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Self-Path: Self-supervision for Classification of
Pathology Images with Limited Annotations

Navid Alemi Koohbanani, Balagopal Unnikrishnan, Syed Ali Khurram,

Pavitra Krishnaswamy and Nasir Rajpoot, Senior Member, IEEE

Abstract— While high-resolution pathology images lend
themselves well to ‘data hungry’ deep learning algorithms,
obtaining exhaustive annotations on these images for
learning is a major challenge. In this paper, we propose a
self-supervised convolutional neural network (CNN) frame-
work to leverage unlabeled data for learning generalizable
and domain invariant representations in pathology images.
Our proposed framework, termed as Self-Path, employs
multi-task learning where the main task is tissue classifi-
cation and pretext tasks are a variety of self-supervised
tasks with labels inherent to the input images. We introduce
novel pathology-specific self-supervision tasks that lever-
age contextual, multi-resolution and semantic features in
pathology images for semi-supervised learning and domain
adaptation. We investigate the effectiveness of Self-Path
on 3 different pathology datasets. Our results show that
Self-Path with the pathology-specific pretext tasks achieves
state-of-the-art performance for semi-supervised learning
when small amounts of labeled data are available. Further,
we show that Self-Path improves domain adaptation for
histopathology image classification when there is no la-
beled data available for the target domain. This approach
can potentially be employed for other applications in com-
putational pathology, where annotation budget is often lim-
ited or large amount of unlabeled image data is available.

Index Terms— Computational pathology, Limited annota-
tion budget, Semi-supervised learning, Domain adaptation.

I. INTRODUCTION

THE recent surge in the area of computational pathology

can be attributed to the increasing ubiquity of digital slide

scanners and the consequent rapid rise in the amount of raw

pixel data acquired by scanning of histology slides into digital

whole-slide images (WSIs). These developments make the area

of computational pathology ripe ground for deep neural net-

work (DNN) models. In recent years, there have been notable
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successes in training DNNs for pathology image analysis and

automated diagnosis of disease in the histopathology domain

[1]. The performance and generalizability of most DNNs is,

however, highly dependent on the availability of large and

diverse amounts of annotated data. Although the use of digital

slide scanners have made large amounts of raw data available,

development of DNN based algorithms remains bottlenecked

by the need for extensive annotations on diverse datasets.

In pathology, annotation burden can pose a large problem

– even more so when compared to natural scene images.

WSIs are by nature high resolution images (sometimes with

slide dimensions as large as 200,000 × 150,000 pixels) –

this hinders exhaustive annotations. For even simple use cases

like detecting tumor regions or isolated tumor cells in WSIs,

pathologists annotating the data need to look at regions of

the tissue at multiple levels of magnification. So, even simple

labeling of regions of interest can be quite demanding. This

issue is compounded by the fact that the whole image can

only be annotated part by part owing to its large size. Further,

the annotation effort requires expert domain knowledge and

significant investment on the part of specialized pathologists.

To overcome these challenges, when training DNNs on new

pathology image datasets, it would be desirable to pursue one

or both of the following strategies: (a) labeling small amounts

of the new dataset and making use of the larger pool of the

unlabeled data, and/or (b) using existing labeled datasets which

closely match the new dataset.

For strategy (a), semi-supervised deep learning approaches

that learn with small amounts of labeled data and leverage

larger pools of unlabeled data to boost performance can be

employed. These approaches have been widely demonstrated

in the computer vision community for natural scene images.

Particularly popular techniques include Mean Teacher [2]

and Virtual Adversarial Training (VAT) [3]. Recently, these

approaches have also been applied to the area of compu-

tational pathology to address tasks such as clustering [4],

segmentation [5] and image retrieval [6]. However, due to the

high dimensionality of the images, the multi-scale nature of

the problem, the requirement of contextual information and

texture-like nature of sub-patches extracted from slides, the

direct translation of popular semi-supervised algorithms into

pathology classification tasks is not feasible.

For strategy (b), domain adaptation approaches that transfer

knowledge from existing resources for related tasks to the

classification task-at-hand can be employed. However, due to
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variations in tissue, tumor types, and stain appearance during

image acquisition, different pathology image datasets appear

quite distinct from one another. In addition, for some rare

tissue or tumor types, there may be no annotated datasets

available for such knowledge transfer. Hence, direct translation

of existing domain adaptation algorithms which work for

natural vision images may not be possible. Yet, unlabeled data

for related tasks are largely available and are less prone to

bias [7]. Hence, when dealing with limited annotations, such

unlabeled data can be used to capture the shared knowledge or

to learn representations that can improve model performance.

To address the dual challenges of low annotations and

domain adaptation in histopathology, it is possible to use unla-

beled data in a self-supervised manner. In this setup, the model

is supervised by labels that come inherently from the data itself

without any additional manual annotations. These labels can

represent distinct morphological, geometrical and contextual

content of the images. Models trained on these ‘free’ labels

can learn representations that can improve performance for

a variety of tasks such as classification, segmentation and

detection [8]. Self-supervision tasks can be used together with

the main supervised task in a multi-task setup to improve per-

formance for semi-supervised learning and domain adaptation

[9]. However, self-supervised tasks proposed in the literature

so far are mainly based on characteristics of natural scene

images, which are very different from histology images. For

instance, common self-supervision tasks focus on predicting

the degree of rotation, flipping, and/or the relative position of

objects. While these are meaningful concepts for natural scene

images, they do not carry much relevance for histopathology

images. Specifically, while the degree of rotation could help

to also learn semantic information present in a natural image,

it would not make sense for pathology images because they

have no sense of global orientation [10].

In this paper, we propose the Self-Path framework to

leverage self-supervised tasks customized to the requirements

of the histopathology domain, and enhance DNN training in

scenarios with limited or no annotated data for the task at

hand. Our main contributions are summarized as follows:

• We introduce a generic and flexible self-supervision based

framework, Self-Path, for classification of pathology im-

ages in the context of limited or no annotations.

• We propose 3 novel pathology pathology specific self-

supervision tasks, namely, prediction of magnification

level, solving the magnification jigsaw puzzle and pre-

diction of the Hematoxylin channel, aimed at utiliz-

ing contextual, multi-resolution and semantic features in

histopathology images.

• We conduct a detailed investigation on the effect of var-

ious self-supervision tasks for semi-supervised learning

and domain adaptation for three datasets.

• We demonstrate that Self-Path achieves state-of-the art

performance in limited annotation regime (when 1-2%
of the whole dataset is annotated) or even when no anno-

tations are available (in the case of domain adaptation).

A. Related Work

Semi-supervised Learning: Semi-supervised deep learning

approaches are widely studied in the computer vision litera-

ture [11]. Popular methods utilize forms of pseudo labelling

and consistency regularization, and utilize small amounts of

labeled data alongside larger pools of unlabeled data for

learning. Pseudo-labeling approaches [12] use available labels

to train a model and impute labels on the unlabeled samples

which are in turn used in training. MixMatch extends pseudo-

labeling by adding temperate sharpening along with the mix-

up augmentation [13] . Consistency-based methods regularize

the model by ensuring stable outputs for various augmenta-

tions of the same sample. These can be done by enforcing

consensus between temporal ensembles of network outputs

like in Pi-Model [14], or between perturbed images fed to

a network and its EMA averaged counterpart like in Mean

Teacher [2]. Virtual adversarial training(VAT) [3] generates the

perturbed images in an adversarial fashion to smooth the mar-

gin in the direction of maximum vulnerability. These methods

ensure generalizability against significant image perturbations,

move the margin away from high-density regions, and enable

strong performance on benchmark natural scene image tasks

with low annotation budgets.

However, semi-supervised learning has not been sufficiently

explored in pathology image analysis. At the time of this

writing, only 6 papers investigate semi-supervised learning for

the histopathology domain. In [5], Li et. al proposed an EM-

based approach for semi-supervised segmentation of histology

images. [4] proposed a cluster based semi-supervised approach

to identify high-density regions in the data space which were

then used by supervised SVM in finding the decision boundary.

Jaiswal et al. [15] used pseudo-labels for improving the

network performance for metastasis detection of breast cancer.

Su et al. [16] employed global and local consistency losses for

mean teacher approach for nuclear classification. Shaw et. al

[17] also proposed to use pseudo-labels of unlabeled images

for fine-tuning the model iteratively to improve performance

for colorectal image classification. Deep multiple instance

learning and contrastive predictive coding were used together

in [18] to overcome the scarcity of labeled data for breast

cancer classification. Yet, there is scope for improvement to

close the gap between fully supervised baselines and semi-

supervised methods employing just a few labeled pathology

images.

