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Abstract—In interactive machine translation (MT), human
translators correct errors in automatic translations in collab-
oration with the MT systems, and this is an effective way to
improve productivity gain in translation. Phrase-based statistical
MT (PB-SMT) has been the mainstream approach to MT for the
past 30 years, both in academia and industry. Neural MT (NMT),
an end-to-end learning approach to MT, represents the current
state-of-the-art in MT research. The recent studies on interactive
MT have indicated that NMT can significantly outperform PB-
SMT.

In this work, first we investigate the possibility of integrating
lexical syntactic descriptions in the form of supertags into the
state-of-the-art NMT model, Transformer. Then, we explore
whether integration of supertags into Transformer could indeed
reduce human efforts in translation in an interactive-predictive
platform. From our investigation we found that our syntax-
aware interactive NMT (INMT) framework significantly reduces
simulated human efforts in the French–to–English and Hindi–
to–English translation tasks, achieving a 2.65 point absolute
corresponding to 5.65% relative improvement and a 6.55 point
absolute corresponding to 19.1% relative improvement, respec-
tively, in terms of word prediction accuracy (WPA) over the
respective baselines.

Index Terms—machine translation, neural machine transla-
tion, interactive neural machine translation

I. INTRODUCTION

Translation service providers (TSPs) who use MT in their
production exploit human translators for correcting erroneous
automatic translations, and by this, they produce high quality
translations for their corporate customers. Interactive MT, a
promising use-case of the industrial MT services and an
active field of MT research, aims to reduce human efforts
in automatic translation workflows (TWs) with employing an
iterative collaborative strategy with its two most important
components: human translators and MT engine. Figure 1
represents the interactive-predictive protocol.

The recent studies on interactive MT [1], [2] have shown
that NMT [3] can significantly surpass PB-SMT [4]. The
MT researchers have also investigated integration of advance
machine learning features into the interactive MT models in
order to further minimise human efforts in translation [5], [6].
In a different MT research context, Nadejde et al. [7] have
integrated CCG (combinatory categorical grammar) syntactic
categories [8] into the target-side of the then state-of-the-
art attentional recurrent neural network (RNN) MT models

Ref: we decide therefore, citizens, to take control of things.

we decide therefore, citizens, to take things in hand.

we decide therefore, citizens, to take control of things

Fig. 1: Interactive protocol in collaboration with an MT system
and a user. The user wants to translate the French sentence
‘Nous décidons donc, citoyens, de prendre les choses en main.’
to English. The reference translation is ‘we decide therefore,
citizens, to take control of things’ which is used here to
simulate the user. The user corrects the first wrong word
(things) from the hypothesis. The validated prefix (magenta
phrase) and the last modified word (control) are fed back to
the NMT system which generates a correct suffix (of things).

[3], and they found that supertags can help improve transla-
tion quality in a German-to-English translation task, a high-
resource language-pair, and a Romanian-to-English translation
task, a low-resource language-pairs.

In this work, we first investigate the possibility of integrating
supertags into the current state-of-the-art NMT model, Trans-
former [9], and then explore whether integration of the su-
pertags into Transformer could indeed reduce human efforts in
translation in an interactive-predictive scenario. To summarise,
our main contributions in this paper are as follows: (i) to the
best of our knowledge, this is the first study that investigates
the possibility of integrating syntactic knowledge sources into
an interactive MT model, (ii) we explore the possibility of
integrating CCG supertags into the current state-of-the-art
MT system, Transformer, (iii) we test our syntax-informed
interactive Transformer models on French-to-English, a high
resource language pair, and Hindi-to-English, a low-resource
language pair, and present our results with a thorough and
comparative analysis on translations produced by our syntax-
informed and baseline interactive MT systems.

The remainder of the paper is organised as follows. In
Section II, we discuss related work. Section III provides a
short description on our syntax-informed interactive NMT, and
Section IV explains our motivation for considering supertags
in our experiments. In Section V, we present our experimental
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setups. Section VI describes our evaluation plan, experimental
results and analysis, while Section VII concludes and provides
avenues for further work.

