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ABSTRACT 
The U.S. Caribbean includes Puerto Rico, St. Croix, St. Thomas, and St. John. These islands support artisanal fisheries 

targeting spiny lobster, queen conch, and dozens of reef fish species. Effective management of these fisheries, in both state and 

federal waters, has been challenging due primarily to a dearth of information regarding harvest activities. Population assessments 
have been attempted (e.g., spiny lobster, queen conch, yellowtail snapper, yellowfin grouper), but none have yielded quantitative 

management advice. Given the distributed nature of these fisheries, effective management via the assessment process may not soon 

be achieved. However, other sampling and analytical approaches are available that can be effectively applied to evaluate fisheries 
sustainability and the relationship of fishing activities to the environment. For example, data-poor approaches (e.g., Spawning 

Potential Ratio Decision Tree) provide guidance for maintaining sustainable levels of harvest, and genetic approaches can provide 

complementary estimates of effective population size. When coupled with 3-dimensional physical oceanographic models and 
biogeographic information, appropriate analyses of genetic data also illuminate source/sink dynamics, the meta-structure of 

populations and communities, the design and effectiveness of refuges, and sources of resilience. If management actions are taken, 
environmental indicators need to be in place to provide data necessary to populate before-after-control-impact (BACI) analyses 

suitable for quantitative calibration of management decisions. Caribbean fisheries are inextricably linked to the ecology of the 

communities within which they occur. They must be managed within that context, and both economic and ecological considerations 
dictate maximum efficiency in the utilization of all pertinent data. 
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BACKGROUND 

 The United States Caribbean includes the Commonwealth of Puerto Rico and the islands of St. Thomas, St. John, 

and St. Croix in the Territory of the U.S. Virgin Islands (Figure 1). Recreational and commercial fishing are integral 

components of the economies of each of these islands, providing $11 million of direct economic impact from the commer-

cial fishery alone (NMFS 2011). Most recreational fishers pursue pelagic species such as tuna and billfish, but an important 

component of the recreational fisheries and the predominant component of the commercial fisheries derive from coral-reef 

associated species including a host of finfish and invertebrates (Table 1). To the extent that the harvest of these species 

occurs in federal waters surrounding each island (Figure 1), the National Oceanic and Atmospheric Administration is 

responsible for managing harvest under the auspices of the National Marine Fisheries Service (NMFS). 

Historically, NMFS’ area of responsibility for coral reef associated fisheries has been limited relative to the area of 

responsibility assigned to Puerto Rico and to the U.S. Virgin Islands. That is because, while the vast majority of the 

geographic area within the United States exclusive economic zone (EEZ) falls within the purview of the federal government 

(9 - 200 nautical miles (nm) off Puerto Rico and 3 - 200 nm off the U.S. Virgin Islands), most of the known coral reef 

habitat and associated fisheries fall within the domain of the island governments (Figure 1). Only about 4.7 percent (116 

nm2 or 398 km2) of the fishable area is in the U.S. Caribbean EEZ (CFMC 2005). Puerto Rico’s state waters comprise an 

area of approximately 3,832 nm2 (13,160 km2) (Puerto Rico Coastal Zone Management Program 2007), and the territorial 

waters of the USVI are approximately 437 nm2 (1,564 km2) in size (Island Resources Foundation 2002). The USVI shelf 

encompasses an area of approximately 630 nm2 (2,161 km2). Of that area, 38 percent (240 nm2 or 823 km2) occurs in the 

U.S. Caribbean EEZ. The bulk of the shelf occurs off St. Thomas and St. John, with 291 nm2 (998 km2) of total area in 

territorial waters and 218 nm2 (748 km2) of total area in federal waters. St. Croix has 98 nm2 (336 km2) of fishable habitat in 

territorial waters and only a 21 nm2 (72 km2) area off its east coast that resides in the EEZ. It is likely, however, that the 

degree of federal responsibility will increase as deeper coral reef communities (i.e., mesophotic reefs sensu Hinderstein et 

al. 2010) are discovered and their associated resources identified. Thus, the role of federal fisheries management is destined 

to increase. Moreover, the relationship between federal and state fisheries management is intertwined via a continuing effort 

to maintain compatibility in fisheries regulations, linked in process via the Caribbean Fishery Management Council 

(Council). As a result, while the direct responsibility of NMFS is restricted to federal waters as described above, that 

responsibility is likely to increase and indirect responsibility via compatibility is a continuing consideration. 

The effectiveness of fisheries management in the U.S. Caribbean has long been restricted by a lack of appropriate data 

with which to conduct species-specific assessments of population health and response to fishing pressure. Among the 

primary concerns regarding the data are the scarce, missing, or unreliable information on fishing effort, spatial/geographic 

patterns, and life history parameters.  
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Table 1. List of federally managed species in the U.S. Caribbean. 