Domain Adaptation: Domain adaptation methods focus

on adapting models trained on a source dataset to perform

well on a target dataset. Leading-edge techniques mainly use

adversarial training for aligning the feature distributions of

different domains. Popular domain-adversarial learning-based

methods [19], [20] use a domain discriminator to classify the

domain of images. These methods play a minimax game where

the discriminator is trained to distinguish the features from

the source or target sample, while the feature generator is

trained to confuse the discriminator. [21] employed adversarial

learning and minimized Wassertein distance between domains

to learn domain-invariant features. Image-translation methods

minimize the discrepancy between the two domains at an
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image-level [22]. In pathology, Ren et al. [23] employed

adversarial training for domain adaptation across acquisition

devices (scanners) in a prostate cancer image classification

task. [24] used CycleGAN to translate across domains for

a cell/nuclei detection task. [25] introduced a measure for

evaluating distance between domains to enhance the ability

to identify out-of-distribution samples in a tumor classifica-

tion task. Yet, most practical domain adaptation techniques

require labeling of target domain data, and the applicability

of state-of-the-art unsupervised domain adaptation approaches

for histopathology is yet to be widely established.

Self-Supervision: Self-supervision employs pretext tasks

(based on annotations that are inherent to the input data) to

learn representations that can enhance performance for the

downstream task [8]. Autoencoders [26] are the simplest self-

supervised task, where the goal is to minimize reconstruction

error and the proxy labels are the values of image pixels. Other

self-supervised tasks in the literature are image generation [8],

inpainting [27], colorizing grayscale images [28], predicting

rotation [29], solving jigsaw puzzle [30], and contrastive

predictive coding [31]. Perhaps the main difference between

contrastive learning approaches and methods like ours is that

while our method caters to a specific use case domain and

the task at hand is to come up with self-supervision tasks, the

contrastive learning approaches offer the advantage of a more

generic framework for learning representations potentially at

the cost of losing performance in a very specific use case

domain (such as histopathology). Although the classical self-

supervision approaches requires no additional annotations, it

is also possible to leverage small amounts of labeled data

within a self-supervision framework. For example, S4L [9]

showed that the pretext task (e.g., rotation, self-supervised

exemplar [32]) can benefit from small amount of labeled

data alongside larger unlabeled data. Moreover, some works

[33], [34] demonstrated the effect of self supervised tasks

for domain adaptation, where in [34] the effect of various

self-supervised tasks have been shown for domain alignment.

Particularly, solving jigsaw puzzle [34] has been proved to be

a beneficial pretext task for domain generalization.

As there is no large labeled dataset akin to ImageNet for

pretraining in the pathology domain, self supervised learning

offers potential to obtain pre-trained model that preserves

the useful information about data in itself. Although one

recent study [35] explored self-supervised similarity learning

for pathology image retrieval, much of the self-supervision

literature is focused on computer vision applications. A key

challenge in applying self-supervision to pathology-specific

applications is to define the pretext task that will be most ben-

eficial. As such, systematic analysis and derivation of pretext

tasks customized for a range of histopathology applications

would be desirable.

II. PROBLEM FORMULATION

We now define the problem of semi-supervised learning

and domain adaptation for pathology image classification.

Consider a whole slide image (WSI) that is comprised of a

number of disjoint or overlapping ‘patches’. We denote an

input image or ‘patch’ as x and its associated class label as

y.

a) Semi-supervised Learning: We consider a set of nl

limited labeled images SL = {(xl
i, yi)}

n
i=1l, and a set of

ml >> nl unlabeled images SU = {(xu
i )}

m
i=1l. The semi-

supervised framework seeks to leverage the large pool of

unlabeled images in SU to enhance the generalizability of

learning with fewer labeled images in SL. Generally, in the

semi-supervised setting, both SL and SU are from the same

distribution.

b) Domain Adaptation: We define a source domain S

comprising a set of ηs labeled images Ds = {xs
i , y

s
i }

ηs

i=1
.

Likewise, we have a target domain T comprising a set of ηt
unlabeled images Dt = {xt

i}
ηt

i=1
. Both source and target do-

mains have the same labels. Further, source and target domains

have related task characteristics, but their data distributions are

distinct.

III. METHODS

Our proposed Self-Path framework is depicted in Figure 1.

To address label scarcity for the main classification task

(main task), Self-Path leverages self-supervision and informs

the supervised learning for the main task with the self-

supervised learning for pretext tasks. Further, our proposed

framework employs a multi-task learning approach to learn

class-discriminative and domain-invariant features that would

generalize with limited annotated data. Specifically, Self-Path

(a) can leverage one or more pathology-specific or pathology-

agnostic pretext tasks, (b) is amenable to adversarial or non-

adversarial training, and (c) allows flexibility to incorporate

semi-supervised, generative learning and/or domain adaptation

approaches. We now formally describe the multi-task learning

objective and detail the pretext tasks that are used along with

the main task.

A. Multi-task Learning

Our proposed approach trains the model using the main

and pretext tasks in conjunction. The framework comprises a

shared encoder which learns features that are common to both

the pretext task and the main task. Each task usually has a

separate head connected to the shared encoder and learning

for all tasks is optimized simultaneously. Formally,

argmin
θc,θe, θp1 ,..θpk

1

nl

nl∑

i

Lc(F
θc
c (F θe

e (xl
i)), yi)

+ 1

nl

K∑

k=1

αpk

nl
∑

i

Lpk
(F

θpk
pk (F θe

e (xl
i)), r

l
ik)

+ 1

nu

K∑

k=1

αpk

nu∑

i

Lpk
(F

θpk
pk (F θe

e (xu
i )), r

u
ik)

, (1)

where K is the number of pretext tasks, r is the label for

pretext task; Lc and Lpk
are the losses for the main and pretext

tasks, respectively; Fe, is the shared encoder, Fc is the function

for main task and Fpk
is the function of kth pretext task;

θc, θe and θpn
are parameters of main task classifier, shared

encoder and pretext tasks, respectively; αpk
indicates weights

for different tasks; and nl and nu indicate the number of
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Fig. 1. Overview of Self-Path : The framework employs self-supervised pretext tasks. Pretext tasks can be added atop a shared encoder to
learn useful representations and enhance semi-supervised learning or domain-adaptation. Green, red and blue lines indicate the flow of labeled,
unlabeled and generated images, respectively. Generated images are used only for the generative task.

labeled and unlabeled images, respectively. When this model

is used for semi-supervised learning, the labeled and unlabeled

images come from the same domain. When used for domain

adaptation, the labeled images come from source domain and

unlabeled images come from the target domain.

B. Self-Supervision

The self-supervision utilizes one or more pretext tasks

to leverage information in the unlabeled images and im-

prove performance for the main task. Our setup em-

ploys both pathology-specific and pathology-agnostic self-

supervised tasks. Every pretext task pk is defined by a trans-

formation function gk applied to input x, and an implicit label

rk for the transformed input x̃ = gk(x). Then, the objective

function Lpk
is the objective for learning the self-supervised

classification task that maps x̃ to rk.

C. Pathology-specific Pretext tasks for Self-supervision

Histopathology images can vary in shape, morphology and

arrangement of the nuclei across tissue types and disease

conditions. Learning these features or semantic representations

of these features can enable generalizable classification models

that can more effectively transfer knowledge across domains.

Therefore, we design pathology-specific pretext tasks that cater

to morphology, context and shapes of nuclei as detailed below

:

1) Magnification Prediction: Histopathology images are of-

ten generated and viewed at various standard magnification

levels. Considering an image of fixed size, higher magnifi-

cations provide more details but less context, whereas lower

magnifications allow less details but more context of tissue

region. Pathologists assessing an image tend to infer important

semantic information by iterating between detail and context –

i.e., by zooming in and out on WSIs or by looking at different

magnification levels 1. In other words, magnification levels

are implicitly correlated with important semantic information.

Therefore, to enable the classification model to learn semantic

information, we set up a pretext task focused on estimating

magnification level of the image. Specifically, the pretext task

focuses on classifying the input image to 1 of 4 magnification

levels (40×, 20×, 10× and 5×). We extract images or patches

from WSIs at these magnification levels Figure 2 (A). If a

magnification level is not available, we obtain the patches by

(bi-linear) resizing patches from other magnification levels that

are available. For example, to obtain 128 × 128 patches at

5×, we extract patches of 1024 × 1024 at 40× and down-

sample by factor of 4. We then feed the extracted images to the

network, which learns by minimizing a cross-entropy objective

function.

2) Solving Magnification Puzzle (JigMag): A basic problem

in pattern recognition is the jigsaw task of retrieving an

original image from its shuffled parts [36]. Convolutional

neural networks (CNNs) have been employed to solve the

jigsaw puzzle [7]. To solve the jigsaw puzzle, it is known that

the network should learn the global semantic representation of

images. This is achieved by concentrating on the differences

between tiles and their positions while avoiding low level

statistics [7]. In histopathology, objects are smaller compared

to natural scene images, and there is no specific ordering

among the objects. For example, the relative positions of

different parts of dog in a natural scene image is consistent,

however we do not have a similar concept in histopathology.

Therefore, solving the jigsaw puzzle is by itself not sufficient

1Magnification levels and their corresponding resolutions vary for each
scanner. However by observing one particular magnification of an image,
other magnifications can be perceived easily for the same scanner.
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Fig. 2. (A) Whole slide images (WSI) in pathology slides organized hierarchically - each level trades-off the degree of detail against the availability
of contextual information. (B) Pathology specific pretext tasks created for Self-Path.

for learning useful semantic representations in histopathology.

