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1. Introduction

The amount of data generated per year will reach more than 44 zettabytes (44
billion terabytes) in 2020, ten times more than in 2003 and this is likely to con-
tinue according to IDC survey [1]. This means more than 10 terabytes per person
and per year of data were generated by the daily life. Big Data refers to very large
datasets that are collected from different fields and continue to grow at rapid pace.
Analysing and extracting relevant information from these datasets is one of the
biggest challenges due to their needs to huge storage capacity, processing power,
and efficient mining algorithms to deal not only with the size but also with het-
erogeneity, and noise. These require modifications in the data storage and in the
data management, as well as the development of new algorithms to efficiently mine
big data. In fact, the analysis of big data requires powerful, scalable, and accurate
data analytics techniques that the traditional data mining and machine learning do
not provide, as they cannot deal with Big data challenges (volume, velocity, verac-
ity, variety) all at the same time. Distributed data mining constitutes a promising
approach for big data analytics, as datasets are usually produced in distributed
locations, and processing them on their local sites will reduce significantly the
response time.

The Distributed Data Mining (DDM) is a line of research that has attracted
much interest in recent years [2-6]. DDM was developed because of the need to
process datasets which can be very large or geographically distributed across multi-
ple sites [7]. This has two advantages: first, distributed systems have enough power
to analyse the data within a reasonable response time frame. Second, it would be
very advantageous to process data on their respective sites, this will allow to avoid
the transfer of large volumes of data to a central site; to avoid heavy communi-
cations, network bottlenecks, to be able to process heterogeneous datasets, etc.
Distributed and parallel data mining techniques can be divided into two categories
based on the targeted architectures of computing platforms. One is based on the
data parallel paradigm and uses traditional dedicated and parallel machines with
tools for communications between processors. These machines are generally called
super-computers and are very expensive. The second category targets a network
of autonomous machines and is characterised by slow communications and het-
erogeneity of the machines (different OSs, different architecture, etc.), but they
are very abundant and inexpensive [8]. The main goal of the second category of
techniques is to distribute the work among the system nodes and try to minimise
the response time of the whole application. Some of these techniques have already
been developed and implemented in [9, 10].

However, the traditional DDM methods are not always effective, as they suffer
from the problem of scaling. This has led to the development of techniques that
rely on ensemble learning [11, 12]. The main idea is to produce a local model
in each processing node on its own data and then try to generate global models
by aggregating local models. In this approach, the first phase is simple enough
but the aggregation phase is very complex. Some algorithms of this class generate
significant communication overheads which usually cancel the benefit made in the
first phase. With recent advances in cloud computing, both in hardware and soft-
ware, the ensemble learning based distributed data mining methods are gaining
in popularity and are very promising. The techniques that adopted MapReduce
parallel programming paradigm are even more scalable and more efficient in terms
of reducing the communication overheads.

Apache Hadoop becomes one of the most popular parallel and distributed pro-
cessing model for big data. MapReduce, the heart of Apache Hadoop, is the
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programming paradigm that allows for massive scalability across hundreds or
thousands of servers in a Hadoop cluster. It is capable of processing large-scale
datasets by exploiting the parallelism among clusters of processing nodes. MapRe-
duce gained popularity for its simplicity, flexibility, fault tolerance, and scalability
soon after its birth. Many data mining algorithms were implemented in Hadoop
MapReduce to improve and accelerate their performance [13-15]. Especially, many
researchers have proposed MapReduce implementations for big data clustering [16—
19]. These usually consist of MapReduce implementations of the existing clustering
algorithms for some given applications.