 
REEF FISH FISHERY MANAGEMENT UNIT (FMU)  
Lutjanidae--Snapper  
 
Snapper Unit 1  
Silk snapper, Lutjanus vivanus  
Blackfin snapper, Lutjanus buccanella  
Black snapper, Apsilus dentatus  
Vermilion snapper, Rhomboplites aurorubens  
Wenchman, Pristipomoides aquilonaris  
 
Snapper Unit 2  
Queen snapper, Etelis oculatus  
Cardinal snapper, Pristipomoides macrophthalmus  
 
Snapper Unit 3  
Gray snapper, Lutjanus griseus  
Lane snapper, Lutjanus synagris  
Mutton snapper, Lutjanus analis  
Dog snapper, Lutjanus jocu  
Schoolmaster, Lutjanus apodus  
Mahogany snapper, Lutjanus mahogani  
 
Snapper Unit 4  
Yellowtail snapper, Ocyurus chrysurus  
 
Serranidae--Sea basses and Grouper  
Grouper Unit 1  
Nassau grouper, Epinephelus striatus  

Grouper Unit 2  
Goliath grouper, Epinephelus itajara  
 
Grouper Unit 3  
Red hind, Epinephelus guttatus  
Coney, Cephalopholis fulva (previously Epinephelus fulvus)  
Rock hind, Epinephelus adscensionis  
Graysby, Cephalopholis cruentata (previously Epinephelus 
cruentatus)  
 
Grouper Unit 4  
Red grouper, Epinephelus morio  
Tiger grouper, Mycteroperca tigris  
Yellowfin grouper, Mycteroperca venenosa  
Black grouper, Mycteroperca bonaci 
 
Grouper Unit 5  
Yellowedge grouper, Epinephelus flavolimbatus  
Misty grouper, Epinephelus mystacinus  
 
Scaridae--Parrotfish  
Parrotfish Unit  
Midnight parrotfish, Scarus coelestinus  
Blue parrotfish, Scarus coeruleus  
Rainbow parrotfish, Scarus guacamaia  
Princess parrotfish, Scarus taeniopterus  
Queen parrotfish, Scarus vetula  
Redfin parrotfish, Sparisoma rubripinne  
Redtail parrotfish, Sparisoma chrysopterum  
Stoplight parrotfish, Sparisoma viride  
Redband parrotfish, Sparisoma aurofrenatum  
Striped parrotfish, Scarus iseri (previously Scarus croicensis) 
 
Haemulidae--Grunts  
White grunt, Haemulon plumieri  
Margate, Haemulon album  
Tomtate, Haemulon aurolineatum  
Bluestriped grunt, Haemulon sciurus  
French grunt, Haemulon flavolineatum  
Porkfish, Anisotremus virginicus  
 
Mullidae--Goatfishes  
Spotted goatfish, Pseudupeneus maculatus  
Yellow goatfish, Mulloidichthys martinicus  
 
Sparidae--Porgies  
Jolthead porgy, Calamus bajonado  
Sea bream, Archosargus rhomboidalis  
Sheepshead porgy, Calamus penna  
Pluma, Calamus pennatula  
 
Holocentridae--Squirrelfishes  
Blackbar soldierfish, Myripristis jacobus  
Bigeye, Priacanthus arenatus  
Longspine squirrelfish, Holocentrus rufus  
Squirrelfish, Holocentrus adscensionis  
 
Malacanthidae--Tilefishes  
Blackline tilefish, Caulolatilus cyanops  
Sand tilefish, Malacanthus plumieri  
 
Carangidae--Jacks  
Blue runner, Caranx crysos  
Horse-eye jack, Caranx latus  
Black jack, Caranx lugubris  
Almaco jack, Seriola rivoliana  
Bar jack, Caranx ruber  
Greater amberjack, Seriola dumerili  
Yellow jack, Caranx bartholomaei  
 

Figure 1. U.S. Caribbean waters including the islands of 
St. Thomas, St. John, and St. Croix and the archipelago of 
Puerto Rico. Top-complete map of the U.S. Caribbean 
exclusive economic zone. Bottom-detailed view of the 
island groups showing the boundaries of commonwealth 
and territorial waters relative to the exclusive economic 
zone. 
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Acanthuridae--Surgeonfishes  
Blue tang, Acanthurus coeruleus  
Ocean surgeonfish, Acanthurus bahianus  
Doctorfish, Acanthurus chirurgus 
 
Balistidae–-Triggerfishes  
Ocean triggerfish, Canthidermis sufflamen  
Queen triggerfish, Balistes vetula  
Sargassum triggerfish, Xanthichthys rigens  
Black durgon, Melichthys niger  
 
Monacanthidae-–Filefishes  
Scrawled filefish, Aluterus scriptus  
Whitespotted filefish, Cantherhines macrocerus  
 
Ostraciidae--Boxfishes 528  
Honeycomb cowfish, Acanthostracion polygonia (previously 
Lactophrys polygonia)  
Scrawled cowfish, Acanthostracion quadricornis (previously 
Lactophrys quadricornis)  
Trunkfish, Lactophrys trigonus  
Spotted trunkfish, Lactophrys bicaudalis  
Smooth trunkfish, Lactophrys triqueter  
 
Labridae--Wrasses  
Hogfish, Lachnolaimus maximus  
Puddingwife, Halichoeres radiatus  
Spanish hogfish, Bodianus rufus  
 
Pomacanthidae--Angelfishes  
Queen angelfish, Holacanthus ciliaris  
Gray angelfish, Pomacanthus arcuatus  
French angelfish, Pomacanthus paru  
 