Instead, we propose to create a puzzle to reflect the magni-

fication and context characteristics of histopathology images.

Conceptually, classification can be enhanced by having the

network implicitly learn object size and associated contextual

information. Hence, we propose a pretext task focused on

solving this magnification and context puzzle. In this puzzle,

an image consists of image tiles with various magnifications

and the network is tasked with predicting their arrangement.

This set up caters also to the need to classify images containing

objects with varying shapes and sizes.

Specifically, we define v as a vector of image orders in a

2×2 grid where each grid includes a specific magnification.

For example v = [0, 1, 2, 3] defines that image with

magnification 5× is on top left corner, 10× is on top right

and so on. We consider 24 different orders of magnification. To

construct our proposed jigsaw puzzle, we first extract patches

of size 512 × 512 at 40× magnification then each part of

the puzzle is constructed by down-sampling and or center-

cropping to the size of 64 × 64, where each reflects specific

context and resolution of the the original extracted patch. This

pretext task employs a cross entropy loss function.

3) Hematoxylin Channel Prediction: Commonly, histopathol-

ogy images are stained with Hematoxylin and Eosin (H&E).

In H&E images, hematoxylin turns the palish color of nuclei

to blue and eosin changes the color of other contents to pink.

Color deconvolution methods have been applied to specifically

identify cell nuclei in H&E images. Therefore by extracting

hematoxylin channel, one can locate the nuclei and their

approximate shape. Pathologists often use the location, shape

and morphology of nuclei in the hematoxylin channel to

diagnose or classify histopathology images (especially for

malignant features).

Therefore, one way to enhance learning of useful represen-

tations is to enable the classifier to identify the nuclei and their

associated characteristics. We choose to define a pretext task

focused on predicting the hematoxylin channel from H&E. We

use the approach in [37] to extract the hematoxylin channel in

our images and define the ground truth for the self-supervision

task. We scale the values of hematoxylin channel in the range

[0,1] and employ a mean absolute loss for optimizing this task.

D. Pathology-agnostic Self-supervision Tasks

The literature has investigated various pretext tasks like

rotation prediction, flipping, image reconstruction [8], [29].

These were however, not tailored for pathology data. Here, we

systematically study and benchmark efficacy of these pretext

tasks for semi-supervised learning and domain adaptation in

histopathology applications.

1) Prediction of Image Rotation: For predicting rotation, the

input image is rotated with degrees of 0◦, 90◦, 180◦ and 270◦

corresponding to the labels 0, 1, 2 and 3, respectively [29].

2) Prediction of Image Flipping: The label assigned to the

horizontal flipping of image is 1 and 0 if not flipped.

3) Image Reconstruction with Autoencoder: For reconstruct-

ing the image, a convolutional decoder is used on top of the

feature extractor [26], similar to one for predicting hema-

toxylin channel however 3 channels is considered for output.

4) Real vs Fake Prediction (Generative): The generative

learning literature has shown that predicting whether an im-

age is real or fake can help to learn useful representations

for classification [38]. Therefore, we introduce a generative

pretext task focused on real vs. fake prediction. To learn this

pretext task, we train a generative network in an adversarial

fashion by using unlabeled samples. While one could use

a shared encoder to extract features, we found that it is

easier to employ a simpler encoder/discriminator similar to

the generative adversarial network (GAN) in [38].
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Formally, real images are drawn from distribution Dreal,

and the generative function learns the distribution Dgen where

the goal is to align this two distributions (Dgen ∼ Dreal).

The generator G(.) takes predefined noise variables z from a

uniform distribution Dnoise. The objective function is defined

as:

Ldis = −Ex∼ Dreal
[log[1− FDis(Fe(x))]]

−Ex∼ Dgen
[log[FDis(Fe(x))]]

Lgen = ‖Ex∼Dreal
[Fe(x)]− Ez∼Dnoise

[Fe(G(z))]‖
1

,

(2)

where Lgen and Ldis are the generator and discriminator

losses, respectively. Fe(x) is the feature from intermediate

layer of feature extractor (last layer before fully connected

layers) and FDis(Fe(x)) is the output of the discriminator

(fake/real head).

5) Domain Prediction: In order to learn useful representa-

tions to facilitate domain adaptation, it is useful to have a

network learn the common features between source and target

domains. Therefore, we introduce a pretext task to predict if

the image belongs to source or target domain, and employ it in

combination with other pretext tasks for the domain adaptation

experiments.

For this pretext task, we employ a domain adversarial

neural network (DANN) [20]. DANN includes a minimax

game where discriminator Hd (domain prediction head) is

trained to distinguish between the source and target domain,

and the feature extractor is simultaneously trained to con-

fuse the discriminator. Therefore, to extract the common or

domain-invariant features, the parameters of feature extractor

θe (shared encoder in the multi-task setup) are learned by max-

imizing the loss of domain discriminator Ld, while parameters

of the domain discriminator are learned by minimizing the loss

of domain discriminator. Parameters of the main task Fc are

also minimized to ensure good performance on the main task.

Formally:

argminmax
θc,θe θd

1

ηs

ηs∑

i=0

Lc(F
θc
c (F θe

e (xs
i )), yi) +

− αd

ηs+ηt
(
ηs+ηt∑

i=1

Ld(F
θd
d (F θe

e (xi)), di)

, (3)

where di is the domain label for xi and αd is a coefficient for

discriminator loss. In practice, we apply domain confusion us-

ing the Gradient Reversal Layer (GRL), where the gradients of

Ld with respect to the gradients of feature extractor parameters

θe (∂Ld

∂θe
) are reversed during back-propagation.

IV. EXPERIMENTS

A. Datasets

1) Camelyon16: We used the Camelyon 16 challenge

dataset [39] that contains 399 H&E stained WSIs obtained

on patients with breast cancer metastasis in the lymph nodes.

The WSIs were acquired from 2 different centers, namely:

Radboud University Medical Center (RUMC) and University

Medical Center Utrecht (UMCU). RUMC images were gen-

erated by a digital slide scanner (Pannoramic 250 Flash ;

TABLE I

NUMBER OF WSIS AND PATCHES IN EACH DATASET.

Train Validation Test

Camelyon16
WSIs 236 34 129
patches 67054 15586 16562

LNM-OSCC
WSIs 100 14 103
patches 55416 7224 14472

Kather patches 79994 20006 7180

3DHISTECH) with a 20× objective lens (0.243 µm × 0.243

µm) and UMCU images were produced using a digital slide

scanner (NanoZoomer-XR Digital slide scanner C12000-01;

Hamamatsu Photonics) with a 40× objective lens (0.226µm

× 0.226 µm). The tumor regions are exhaustively annotated

by pathologists. We used the official training and testing splits

comprising 270 and 129 WSIs, respectively. We randomly

sampled 34 WSIs of the training set for validation. For our

experiments, we randomly extracted patches from both normal

and tumor regions (Table I).

2) LNM-OSCC: LNM-OSCC is an in-house dataset com-

prising 217 H&E WSIs obtained on patients with Oral Squa-

mous Cell Carcinoma (OSCC). Of these 217 patients, 140 have

metastases in the cervical lymph nodes and 77 do not manifest

metastases in the cervical lymph nodes. The WSIs were

acquired from 2 hospitals using 2 different scanners – (a) 98

WSIs scanned with 40× objective lens using IntelliSite Ultra

Fast Scanner (0.25 µm/pixel) at University Hospital Conventry

and Warwickshire (UHCW), and (b) 119 WSIs scanned at

the School of Medical Dentistry in Sheffield University by

Aperio/Leica CS2 with 20× objective lens ( 0.2467 µm/pixel).

The training set comprises 100 WSIs, the validation set 14

WSIs and testing set 103 WSIs. For those cases in the training

and validation sets that have metastases, a sampling of the

tumor and normal regions were delineated with bounding box

annotations by pathologists. For the testing set, the tumor

regions were exhaustively annotated at the pixel-level.

3) Kather: This dataset contains 107,180 image patches

from H&E stained WSIs comprising human colorectal cancer

(CRC) and normal tissue. For this dataset, only patches were

available (no WSIs).The dataset covers 9 tissue classes: Adi-

pose (ADI), background (BACK), debris (DEB), lymphocytes

(LYM), mucus (MUC), smooth muscle (MUS), normal colon

mucosa (NORM), cancer-associated stroma (STR), colorectal

adenocarcinoma epithelium (TUM). We used the official data

splits comprising 100k patches for training and 7180 patches

for testing. We randomly sampled 20k patches of the training

set for validation.

B. Data Summary

Figure 3 shows some illustrative examples of the different

datasets used in our study. The overall data statistics are shown

in Table I. For Camleyon16 and LNM-OSCC datasets, we

extracted patches from the WSIs, and patches are distributed

equally for each class. For our main task the patch extraction

size is 128 × 128 at 10×. The Kather dataset patches are sized

224 × 224 and we resized to 128 × 128 for our experiments.
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LNM-OSCC dataset Cameyon16 dataset

Image patches from Kather dataset

ADI BACK DEB LYM MUC MUS NORM STR TUM

Fig. 3. Exemplar images of different datasets that are used in this study. Red and green boxes denote the tumor and normal image patches.