II. RELATED WORK

Foster et al. [10] were the first to introduce the idea of
interactive-predictive MT, as an alternative to pure post-editing
MT. There have been a number of papers that explored this
strategy in order to minimise human efforts in translation and
cover many use-cases involving SMT: e.g. applying online
[11] and active [12] learning techniques, use of translation
memories [13], [14], predicting the partially typed words and
prefix matching [15], word-graphs for reducing response time
[16], segment-based approaches [2], suggesting more than one
suffix [17], and exploring multimodal interaction [18]. Since
the introduction of NMT to the MT community, researchers
have been investigating interactive-predictive protocol with the
RNN-based MT models, with a focus on reducing human
efforts in translation, e.g. [19], [1], [5], [6]. As of yet,
to the best of our knowledge, no one has investigated the
interactive-predictive protocol with the current state-of-the-art
Transformer model [9].

The strategy of exploiting syntactic knowledge from the
source and/or target languages for the betterment of translation
is not new in MT research; it was successfully applied in
the era of classical MT, e.g. [20], [21], [22], [23], and is
continually being applied to improve current state-of-the-art
NMT models, e.g. [7], [24], [25], [26]. Nadejde et al. [7] have
exploited CCG syntactic categories [8] from target language
in order to improve a RNN MT model [3]. In this paper, we
investigate the possibility of integrating CCG supertags into
the current state-of-the-art MT system, Transformer, with an
aim to minimise human efforts in translation in an interactive-
predictive scenario.

III. SYNTAX-INFORMED INTERACTIVE NMT

This section presents our syntax-informed interactive NMT
model. In NMT, at time step i, the conditional probability of
predicting output token yi given a source sentence x and the
previously generated output token y1, ..., yi−1 is modelled as
p(yi|{y1, ..., yi−1}, x).

In interactive protocol, the user corrects the left-most wrong
word of translation produced by the MT system. The feedback
is returned back to the MT system in the form of ŷi−1

1 which is
the validated prefix together with the corrected word. Thus, in
interactive NMT, the conditional context becomes ŷi−1

1 , and
the conditional probability of predicting output token yi is
modelled as p(yi|{ŷ1, ..., ŷi−1}, x).

In our work, we adopted the best-performing strategy (i.e.
interleaving) of Nadejde et al. [7], which first predicts the
CCG supertag (ŝi) of the word (yi) to be predicted next.
As a result, the length of conditional context becomes twice
the number of words in context plus one. As far as the
syntax-informed interactive NMT is concerned, the condi-
tional probability of predicting output token yi is modelled
as p(yi|{ŝ1, ŷ1, ..., ŝi−1, ŷi−1, ŝi}, x) where ŝi−1

1 is the CCG

sequence of the validated prefix ŷi−1
1 and ŝi is the supertag

of the word (yi) to be predicted next.

IV. SYNTACTIC CONTEXT FEATURES

This section explains why we consider a rich and complex
syntactic feature, supertags, as context in our experiments.
Supertagging, a kind of syntactic parsing (e.g. lexicalised
tree adjoining grammar [27], [28], combinatory categorial
grammar [8], [29], [30]), assigns rich and complex lexical
syntactic descriptions (i.e. supertags) to words. In other words,
supertags include information such as the POS tag and local
subcategorisation information of a word and the hierarchy
of phrase categories that the word projects upwards. They
are known to be context sensitive tags that preserve the
global syntactic information at local lexical level. Having
this property, supertags resolve ambiguity in short- and long-
distance dependencies by capturing the previous and next
syntactic dependencies of a lexical term. For example, it
signifies whether a particular lexical term is expecting a
preposition in the sentence or denoting which among other
lexical terms a particular term corresponds to. The interactive
neural MT model predicts new hypothesis primarily based on
a validated context (prefix) including the left-most modified
word by the user. In case of our syntax-informed model, the
prediction of the next words is also conditioned on the CCG
supertags [8] of the user validated prefix and the word to be
predicted next. Our intuition underpinning modelling supertags
in this work is that such complex and rich syntactic knowledge
sources, which inherently capture long-distance word-to-word
dependencies in a sentence, may be useful to improve the
subsequent predictions in interactive NMT, especially for the
longer sentences.

Fig. 2: Flowchart of hypothesis generation process in our
syntax-informed INMT platform.