AQUARIUM TRADE SPECIES FMU  
Aquarium Trade Species listed in the Reef Fish FMP  
Frogfish, Antennarius spp.  
Flamefish, Apogon maculatus  
Conchfish, Astrapogon stellatus  
Redlip blenny, Ophioblennius macclurei (previously Ophioblennius 
atlanticus)  
Peacock flounder, Bothus lunatus  
Longsnout butterflyfish, Prognathodes aculeatus (previously 
Chaetodon aculeatus)  
Foureye butterflyfish, Chaetodon capistratus  
Spotfin butterflyfish, Chaetodon ocellatus  
Banded butterflyfish, Chaetodon striatus  
Redspotted hawkfish, Amblycirrhitus pinos  
Flying gurnard, Dactylopterus volitans  
Atlantic spadefish, Chaetodipterus faber  
Neon goby, Elacatinus oceanops (previously Gobiosoma 
oceanops)  
Rusty goby, Priolepis hipoliti  
Fairy basslet, Gramma loreto (also known as Royal gramma)  
Creole wrasse, Clepticus parrae  
Yellowcheek wrasse, Halichoeres cyanocephalus  
Yellowhead wrasse, Halichoeres garnoti 
Clown wrasse, Halichoeres maculipinna  
Pearly razorfish, Xyrichtys novacula (previously Heminopteronotus 
novacula)  
Green razorfish, Xyrichtys splendens (previously Heminopterono-
tus splendens)  
Bluehead wrasse, Thalassoma bifasciatum  
Chain moray, Echidna catenata  
Green moray, Gymnothorax funebris  
Goldentail moray, Gymnothorax miliaris  
Batfish, Ogcocephalus spp.  
Goldspotted eel, Myrichthys ocellatus  
Yellowhead jawfish, Opistognathus aurifrons  
Dusky jawfish, Opistognathus whitehursti  

Cherubfish, Centropyge argi  
Rock beauty, Holacanthus tricolor  
Sargeant major, Abudefduf saxatilis  
Blue chromis, Chromis cyanea  
Sunshinefish, Chromis insolata  
Yellowtail damselfish, Microspathodon chrysurus  
Dusky damselfish, Stegastes adustus (previously Pomacentrus 
fuscus)  
Beaugregory, Stegastes leucostictus (previously Pomacentrus 
leucostictus)  
Bicolor damselfish, Stegastes partitus (previously Pomacentrus 
partitus)  
Threespot damselfish, Stegastes planifrons (previously Pomacen-
trus planifrons)  
Glasseye snapper, Heteropriacanthus cruentatus (previously 
Priacanthus cruentatus)  
High-hat, Pareques acuminatus (previously Equetus acuminatus)  
Jackknife-fish, Equetus lanceolatus  
Spotted drum, Equetus punctatus  
Scorpaenidae-scorpionfishes  
Butter hamlet, Hypoplectrus unicolor  
Peppermint basslet, Liopropoma rubre (also known as Swissguard 
basslet)  
Great soapfish, Rypticus saponaceus  
Orangeback bass, Serranus annularis  
Lantern bass, Serranus baldwini  
Tobaccofish, Serranus tabacarius  
Harlequin bass, Serranus tigrinus  
Chalk bass, Serranus tortugarum  
Caribbean tonguefish, Symphurus arawak  
Seahorses, Hippocampus spp.  
Pipefishes, Syngnathus spp.  
Sand diver, Synodus intermedius  
Sharpnose puffer, Canthigaster rostrata  
Porcupinefish, Diodon hystrix  
 
Aquarium Trade Species listed in the Corals and Reef 
Associated Plants and Invertebrates FMP (Coral FMP)  
Erect rope sponge, Aphimedon compressa  
Giant basket star, Astrophyton muricatum  
Snapping shrimp, Alpheaus armatus 
Pale anemone,, Aiptasia tagetes  
Sand stars, Astropecten spp.  
Swimming crinoid, Analcidometra armata  
Corkscrew anemone, Bartholomea annulata  
Sponge (no common name), Cynachirella alloclada  
Giant pink-tipped anemone, Condylactis gigantea  
Flamingo tongue, Cyphoma gibbosum  
Chicken liver sponge, Chondrilla nucula  
Long-spined urchin, Diadema antillarum  
Crinoids, Davidaster spp.  
False coral, Discosoma spp.  
Purple urchin, Echinometra spp.  
Pencil urchin, Eucidaris tribuloides  
Smashing mantis shrimp, Gonodactylus (Neogonodactylus) spp.  
Potato sponge, Geodia neptuni  
Finger sponge, Haliclona spp.  
Sea cucumbers, Holothuria spp.  
Knobby anemone, Hereractis lucida  
Fileclams, Lima spp.  
Rough fileclam, Lima scabra  
Pin cushion urchin, Lytechinus spp.  
Peppermint shrimp, Lysmata spp.  
Common comet star, Linckia guildingii  
Spearing mantis shrimp, Lysiosquilla spp.  
Staghorn anemone, Lebrunia spp.  
Clinging crabs, Mithrax spp.  
Banded clinging crab, Mithrax cinctimanus  
Green clinging crab, Mithrax sculptus  
Sponge (no common name), Myriastra sp.  
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Pink vase sponge, Niphates digitalis  
Lavender rope sponge, Niphates erecta,  
Crinoids, Nemaster spp.  
Brittlestars, Ophiocoma spp.  
Brittlestars, Ophioderma spp.  
Ruby brittlestar, Ophioderma rubicundum  
Cushion sea star, Oreaster reticulatus,  
Comet star, Ophidiaster guildingii  
Netted olive, Oliva reticularis  
Octopus (except the common octopus, O. vulgaris), Octopus spp.  
Hermit crabs, Paguristes spp.  
Red reef hermit crab, Paguristes cadenati  
Nimble spray crab, Percnon gibbesi  
Cleaner shrimp, Periclimenes spp.  
Florida false coral, Ricordia florida  
Sun anemone, Stichodactyla helianthus  
Christmas tree worm, Spirobranchus giganteus 
Magnificent duster, Sabellastarte magnifica  
Tube worms, Sabellastarte spp.  
Golden shrimp, Stenopus scutellatus  
Banded shrimp, Stenopus hispidus  
Yellowline arrow crab, Stenorhynchus seticornis  
Atlantic thorny oyster, Spondylus americanus  
Iridescent tube sponge, Spinosella plicifera  
Lavendar tube sponge, Spinosella vaginalis  
Sea egg urchin, Tripneustes ventricosus  
Anemone shrimp, Thor amboinensis  
Sponge (no common name), Tectitethya (Tethya) crypta  
Tunicates Subphylum Urochordata  
Lettuce sea slug, Tridachia crispata  
Sea mat, Zoanthus spp. 
 
