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Abstract

This paper describes the ADAPT Centre’s
submission to STAPLE (Simultaneous Trans-
lation and Paraphrase for Language Educa-
tion) 2020, a shared task of the 4th Work-
shop on Neural Generation and Translation
(WNGT), for the English-to-Portuguese trans-
lation task. In this shared task, the partic-
ipants were asked to produce high-coverage
sets of plausible translations given English
prompts (input source sentences). We present
our English-to-Portuguese machine translation
(MT) models that were built applying vari-
ous strategies, e.g. data and sentence selec-
tion, monolingual MT for generating alterna-
tive translations, and combining multiple n-
best translations. Our experiments show that
adding the aforementioned techniques to the
baseline yields an excellent performance in the
English-to-Portuguese translation task.

1 Introduction

The ADAPT Centre participated in STAPLE1

(Mayhew et al., 2020), a shared task of the 4th
WNGT which will be held at ACL 2020,2 in the
English-to-Portuguese language direction. The
task focuses on a specific use case of MT, i.e.
generating many possible translations for a given
input text. Such situations are usually seen on
language-learning platforms (e.g. Duolingo) where
the learning process includes translation-based ex-
ercises, and evaluation is done by comparing learn-
ers’ responses with a large set of human-curated
acceptable translations. The shared task organis-
ers (Duolingo) have released real language-learner
data of Duolingo as training examples. We applied
a number of strategies to our MT system build-
ing process, e.g. monolingual MT, extracting par-
allel sentences that are similar to the Duolingo’s

1https://sharedtask.duolingo.com/
2https://acl2020.org/

real language-learner data from the freely available
external parallel corpora, assembling n-best trans-
lations from multiple translation systems, which
essentially led us to generate high-coverage sets of
possible translations of the English prompts (input
source sentences).

The remainder of the paper is organised as fol-
lows: Section 2 explains our approaches; Section
3 details of the datasets used, explains the experi-
mental setups and presents the results with some
discussions; and Section 4 concludes our work with
avenues for future work.

2 Methodology

2.1 Selecting External Datasets
Since the shared task organisers released training
data with a limited number of prompts (only 4,000
English prompts for English-to-Portuguese transla-
tion) and allowed participants to use external data,
we made use of parallel corpora from a variety of
existing sources, e.g. OPUS3 (Tiedemann, 2012).
First, we found out which corpora are similar to
Duolingo’s training dataset. For this, we measured
perplexity of the source and target texts of the ex-
ternal datasets on the in-domain language mod-
els (LMs) (i.e. LMs were built on the Duolingo’s
data). We selected those corpora whose sentences
are found to be more similar to those of Duolingo’s
language learning data.

2.2 Selecting ‘Pseudo In-domain’ Parallel
Sentences from External Data

The state-of-the-art sentence selection method of
Axelrod et al. (2011) is used to extract ‘pseudo
in-domain’ data from large corpora using bilin-
gual cross-entropy difference. The extracted data
is usually used to train domain-specific MT sys-
tems or to fine-tune generic MT systems. We con-

3http://opus.lingfil.uu.se/
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sider Duolingo’s language learning data released
in this shared task as the real in-domain data. In
this task, we took each of the external parallel cor-
pora (usually large in size) chosen following the
approach described in Section 2.1, and selected
top n sentence-pairs as per low cross-entropy dif-
ferences over each side of the corpus (source and
target) following Axelrod et al. (2011). This pro-
vided us with a ‘pseudo in-domain’ corpus (i.e. the
extracted top n sentence-pairs) whose sentences are
similar to the sentences of the Duolingo’s data in
terms of domain and style. We appended the ex-
tracted ‘pseudo in-domain’ data to the STAPLE’s
(Duolingo’s) training data for building different
MT systems which are described latter in the paper
(cf. Section 3.5).