V. EXPERIMENTAL SETUPS

A. Methods of forming conditional syntactic context

We carried out our experiments following two setups, which
are described as follows. In our first setup, we directly use
the supertags that are predicted by Transformer as a part



TABLE I: An example of an English sentence with its words associated with CCG supertags. A: a French (source) sentence,
B: subword form of source sentence, C: an English (target) sentence, D: subword form of target sentence,E: CCG supertags
are distributed to each of the subwords of a word. As an example: CCG supertag N/N of word themed is distributed over all
its subword units, i.e. them@@ and ed.

A J’ai jamais joué à un jeu à boire basé sur le thème Nazi cela dit .
B J@@ ’@@ ai jamais joué à un jeu à b@@ oire basé sur le thème N@@ azi cela dit .
C never played a Nazi themed drinking game though .
D never played a Nazi them@@ ed drinking game though .
E NP never (S[dcl]\NP)/NP played NP[nb]/N a N/N Nazi N/N them@@ N/N ed N/N drinking N game (NP\NP)/NP though N .

TABLE II: An example showing applying On the fly CCG supertagger on hypothesis. As can be seen from rows 5 and 6, the
user replaces incorrect token play with correct token drinking. The new token drinking gets the CCG supertag of the incorrect
token play, (S[dcl]\NP)/NP, which is also incorrect. In second setup, On the fly CCG supertagger is applied on hypothesis
(validated prefix and suffix). As can be seen from row 7, a new CCG supertag sequence is generated for the hypothesis, and
we see that the CCG supertag (N) is assigned to the new token drinking.

Input sentence
(subword) J@@ ’@@ ai jamais joué à un jeu à b@@ oire basé sur le thème N@@ azi cela dit .

Reference never played a Nazi themed drinking game though .
Initial Hypothesis never played a Nazi drinking play there .
Hypothesis after
several iterations NP never S[pss]\NP played NP/NP a N/N Nazi N them@@ N ed (S[dcl]\NP)/NP play (NP\NP)/NP though N .

INMT interface never played a Nazi themed play though .
Correction
by user never played a Nazi themed drinking though .

Applying on the fly
CCG supertagger NP never S[pss]\NP played NP/NP a N/N Nazi N them@@ N ed N drinking (S\NP)\(S\NP) though N/N .

New hypothesis never played a Nazi themed drinking game though .

of conditional context for the prediction of the remaining
hypothesis. This means this setup follows the interleaving
technique of Nadejde et al. [7], in which the CCG supertag of
a token is kept before the token as shown in Table I. For an
example, wordi is produced by the decoder in a hypothesis
having ccgi as its CCG supertag that has been predicted in the
previous time step. In the interface, the user sees that wordi is
not appropriate in the context, i.e. incorrectly predicted by the
MT system, and replaces wordi with a new token wordnew.
Now, when the modified context (i.e. validated prefix) is fed
back to the NMT model, wordnew will have the tag of wordi,
i.e. ccgi. In other words, the final two tokens of the conditional
context would be ccgi wordnew. We carried out an analysis to
see how closely these supertags are related to the new words
that have been added by the user (cf. Section VI-D). In this
regard, since we followed standard practice for NMT training,
we applied the byte-pair encoding (BPE) segmentation1 [31]
to the tokens. The subword units of a word inherit the CCG
supertag of the word. As an example, we show an English
sentence with supertags in Table I. We see from row E of Table
I that CCG supertag ‘N/N’ of a word ‘themed’ is distributed
over its subwords (i.e. them@@ and ed).

In this context, Akoury et al. [24] showed that integrat-
ing target-side ground-truth syntactic information into Trans-
former at decoding time significantly improved their system’s
translation quality, and their syntax-based model outperformed
the baseline Transformer model with a large margin in terms of

1https://github.com/rsennrich/subword-nmt

BLEU [32]. However, in reality, there is no way of obtaining
the target-side ground-truth syntactic information at decoding
time. But, in interactive-predictive mode, we got a way to
obtain a slightly better CCG sequence for the partial translation
(i.e. validated prefix) and inject them into the model at run-
time, which we believe can positively impact the model’s
subsequent predictions. In other words, in our second setup,
we integrate a CCG supertagger in our INMT framework, and
apply that on validated prefix and unchecked suffix on the fly.
The supertagger is invoked when the user makes a correction.
In other words, when user inserts a new token wordnew in
the place of an incorrectly predicted token (wordi), the CCG
supertagger is invoked and applied to the validated prefix
and unchecked suffix on the fly. As above, Section VI-D
shows statistics in relation to the quality of such supertag
sequences. In Table II, we show how we apply On the fly
CCG supertagger on modified hypothesis via an example.