In this paper, we discuss the implementation of a dynamic parallel and dis-
tributed clustering (DPDC) approach using Map-Reduce programming paradigm.
The first version of this approach, presented in [20-22], was specifically developed
to deal with some issues of some traditional algorithms, such as K-Means. For in-
stance, when the K-means was used as the local clustering algorithm, the whole
approach acts as a k-means algorithm that is executed on distributed data with
dynamic K calculation. This means that this distributed version of the K-means
does not need to give the exact k as an input, which is really huge improvement
compared to the traditional version the algorithm. The main objective of the work
that is presented in this paper is to study and show that this approach is general
and flexible to run on different parallel distributed environments. Implementing
the PDC approach using the MapReduce paradigm will allow us to study its be-
haviour and its capabilities in dealing with very large and heterogeneous datasets.
In addition, one wants to study the performance and scalability of the proposed
approach without losing the quality of the final clustering.

The rest of the paper is organised as follows: In the next section we will give an
overview of the state-of-the-art for distributed data mining and highlight the limi-
tations of traditional techniques. Then we will introduce the MapReduce paradigm
and the Hadoop Framework. We present our distributed clustering framework and
its concepts in Section 4. In Section 5, we evaluate the performance of the dis-
tributed approach in terms of quality of clustering and compare its results to two
well-known clustering algorithm; BIRCH and CURE. We also study the scalability
of the approach implemented with MapReduce and see how does its performance
behave to the size of the dataset. Finally, we conclude in Section 6.

2. Related Work

Clustering algorithms can be divided into two main categories, namely partitioning
and hierarchical. Different clustering algorithms are proposed and studied in the
literature [23-27]. Many parallel versions based on these algorithms have been
proposed in the literature [27-33]. These algorithms are classified into two sub-
categories. The first consists of methods requiring multiple rounds of message-
passing. They require a significant amount of synchronisations. The second sub-
category consists of methods that build local clustering models and send them to
a central site to build global clusters [34]. In [29] and [32], message-passing ver-
sions of the widely used K-means algorithm were proposed. In [27] and [33], the
authors dealt with the parallelisation of the DBSCAN density-based clustering
algorithm. In [30] a parallel message passing version of the BIRCH algorithm was
presented. A parallel version of a hierarchical clustering algorithm called MPC for
Message Passing Clustering, which is especially dedicated to Microarray data was
introduced in [31]. Most of the parallel approaches need either multiple synchroni-
sation constraints between processes or a global view of the dataset or both [28].
Another approach presented in [28] also applied a merging of local clusters to create
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the global clusters. Current approaches only focus on either merging local models
or mining a set of local models to build global ones. If the local models cannot
effectively represent local datasets then global models accuracy will be very poor
[34]. Other researchers focus on optimising the merging (aggregation) phase. For
instance, Le Khac et al. [35] and Laloux et al. [34] proposed an efficient aggrega-
tion phase that minimises the communications and the amount of data exchanged
between the nodes. Many data reduction techniques have been proposed with the
objective of reducing the communications and data exchange, which introduce
significant overheads. Some of these techniques use Sampling methods [36, 37].
Sampling is the simplest approach for data reduction. The idea is to draw the de-
sired number of random samples from the entire dataset and perform the clustering
on those samples. However, naive sampling is more likely to produce poor results
mainly on real world problems with noisy data. Another data reduction technique
is discretisation [38]. Data discretisation can be used to reduce the number of
values for continuous attributes by dividing the range of each attribute into in-
tervals. Interval labels can then be used to replace actual data values. However,
this technique requires a good interval selection process. This reduces significantly
the size of the original data and therefore its complexity. However, both sampling
and discretisation can be used for centralised clustering techniques to reduce their
complexity, that are not specific to distributed datasets.

3. MapReduce and Hadoop Framework

Hadoop is an open-source framework designed for distributed processing of large
datasets across a large and dynamic network of computers. This framework can
process data in keeping with high volume, velocity, and variety. It transforms com-
modity computing hardware into a service that stores data and facilitates the
development of distributed applications. Hadoop handles hardware failures at the
application layer. The main features of Hadoop are:

(1) Scalability: a program that runs on a single machine can also run on
thousand machines. If more power is needed, we just add more machines.

(2) Fault tolerance: a key advantage of using Hadoop is its fault tolerance.
When data is sent to an individual node, the same data is also replicated to
other nodes in the cluster, which means that in the event of failure, there
is another copy available for use.