QUEEN CONCH FMU  
Queen Conch, Strombus gigas 
 
SPINY LOBSTER FMU  
Caribbean Spiny Lobster, Panulirus argus 
 

Although some fishery independent data are available, 

they are spatially and temporally limited and previous 

assessment efforts have been unable to incorporate a viable 

time series into the analyses (SEDAR 2009). Fishery 

dependent data (i.e., landings data) have been collected for 

Puerto Rico commercial fisheries since the late 1960s 

(Cummings 2008) and for U.S. Virgin Islands commercial 

fisheries since 1975 (McCarthy and Gedamke 2008). 

However, those data have shortcomings that limit their 

suitability for assessing population status (CFMC 2011a). 

Until the late 1990s in the U.S. Virgin Islands, data were 

reported by gear type rather than by species or species 

group. For St. Croix, data deemed by the Council to be 

suitable for monitoring landings first became available in 

1998. Even from that point, the data are only reported to 

species group (snapper, grouper, parrotfish, grunts, etc.) 

rather than to species with the possible exception of 

Caribbean spiny lobster (Panulirus argus) and queen 

conch (Strombus gigas). For St. Thomas and St. John 

(considered for the purposes of this paper as a single island 

group), such data did not become available until 2000. 

Puerto Rico landings data have ostensibly been reported to 

species throughout the landings history, but even those 

data are compromised in several ways. First, underreport-

ing is acknowledged to the point that reported landings are 

adjusted upward on a regional basis by 50% or more to 

account for this underreporting. Additionally, although 

catch reporting forms include a long list of species, most 

fishers report in a more general manner. For example, 

although ten species of parrotfish may be available for 

harvest in Puerto Rico waters, only a small percentage (< 

1%) of the parrotfish catch is actually reported to species, 

with the remainder reported simply as ‘parrotfish’ (CFMC 

2011a). To complicate assessment efforts further, reporting 

of biological data related to harvest (e.g., information on 

age, size, reproductive status) has been limited (McCarthy 

and Gedamke 2008). Evaluation of approaches to improve 

that situation are underway, but the anticipated cost 

required to improve reporting for just the commercial 

sector of these fisheries is estimated at more than $4 

million per year (Harrington and Trumble 2011). Even 

following initiation of an improved commercial data 

collection program, it has been estimated that at least a 

decade of collection will be required before adequate data 

are available with which to populate suitable assessment 

models (Todd Gedamke, pers. comm.). Recreational data 

are also limited. A recreational reporting program (Marine 

Recreational Fishing Statistical Survey (MRFSS)) was not 

initiated in Puerto Rico until 2000 so the recreational data 

stream for that island is relatively short. In the U.S. Virgin 

Islands, a program to collect recreational catch data is not 

yet underway although a pilot program was conducted for 

a single year in 2000.  

Another concern with population assessment ap-

proaches is that, while they may provide suitable estimates 

of the abundance and health of individual populations, the 

relationship between the status of the individual species 

and the overall health of the coral reef community upon 

which the suite of harvested species depends is not 

assessed. For coral reef ecosystems, understanding such 

relationships is essential to proper management because of 

the tight linkage between the health of the habitat and the 

health of the species (Knowlton and Jackson 2001). 

Extractive activities such as fishing can alter the balance of 

the coral reef ecosystem in ways that are not always well 

understood, but fishing activities are commonly cited as a 

principal threat to coral reefs (e.g., Maragos et al. 1996). 

Certainly there is resilience within the coral reef ecosys-

tem, but the extent to which that resilience can be main-

tained in the face of biased and non-evolutionary mortality 

patterns is not well known. As with all activities that affect 

the coral reef ecosystem, fishing activities cannot be 

assessed in a vacuum but must instead be evaluated within 

the context of ecosystem function. 

As mentioned above, the U.S. Caribbean is considered 

data poor with respect to the information generally 

acknowledged as being necessary to calibrate and populate 

assessment models. It is not likely the situation will change 

in the near future because, as noted above, even when an 

expanded commercial and recreational data collection 

program is implemented it will take years to acquire 

sufficient information for successful accomplishment of 
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and closed to harvest. 