B. MT systems

We carried out our experiments with a high-resource
language-pair, French-to-English. This is regarded as an im-
portant language-pair in the translation industry. In addition to
this, we tested our method on a low-resource and less-explored
language pair, Hindi-to-English. For French-to-English we
used UN corpus2 [33], and the training and development
sets contain 12,238,995 and 1,500 sentences, respectively.
For Hindi-to-English we used the IIT Bombay English-Hindi

2https://www.statmt.org/wmt13/training-parallel-un.tgz



parallel corpus3 [34] that is compiled from a variety of existing
sources, e.g. OPUS4 [35], and the training and development
sets contain 1,513,548 and 520 sentences, respectively.

As for the French-to-English task, we used 1,500 sentences
from the WMT15 news test set newstest2015 as our test set.
For the Hindi-to-English task we considered the WMT14 news
test set newstest2014 as our test set.

In order to build our MT systems, we used Sockeye5 [36]
toolkit. Our training set-up is described below. The tokens
of the training, evaluation and validation sets are segmented
into subword units using the BPE technique [37] proposed by
[31]. We performed 32,000 join operations. We use 6 layers
at encoder and decoder sides each, 8-head attention, hidden
layer of size 512, embedding vector of size 512, learning
rate 0.0002, minimum batch size of 1800 tokens. Easyccg6

[38] tool is used for generating CCG supertag sequences for
English sentences.

Table III shows the performance of the baseline and our
syntax-informed NMT systems in terms of BLEU for both
the French-to-English and Hindi-to-English translation tasks.
We see from Table III that the BLEU scores of the baseline
and syntax-informed MT systems are comparable in both
cases. Additionally, we performed statistical significance test
using bootstrap resampling methods [39]. We found that the
difference in BLEU scores of the MT systems (baseline and
syntax-informed) are not statistically significant. Surprisingly,

TABLE III: BLEU scores for baseline and syntax-informed
NMT systems

Fr→En Hi→En
Baseline 26.9 18.12
Syntax-Informed NMT system 27.1 18.81

this finding contradicts with the findings of [7] who found
supertags helpful in their case and their systax-based NMT
systems significantly surpassed their baseline RNN MT sys-
tems.

VI. RESULTS AND DISCUSSION

In this section first we explain the strategy that we adopted
for evaluating the interactive-predictive MT systems. Then,
we present our evaluation results with some discussions and
analysis.

A. Evaluation Strategy for INMT

We evaluate the performance of the INMT systems using
two evaluation metrics, word stroke ratio (WSR) and word
prediction accuracy (WPA). WSR denotes the total number of
token replacements required to obtain the desired hypothesis
[2]. Word prediction accuracy (WPA) is the percentage of
words that the INMT system predicted correctly, given a
prefix of all the previous translator-produced words [1]. The

3http://www.cfilt.iitb.ac.in/iitb parallel/
4http://opus.lingfil.uu.se/
5https://github.com/awslabs/sockeye
6https://github.com/mikelewis0/easyccg

TABLE IV: WSR and WPA scores of the syntax-informed and
baseline INMT systems. A. Fr→En and B. Hi→En

Baseline CCG supertags
by Transformer

On the fly
CCG
supertagger

CCG
Tagged
(GT)

A WSR 53.77 51.70 50.61 29.44
WPA 46.82 48.29 49.47 70.53

B WSR 65.68 61.58 59.12 36.89
WPA 34.32 38.41 40.87 63.10

process of evaluating translations in interactive scenarios is
expensive as it requires human evaluators. As an alternative,
we adopted the reference-simulated evaluation strategy as in
[2], where instead of taking feedback from the real user,
reference sentence is used as the feedback. In other words,
the reference sentences are used to simulate the user. Note
that the supertag sequences of the reference sentences are not
considered for evaluation. As shown in Figure 2, each time
the NMT system generates a hypothesis it is compared with
the reference sentence from left to right.

