input signal modulated by repetitive sequence of ‘1000’ at 10 Gbps, 

(b) spectrum of backward propagating conjugate after filtering by OTF. Note flipping of spectrum at backward 

travelling conjugate (1558.83 nm) due to phase conjugation, and (c) dependency of conversion efficiency of 

backward travelling conjugate with detuning between pump1 and signal. 

 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Fig. 4. Intensity and phase vs time plot of (a) input signal, λ3 = 1558.08 nm and (b) filtered output (conjugate), 
λ4 = 1558.83 nm. Dashed line – intensity. Solid line – phase. We observe phase inversion at bit transition AB–
AB′′  and CD–C′D′ . 
 



 
 
Table 1 
FWM products in dual pumped counter-propagating FWM in SOA 
 
 

 

 