A necessary first step in the process of reducing 

impacts of fishing on coral reef communities is to end 

overfishing. The annual catch limit (ACL) process recently 

completed by NMFS essentially ends overfishing of all 

species throughout U.S. EEZ waters by constraining levels 

of annual catch within bounds established for sustainabil-

ity. The U.S. Caribbean EEZ is no exception (CFMC 

2011a, 2011b). However, once the ACLs are established, it 

is incumbent upon both state and federal managers to both 

ensure that those catch limits are adhered to via effective 

monitoring of catch and application of accountability 

measures as appropriate, and to adjust the ACLs in 

response to changes in the population or environment that 

either require ACL reduction or that create opportunities to 

increase harvest levels within the context of maximum 

sustainable yield. The data-poor approaches described 

above provide tools necessary to accomplish these tasks in 

an environment of limited funds and limited data. These 

approaches therefore provide an essential contribution to 

the process of maintaining sustainable fisheries within the 

context of healthy coral reef ecosystems. 

 

Expanding the Data Landscape for Fisheries  

Management in the U.S. Caribbean 

While ending overfishing within the reef fish fisheries 

of the U.S. Caribbean is a necessary precursor to rebuild-

ing the health of coral reef communities, it is then im-

portant to understand those harvest levels within the larger 

framework of ecosystem function. Ecosystem function 

comprises many facets including (but not limited to) the 

function of the community meta-population, the linkages 

among the local populations comprising that meta-

population, and the distribution and health of essential 

habitats relative to those linkages. Accomplishing this goal 

requires expanding the information base to include 

considerations of genetics, hydrodynamics, and biogeogra-

phy. However, it does not exclusively require initiating 

new data acquisition efforts because many studies within 

these disciplines are already underway or recently 

completed in the U.S. Caribbean. Those studies represent a 

substantial investment of time and money, so it is impera-

tive that the resultant data be applied to the greatest degree 

possible. 

Genetic data have numerous applications within the 

context of fisheries management, including estimating 

effective population size (Ne), delineating source-sink 

dynamics, defining gene flow patterns among populations, 

and describing the range of genetic diversity within a 

population. From this information can be determined the 

meta-structure of populations and communities, the design 

and effectiveness of reserves, and the resilience of a 

population, which are critical elements in the evaluation 

and rehabilitation of coral reef communities. 

As described by Hare et al. (2011), Ne “is crucial to 

management because it integrates genetic effects with the 

life history of the species, allowing for predictions of a 

species-specific assessments. However, there are opportu-

nities available now that can be applied to address 

management considerations across a range of applications, 

including those that provide insights rapidly, efficiently, 

and at relatively low cost (data-poor assessments) and 

those that may be longer-term in nature but in many cases 

are already underway (e.g., genetic, hydrodynamic, 

biogeographic studies). Such information can be used both 

to assess the present status of coral reef fisheries and to 

manage future harvest patterns. Ecological indicators that 

produce data indicative of a response to management 

actions can then be consulted to evaluate the success of 

those management actions and to guide future management 

strategies. 

 

Data-poor Approaches 

A workshop was convened by the Caribbean Council 

in San Juan, Puerto Rico, during February 22 - 24, 2011, to 

evaluate various approaches to assessing U.S. Caribbean 

fishing activities and impacts within a data-poor context. 

Four general approaches were considered (Table 2) 

ranging from ecological risk assessment to assessing status 

via comparisons of population density inside versus 

outside of marine reserves. All of the methods are designed 

to operate within the context of limited data and funding, 

commonly controlling costs by relying on involvement of 

the fishers to provide necessary data. The Ecological Risk 

Assessment for the Effect of Fishing (ERAEF) process 

produces estimates of risk associated with each fishery or 

sub-fishery within the region, relying upon a multi-tiered 

approach beginning with a qualitative Level 1 assessment 

that identifies prominent risks within a stakeholder-driven 

workshop setting, the outcome of which identifies those 

components of the fishery in need of more quantitative 

evaluations. Levels 2 and 3 become increasingly more 

quantitative and specialized, relying less on stakeholder 

input and more on data and modeling. The ERAEF 

approach has considerable value in identifying at-risk 

fisheries, thereby providing guidance for monitoring and 

management efforts. 

The remaining three approaches (Table 2) analyze 

monitoring outcomes to provide guidance regarding the 

relative health of the populations upon which the fisheries 

depend. They differ primarily in the type and amount of 

input data, but in all three cases a key output is advice 

regarding adjustments to annual catch levels. The Density 

Ratio Control Rule approach is the least demanding with 

respect to data, utilizing information on the relative density 

of a species from inside versus outside of well-established 

marine reserves. Both the Spawning Potential Ratio Based 

Decision Tree and the Marine Reserve Based Decision 

Tree are more data intensive, the former using estimates of 

spawning potential ratio to ensure that reproductive 

capability is preserved in all sub-populations whereas the 

latter depends on comparisons of basic biological parame-

ters such as growth and mortality rates between areas open 
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population’s current and future viability.”  Ne is not 

equivalent to assessed population size and generally is a 

much smaller value (see Table 3 for example), but its 

integrative nature better reflects in a relative sense the long

-term status of the population. Moreover, its definition as 

an index of the population being studied to a theoretical 

ideal population allows for direct comparison of Ne 

estimates among diverse populations (Carson et al. 2011) 

or among time points within a single population (Lessios et 

al. 2001). As exemplified in Table 3, estimates of Ne vary 

substantially among sites within a population and that 

variability may be useful in a management context (Hare et 

al. 2011). The Ne for mutton snapper is much lower in St. 