(3) Fast: Hadoop’s unique storage method is based on a distributed file system
that basically 'maps’ data wherever it is located in a cluster. The tools for
data processing are often on the same servers where the data is located,
resulting in much faster data processing. In case of dealing with large vol-
umes of unstructured data, Hadoop is able to efficiently process terabytes
of data in just minutes, and petabytes in few hours.

(4) Simplicity: Hadoop provides a lot of simple API’s and is very powerful.
It can deal with huge data (petabytes).

Hadoop is composed of two main components: MapReduce and HDFS. The first
one is the processing part and the second is the data part. Several machines with
Hadoop create a cluster. A cluster can be composed of hundreds or thousands of
machines. Instead of processing data in a sequential way, Hadoop splits files into
blocks that can be processed simultaneously.
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3.1 HDFS

HDFS (Hadoop Distributed File System) is a file system that runs on top of the
existing file system of each node. This file system works best with large files and
uses the concept of 'blocks’ to store files. These blocks are of a fixed size (64MB
by default). The concept of blocks has several advantages. The fixed size makes
it easier to compute how many blocks can be stored in a disk. Data blocks can
be stored on one particular node. Blocks are also replicated on multiple nodes
to ensure access to the data. There are two particular HDFS nodes: NameNode
and DataNode. There is only one NameNode per cluster, it is responsible for the
metadata of the files and for the file-system namespace. It should be the most
powerful node of the cluster and it should have as much RAM as possible because
it keeps the entire file-system metadata in memory. If the NameNode is lost, all
the data of the cluster are also lost. In order to prevent this, a replication of the
NameNode, called ’StandByNameNode’, can be defined. In a cluster, there can be
many nodes called 'DataNodes’. These nodes store blocks of data and when the
clients want to retrieve some information, they have to query the NameNode to
get which DataNodes store their data. Periodically, DataNodes send information
about blocks that they store. DataNodes are the lowest layer of the cluster. When
a new file arrives in the system, a ’create request’ is sent to the NameNode. It
chooses the DatalNode where the blocks will be written and replicates the data on
other nodes (See Figure 1).
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Figure 1.: HDFS architecture.

3.2 MapReduce Paradigm

MapReduce is a programming paradigm for data intensive applications, its main
objective is to easily develop applications which process large amounts of data
(multi-terabyte datasets) in parallel on large clusters (thousands of nodes) of com-
modity hardware in a reliable and fault-tolerant manner. A MapReduce program
is composed of two basics components: Map task and Reduce task. A MapReduce
program takes its inputs in a form of (Key, Value) pairs, which are processed by
the map tasks in a completely parallel manner [39].

As it is shown in Figure 2, a job in MapReduce contains three phases: Map,
Shuffle and Reduce. In most cases, the user only needs to write the map function
and the reduce function. The map phase, for each input pair (ki,v1), the map
function generates one or more output pairs list (k2, v2). In shuffle phase, the output
pairs are partitioned and then transferred to reducers. In reduce phase, pairs with
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the same key are grouped together as (ko, list(v2)). In reduce phase, reduce function
generates the final output pairs list(ks, v3) for each group. The MapReduce process
is summarised in the following.

The inputs and the outputs of a job are stored in the HDFS. The framework
takes care of scheduling tasks, monitoring them and re-executes the failed tasks.
Typically the compute nodes and the storage nodes are the same, that is, the
MapReduce framework and the HDFS are running on the same set of nodes. This
configuration allows the framework to effectively schedule tasks on the nodes where
data is already resides, resulting in very high aggregate bandwidth across the cluster
[39] (see Figure 2).
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Figure 2.: MapReduce model.

The MapReduce framework consists of a single master JobTracker and multiple
slaves TaskTrackers. Each node connected to the network has the right to behave
as a slave TaskTracker. The master receives jobs from the client and schedules
the map and reduce tasks on taskTrackers, monitoring them and re-executing the
failed tasks. The slaves execute the tasks as directed by the master (see Figure 3).
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Figure 3.: Hadoop framework.