2.3 Same-language MT
Same-language MT has been successfully used in
many NLP applications, e.g. text-to-speech synthe-
sis for creating alternative target sequences (Cahill
et al., 2009), translation between varieties of the
same language (Brazilian Portuguese to European
Portuguese) (Fancellu et al., 2014), paraphrase gen-
eration (Plachouras et al., 2018), and producing
many alternative sequences of a given input ques-
tion in question answering (Bhattacharjee et al.,
2020). In our case, we developed Portuguese-to-
Portuguese MT systems that were able to generate
n-best (same-language) alternative sentences of an
input Portuguese sentence. Using this monolingual
MT systems, we could obtain a set of alternative
sequences of a given Portuguese translation.

As mentioned earlier, the Duolingo training data
includes a high-coverage set of Portuguese transla-
tions of the English prompts. We generated a set
of source–target pairs (Portuguese-to-Portuguese)
from each of the high-coverage sets of alterna-
tive Portuguese translations. This served as our
training data for Portuguese-to-Portuguese MT sys-
tem building. Additionally, we used an existing
paraphrasing resource (Ganitkevitch and Callison-
Burch, 2014) for Portuguese and appended that to
the training data.

2.4 Combining multiple n-best Translations
In this work, we built a number of MT systems
using the state-of-the-art phrase-based statistical
MT (PB-SMT) (Koehn et al., 2003) and neural MT
(NMT) (Vaswani et al., 2017) approaches. The
n-best translations produced by the different MT
systems (i.e. a PB-SMT and several NMT systems)

are combined adopting a variety of approaches (e.g.
majority voting) to produce the final sets of transla-
tions of the English prompts.

3 Experiments and Results

3.1 The MT system setups
As pointed out earlier, we chose the classical PB-
SMT and emerging NMT paradigms for building
our MT systems. To build our PB-SMT systems,
we used the Moses toolkit (Koehn et al., 2007). We
used a 5-gram LM trained with modified Kneser-
Ney smoothing (Kneser and Ney, 1995) using the
KenLM toolkit (Heafield et al., 2013). Our PB-
SMT log-linear features include: (a) 4 translational
features (forward and backward phrase and lexical
probabilities), (b) 8 lexicalised reordering probabil-
ities (wbe-mslr-bidirectional-fe-allff ), (c) 5-gram
LM probabilities, (d) 5 OSM features (Durrani
et al., 2011), and (e) word-count and distortion
penalties. In our experiments, word alignment mod-
els are trained using the GIZA++ toolkit4 (Och
and Ney, 2003), phrases are extracted following
the grow-diag-final-and algorithm of Koehn et al.
(2003), Kneser-Ney smoothing is applied at phrase
scoring, and a smoothing constant (0.8u) is used
for training lexicalised reordering models. The
weights of the parameters are optimised using the
margin-infused relaxed algorithm (Cherry and Fos-
ter, 2012) on the development set. For decoding,
the cube-pruning algorithm (Huang and Chiang,
2007) is applied, with a distortion limit of 12.

To build our NMT systems, we used the Marian-
NMT (Junczys-Dowmunt et al., 2018) toolkit. The
NMT systems are Transformer models (Vaswani
et al., 2017). In our experiments, we followed
the recommended best set-up from Vaswani et al.
(2017). The tokens of the training, evaluation and
validation sets are segmented into sub-word units
using the Byte-Pair Encoding (BPE) technique
(Sennrich et al., 2016). We performed 32,000 join
operations. Our training set-up is as follows.