Croix than in other sampled populations (Table 3). The 

significance of that pattern remains to be fully evaluated, 

but such patterns of Ne variation may provide guidance 

regarding application of research effort. Estimates of Ne 

are available for an increasing number of species in 

Caribbean waters (e.g., Lessios et al. 2001, Hemond and 

Vollmer 2010, Gold et al. 2011, Carson et al. 2011), so 

there is a strong need to determine how to effectively and 

appropriately apply these data within a management 

context. 

Estimates of Ne may be robust enough to stand alone 

in management applications, but other genetic data such as 

gene flow rates derived from estimates of FST benefit from 

being placed within a context of hydrodynamics and 

habitat distribution patterns (Galindo et al. 2006, Kinin-

Table 2. Matrix of data-poor approaches considered during a workshop convened in San Juan, Puerto Rico dur-
ing February 22-24, 2011.  Table provided by Kim Gordon of the Fisheries Leadership and Sustainability Forum. 

Data-poor  
approach 

What does it do? What  
management 
guidance is 
provided? 

What does 
it NOT do? 

What are the  
input data? 

Short-term or  
long-term strategy? 

Spawning Po-
tential Ration 
(SPR) Based 
Decision Tree 
Jeremy Prince 

Uses an iterative 
decision making 
process to adjust 
catch limits 
Can be qualitative 
or data driven 

Annual Catch 
Limit (ACL) 
Adjustment 

Does not 
give an 
estimate of 
biomass or 
fishing mor-
tality 

Size composition data 
Estimates of SPR 
based on an exten-
sion of the Beverton-
Holt Life History Invar-
iance Model 

Short-term: can be 
used in a qualitative 
form to refine ACLs 
Long-term: can be-
come more complex 
with additional data 

Marine Reserve 
Based Decision 
Tree 
Jono Wilson 

Uses an iterative 
decision making 
process to adjust 
catch limits 
Utilizes fishing mor-
tality and SPR 
based reference 
points 

ACL adjustment Does not 
give an 
estimate of 
biomass 
Does not 
calculate 
MSY 

Length frequency data 
from inside and out-
side of marine re-
serves 
Basic life history infor-
mation (growth, mor-
tality, age or length at 
reproductive maturity) 
Selectivity of fishing 
gear 

Short-term: can be 
used with minimal 
time series data to 
refine ACLs 
Long-term: collects 
size structure and 
catch per unit effort 
data to support stock 
synthesis models in 
the long-term 

Density Ratio 
Control Rule 
(DRCR) 
Elizabeth  
Babcock 

Restrains fishing 
effort to a level that 
would be sustaina-
ble 
Uses ratio of densi-
ties inside and out-
side of marine re-
serves as a metric 
for the impact of 
fishing 

ACL adjustment 
Effort adjust-
ment 

Does not 
provide 
estimates of 
SPR or 
other met-
rics for fish-
eries man-
agement 

Monitoring data from 
inside and outside 
marine reserves 
Well established ma-
rine reserves 
Does not require 
catch data 

Long-term: Can man-
age fishing effort at 
sustainable levels, 
without catch data, to 
achieve target popula-
tion densities 

Ecological Risk 
Assessment 
for the Effects 
of  
Fishing
(ERAEF) 

Provides a compre-
hensive risk assess-
ment and identifies 
risk-prone stocks 
Identifies and com-
piles available data, 
and highlights data 
needs 
Provides an avenue 
for stakeholder 
engagement 

Identification of 
high-risk stocks 
Guidance on 
how to direct 
limited re-
sources 
Comprehensive 
database 
Insight into 
appropriate 
methods for 
quantitative 
assessments 

Does not 
provide 
ACLs 

Level 1: fishermen 
and expert knowledge 
Level 2: some biologi-
cal information and 
available existing data 
Level 3: requires 
quantitative data to 
support method based 
assessment 

Short-term: provides 
risk assessment and 
guidance for manage-
ment and data collec-
tion priorities 
Long-term: Contrib-
utes to ecosystem-
based fisheries man-
agement 
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month et al. 2010, Costantini et al. 2011). FST is derived 

from the inbreeding coefficient and has been used as an 

estimate of gene flow among populations (Neigel 2002). 

While FST as a concept is familiar to most ecologists, new 

and more robust methods of estimating gene flow among 

populations are now being used (Neigel 2002, Marko and 

Hart 2011). Regardless of the method, estimates of gene 

flow among populations, when coupled with circulation 

patterns and habitat distributions, provide valuable 

information on the dynamics of connectivity among 

populations (Cowen et al. 2007) and on the source/sink 

relationships among the local populations that comprise the 

metapopulation (Kritzer and Sale 2006) for that species. 