C. Experimental Setup

1) Networks: We chose Resnet50 [40] as the feature ex-

traction backbone for all our experiments. The classifier head

consists of adaptive average pooling which is followed by

fully connected layer and softmax. The decoder head for

reconstructing image and predicting hematoxylin channel is

similar to the UNet decoder [41] (Supplementary Material)

without using any skip connections. While using the real

vs fake pretext task for image generation, we utilize the

architecture presented in [38] (Supplementary Material) and

find that this simpler feature extractor allows easy and robust

convergence for the image generator.

2) Implementation Details: When Resnet50 is used as the

shared encoder, we trained the network for 200 epochs. Our

experiments used batch size 64, Adam optimizer, and learning

rate of 10−3. We fed batches of labeled and unlabeled images

to the network separately. Therefore an epoch is defined as

one full step through all the unlabeled images. Since our

self-supervised experiments utilize fewer labeled images than

unlabeled images, the labeled images are repeated in an epoch.

Experiments related to real vs fake prediction used number

of epochs and batch size of 500 and 32, respectively; and

employed Adam optimizer with learning rate of 3 × 10−4.

For training model in multitask setup, we separately input

batches of images for each task to the network and then sum

their losses with their corresponding weights. Finally we back-

propagate the whole loss through the network.

D. Results of Semi-Supervised Experiments

Here, we compare the effect of different self-supervision

tasks for semi-supervised learning. We compare our mod-

els against the popular semi-supervised benchmarks, namely

Mean Teacher [2] and VAT [3]. We also compare with teacher-

student chain [17] (TSchain). TSchain is a recent semi-

supervised approach for histopathology domain, that predicts

the pseudo-labels for the unlabeled data and then uses all

images for iteratively retraining the model. For performance

evaluations, we follow the typical protocol of varying the

annotation budget for the training set while maintaining a fixed

validation set, and reporting AUCs (average across 3 seeds) on

the test set.

1) Results for LNM-OSCC Dataset: We report performance

of each of the self-supervised tasks on LNM-OSCC dataset in

Table II. We have evaluated the model performance in terms of

AUROC (Area Under the Receiver Operating Characteristic)

for different annotation budgets (1%, 4%, 5%, 10% and 20%

of the available WSIs). The semi-supervised approaches train

on a combination of the labeled and unlabeled WSIs. The

supervised baseline is only trained on labeled images without

utilizing any unlabeled images.

We observe from Table II that at very low annotation

budgets, pathology specific self-supervised tasks outperform

the baselines and the pathology agnostic self-supervised tasks.

For instance, at annotation budgets of 1% (1 labeled WSI,

134 labeled patches) and 4% (4 labeled WSIs, 1120 labeled
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TABLE II

LNM-OSCC RESULTS FOR DIFFERENT ANNOTATION BUDGETS. ANNOTATION BUDGET IS DEFINED AS THE PERCENTAGE OF AVAILABLE WSIS

THAT ARE LABELED. THE NUMBER OF PATCHES ASSOCIATED WITH EACH BUDGET ARE INDICATED IN THE PARENTHESES. THE SUPERVISED UPPER

BOUND PERFORMANCE WHEN USING ALL LABELED DATA IS 98.4%.

% Labeled WSIs (No. Patches) 1%(134) 2%(1024) 5%(1880) 10%(3334) 20%(7558)
AUROC(%) AUROC(%) AUROC(%) AUROC(%) AUROC(%)

Baselines
supervised baseline 73.4 ± 2.0 76.1 ± 5.3 85.3 ± 6.3 86.3 ± 2.7 96.3 ± 0.3
mean teacher [2] 75.1 ± 4.5 78.4 ± 5.6 86.2 ± 7.6 91.4 ± 1.2 97.4 ± 0.3

VAT [3] 74.5 ± 5.6 77.4 ± 3.3 85.3 ± 4.3 92.1 ± 1.2 96.5 ± 0.9
TS chain [17] 75.3 ± 2.4 79.3 ± 2.5 85.2 ± 3.1 94.1 ± 1.7 97.2 ± 0.2

Pathology-Agnostic Self-supervised Tasks
rotation 74.5 ± 5.6 76.3 ± 4.2 88.4 ± 1.5 93.2 ± 0.3 96.2 ± 0.1
flipping 74.6 ± 4.0 74.2 ± 5.3 85.3 ± 4.1 91.4 ± 0.4 94.2 ± 0.4
autoencoder 73.0 ± 6.5 75.1 ± 3.5 84.2 ± 3.3 90.3 ± 1.5 94.3 ± 0.2
generative 73.4 ± 7.1 79.3 ± 4.1 90.3 ± 2.4 95.4 ± 0.2 97.1 ± 0.3

Pathology-Specific Self-supervised Tasks
magnification 76.3 ± 4.0 76.6 ± 3.6 87.4 ± 2.3 92.5 ± 0.2 94.1 ± 0.4
JigMag 80.6 ± 3.5 81.8 ± 5.3 89.5 ± 5.4 92.4 ± 0.5 96.5 ± 0.2
hematoxylin 75.3 ± 7.6 80.2 ± 5.3 87.5 ± 1.2 94.4 ± 1.3 97.4 ± 0.5

Best self-supervised 80.6 ± 3.5 81.8 ± 5.3 90.3 ± 2.4 95.4 ± 0.2 97.4 ± 0.5

patches), JigMag task has the best performance. At annotation

budgets of 1% and 2%, Hematoxylin and magnification tasks

outperform pathology agnostic tasks and generative tasks.

When annotation budget increases to 10%, we observe that

the generative task performs much better (AUC 95.4%), sug-

gesting that the generated images can help the classifier to

boost the performance. Overall, our LNM-OSCC experiments

suggest that for limited annotation budgets, pathology specific

pretext tasks are helpful for enhancing the model performance,

with JigMag outperforming other approaches.

2) Results for Camelyon16 Dataset: We report performance

of each of the self-supervised tasks on Camelyon16 dataset in

Table III. We have evaluated the model performance in terms

of AUROC (Area Under the Receiver Operating Characteris-

tic) for different annotation budgets (1%, 2%, 5%, 10% and

20% of the available WSIs). The semi-supervised approaches

train on a combination of the labeled and unlabeled WSIs. The

supervised baseline is only trained on labeled images without

utilizing any unlabeled images.

Similar to LNM-OSCC dataset, pathology specific tasks

outperform other semi supervised methods. In particular, the

JigMag task improves the performance over the supervised

baseline by 13.4%, 11.8% and 6.2% at 1% (2 WSIs), 2%

(4 WSIs) and 5% (8 WSIs) annotation budgets, respectively.

At 1% annotation budget, only magnification and JigMag

outperform mean teacher and supervised baseline. Unlike

LNM-OSCC, the generative model cannot achieve highest

AUROC for any annotation budget, but it’s performance is

competitive with mean teacher and VAT. Similar to LNM-

OSCC, JigMag could achieve highest performance overall, and

the main boost is obtained at very low annotation budgets.

3) Results for Kather Dataset: We report performance of

each of the self-supervised tasks on Kather dataset in Table IV.

Since there are 9 classes in the Kather dataset, Macro AUROC

is used for evaluation of classification performance. Unlike the

other 2 datasets, only patches were available for this dataset,

therefore the annotation budget only reflects the proportion

of the overall patches that is labeled. Further, we observe

that at 2% annotation budget, the performance of supervised

baseline is still high (Macro AUC of 98%). Hence using semi-

supervised approaches would not add much benefit. Hence, we

focus on the very low annotation budget regime where some

degradation of Macro-AUC can be observed for supervised

model – i.e., annotation budgets of 0.1%(100 labeled) and

at 1% (800 labeled images). Moreover, as this dataset does

not include WSIs, we were unable to extract large patches or

patches at different magnificationsand hence could not evaluate

JigMag and magnification self-supervised tasks on this dataset.

From Table IV, we observe that at 0.1% annotation bud-

get, predicting hematoxylin channel as a self-supervised task

improves the performance by 2.8% and 1.2% compared to

the baseline and mean teacher, respectively. At 1% annotation

budget, we see that the various self-supervised tasks can again

improve performance compared to the baseline. Predicting

hematoxylin channel can also give the superior performance,

suggesting that the prediction of rough nuclear segmentations

can be helpful for semi-supervised learning.

E. Domain Adaptation Experiments

We conduct two domain transfer experiments, (i) Came-

lyon16 to LNM-OSCC (Cam16→LNM-OSCC) and (ii) LNM-

OSCC to Camelyon16 (LNM-OSCC→Cam16). In both cases,

we do unsupervised domain transfer, where the source is the

labeled set and the target set is completely unlabeled.