4. Dynamic Parallel and Distributed Clustering

Dynamic Parallel and Distributed Clustering (DPDC) model is introduced to deal
with the limitations of the existing parallel and distributed clustering models while
dealing effectively with big data challenges. DPDC combines the characteristics of
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both partitioning and hierarchical clustering methods, and more importantly, it
does neither inherit the problem of the number of partitions to be fixed in advance
(partitioning clustering) nor the problem of stopping conditions of hierarchical
clustering. The number of final clusters is calculated dynamically and generates
them in a hierarchical way. All these features look very promising and some of
them have been studied in [20, 21, 40], and it is evaluated at a small scale [22].

In this study, we focus large scale implementation of DPDC using MapReduce
paradigm. The main objective is to show that the DPDC approach can take ad-
vantage of a flexible parallel and distributed environment, such as Map-Reduce
running on cloud computing. Implementing DPDC using MapReduce paradigm
will allow to study its behaviour and capabilities on very large datasets without
losing in the quality of the final results. We start by briefly explaining the ap-
proach and then present the implementation of the approach using MapReduce
programming model.
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Figure 4.: An overview of the DPDC Approach.

The distributed dynamic clustering approach consists of two main phases, (i)
The local model, where we generate local clustering, and (ii) the global model,
where we merge the overlapping local clusters to generate global clusters. However,
exchanging the local clusters the network nodes will create significant overheads
and slowdown hugely the process. This is one of the major problems of the majority
of distributed clustering techniques. To deal with this problem, we propose to
exchange between nodes a minimum number of points. Instead of sending all the
clusters data points, we only exchange their representative points, which constitute
1% to 2% of the total size of the dataset. The best way to represent a spatial
cluster is by its shape and density. The shape of a cluster is represented by its
boundary points (called contour) (see Figure 4). Many algorithms for extracting
the boundaries from a cluster can be found in the literature [41, 42]. The « shape
algorithm is based on triangulation to generate the clusters’ boundaries [43]. It is an
efficient algorithm for constructing non-convex boundaries. It is able to accurately
characterise the shape of a wide range of different point distributions and densities
with a reasonable complexity of O(nlogn).

The DPDC approach using MapReduce has also two phases, (i) the mapping
phase and (ii) the reducing phase. The mappers perform the clustering algorithm
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and then they apply the contour algorithm to extract representative points from
the local clusters. The second phase consists of multiple reducers to perform the
merging between the contours of the overlapping local clusters produced by dif-
ferent processing nodes during the previous phase (mappers). Both mapping and
reducing phases are done in parallel. The mappers generate the clusters locally in
each node and calculate their contours in parallel without any communications.
The reducers perform the merging of the contours in a hierarchical way. Each level
of the hierarchy is executed in parallel. Note that at the end of the mapping phase
and each level of the hierarchy the involved processing nodes exchange the con-
tours of their clusters. The size of the data exchanged is very small, which leads to
efficient communications

DPDC processes the data in a parallel and distributed fashion, while minimising
the communications between the nodes. In the present implementation, the HDFS
allocates the data randomly to different nodes. The parallel and distributed fea-
tures of the algorithm are managed by the Hadoop system itself. The mappers are
completely independent. Each mapper can implement a different clustering algo-
rithm to mine its local dataset. The reducing phase starts as soon as the contours
have been received.

4.1 Mapping Phase

The initial step of the mapper is to acquire the dataset that is allocated to its
processing node by interrogating the file system. This is processed and stored in
the HDF'S files. The format of the data is standardised by the function ReadHDF'S-
File and the function StandardiseData. The function Read HDFSFile() requires the
specification of the pattern of the file. This information is provided by the 'line
id’ and the function StandardiseData normalises the data.