Patterns of connectivity are an important consideration 

in the effective management of living marine resources 

(Cowen et al. 2007). Most marine populations, especially 

relatively sessile species, are structured as metapopulations 

composed of a network of local populations that are more 

or less connected to one another (see Kritzer and Sale 2006 

for an extensive overview). The vectors of connectivity are 

commonly, though not always, the larval life stage. Those 

pathways of connectivity appear to be more complex than 

previously thought. For example, Caribbean spiny lobsters 

(P. argus) have historically been considered to freely 

exchange larvae throughout the Caribbean Sea and the 

Gulf of Mexico. Recent research suggests otherwise, and 

behavioral characteristics of the larvae may substantially 

limit their dispersal. Outcomes from a coupled biophysical 

model predicted that lobster larvae exhibiting ontogenetic 

vertical migration generally settled < 400 km from their 

spawning site whereas passive larvae settled > 1000 km 

away (Butler et al. 2011). Constraints to larval dispersal act 

not only on the species inhabiting the reef but on the coral 

species providing the essential reef structure (Baums et al. 

2006). Patterns of connectivity, and factors influencing 

those patterns, are important features of coral reef commu-

nities and may be amenable to management efforts 

(McCook et al. 2009). 

With the development of advanced SCUBA tech-

niques, there is increasing awareness of the distribution, 

abundance, and potential importance of mesophotic coral 

reef ecosystems throughout the U.S. Caribbean. Mesopho-

tic reefs are those that occur in light-limited situations, 

generally at depths > 30 m (Locker et al. 2010, Garcia-Sais 

2010). It has been hypothesized that these mesophotic reefs 

may provide a refuge for members of shallow water reef 

communities that are suffering due to local and global-

scale anthropogenic stressors (Bongaerts et al. 2010), 

although differences in community structure between 

shallow and deep reefs (Garcia-Sais 2010) suggest that the 

rescue effect may be taxonomically limited. Results from a 

genetic study also suggest limited connectivity between 

deep and shallow reefs for the red coral Corallium rubrum 

(Costantini et al. 2011), and there is evidence that commu-

nity composition differs between shallow and deep reefs 

(Kahng et al. 2010). It is evident that mesophotic reefs and 

the communities they support are common constituents of 

U.S. Caribbean waters (Locker et al. 2010). It is therefore 

imperative that the importance of these habitats as sources 

of recruits for shallow-water reef populations and as sites 

for commercial and recreational harvest be ascertained and, 

in the case of harvest activities, that appropriate manage-

ment regimes are put in place prior to increased exploita-

tion. Again, already available data on the known and 

predicted locations of mesophotic reefs in U.S. Caribbean 

waters provide a start point for these initiatives (Locker et 

al. 2010). 

Information on two-dimensional (surface) and three-

dimensional hydrodynamic patterns in the U.S. Caribbean 

are also available. Hydrodynamic influences on larval 

dispersal patterns may be extremely complex, influenced 

both by predictable advective processes and by chaotic 

diffusive processes (Arnold et al. 2005, Hitchcock et al. 

2008). Surface-current studies have been integrated with 

larval fish distribution data (Gerard et al. Undated, Lamkin 

et al. Undated, Smith et al. 2008) in an effort to predict 

linkages among spawning sites and settlement sites. Those 

studies provide valuable information on general biological 

oceanographic patterns, but a full depiction of larval 

transport patterns may be limited by the surface oriented 

nature of these studies relative to the three-dimensional 

distribution of larval reef fish (Irisson et al. 2010). The 

importance of a three-dimensional approach to a complete 

understanding of local-scale larval dispersal patterns is 

apparent from the work of Cherubin et al. (2011), who 

showed that surface currents advect larval red hind 

(Epinephelus guttatus) away from the spawning grounds 

but that many of those larvae are returned within 8-10 days 

to the vicinity of the spawning site via a combination of 

downwelling and subsurface currents opposing surface 

current patterns. Hydrodynamic studies such as these 

provide valuable information regarding connectivity and 

the location of source versus sink populations of managed 

marine species. Those outcomes are directly applicable to 

siting and management of marine reserves and to the 

spatial allocation of fishing effort. The latter is of particu-

lar importance in a management context because a viable 

management strategy is to focus fishing effort on sink 

rather than source populations in an effort to ensure the 

continued reproductive viability of the population. In that 

Table 3. Estimated Ne for populations of mutton snapper (Lutjanus analis) from various sites in Florida and 
the U.S. Caribbean. STX =  St. Croix, USVI; STT = St. Thomas, USVI; PRE = Puerto Rico east coast; PRW 
= Puerto Rico west coast; FL Keys = Florida Keys. See source manuscript for specific sampling locations. 

Species STX STT PRE PRW FL Keys Source 

Mutton Snapper 341 922 828 646 1066 Carson et al. 2011 
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within the context of ocean observing systems (http://

www.marine.usf.edu/flcoos/docs/arnold_meeting1.pdf). 

Recent publications suggest that this need is recognized 

worldwide (Gibbs 2012). The idea is that biological data 

needs to be acquired with the same temporal and spatial 

resolution as physical data (e.g., temperature, salinity, 

wind speed and direction) that presently characterizes most 

ocean observing assets. Integration of biological and 

physical data at highly resolved spatial and temporal scales 

would create new opportunities for populating biophysical 

models, mapping linkages among populations and habitats, 

identifying source/sink relationships and the temporal 

nature of those relationships, and ultimately developing 

fine-scale and targeted indicators of ecosystem response to 

management actions. 