We evaluate our approach against the naive supervised base-

line, and two other domain adaptation methods WDGRL [21]

and DANN [20]. The supervised baseline employs Resnet50

and is trained with source domain data only. WDGRL trains

a domain critic network to estimate the Wasserstein distance

between the source and target feature representations. The

feature extractor network will then be optimized to minimize

the estimated Wasserstein distance in an adversarial manner.

By iterative adversarial training, WDGRL learns feature rep-

resentations invariant to the covariate shift between domains.

DANN is a domain prediction approach based on the GRL

unit and was mentioned in Section III-D.

We report the results obtained with Self-Path (using differ-

ent pretext tasks) and the comparisons with the supervised and
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TABLE III

CAMELYON16 RESULTS FOR DIFFERENT ANNOTATION BUDGETS. ANNOTATION BUDGET IS DEFINED AS THE PERCENTAGE OF AVAILABLE WSIS

THAT ARE LABELED. THE NUMBER OF PATCHES ASSOCIATED WITH EACH BUDGET ARE INDICATED IN THE PARENTHESES. THE SUPERVISED UPPER

BOUND PERFORMANCE WHEN USING ALL LABELED DATA IS 94.2%.

Labeled WSIs (No. Patches) 1%(600) 2%(1000) 5%(2600) 10%(6400) 20%(13540)
AUROC(%) AUROC(%) AUROC(%) AUROC(%) AUROC(%)

Baselines
supervised baseline 68.3 ± 5.1 74.5 ± 5.8 81.2 ± 2.5 88.4 ± 2.3 92.1 ± 0.5
Mean Teacher [2] 73.7 ± 3.8 78.5 ± 2.6 84.5 ± 2.4 92.7 ± 1.9 93.1 ± 0.9
VAT [3] 70.9 ± 5.8 77.4 ± 3.3 81.3 ± 5.2 90.3 ± 2.3 92.8 ± 1.5
TS chain [17] 74.9 ± 6.9 76.9 ± 3.2 83.8 ± 2.1 93.1 ±2.5 93.9 ± 1.3

Pathology-Agnostic Self-supervised Tasks
rotation 69.8 ± 4.8 74.5 ± 3.1 80.4 ± 2.5 90.1 ± 2.0 92.4 ± 2.5
flipping 70.2 ± 6.2 75.4 ± 3.5 81.6 ± 5.1 89.4 ± 0.6 92.3 ± 1.6
autoencoder 70.1 ± 2.4 75.6 ± 4.1 82.3 ± 4.5 90.5 ± 2.3 92.4 ± 1.1
generative 72.5 ± 5.5 77.6 ± 5.4 82.4 ± 7.2 92.6 ± 3.2 93.6 ± 1.5

Pathology-Specific Self-Supervised Tasks
magnification 77.5 ± 3.1 84.6 ± 5.2 85.1 ± 3.6 93.2 ± 3.4 93.4 ± 2.5
JigMag 81.7 ± 3.8 86.3 ± 5.2 87.4 ± 4.5 90.6 ± 4.6 92.8 ± 2.4
hematoxylin 72.8 ± 4.6 78.3 ± 4.5 84.6 ± 3.4 92.3 ± 4.1 93.7 ± 2.5

Best Self-supervised 81.7 ± 3.8 86.3 ± 5.2 87.4 ± 4.5 93.2 ± 3.4 93.7 ± 2.5

TABLE IV

KATHER RESULTS FOR DIFFERENT ANNOTATION BUDGETS.

ANNOTATION BUDGET IS DEFINED AS THE PERCENTAGE OF AVAILABLE

WSIS THAT ARE LABELED. THE NUMBER OF PATCHES ASSOCIATED

WITH EACH BUDGET ARE INDICATED IN THE PARENTHESES. THE

SUPERVISED UPPER BOUND PERFORMANCE WHEN USING ALL LABELED

DATA IS 99.4%.

Labeled WSIs (No. Patches) 0.1%(100) 1%(800)
AUROC(%) AUROC(%)

Baselines
supervised baseline 87.5 ± 2.0 92.5 ± 1.2
mean teacher [2] 89.1 ± 1.5 93.9 ± 0.3
VAT [3] 88.5 ± 1.4 92.6 ± 0.4
TS chain [17] 88.9 ± 0.3 93.5 ± 0.2

Self-supervised tasks
generative 88.4 ± 3.5 92.3 ± 2.6
rotation 87.4 ± 1.6 93.3 ± 0.4
flipping 88.6 ± 0.8 93.0 ± 0.9
autoencoder 89.3 ± 1.3 94.3 ± 1.2
hematoxylin 90.3 ± 0.7 95.1 ± 0.5
Best self-supervised 90.3 ± 0.7 95.1 ± 0.5

domain adaptation baselines in Table V. We observe that the

pathology-specific pretext tasks can help the model outperform

the baseline by a large margin. For Cam16→LNM-OSCC, the

pathology-specific pretext tasks provide more than 10% boost

in AUROC over the supervised baseline. The combination of

all pathology specific pretext tasks achieves the best perfor-

mance. Amongst the individual pretext tasks, JigMag achieves

the best performance (∼2% better than DANN and WDGRL).

Further, we note that the pathology agnostic generative model

also performs well – with 1.9% higher AUROC than WDGRL

and 11% higher AUROC over the supervised baseline. This

suggests that the images from the generator can contribute to

learning useful domain-invariant features as well. We see sim-

ilar trends for LNM-OSCC→Cam16 – where again combining

pathology specific tasks has the best performance and JigMag

provides the second best performance. We highlight that we

have used domain prediction with GRL layer in all non-

generative methods as it improves the performance. Generative

models, owing to adversarial training can still achieve very

high performance, even without GRL.

TABLE V

AUROC RESULTS FOR DOMAIN ADAPTATION

Cam16→LNM-OSCC LNM-OSCC→Cam16
Baselines

supervised baseline 79.53 ± 0.2 63.73 ± 0.5
DANN 89.23 ± 1.5 71.15 ± 0.6
WDGRL 89.64 ± 2.6 72.65 ± 2.2

Pathology-Agnostic Self-supervised Tasks
rotation 86.14 ± 3.4 66.91 ± 4.1
flipping 82.14 ± 3.6 65.95 ± 4.4
autoencoder 89.90 ± 2.8 71.62 ± 2.6
generative 91.54 ± 3.5 74.14 ± 2.7

Pathology-Specific Self-supervised Tasks
magnification 89.69 ± 3.6 73.62 ± 4.1
JigMag 92.34 ± 4.4 74.51 ± 3.6
hematoxylin 90.47 ± 4.5 73.24 ± 3.8
mag+hem+JigMag 92.85 ± 3.6 74.95 ± 3.5

1) WSI Analysis: While the results thus far are reported at

the patch level, it is also useful to consider the WSI-level

performance. For the Cam16→LNM-OSCC domain adapta-

tion task, we now report the WSI-level results for the top

two best performing Self-Path settings i.e., combination of all

pathology specific pretext tasks and JigMag pretext task. We

also provide comparisons with the supervised baseline (source

only), WDGRL, and the pathology agnostic generative pretext

task.

In order to quantify WSI-level performance, we aggregate

patches belonging to a WSI and construct a WSI-level heat

map based on the patch level predictions. For heat map

generation, there are two steps. First, we extract patches of

128 × 128 at 10× magnification with overlap of 50% from

tissue regions of WSIs. Second, we aggregate the prediction

of each patch together to build the final heat map of WSIs.

We then post-process these heat maps to obtain the WSI-

level prediction. The post-processing steps are uniform for

all models in this section, and as follows: we extract 10

morphological and geometrical features from objects within

binarized heat map at three thresholds of 0.25, 0.5 and 0.9.

Then we calculate the mean, stddev, minimum and maximum

of object features for each WSI. Therefore, in total we use

120 features for constructing feature vectors. Afterwards, we
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TABLE VI

CAM16 → LNM-OSCC DOMAIN ADAPTATION RESULTS ON THE

WSI-LEVEL. THE UPPER BOUND PERFORMANCE USING ALL LABELS

FOR TARGET DOMAIN IN SUPERVISED FASHION IS 93.3%.

AUROC(% ) Average Precision(%)

supervised baseline (source only) 75.2 81.7
WDGRL 85.8 91.6
generative 90.4 95.2
JigMag 91.6 96.7
mag+JigMag+hem 91.6 96.3

employ the random forest algorithm for classification of the

features. Finally, we evaluate the model on the test set of

LNM-OSCC.

The results are shown in Table VI. The supervised baseline

has WSI-level AUROC of 75.2% whereas Self-Path with

JigMag pretext task and Self-Path with the combination of

all pathology specific pretext tasks each improve the perfor-

mance by 16.4%. Further, we note that Self-Path with JigMag

improves performance over WDGRL by 2% at the patch-

level and a ∼6% improvement at the WSI-level. This suggests

that the magnification puzzle and the pretext tasks that can

help learn from various image resolutions in a self-supervised

manner enable strong performance boost at WSI-level (beyond

patch-level).