The main step of the mapper is the execution of the clustering algorithm. Each
mapper runs a DBSCAN algorithm with its specific parameters (Eps, MinPts).
After generating the local clusters, each node performs the contour algorithm on
its local clusters. The mapper allocates the keys to the generated contours. The
key is chosen to be the same for all the mappers (key = 2) to simplify the reducing
phase. The last step of the mapping phase is to write the result into the HDFS
file to be read by the reducer in the next phase. The contours are written in a
standardised format, every line represents a contour and has two columns: The
first is the contour’s key and the second is for the coordinates of the points. The
pseudo-code for the mapping phase is given in Algorithm 1.

Algorithm 1 Mapping function.
Input : X;:List<lineNo, Point>, Eps;:R, MinPts;:N
Output: List<key, List<Contour>>
<key, List<Contour>>
L; <+ DBSCAN(X;, Eps;, MinPts;); // Local clusters generated by Node;
Ci« [];
// For each cluster
foreach L? € L; do
c* + ComputeContour(LF);
Append(C;, c¥) // add contour to the list
end
return <key, C; >;
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4.2 Reducing Phase

The input of the reduce phase is the standardised output from the mapper phase,
which consists of pairs of (key, contour) of the local clusters. The main step of
the reducer is the choice of the merging strategy. We set the key to be the same
for all the mappers in the mapping phase. Therefore, each contour of each node is
compared to all the contours of all others nodes. If two contours overlap, then they
will be merged to generate a new contour. The reducer is responsible for merging
the overlapping contours and aims to build iteratively bigger clusters until it reaches
the final result.

We consider that a contour ¢/ overlaps with another contour ¢* if and only if the
polytope (P(c?)) that is obtained from the points making ¢’ intersects the polytope
(P(c*)) that is obtained from the points making ¢*. A polytope is a polygon in
N-dimensional space.

The merging of two contours ¢/ and ¢* yields another contour ¢/* which is the
union of the two polytopes forming ¢/ and c*.

The reducing phase is done in a parallel and distributed manner. It is imple-
mented using a tree structure. At each level of the hierarchy half of the nodes will
send their contours to their neighbours. They run the merging algorithm on clus-
ters and so on. Hadoop takes care of the communications management and control.
The algorithm of the reducing phase is given in Algorithm 2.

Algorithm 2 Reducing function.
Input : C:List<key, List<Contour>>
Output: <key, List<Contour>>

Cres — []7

foreach <key, C; > C do

foreach ¢/ € C; do
merged < False;

foreach ¢* € C,.; do

if Overlap(c’, ¢*) then
Ik« Merge(c¥, ¢J);
Remove(Ces, ck); // remove contour from the list
Append(Ches, ¢/*); // add contour to the list
merged < True;

end

end

if not(merged) then

| Append(Cpes, ¢/); // add contour to the list
end

end

end
return <key, Cres >;

4.3 DPDC: Example of Execution

In this section, we give an example of execution to show how does the approach
work. Figure 5 shows the mapping and the reducing phases with two mappers (2
nodes), each node runs a DBSCAN algorithm with its local parameters Eps = 15.5
and MinPts = 20. Once the local clusters are generated this will be followed by
the execution of the contour algorithm. In this case, we use the o shape algorithm
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to generate the clusters’ boundaries. Figure 5 shows also the reduce phase, which
takes the results of mapping as input, and merges the overlapping contours to
generate larger clusters.
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Figure 5.: The Mapping and reducing phases (with 2 nodes).

We also take another example of execution with five mappers (5 Nodes) to see
how do the results are affected with the increase of the number of mappers. Figures
6 shows that increasing the number of mappers does not affect the quality of the
final clustering.

As can be seen from Figures 5 and 6, the DPDC approach returned exactly the
correct number of clusters and their shapes. The approach is insensitive to the way
the original data was distributed among the nodes. It is also insensitive to noise
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Figure 6.: The reducing phase (5 nodes).

and outliers. As we can see, although each node executed DBSCAN locally with
different parameters, the global clusters were generated dynamically even when
performed on the noisy datasets.