 

SUMMARY AND CONCLUSIONS 

Commercial and recreational fisheries are integral 

components of the economy and culture of U.S. Caribbean 

communities (Stoffle et al. 2009). Fishing activities will 

continue into the foreseeable future, despite their potential 

negative impacts on Caribbean coral reef communities. 

This creates a challenge for the management community in 

the U.S. Caribbean, including both federal and state 

entities, to devise management approaches that maintain 

sustainable fisheries and healthy fishing communities 

while ensuring that the coral reef ecosystem upon which 

these fisheries (and the communities they support) depend, 

regain and maintain ecological viability. To achieve this 

goal will necessitate a broad-based and integrated approach 

to fisheries management. 

Numerous monitoring and research studies have been 

completed, are underway, or are proposed for the marine 

waters of the U.S. Caribbean, and some of those studies 

have been discussed in the preceding paragraphs. Similar-

ly, much effort is being applied to better understanding 

terrestrial activities that influence the marine realm 

although that area of research has not been addressed in 

this document. Efforts such as NOAA’s Caribbean 

Strategy and NOAA in the Caribbean are moving forward 

with efforts to increase communication among those 

involved for the purpose of better integrating effort and 

outcomes. Fisheries management needs to become more 

involved in these integrative efforts, and this document 

outlines some of the many opportunities that exist in that 

regard. These are critical opportunities that cannot be 

missed, both because the health of the ecosystem requires 

it and because the taxpayers footing the bills for these 

efforts deserve it. 

What we discuss herein is an ecosystem-based 

approach to fisheries management in the U.S. Caribbean. 

However, we consider this a bottom-up approach in 

contrast to the top-down approach of modeling opportuni-

ties such as Atlantis (http://atlantis.cmar.csiro.au/) which 

establish the requirements for input data and then chal-

lenge researchers and managers to acquire the data 

regard, it is necessary to understand the location of source 

and sink populations as well as the dynamics of those 

populations. Specifically, dynamic source/sink relation-

ships (Bert et al., In preparation), in which the relative 

value of each local population changes rapidly (e.g., 

between spawning events) would be less amenable to 

targeted effort allocation strategies than would stable 

source and sink populations for which the managers can 

have confidence that local sink populations make little 

contribution to future recruitment and can therefore be 

more intensively harvested than can source populations 

which provide the vast majority of successful recruits. 

 

Management Response Indicators 

Once a management change is effected, it is necessary 

to be able to determine if the desired outcome of that 

management change was achieved. In the most direct 

sense, population assessments would provide the answer 

by comparing abundance estimates obtained prior to 

implementation of the new management regime with 

similar estimates obtained following the change. While this 

approach gives valuable information at the species level, it 

provides little if any information regarding the response of 

the coral reef community. To achieve the latter purpose, 

indicators of ecological response could be employed. 

Various indicators are being employed in the U.S. 

Caribbean to monitor and evaluate changes in coral reef 

ecosystem health (US EPA 2011) and at least some of 

these have direct application to assessment of fishery 

management actions. For example, the Caribbean Fishery 

Management Council recently reduced the allowable take 

of parrotfish from EEZ waters surrounding St. Croix, 

USVI, by an estimated 30+ percent in an effort to increase 

grazing rates and thereby increase the availability of 

critical habitat for settling propagules of threatened 

Acroporid corals (CFMC 2011a). Knowing that parrotfish 

abundance has increased in response to this action is 

important and can be determined via population assess-

ment assuming the necessary data are available, but the 

assessment outcome provides no information regarding 

changes in abundance of critical Acropora spp. settlement 

substrate in response to that action. Instead, abundance of 

critical settlement substrate, or an index of that abundance, 

needs to be directly monitored as an indicator of ecosystem 

response to management action. 

There are precedents regarding the application of 

ecosystem indicators as a means of monitoring the 

response of targeted fisheries species (Volety et al. 2009) 

as well as advice regarding the selection of indicators to be 

utilized for monitoring the success of management actions 

(Rice and Rochet 2005, Tulloch et al. 2011). These 

capabilities need to be brought to bear on questions of 

ecosystem response to fishery management actions, and 

additional capabilities need to be developed. The first 

author has been a long-time advocate of developing 

biological sensors for research and monitoring applications 
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necessary to populate the model. Modeling remains an 

ideal goal, and efforts to acquire the extensive data 

necessary to populate such models should continue. The 

bottom-up approach described herein instead focuses on 

utilizing already available data to maximize our under-

standing of the potential impacts and reverberations of 

management decisions. This approach acknowledges the 

huge gaps in knowledge regarding fisheries and ecosys-

tems in the U.S. Caribbean and appreciates the length of 

time and level of effort that will be required to fill those 

gaps. Unfortunately, Caribbean coral reefs are in peril, and 

action needs to be taken now. Thus, we argue that while 

knowledge is always an upward curve, we can’t afford to 

wait until the asymptote is reached but instead need to act 

now using all of the information at hand. Certainly, as 

more data become available it will be important to include 

those data in an iterative approach. Additionally, the 

approach described here should provide value in determin-

ing how limited research and monitoring funds should be 

allocated. Integrated management efforts are being applied 

throughout the Caribbean basin, and both the fisheries and 

the coral reef communities upon which they rely will 

benefit from fully integrating fishery management into 

those efforts. 
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