We consider the size of the encoder and decoder
layers to be 6. As in Vaswani et al. (2017), we em-
ploy residual connection around layers (He et al.,
2015), followed by layer normalisation (Ba et al.,
2016). The weight matrix between the embed-
ding layers is shared, similar to Press and Wolf
(2016). Dropout (Gal and Ghahramani, 2016) be-
tween layers is set to 0.10. We use mini-batches of

4http://www.statmt.org/moses/giza/
GIZA++.html
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size 64 for updating. The models are trained with
the Adam optimizer (Kingma and Ba, 2014), with
the learning-rate set to 0.0003 and reshuffling the
training corpora for each epoch. As in Vaswani
et al. (2017), we also use the learning rate warm-
up strategy for Adam. Validation on the develop-
ment set is performed using three cost functions:
cross-entropy, perplexity and BLEU. The early-
stopping criteria is based on cross-entropy while
the final NMT system is selected as per the highest
BLEU score on the validation set. The beam size
for search is set to 12.

3.2 The Shared Task Data
The data released by STAPLE is compiled from
Duolingo’s language learning courses. The train-
ing data for English-to-Portuguese translation con-
tains 4,000 English prompts, with multiple Por-
tuguese translations, from which we obtained a
total of 526,467 source–target segment-pairs. We
randomly sampled 2,000 sentence-pairs from the
training set, and considered them as development
set. As for the development set, we chose the high-
est scoring Portuguese translations of the English
prompts. The development set (blind) released by
STAPLE contains 500 English prompts. They also
provided a high-quality automatic reference trans-
lations of the development set sentences by Ama-
zon Translate.5 We considered the development
set (with translations by Amazon translate as refer-
ences) as our test set in order to evaluate our MT
systems. We removed those entries from the train-
ing set (526,467 source–target segment-pairs) that
overlap with entries (source or target counterparts)
of the development and test sets. The training set is
left with 258,306 source–target segment-pairs after
discarding the overlapping entries. The statistics
of training, development and test set sentences are
shown in Table 1.

sentences words (en) words (pt)
train set 258,306 2,063,108 2,128,044
dev set 2,000 14,557 14,196
test set 500 3,551 3,322

Table 1: The shared task data statistics.

3.3 The baseline MT systems
We first built MT systems with only the data pro-
vided by the shared task (cf. Table 1). We com-
puted the BLEU (Papineni et al., 2002) score to

5https://aws.amazon.com/translate/

evaluate the MT systems on the test set, which are
reported in Table 2. Note that we used transla-
tions by Amazon Translate provided by STAPLE
as the reference translations, which are excellent in
quality. Thus, the BLEU scores on the test set can
provide indications how good or bad our MT sys-
tems are. Additionally, we have reported the MT
systems’ BLEU scores on the development set. As
can be seen from Table 2, the BLEU scores of the
MT systems are very low. These scores were ex-
pected given the (small) number of sentences used
for training. Interestingly, PB-SMT outperforms
NMT by a large margin in terms of BLEU, and this
can happen in low-resource scenarios (Koehn and
Knowles, 2017).

BLEU
dev set test set

PB-SMT 22.69 19.92
Transformer 9.57 9.23

Table 2: The BLEU scores of baseline MT systems.

3.4 The External Datasets Used

Since we (participants) are allowed to use external
data, we decided to use freely available bilingual
corpora whose sentences are similar to those of the
Duolingo’s English–Portuguese dataset. We took
all bilingual corpora available in the OPUS reposi-
tory, and measured perplexity of source and target
texts on in-domain LMs (built on the Duolingo
data only). We found that the most similar cor-
pora to the English-side of the Duolingo’s training
corpus are OpenSubtitles6 and Tatoeba7 and to the
Portuguese-side of that are Books8 and Tatoeba. In
addition to Tatoeba, Books and OpenSubtitles, we
made use of ParaCrawl (parallel sentences crawled
from Web)9 and Wikipedia (parallel sentences ex-
tracted from Wikipedia)10 which were found to be
moderately similar to the task data according to
the LM perplexity scores. Additionally, we also
used several generic corpora for building an NMT

6http://opus.nlpl.eu/
OpenSubtitles-v2018.php

7http://opus.nlpl.eu/Tatoeba-v20190709.
php

8http://opus.nlpl.eu/Books-v1.php
9http://opus.nlpl.eu/ParaCrawl-v5.php

10http://opus.nlpl.eu/Wikipedia-v1.0.
php
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system, EUconst,11 JRC-Acquis,12 Europarl13 and
DGT.14