5. Experimental Results

In this section, we study the performance of the DPDC approach and demonstrate
its effectiveness compared to BIRCH, CURE algorithms. We choose these algo-
rithms for the following reasons; they are both very well suited for clustering spatial
datasets, BIRCH belongs to the same category as DPDC (hierarchical clustering),
and CURE has an efficient optimisation approach.

BIRCH: We use the BIRCH implementation provided in [44]. It performs a pre-
clustering and then uses a centroid-based hierarchical clustering algorithm. Note
that the computational complexity and memory space required of this approach
are quadratic to the number of points after pre-clustering. We set its parameters
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to the default values suggested in [44].

CURE: We use the CURE implementation provided in [45]. CURE uses rep-
resentative points with shrinking towards the mean. As described in [45], when
two clusters are merged, the representative points of the new merged cluster are
selected from the ones of the two original clusters rather than all the points in the
merged clusters.

DPDC: We run our experiments using 2 mappers (2 nodes) in the system. Table
1 shows the DBSCAN parameters Eps and MinPts set for the different datasets
used. Note that the local parameters for DBSCAN do not have to be set to the
optimal values, they only need to be close to the optimal values because very
high accuracy is not required st this stage. Nevertheless, it is indeed better to set
FEps and MinPts as close as possible to the optimal values in order to reduce the
processing time in calculating the contours and also merging procedure.

Table 1.: DPDC Configuration (setting)

Eps | MinPts
T1 | 35 10
T2 | 35 10
T3 | 35 10

T4 | 15.5 20
T5 | 18.5 18

T6 | 13.5 5
T7 | 5.6 9
T8 | 10 5

5.1 Datasets

We use eight benchmark datasets which are detailed in Table 2. The datasets are
of different shapes and sizes. The first three datasets (71, T», and T3) contain
patterns of convex shapes and the remaining five datasets (Ty, 15, T, 17, and
T3) contain noise and patterns having non-convex shapes. They are very well-
known benchmarks for evaluating density-based clustering algorithms. The number
of points and clusters in each dataset is also given. These eight datasets contain a
set of patterns which are not easy to extract with traditional techniques.

5.2  Quality of Clustering

We run BIRCH, CURE, and DPDC on the eight datasets in order to evaluate
the quality of their final clusters. In the case of the DPDC approach, we consider
a Hadoop system that contains two nodes (Mappers), the final results are the
aggregation of the two local clustering. Figure 7 shows the generated clusters by
each of the three algorithms performed on the first three datasets (T4, Ta, and T3)
and Figure 8 shows the clusters returned by the tree algorithms performed on the
remaining five datasets with noise (Ty, T5, Ts, T7, and Tg). We use different colours
to show the clusters returned by each algorithm.

From the results shown in Figures 7 and 8, Both BIRCH and CURE could not
find the correct clusters across the eight datasets. CURE performs better than
BIRCH on the datasets with convex shaped patterns, whereas they both perform
badly on datasets with noise and non-convex shaped patterns. The DPDC approach
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Table 2.: The datasets used to evaluate the algorithms.

Type Dataset Description #Points | #Clusters
T1 (eBlgSgal@ 14,000 5
Convex g8 P

4 small circles
T2 and 2 small circles linked 17,080 o
2 small circles,

T3 1 big circle 30,350 4
and 2 linked ovals

Different shapes, with

T4 some clusters surrounded 10,000 9
Non-Convex
ith Noise by others
w T6 Different shapes with noises | 8,000 6
T7 Letters with noise 8,000 6
T8 Different shapes with noises 321 6

Original dataset

S
o

@@ 0
@9 00 o
A z ® ®

Figure 7.: Clusters generated by DPDC for datasets containing patterns of convex
shapes.

generates accurate results across all the eight datasets. In fact DPDC obtained a
100% accuracy compared two BIRCH and CURE. DPDC performs very well on all
types of datasets (with convex and non-convex shaped patterns and also with and
without noise). Its implementation using MapReduce does not generate significant
overheads, mainly for very large datasets.