These improvements are also evident in the WSIs overlaid

with the heatmaps, as visualized in Figure 4. This figure shows

that the supervised baseline (source only) model (middle

column) has many false negatives and often misses tumor

regions. However, WDGRL, Self-Path with JigMag, and Self-

Path with generative pretext task can all increase true positives

while decreasing false negatives. We note that WDGRL and

Self-Path with generative pretext task do not perform as well

as Self-Path with JigMag - mainly because they suffer larger

number of false positives at the patch-level classification.

V. DISCUSSION

In this section we describe sensitivity analyses and dis-

cuss the model performance by changing the values of loss

weights, decreasing the annotation budget and combing all

pathology specific tasks. Moreover, we conduct an experiment

to show the usefulness of transfer learning using our proposed

self-supervised tasks. For following experiments, we choose

Camelyon dataset. Since the variation of hyperparameters are

studied, it is expected that these trends will be similar on other

dataset.

A. Effect of Loss Weight for Each Task

We consider the task of training with 1% of annotation

budget on Camelyon16 dataset. To understand the effect of loss

weights for each pretext task, we experiment with different val-

ues of α and show the results in Table VII. Overall, assigning

more weights on each task shows better performance. More

precisely, when α is set to 1, maximum value of AUROC is

obtained. Therefore we can conclude when we are using only

one pretext task, the pretext task and the main task should have

similar weight to be effective for semi-supervised learning.

The optimum value of α may change when we use all tasks

Fig. 4. Three WSI samples and their overlaid heatmaps. from top to
bottom, first row: the overlaid ground-truth mask, second row: overlaid
heat map of model predictions when it is trained using only Camlelyon16
data, third row: Overlaid heatmap of WDGRL predictions, fourth row
depicts the overlaid predictions of Self-path using generative task and
the last row shows the heatmaps generated Self-path using JigMag
task. The circle indicates a region which is missed using the supervised
baseline (source only) model and green arrows point to the false positive
regions generated by WDGRL where using generative task and JigMag
task eliminate those regions. Black arrow also shows regions that are
misclassified by generative model but are correctly classified as normal
regions by Jig-Mag. (Best viewed in color, zoom in to see more details)

together which we investigate in the next section. In here,

by choosing the alpha values greater than one, the pretext

task will be dominant. Therefore the main task does not learn

discriminant features for separating the classes. Moreover, we

are interested to see the values of alpha up to one (when it is

similar to the main task).

B. Combining tasks

We now evaluate the effect of the loss weights (α’s) when

combining all pathology specific tasks. We consider the task of

training with 1% and 2% of annotation budget on Camelyon16

dataset, and experiment with different combinations of loss

coefficients. The results, in Table VIII, suggest that assigning

high weights (similar to main task) to all pretext tasks can

degrade the performance. For example, if all tasks are given

α = 1, overall the weights for pretext tasks would be 3× more

than the main task which would cause drop in performance.

However by assigning smaller weight values for each task, we

can achieve better performance. Particularly, best performance

Page 10 of 31



ALEMI KOOHBANANI et al.: SELF-PATH 11

TABLE VII

AUROC PERFORMANCE OF PATHOLOGY SPECIFIC TASKS WITH

DIFFERENT VALUES OF α ON CAMELYON16 DATASET.

α magnification JigMag hematoxylin

1 77.5 ± 3.1 81.7 ± 3.8 72.8 ± 4.6
0.8 77.1 ± 2.8 81.5 ± 3.4 71.3 ± 2.4
0.6 76.4 ± 4.0 78.8 ± 2.6 70.2 ± 3.5
0.5 74.6 ± 3.4 78.4 ± 2.4 70.3 ± 4.6
0.2 72.5 ± 3.7 74.1 ± 4.6 69.5 ± 4.4

TABLE VIII

USING ALL PATHOLOGY SPECIFIC TASKS FOR SEMI-SUPERVISED

LEARNING ON CAMELYON16 DATASET. αmag , αJigMag AND αhem

INDICATE THE LOSS COEFFICIENT FOR MAGNIFICATION, JIGMAG AND

HEMATOXYLIN TASKS, RESPECTIVELY.

αmag αJigMag αhem 1% 2%

1 1 1 79.1 ± 4.5 83.5 ± 5.1
0.25 0.5 0.25 83.2 ± 4.3 86.3 ± 5.3
0.5 0.25 0.25 80.2 ± 2.5 85.4 ± 3.1
0.25 0.25 0.5 79.6 ± 2.7 84.3 ± 5.5
0.25 0.25 0.25 80.3 ± 3.4 85.5 ± 1.8

is obtained when more weight is assigned to JigMag task and

lower weights to Hematoxylin and magnification tasks. This is

in line with previous experiments which showed that JigMag

had better performance as compared to other tasks. We can,

therefore, recommend that a good strategy can be to start with

heavy weight to JigMag for computational pathology tasks

before combining it with other self-supervision tasks.

C. Performance at Very Low Annotation Budget

In section IV-D, we evaluated the performance of self-

supervised tasks with different annotation budgets. we ob-

served, despite high boost in performance by applying self-

supervised tasks, the supervised baseline also gives reasonable

results (e.g., 73.4% on LNM-OSCC for 134 patches). To assess

performance at even lower annotation budget, we further

decreased number of patches annotated (while maintaining the

same number of WSIs) to 50 for LNM-OSCC and Camelyon

datasets. As shown in Table IX, Self-Path with pathology-

specific pretext tasks can improve the AUC by about 10%

over the supervised baseline. Again, the JigMag pretext task

is the best performing pretext task. Moreover, we also note

that combining all pathology specific tasks (with loss weights

0.25, 0.25 and 0.5 for hematoxylin, magnification and JigMag

respectively) can result in even better performance.

D. Transfer Learning

We finally investigate the usefulness of the representations

learned by Self-Path for related tasks. For this, we conduct a

transfer learning experiment using Camelyon16 dataset. We

first train Self-Path with each self-supervised pretext task

on the entire dataset, and then fine-tune the backbone (the

model excluding the final linear layer/decoder) for the main

task. We compare the performance against the naive method

of training the network from scratch with random weight

initializations (Scratch). The results for different pretext tasks

at varying annotation budgets are shown in Table X. We can

see that the representations learned by Self-Path with transfer

TABLE IX

AUROC RESULTS FOR VERY LOW BUDGET OF ANNOTATION:HERE ONLY

25 IMAGE PATCHES ARE USED IN EACH CLASS

Camelyon16 LNM-OSCC
Baselines

supervised baseline 55.3 ± 5.1 54.8 ± 8.1
mean Teacher 65.4 ± 4.8 60.4 ± 5.4
VAT 64.3 ± 6.4 58.6 ± 6.5
TS chain 62.4 ± 10.6 59.4 ± 7.7

Pathology-Agnostic Self-supervised Tasks
rotation 62.6 ± 4.6 58.7 ± 4.6
flipping 65.7 ± 9.3 58.9 ± 5.3
autoencoder 65.1 ± 6.4 59.6 ± 4.3
generative 64.2 ± 5.7 60.1 ± 10.3

Pathology-Specific Self-supervised Tasks
magnification 65.3 ± 7.5 62.2 ± 6.7
JigMag 66.2 ± 6.4 63.5 ± 7.9

hematoxylin 64.2 ± 7.4 62.4 ± 4.6
mag+hem+JigMag 66.5 ± 5.5 64.1 ± 5.5

TABLE X

RESULTS OF TRANSFER LEARNING OF SELF-SUPERVISED TASKS WITH

DIFFERENT BUDGET OF ANNOTATIONS USING CAMELYON16 DATASET.

1% 2% 5% 10% 20%

Scratch 68.3 74.5 81.2 88.4 92.1
magnification 72.6 77.4 84.8 89.9 92.2
JigMag 73.3 79.4 85.8 90.4 92.7
hematoxylin 72.9 79.5 85.9 88.6 92.3

learning enable performance improvement over ‘Scratch’ in

each case. Again, Self-Path with JigMag achieves the best

performance. The improvements with fine-tuning is largest in

the low annotation regime, and drops off when more annotated

data are available. These results suggest that the pretext tasks

in Self-Path enable learning of useful representations. Overall,

with annotation budget of over 20%, fine-tuning gives the

same result as training from scratch. Therefore multi-task

approach where self-supervision task and main task are trained

together leads to better results than fine-tuning. Therefore

multi-task approach where self-supervision task and main task

are trained together leads to better results than fine-tuning.

This phenomenon is also shown by [42].