We manually looked at these datasets, and ob-
served that the Tatoeba and Books corpora are
good in quality. We directly used sentences of
the Tatoeba and Books corpora for system building.
In contrast, the OpenSubtitles corpus seems to have
considerable noise intact in it. We also noticed that
a corpus of one language (say, English) contains
sentences of other languages, so we use a language
identifier15 in order to remove such noise. We ap-
plied a number of standard cleaning routines for
removing noisy sentences, e.g. removing sentence-
pairs that are too short, too long or which violate
certain sentence-length ratios. The latter process-
ing was applied to all corpora. In order to perform
tokenisation for English and Portuguese, we used
the standard tool16 in the Moses toolkit.

As for the selection of “pseudo in-domain”
sentence-pairs from the external bilingual corpora
using bilingual cross-entropy difference measure
(Axelrod et al., 2011) (cf. Section 2.2), we ap-
plied the strategy to every corpus except Tatoeba
and Books. The so-called “pseudo in-domain” par-
allel sentences that were extracted from the out-
of-domain data were appended to the in-domain
(shared task) training data in order to build the MT
systems.

3.5 The MT systems built using external
datasets

3.5.1 The PB-SMT systems
This section presents the PB-SMT systems that
were built on the training data augmented by ap-
pending external data (cf. Section 3.4) to the shared
task data. As stated earlier, the performance of
the PB-SMT systems on the development set and
test sets in terms of BLEU are shown in Table
3. The second row of Table 3 represents the MT
system built on the training data (Duo + Books +
Tatoeba) that includes sentences of the Duolingo’s
training data and of two external corpora: Books
and Tatoeba. We see that this MT system surpassed

11http://opus.nlpl.eu/EUconst-v1.php
12http://opus.nlpl.eu/JRC-Acquis-v3.0.

php
13http://opus.nlpl.eu/Europarl-v8.php
14http://opus.nlpl.eu/DGT-v2019.php
15cld2: https://github.com/CLD2Owners/

cld2
16https://github.com/moses-smt/

mosesdecoder/blob/master/scripts/
tokenizer/tokenizer.perl

the baseline PB-SMT system (cf. Table 2) by a
large margin in terms of BLEU.

dev set test set
(a) Baseline 22.69 19.92
(b) Duo + Books + Tatoeba 53.18 49.42
(c) (b) + 3M ParaWiki 57.80 55.27

Table 3: The BLEU scores of the PB-SMT systems.
Duo: Duolingo’s training data.

We merged the ParaCrawl and Wikipedia cor-
pora, and from now on, we call the combined
corpus ParaWiki. We took low-scoring (bilingual
cross-entropy difference) (cf. Section 2.2) sentence-
pairs from ParaWiki, added them to the training
data (i.e. Duo + Books + Tatoeba) in various pro-
portions, and built PB-SMT systems on them. The
BLEU scores of the best system out of the PB-SMT
systems that were built on these sets of training data
on the development and test sets are shown in the
last row of Table 2. As illustrated by the table, sen-
tences of ParaWiki have a positive impact on the
system’s performance since we get further gains
in terms of BLEU. In short, our best-performing
PB-SMT system is the one that is built on train-
ing data compiled by three million sentences from
ParaWiki, all sentences of the Books and Tatoeba
corpora and the Duolingo’s training data. From
now on, this PB-SMT system is referred as PB-
BEST. In this context, we also carried out a number
of experiments and built many PB-SMT systems by
adding sentences from other data sets (e.g. Open-
Subtitles) to the training data in various proportions
as above. None of the setups results in any other
MT system that could outperform PB-BEST.

dev set test set
(a) Baseline 9.57 9.23
(b) Duo + Books + Tatoeba 62.19 58.17
(c) (b) + 3M ParaWiki 60.77 62.61
(d) (b) + 6M ParaWiki 65.69 67.97
(e) (b) + 3M Generic 46.15 43.38
(f) (b) + 8M Sub 50.83 57.82
(g) (d) + 8M Sub 55.73 61.07

Table 4: The BLEU scores of the NMT systems. Duo:
Duolingo’s training data.