B. Evaluation Results

We obtain WPA and WSR scores to evaluate the French-
to-English and Hindi-to-English INMT systems on the test
sets, which are reported in Table IV. Note that WSR is an
error metric, which means that lower scores are better. The
top- and bottom-half of the table represents the French-to-
English and Hindi-to-English translation tasks, respectively.
We can see from the table that our the supertag-based INMT
systems outperform the respective baselines regardless of the
translation tasks.

We obtained best WSR and WPA scores when on the
fly CCG supertagger is applied on the modified hypothesis
(see second experimental setup; cf. Section V-A). As for
the French-to-English task, we achieve a 2.65 point absolute
corresponding to 5.65% relative improvement in terms of
WPA and a 3.16 point absolute corresponding to 5.87%
relative reduction in terms of WSR over the baseline. As
far as the Hindi-to-English translation task is concerned, we
achieve a 6.55 point absolute corresponding to 19.1% relative
improvement in terms of WPA and a 6.65 point absolute
corresponding to 9.98% relative reduction in terms of WSR
over the baseline. We found that these gains are statistically
significant [40]. For comparison, we also report the WPA and
WSR scores of our syntax-informed INMT systems on an ideal
setup, i.e. when we feed Transformer with the ground-truth
CCG supertags instead of those predicted by the model or
generated by the on the fly CCG supertagger. As expected, in
this setup, the syntax-informed INMT systems surpassed their
respective baselines with a large-margin (cf. last column of
Table IV).

C. Evaluation based on test set sentence lengths

For further analysis, we place the sentences of the test
set into four sets (cf. Figure 3) as per the sentence length
measures, i.e. the first set contains those sentences whose



(a) WSR [Fr→En] (b) WPA [Fr→En]

(c) WSR [Hi→En] (d) WPA [Hi→En]

Fig. 3: WSR and WPA scores of the syntax-informed and baseline INMT systems with respect to the sentence-length based
test sets.

lengths are less than and equal to 15, the second set contains
those sentences whose lengths are above 15 and less than
and equal to 25, the third set contains those sentences whose
lengths are above 25 and less than and equal to 35, and
the fourth set contains those sentences whose lengths are
above 35. This division was made based on the lengths of
reference sentences. In Figure 3, we plot the distributions of
WPA and WSR scores over the sentence-length based sets.
This figure provides us a better insights on the performance
of the baseline and syntax-informed MT systems, especially
how they will perform on the varying length of sentences that
they would have to predict. As can be seen from Figure 3,
our syntax-based INMT systems produce increasingly better
WSR and WPA scores as the length of the reference sentences
increases. As discussed above, supertags encode wider context
of a sentence, which could help the decoder to capture long-
range word-to-word dependencies at generation time. Hence,
the integration of the rich syntactic feature (CCG supertags)
from the target-side into the interactive NMT system can play
an important role for the translation of longer sentences. The
next section provides further analysis and discusses the impact
of incorporating CCG supertags on interactive predictions.

TABLE V: % of CCG supertags that becomes incorrect when
the user replaces the incorrectly predicted token in hypothesis
with the token of his choice.

Fr–>En Hi–>En
% wrong tags
(CCG supertags by
transformer)

% wrong tags
(On the fly
CCG supertagger)

% wrong tags
(CCG supertags by
transformer)

% wrong tags
(On the fly
CCG supertagger)

Whole testset 41.07 23.95 45.79 24.51
Len <15 40.64 23.88 44.58 23.72
15 <Len <25 40.84 23.04 45.47 24.14
25 <Len <35 42.80 25.28 47.25 25.96
35 <Len 39.32 24.33 46.94 24.95

D. CCG supertags of the words of the user choice

As mentioned in Section V-A, we came up with two
different ways to use CCG supertags as the conditional context
for the predictions in INMT. First, in CCG supertags by
Transformer setup, if the user makes a correction, the user’s
choice of word inherits the CCG supertag of the word that
the user has just corrected, which is, in fact, predicted by the
INMT system. The new word and the incorrect word that the
user has just corrected could be syntactically or semantically
different. As a result, the supertag that the new word inherits
could be incorrect. We calculate percentage of CCG supertags
that become incorrect for the new words when the predicted
words were wrong and edited by the user. This shows us how



much correct or incorrect contextual information for supertags
is returned back to the decoder for the prediction of the
remaining hypothesis. We also produced such statistics for
the second experimental setup, On the fly CCG supertagger. In
Table V, we show the percentage of CCG supertags those were
incorrectly assigned to new words on both the experimental
setups. We clearly see from the table that the second setup (On
the fly CCG supertagger) is far better than the first setup (CCG
supertags by Transformer) in terms of assigning correct CCG
supertags to the new words that the user has just corrected,
i.e. better by 17.12% and 21.28% for the French-to-English
and Hindi-to-English translation tasks, respectively.