VI. CONCLUSIONS

In this paper, we proposed Self-Path – a generic framework

based on self-supervision tasks for histopathology image clas-

sification – to address the challenge of limited annotations

in the area of computational pathology. We introduced 3

novel self-supervision tasks to cater to the contextual, multi-

resolution and semantic features in pathology images. We

showed that such pathology specific self-supervision tasks

can improve the classification performance for both semi-

supervised learning and domain adaptation. Moreover, we

thoroughly investigated general self-supervised approaches

such as generative models within this pipeline and showed that

using the pathology-specific tasks, despite being simple and

easy to implement, can improve performance over generic self-

supervision in many scenarios involving limited annotation

budget or domain shift. In particular, we note that the JigMag

self-supervision can be extremely helpful when the amount of

labeled data is very small. Unlike baseline methods that are

highly dependent on hyperparameters values, our method can
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achieve good performance without exhaustive hyperparameter

tuning. Self-Path can be applied to other problems in compu-

tational pathology, where annotation budget is often limited or

large amounts of unlabeled image data are available. In our

sensitivity analyses, we considered only domain specific tasks

and showed that their combination leads to better performance

compared to using only one pretext task in the multitask

setup. Using all domain agnostic task as pretext task can

also potentially increase the performance and requires further

exploration. Other future directions include employing other

self-supervision tasks (such as predicting the Eosin channel or

a combination of Hematoxylin and Eosin after estimating the

two channels, rather than keeping them fixed), increasing the

number of magnification levels, increasing the JigMag grids to

incorporate wider and more complex puzzles for the network

to solve, exploring different variations of orders for JigMag

(here all 24 orders were used) and a deeper investigation into

other domain adaptation tasks.
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Abstract— While high-resolution pathology images lend
themselves well to ‘data hungry’ deep learning algorithms,
obtaining exhaustive annotations on these images for
learning is a major challenge. In this paper, we propose a
self-supervised convolutional neural network (CNN) frame-
work to leverage unlabeled data for learning generalizable
and domain invariant representations in pathology images.
Our proposed framework, termed as Self-Path, employs
multi-task learning where the main task is tissue classifi-
cation and pretext tasks are a variety of self-supervised
tasks with labels inherent to the input images. We introduce
novel pathology-specific self-supervision tasks that lever-
age contextual, multi-resolution and semantic features in
pathology images for semi-supervised learning and domain
adaptation. We investigate the effectiveness of Self-Path
on 3 different pathology datasets. Our results show that
Self-Path with the pathology-specific pretext tasks achieves
state-of-the-art performance for semi-supervised learning
when small amounts of labeled data are available. Further,
we show that Self-Path improves domain adaptation for
histopathology image classification when there is no la-
beled data available for the target domain. This approach
can potentially be employed for other applications in com-
putational pathology, where annotation budget is often lim-
ited or large amount of unlabeled image data is available.

Index Terms— Computational pathology, Limited annota-
tion budget, Semi-supervised learning, Domain adaptation.

I. INTRODUCTION

THE recent surge in the area of computational pathology

can be attributed to the increasing ubiquity of digital slide

scanners and the consequent rapid rise in the amount of raw

pixel data acquired by scanning of histology slides into digital

whole-slide images (WSIs). These developments make the area

of computational pathology ripe ground for deep neural net-

work (DNN) models. In recent years, there have been notable

Navid Alemi Koohbanani and Nasir Rajpoot are with the Department
of Computer Science, University of Warwick, Coventry, CV4 7AL UK (e-
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successes in training DNNs for pathology image analysis and

automated diagnosis of disease in the histopathology domain

[1]. The performance and generalizability of most DNNs is,

however, highly dependent on the availability of large and

diverse amounts of annotated data. Although the use of digital

slide scanners have made large amounts of raw data available,

development of DNN based algorithms remains bottlenecked

by the need for extensive annotations on diverse datasets.

In pathology, annotation burden can pose a large problem

– even more so when compared to natural scene images.

WSIs are by nature high resolution images (sometimes with

slide dimensions as large as 200,000 × 150,000 pixels) –

this hinders exhaustive annotations. For even simple use cases

like detecting tumor regions or isolated tumor cells in WSIs,

pathologists annotating the data need to look at regions of

the tissue at multiple levels of magnification. So, even simple

labeling of regions of interest can be quite demanding. This

issue is compounded by the fact that the whole image can

only be annotated part by part owing to its large size. Further,

the annotation effort requires expert domain knowledge and

significant investment on the part of specialized pathologists.

To overcome these challenges, when training DNNs on new

pathology image datasets, it would be desirable to pursue one

or both of the following strategies: (a) labeling small amounts

of the new dataset and making use of the larger pool of the

unlabeled data, and/or (b) using existing labeled datasets which

closely match the new dataset.

For strategy (a), semi-supervised deep learning approaches

that learn with small amounts of labeled data and leverage

larger pools of unlabeled data to boost performance can be

employed. These approaches have been widely demonstrated

in the computer vision community for natural scene images.

Particularly popular techniques include Mean Teacher [2]

and Virtual Adversarial Training (VAT) [3]. Recently, these

approaches have also been applied to the area of compu-

tational pathology to address tasks such as clustering [4],

segmentation [5] and image retrieval [6]. However, due to the

high dimensionality of the images, the multi-scale nature of

the problem, the requirement of contextual information and

texture-like nature of sub-patches extracted from slides, the

direct translation of popular semi-supervised algorithms into

pathology classification tasks is not feasible.

For strategy (b), domain adaptation approaches that transfer

knowledge from existing resources for related tasks to the

classification task-at-hand can be employed. However, due to
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variations in tissue, tumor types, and stain appearance during

image acquisition, different pathology image datasets appear

quite distinct from one another. In addition, for some rare

tissue or tumor types, there may be no annotated datasets

available for such knowledge transfer. Hence, direct translation

of existing domain adaptation algorithms which work for

natural vision images may not be possible. Yet, unlabeled data

for related tasks are largely available and are less prone to

bias [7]. Hence, when dealing with limited annotations, such

unlabeled data can be used to capture the shared knowledge or

to learn representations that can improve model performance.

To address the dual challenges of low annotations and

domain adaptation in histopathology, it is possible to use unla-

beled data in a self-supervised manner. In this setup, the model

is supervised by labels that come inherently from the data itself

without any additional manual annotations. These labels can

represent distinct morphological, geometrical and contextual

content of the images. Models trained on these ‘free’ labels

can learn representations that can improve performance for

a variety of tasks such as classification, segmentation and

detection [8]. Self-supervision tasks can be used together with

the main supervised task in a multi-task setup to improve per-

formance for semi-supervised learning and domain adaptation

[9]. However, self-supervised tasks proposed in the literature

so far are mainly based on characteristics of natural scene

images, which are very different from histology images. For

instance, common self-supervision tasks focus on predicting

the degree of rotation, flipping, and/or the relative position of

objects. While these are meaningful concepts for natural scene

images, they do not carry much relevance for histopathology

images. Specifically, while the degree of rotation could help

to also learn semantic information present in a natural image,

it would not make sense for pathology images because they

have no sense of global orientation [10].

In this paper, we propose the Self-Path framework to

leverage self-supervised tasks customized to the requirements

of the histopathology domain, and enhance DNN training in

scenarios with limited or no annotated data for the task at

hand. Our main contributions are summarized as follows:

• We introduce a generic and flexible self-supervision based

framework, Self-Path, for classification of pathology im-

ages in the context of limited or no annotations.

• We propose 3 novel pathology pathology specific self-

supervision tasks, namely, prediction of magnification

level, solving the magnification jigsaw puzzle and pre-

diction of the Hematoxylin channel, aimed at utiliz-

ing contextual, multi-resolution and semantic features in

histopathology images.

• We conduct a detailed investigation on the effect of var-

ious self-supervision tasks for semi-supervised learning

and domain adaptation for three datasets.

• We demonstrate that Self-Path achieves state-of-the art

performance in limited annotation regime (when 1-2%
of the whole dataset is annotated) or even when no anno-

tations are available (in the case of domain adaptation).

A. Related Work

Semi-supervised Learning: Semi-supervised deep learning

approaches are widely studied in the computer vision litera-

ture [11]. Popular methods utilize forms of pseudo labelling

and consistency regularization, and utilize small amounts of

labeled data alongside larger pools of unlabeled data for

learning. Pseudo-labeling approaches [12] use available labels

to train a model and impute labels on the unlabeled samples

which are in turn used in training. MixMatch extends pseudo-

labeling by adding temperate sharpening along with the mix-

up augmentation [13] . Consistency-based methods regularize

the model by ensuring stable outputs for various augmenta-

tions of the same sample. These can be done by enforcing

consensus between temporal ensembles of network outputs

like in Pi-Model [14], or between perturbed images fed to

a network and its EMA averaged counterpart like in Mean

Teacher [2]. Virtual adversarial training(VAT) [3] generates the

perturbed images in an adversarial fashion to smooth the mar-

gin in the direction of maximum vulnerability. These methods

ensure generalizability against significant image perturbations,

move the margin away from high-density regions, and enable

strong performance on benchmark natural scene image tasks

with low annotation budgets.

However, semi-supervised learning has not been sufficiently

explored in pathology image analysis. At the time of this

writing, only 6 papers investigate semi-supervised learning for

the histopathology domain. In [5], Li et. al proposed an EM-

based approach for semi-supervised segmentation of histology

images. [4] proposed a cluster based semi-supervised approach

to identify high-density regions in the data space which were

then used by supervised SVM in finding the decision boundary.