3.5.2 The NMT systems
This section presents our NMT systems that were
built on the training data prepared by appending
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external data (cf. Section 3.4) to the shared task
data. We evaluate the NMT systems on the test set,
and report BLEU scores in Table 4. As above, we
also show their performance (i.e. BLEU scores)
on the development set. When we compare the
scores of Table 3 with those of Table 4 (rows (b)
and (c)), we see that NMT outperforms PB-SMT
with large margins. This time, our best setup is
the one when we use training data compiled by six
million sentences from ParaWiki, all sentences of
the Books and Tatoeba corpora and the shared task
training data (cf. row (d) of Table 4). From now
on, we call this MT system NEURAL-BEST.

We also built MT systems using sentences from
other datasets. We merged sentences of the generic
corpora (EUconst, JRC-Acquis, Europarl, DGT),
selected low-scoring 3M sentence-pairs from the
combined corpus (i.e. the most similar sentences
to those of the Duolingo’s data), and added them
to the baseline training set. We can see from Table
4 (row (e)) that the the MT system built on this
training data does not perform well. We call this
MT system NEURAL-Generic.

As mentioned above (cf. Section 3.4), sentences
of the OpenSubtitles corpus are quite similar to
those of Duolingo’s training corpus. To this end,
we carried out a series of experiments by selecting
different sizes of sentences from this dataset fol-
lowing the approach described in Section 2.2. We
found that this dataset does have much impact on
our system building (cf. row (f) of Table 4). In fact,
we see from the last row of Table 4 that inclusion
of a part of the OpenSubtitles corpus to the train-
ing set of the best setup deteriorates the system’s
performance. We call this MT system (row (g))
NEURAL-OpenSub.

3.6 The Portuguese-to-Portuguese MT
Systems

In Section 2.3, we explained the purpose of cre-
ating monolingual MT systems. This section de-
scribes our Portuguese-to-Portuguese MT systems.
We prepare training data for the Portuguese-to-
Portuguese MT system from the high-coverage set
of Portuguese translations for the English prompts.
Thus, the training data contains source–target pairs
whose source and target counterparts are two vari-
ations of Portuguese translation. In Table 5, we
show the number of training examples used for
building monolingual Portuguese MT systems. The
table also shows the maximum number of varia-

tions for a Portuguese translation used for forming
the training set. Additionally, we used Portuguese
paraphrases from the PPDB database17 (Ganitke-
vitch and Callison-Burch, 2014) as the part of the
training data for this task. We also used the target-
side (Portuguese) sentences of the shared task train-
ing set (cf. Table 1), and add them (i.e. identical
copy) to the both sides of the training set. The first
1,000 sentences of the development set (cf. Table
1) serves as our development set and the remaining
sentences of the development set serves as our test
set.

Sentences Variations
PB-SMT 3,091,264 30 (max.)
NMT 12,523,886 75 (max.)
Paraphrases 16,915,010

Table 5: Number of training examples used for the
monolingual MT training.

BLEU
PB-SMT 72.30
NMT 40.73

Table 6: The BLEU scores of the monolingual MT sys-
tems.

We obtain the BLEU scores to evaluate the
monolingual MT systems on the test set, and re-
port them in Table 6. The learning objective of the
monolingual MT models is to generate alternative
sequences of a language given the sentences of the
same language. Therefore, these scores, to a certain
extent, show how likely an MT system can produce
their own versions of the Portuguese sentences. We
see from Table 6 that PB-SMT outperforms NMT
with a large margin in terms of BLEU.