E. Incorrect predictions versus time-steps

We carry out another analysis to see how the MT systems’
prediction accuracy varies over the time of a translation. In
Section VI-C, we plot the distributions of the WPA and
WSR scores over the sentence-length based test sets. As
above, we also consider the sentence-length based test sets
for this analysis. This time, we detect the number of incorrect
predictions by the INMT systems over the translation and plot
those numbers over the time steps.

Figure 4 presents eight graphs, and the top four and bottom
four graphs represent the French-to-English and Hindi-to-
English translation tasks, respectively. Four graphs represent
four sentence-length based test sets which we defined above
in Section VI-C. The x-axis of the graphs represents time
steps, i.e. word positions in translation. The y-axis of the
graphs represents the average number of incorrectly predicted
words. For comparison we plot curves for the baseline and
syntax-informed INMT systems considering two setups (CCG
supertags by Transformer and on the fly CCG supertagger; cf.
Section V). We also show curves for the ideal setup, i.e. when
we feed Transformer with the ground-truth CCG supertags
instead of the supertags predicted by Transformer or generated
by on the fly CCG supertagger. These graphs show a clear
picture in terms of interactive predictions by the baseline and
syntax-informed INMT systems. We see the all curves go
downward over time (i.e. increasing positions of translation)
for both baseline and syntax-informed INMT systems. We
also see from the figure that in most cases supertags play an
important role for predicting correct tokens, especially in latter
stages of translation. In other words, integration of supertags
into the interactive-predictive platform has positively impacted
human effort in translation. When we see the graphs for the
sets of longer sentences, we see that the supertag features have
even more impact on predicting correct tokens in translation.
As above, we clearly see the on the fly CCG supertagger
setup is again more productive than the CCG supertags by
Transformer setup most of the cases.

VII. CONCLUSION

In this paper, we integrated a rich and complex syntactic
feature (supertags) into the current state-of-the-art neural MT
model, Transformer. Furthermore, we test whether the integra-
tion of such knowledge sources into Transformer could indeed

reduce human effort in translation in an interactive-predictive
scenario. We carried out our experiments with French-to-
English, a high resource language pair, and Hindi-to-English,
a low-resource and less-explored language pair, and present
our results with a comparative error analysis.

From our evaluation results we found that our syntax-aware
Transformer models outperform the baseline transformer mod-
els with small gains in terms of BLEU, and the gains are
not statistically significant. This finding contradicts to the
findings of Nadejde et al. [7] who found supertags effective
in significantly improving their RNN MT models.

We compared our syntax-informed and baseline Trans-
former models on an interactive-predictive setup. We inte-
grated supertags into Transformer in two different ways, and
both setups were found to be effective in reducing human
efforts in translation. Most importantly, although our best-
performing syntax-informed and the baseline Transformer
models are comparable in terms of BLEU in both the French-
to-English and Hindi-to-English translation tasks, we found
that the best-performing syntax-informed interactive NMT
framework significantly reduces human efforts in translation
in the French–to–English and Hindi–to–English translation
tasks, achieving 2.65 and 6.55 point absolutes corresponding
to 5.65% and 19.1% relative improvements, respectively, in
terms of WPA over the respective baselines.

We carried out an extensive error analysis with a variety
of criteria. Our analysis unraveled many sides of our syntax-
aware models in an interactive-predictive environment. For
an example, we particularly found that our syntax-informed
interactive-predictive models have positively impacted more
for the translation of the longer sentences.

Given the importance of interactive MT in translation indus-
try, the findings of this work can be crucial for their production
as our methods can positively impact their productivity gain
in translation.

In future, we plan to evaluate our interactive MT systems
on a real translation project with human translators. We also
plan to integrate language-independent contextual knowledge
into the interactive-predictive NMT systems.
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Fig. 4: Average word replacement required at each token position; Len is length of reference sentence
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