5.3 DPDC: Speed-up

We have implemented the DPDC approach using MapReduce programming
paradigm and we tested it in an actual Hadoop system that consists of a clus-
ter of 21 processing nodes.

We conducted all the experiments on a 21-nodes cluster (it is configured as one
master and twenty slaves). Each of the nodes runs Ubuntu 14.04 and is equipped
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Figure 8.: Clusters generated by DPDC for datasets that contain patterns of non-
convex shapes.

with 8 GB of RAM and 2.70 GHz quad Intel Core i5-6400 processor. All the
cluster nodes are interconnected by a gigabit Ethernet switch. One of the nodes
is configured as both JobTracker and NameNode. The other nodes are configured
as computing nodes. For MapReduce platform, we use Hadoop 2.7.2. Both map
and reduce slots of each slave node are set to 4 in accordance with the number of
cores. Therefore, at most 80 map tasks and 80 reduce tasks can run concurrently
in this computing cluster. The block size of HDFS is 256 MB and each block is
replicated three times for fault-tolerance. We also conducted the same experiments
on a single-node (Hadoop 2.7.2) with different specifications from the above. We
use a single node that runs Ubuntu 16.04 and equipped with 8 GB of RAM and 2.30
GHz quad Intel Core i5-6200 processor. The results are discussed in the following

5.3.1 DPDC on a Single Node

The goal here is to study the scalability of the DPDC algorithm. We cluster one
million points in a system that contains up to 100 mappers executed on a single
node. Figure 9 shows the results of this execution. In another experiment, we run
DPDC on a single-node system using smaller datasets to see how does the DPDC
is affected with different sizes of datasets. The results are shown in Figure 10.

As we can see from Figure 9, the execution time of the DPDC algorithm keeps
decreasing sharply between 10 and 50 mappers, after that it becomes steady and it
starts increasing around 70 mappers. The reason is that the algorithm is running
on a single machine with 4 cores. Therefore, the mappers are not running in a
purely parallel system. In addition, after 60 mappers we do not gain much from
the DBSCAN execution time, whereas the time that Hadoop spends to read and
write the results in the HDF'S files keep increasing. As a result, the overall execution
time of the algorithm increases.

Figure 10 shows that the execution time of the DPDC algorithm decreases from
1 to 2 mappers for dataset 17, after that the execution time starts increasing from
2 to 4 mappers and it continues to increase linearly, the same for dataset 15 and T35.
In fact, for T3, the execution time starts increasing since the beginning. Because
these three datasets are relatively small; the gain we get in in executing DBSCAN
on smaller subsets is much smaller than the time that Hadoop spends on merging,
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Figure 9.: DPDC scalability on a single-node on large dataset.
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Figure 10.: DPDC scalability on a single-node on small datasets.

communicating and reading and writing the results into the file system.
5.8.2 DPDC on Multiple Nodes

The goal here is to perform the same experiments as above but on a Hadoop
cluster with multiple nodes. We did two experiments; we first try to cluster one
million points while varying the number of mappers in the system. Then, we run the
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algorithm on smaller datasets, T1, T, and T3, having 30,000, 20,000 and 10,000

points respectively.
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Figure 11.: DPDC scalability on a multi-node cluster on large dataset.
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Figure 12.: DPDC Speed-up on a multi-node cluster on large dataset.

As we can see from Figure 11, the DPDC’s execution time keeps decreasing as the
number of mappers increases. In fact, the time decreases dramatically between 10
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and 20 mappers as the gain in time for DBSCAN algorithm while dividing the data
is huge. After 20 mappers the time continues to decrease gradually until it reaches
80 mappers. The reason for that is as mentioned above, we have 20 machines in the
system and each machine has 4 cores, therefore, 80 mappers can run concurrently
in parallel, after that, the execution is not purely parallel anymore. As a result,
the execution time starts to increase after 80 mappers.