3.7 Generating Translations of English
Prompts

This section presents our translation framework
that is expected to generate high-coverage sets of
plausible translations given the English prompts.
In the translation framework, we made use of
our best system NEURAL-BEST, and two more
Transformer models, NEURAL-OpenSub and
NEURAL-Generic (cf. Section 3.5.2), and best
SMT system PB-BEST (cf. Section 3.5.1). Note
that we make each of our final NMT models with
ensembles of 4 models that are sampled from the

17http://paraphrase.org/#/download
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training run, and one of them is selected as per
highest BLEU score on the validation set.

The STAPLE development and test sets are blind,
and participants were asked to submit the sys-
tem’s output via CodaLab18 which displays sys-
tem’s scores upon submission. The main scoring
metric for evaluation is weighted macro F1. The
precision and recall are calculated in unweighted
and weighted fashions, respectively. In short, the
systems are scored based on how well they can
return all human-curated acceptable translations,
weighted by the likelihood that an English learner
would respond with each translation.

R P F1

NEURAL-BEST 0.4325 0.6564 0.4601
NEURAL-OpenSub 0.3922 0.5542 0.3922
NEURAL-Generic 0.3224 0.5541 0.3451
PB-BEST 0.2044 0.5643 0.2512
SysCom 0.4566 0.6019 0.4620
SysCom + MMT-B1 0.4551 0.6204 0.4669
SysCom + MMT-B5 0.4656 0.6138 0.4710

Table 7: Performance of our MT systems on dev set
(submitted).

In Table 7, we present the performance of our
submitted MT systems on the development set. The
first row of Table 7 represents our best NMT sys-
tem NEURAL-BEST which is competitive and pro-
duces an F1 score of 0.4601 on the development
set. As for this system, we generate 12-best (n =
12) translations for each English prompt. We tried
higher values for n and the systems with different
values of n are more or less comparable to the one
reported in the table. Therefore, we keep the value
of n 12 for generating alternative translations for
all our MT systems. The system that represents the
first row of the table can be seen as our baseline.

The next three rows of Table 7 show the scores of
other two neural models, NEURAL-OpenSub and
NEURAL-Generic, and the best PB-SMT system
PB-BEST. We see from Table 7 that these MT sys-
tems perform much worse than NEURAL-BEST
as far as the F1 scores on the development set are
concerned. Interestingly, precision of PB-BEST
is relatively better than the other two MT systems
despite its low recall which in fact is responsible
for its low final F1. We found that many 12-best
translations produced by PB-BEST are identical.

18https://competitions.codalab.org/
competitions/

This is the reason why its recall (and F1) is too low.

The fifth row of Table 7 presents a system that
combines n-best translations of different MT sys-
tems. We refer to this system as SysCom. The idea
is to produce final sets of translations of the En-
glish prompts as exhaustive and precise as possible
by combining 12-best translations produced by the
different MT systems. We tried a number of ways
for combining the translations produced by multi-
ple systems, and the setup that worked best for us
is described as follows. We took 12-best transla-
tions by NEURAL-BEST and 1-best translations
by NEURAL-Generic, NEURAL-OpenSub and
PB-BEST. Additionally, we also took translations
from 12-best translations by NEURAL-Generic,
NEURAL-OpenSub and PB-BEST with two out
of three voting logic. The reason for using differ-
ent MT methods and MT systems built on differ-
ent data domains or styles in the system combina-
tion strategy is that such MT systems may produce
some alternative translations that are to be differ-
ent to each other. SysCom produces a 0.0019 F1

point absolute (corresponding to 0.41% relative)
gain over the baseline. Naturally, this approach
increases the coverage of plausible translations of
the English prompts, which causes a 0.0241 recall
point absolute (corresponding to 5.57% relative)
gain over the baseline however at the expense of
precision.

The final two rows of Table 7 correspond to two
system setups in which we used our monolingual
Portuguese MT systems on top of the SysCom
setup. In other words, we applied the monolingual
Portuguese MT systems to the Portuguese trans-
lations of the English prompts in order to collect
more viable alternative translations. We tried to
avoid applying monolingual MT on the noisy trans-
lations generated in the previous stage (i.e. English-
to-Portuguese MT). Accordingly, we adopted dif-
ferent setups in order to obtain translations that are
to be as much error free as possible (i.e. a set of
high precision n-best translations). The setup that
worked best in our case is described as follows. We
took 1-best (i.e. row 6 of Table 7; MMT-B1) or
5-best (i.e. row 7 of Table 7; MMT-B5) transla-
tions by both NEURAL-BEST and PB-BEST. We
also took a set of translations which is an intersec-
tion of the sets of 12-best translations produced by
NEURAL-BEST, NEURAL-Generic, NEURAL-
OpenSub and PB-BEST. Let’s call this set of trans-
lations mono-set.

https://competitions.codalab.org/competitions/
https://competitions.codalab.org/competitions/


We translated the sentences (i.e. Portuguese
translations) of the mono-set using the monolin-
gual Portuguese PB-SMT and NMT systems (cf.
Section 3.6). For each sentence of mono-set we
produce 12-best translations by the PB-SMT and
NMT systems, take intersection of the two sets of
12-best translations, and consider the intersected
set as the viable alternative translations. Nonethe-
less, this stage includes another screening that helps
weed out as much noise as possible, which are de-
scribed as follows. We used 12-best translations
provided by the monolingual PB-SMT and NMT
systems if and only if a certain portion of the trans-
lations by each system should appear in the output
of SysCom. In other words, a ratio of the number
of the overlapping translations by each of the mono-
lingual MT systems with the translations provided
by SysCom and the total number of the transla-
tions provided by SysCom should be greater than
a threshold which we set to 0.2. The intersection
operation on two sets of 12-best translations and
the screening strategy, to a certain extent, ensures
the translation variations generated by the mono-
lingual MT systems of good quality. We see from
the final two rows of Table 7 that the strategy of ap-
plying monolingual MT for generating alternative
translations brings about moderate improvements
in terms of F1 over the baseline. The best setup
(SysCom + MMT-B5) produces a 0.0109 F1 point
absolute (corresponding to 2.4% relative) gain over
the baseline.

R P F1

SysCom + MMT-B1 0.4306 0.6379 0.4574
SysCom + MMT-B5 0.4377 0.6318 0.4597

Table 8: Performance of our MT systems on test set
(submitted).

In Table 8, we show the performance of our
submitted systems on the STAPLE 2020 test set.
These systems in fact correspond to the two sys-
tems whose performance on the development set
were presented in the last two rows of Table 7. The
second row of Table 8 (SysCom + MMT-B5) rep-
resents the system whose submission earned us the
fifth position in the competition.

4 Conclusion

This paper presents the ADAPT translation sys-
tem for the STAPLE 2020 English-to-Portuguese
Translation Task. We aimed to build a competitive

translation system that can produce high-coverage
sets of plausible translations given English prompts
(input source sentences). For this, we applied vari-
ous strategies, e.g. selecting data sources that are
similar to STAPLE 2020 training data, selecting
sentences from external corpora, applying mono-
lingual MT for generating alternative translations,
combining translations produced by multiple MT
systems. We found that the systematic addition
of these techniques to baseline yields moderate
improvement over the baseline (0.0109 F1 point
absolute corresponding to 2.4% relative gain). The
best experimental setup earned us the fifth position
in the competition.

In the future, we aim to apply confusion network
decoding in order to re-rank n-best translations gen-
erated by the multiple MT systems. We used mono-
lingual MT for generating alternative sentences for
the target (Portuguese) translations. We also aim
to apply this strategy to the English prompts (i.e.
source-side of the translation-pair) for generating
alternative sequences of the input source sentences.
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