The execution times of DPDC are shown in Figure 11 using logarithmic scaling.
Figure 12 shows the DPDC’s speed-up and how it evolves with the number of
mappers in the system.
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Figure 13.: DPDC scalability on a multi-node cluster on small datasets.

As one can see from Figure 13, the DPDC’s execution time for 7T; decreases
considerably from 1 to 2 mappers and it continues decreasing up to 10 mappers
and then it starts increasing. The reason is that between 1 and 10 mappers the gain
on execution time for DBSCAN is significant compared to the time that Hadoop
spends on running the system. While after 10 mappers, the execution time of
DBSCAN on very small datasets is not significant compared to the time that
Hadoop spends to communicate the results. The same behaviour of the approach
on other datasets (t3 and T3)

Finally, from both Figures 11 and 13, we can notice that MapReduce and Hadoop
work better with medium to large datasets, Whereas, it does not perform well on
small datasets.

5.4 DPDC: Computational Complexity

Let N be the number of data objects in the dataset. The complexity of our ap-
proach is the sum of the complexities of its three components: local clustering, local
reduction, and global aggregation.
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Phasel: Local clustering Assume that the local clustering algorithm is DBSCAN
for all the nodes. The cost of this phase is given by:

M M
TpPhase, = Malx(DBSC’ANi) + Malx(Reductioni)
1= 1=

Where M is the number of nodes in the system. The complexity of DBSCAN
while including the distance matrix computation is O(n?) . Finally, the complexity
of the local reduction algorithm is O(nlogn).

Phase2: Aggregation Our global aggregation depends on the hierarchical combi-
nation of contours of local clusters. As the combination is based on the intersection
of edges from the contours, the complexity of this phase is O(vlogv + p). Where
v is the number of vertices and p is the number of intersections between edges of
different contours (polygons).

Total complexity The total complexity of our approach is Tro = O(n?) +
O(nlogn) + O(vlogv + p), which is:

Trotal = O(TZQ)

We notice that the time complexity of the whole DPDC approach while using
DBSCAN as local clustering algorithm is absorbed by the time complexity of the
DBSCAN algorithm which is of quadratic time O(n?). that is what explain the
fact that the more we divide the data the more we gain in terms of execution time,
in fact, every time we divide the data, we gain 4 time in terms of execution time,
that’s makes the approach scalable.

6. Conclusion

Big Data arises with many challenges, which traditional techniques of data mining
fail to address properly. As the data we collect nowadays is by nature distributed,
and 80% of it is spatial or has an element of space and time in it, we proposed a
parallel and distributed framework to efficiently analyse big spatial datasets. The
proposed approach for clustering large spatial datasets exploits the advantages of
distributed and parallel computing (cloud computing) while avoiding the inher-
ent limitations of some existing approaches, such as partitioning and hierarchical
clustering.

The Dynamic Parallel and Distributed Clustering technique is efficient, flexible,
scalable, and can work with the existing data mining algorithms. The framework
was tested on spatial datasets using the K-means and DBSCAN algorithms on
various benchmarks datasets. The approach produced excellent results in terms
of quality of the final results and response time. The DPDC approach has two
main phases: the fully parallel phase where each node of the system calculates its
own local clusters based on its dataset. There is no communications during this
phase, it takes full advantage of task parallelism. The second phase is distributed; it
generates some communications between the nodes, which are reduced to minimum.
Moreover, the approach has low computational complexity when executed in a
parallel environment.
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We implemented the DPDC approach using one of the most popular program-
ming paradigm, which is MapReduce. We showed the this approach is well suited
for this paradigm and also showed that the MapReduce implementation perfor-
mance depends on the size of the datasets at hand; it is scalable with the size
of the datasets and the number of the processing nodes in the Hadoop system.
In addition, the experimental results show that the approach returns high-quality
clustering compared to the traditional clustering algorithms. As future work, we
plan to extend this approach to non-spatial and high-dimensional datasets.
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