Jaiswal et al. [15] used pseudo-labels for improving the

network performance for metastasis detection of breast cancer.

Su et al. [16] employed global and local consistency losses for

mean teacher approach for nuclear classification. Shaw et. al

[17] also proposed to use pseudo-labels of unlabeled images

for fine-tuning the model iteratively to improve performance

for colorectal image classification. Deep multiple instance

learning and contrastive predictive coding were used together

in [18] to overcome the scarcity of labeled data for breast

cancer classification. Yet, there is scope for improvement to

close the gap between fully supervised baselines and semi-

supervised methods employing just a few labeled pathology

images.

Domain Adaptation: Domain adaptation methods focus

on adapting models trained on a source dataset to perform

well on a target dataset. Leading-edge techniques mainly use

adversarial training for aligning the feature distributions of

different domains. Popular domain-adversarial learning-based

methods [19], [20] use a domain discriminator to classify the

domain of images. These methods play a minimax game where

the discriminator is trained to distinguish the features from

the source or target sample, while the feature generator is

trained to confuse the discriminator. [21] employed adversarial

learning and minimized Wassertein distance between domains

to learn domain-invariant features. Image-translation methods

minimize the discrepancy between the two domains at an
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image-level [22]. In pathology, Ren et al. [23] employed

adversarial training for domain adaptation across acquisition

devices (scanners) in a prostate cancer image classification

task. [24] used CycleGAN to translate across domains for

a cell/nuclei detection task. [25] introduced a measure for

evaluating distance between domains to enhance the ability

to identify out-of-distribution samples in a tumor classifica-

tion task. Yet, most practical domain adaptation techniques

require labeling of target domain data, and the applicability

of state-of-the-art unsupervised domain adaptation approaches

for histopathology is yet to be widely established.

Self-Supervision: Self-supervision employs pretext tasks

(based on annotations that are inherent to the input data) to

learn representations that can enhance performance for the

downstream task [8]. Autoencoders [26] are the simplest self-

supervised task, where the goal is to minimize reconstruction

error and the proxy labels are the values of image pixels. Other

self-supervised tasks in the literature are image generation [8],

inpainting [27], colorizing grayscale images [28], predicting

rotation [29], solving jigsaw puzzle [30], and contrastive

predictive coding [31]. Perhaps the main difference between

contrastive learning approaches and methods like ours is that

while our method caters to a specific use case domain and

the task at hand is to come up with self-supervision tasks, the

contrastive learning approaches offer the advantage of a more

generic framework for learning representations potentially at

the cost of losing performance in a very specific use case

domain (such as histopathology). Although the classical self-

supervision approaches requires no additional annotations, it

is also possible to leverage small amounts of labeled data

within a self-supervision framework. For example, S4L [9]

showed that the pretext task (e.g., rotation, self-supervised

exemplar [32]) can benefit from small amount of labeled

data alongside larger unlabeled data. Moreover, some works

[33], [34] demonstrated the effect of self supervised tasks

for domain adaptation, where in [34] the effect of various

self-supervised tasks have been shown for domain alignment.

Particularly, solving jigsaw puzzle [34] has been proved to be

a beneficial pretext task for domain generalization.

As there is no large labeled dataset akin to ImageNet for

pretraining in the pathology domain, self supervised learning

offers potential to obtain pre-trained model that preserves

the useful information about data in itself. Although one

recent study [35] explored self-supervised similarity learning

for pathology image retrieval, much of the self-supervision

literature is focused on computer vision applications. A key

challenge in applying self-supervision to pathology-specific

applications is to define the pretext task that will be most ben-

eficial. As such, systematic analysis and derivation of pretext

tasks customized for a range of histopathology applications

would be desirable.

II. PROBLEM FORMULATION

We now define the problem of semi-supervised learning

and domain adaptation for pathology image classification.

Consider a whole slide image (WSI) that is comprised of a

number of disjoint or overlapping ‘patches’. We denote an

input image or ‘patch’ as x and its associated class label as

y.

a) Semi-supervised Learning: We consider a set of nl

limited labeled images SL = {(xl
i, yi)}

n
i=1l, and a set of

ml >> nl unlabeled images SU = {(xu
i )}

m
i=1l. The semi-

supervised framework seeks to leverage the large pool of

unlabeled images in SU to enhance the generalizability of

learning with fewer labeled images in SL. Generally, in the

semi-supervised setting, both SL and SU are from the same

distribution.

b) Domain Adaptation: We define a source domain S

comprising a set of ηs labeled images Ds = {xs
i , y

s
i }

ηs

i=1
.

Likewise, we have a target domain T comprising a set of ηt
unlabeled images Dt = {xt

i}
ηt

i=1
. Both source and target do-

mains have the same labels. Further, source and target domains

have related task characteristics, but their data distributions are

distinct.

III. METHODS

Our proposed Self-Path framework is depicted in Figure 1.

To address label scarcity for the main classification task

(main task), Self-Path leverages self-supervision and informs

the supervised learning for the main task with the self-

supervised learning for pretext tasks. Further, our proposed

framework employs a multi-task learning approach to learn

class-discriminative and domain-invariant features that would

generalize with limited annotated data. Specifically, Self-Path

(a) can leverage one or more pathology-specific or pathology-

agnostic pretext tasks, (b) is amenable to adversarial or non-

adversarial training, and (c) allows flexibility to incorporate

semi-supervised, generative learning and/or domain adaptation

approaches. We now formally describe the multi-task learning

objective and detail the pretext tasks that are used along with

the main task.

A. Multi-task Learning

Our proposed approach trains the model using the main

and pretext tasks in conjunction. The framework comprises a

shared encoder which learns features that are common to both

the pretext task and the main task. Each task usually has a

separate head connected to the shared encoder and learning

for all tasks is optimized simultaneously. Formally,

argmin
θc,θe, θp1 ,..θpk

1

nl

nl∑

i

Lc(F
θc
c (F θe

e (xl
i)), yi)

+ 1

nl

K∑

k=1

αpk

nl
∑

i

Lpk
(F

θpk
pk (F θe

e (xl
i)), r

l
ik)

+ 1

nu

K∑

k=1

αpk

nu∑

i

Lpk
(F

θpk
pk (F θe

e (xu
i )), r

u
ik)

, (1)

where K is the number of pretext tasks, r is the label for

pretext task; Lc and Lpk
are the losses for the main and pretext

tasks, respectively; Fe, is the shared encoder, Fc is the function

for main task and Fpk
is the function of kth pretext task;

θc, θe and θpn
are parameters of main task classifier, shared

encoder and pretext tasks, respectively; αpk
indicates weights

for different tasks; and nl and nu indicate the number of
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Fig. 1. Overview of Self-Path : The framework employs self-supervised pretext tasks. Pretext tasks can be added atop a shared encoder to
learn useful representations and enhance semi-supervised learning or domain-adaptation. Green, red and blue lines indicate the flow of labeled,
unlabeled and generated images, respectively. Generated images are used only for the generative task.

labeled and unlabeled images, respectively. When this model

is used for semi-supervised learning, the labeled and unlabeled

images come from the same domain. When used for domain

adaptation, the labeled images come from source domain and

unlabeled images come from the target domain.

B. Self-Supervision

The self-supervision utilizes one or more pretext tasks

to leverage information in the unlabeled images and im-

prove performance for the main task. Our setup em-

ploys both pathology-specific and pathology-agnostic self-

supervised tasks. Every pretext task pk is defined by a trans-

formation function gk applied to input x, and an implicit label

rk for the transformed input x̃ = gk(x). Then, the objective

function Lpk
is the objective for learning the self-supervised

classification task that maps x̃ to rk.

C. Pathology-specific Pretext tasks for Self-supervision

Histopathology images can vary in shape, morphology and

arrangement of the nuclei across tissue types and disease

conditions. Learning these features or semantic representations

of these features can enable generalizable classification models

that can more effectively transfer knowledge across domains.

Therefore, we design pathology-specific pretext tasks that cater

to morphology, context and shapes of nuclei as detailed below

:

1) Magnification Prediction: Histopathology images are of-

ten generated and viewed at various standard magnification

levels. Considering an image of fixed size, higher magnifi-

cations provide more details but less context, whereas lower

magnifications allow less details but more context of tissue

region. Pathologists assessing an image tend to infer important

semantic information by iterating between detail and context –

i.e., by zooming in and out on WSIs or by looking at different

magnification levels 1. In other words, magnification levels

are implicitly correlated with important semantic information.

Therefore, to enable the classification model to learn semantic

information, we set up a pretext task focused on estimating

magnification level of the image. Specifically, the pretext task

focuses on classifying the input image to 1 of 4 magnification

levels (40×, 20×, 10× and 5×). We extract images or patches

from WSIs at these magnification levels Figure 2 (A). If a

magnification level is not available, we obtain the patches by

(bi-linear) resizing patches from other magnification levels that

are available. For example, to obtain 128 × 128 patches at

5×, we extract patches of 1024 × 1024 at 40× and down-

sample by factor of 4. We then feed the extracted images to the

network, which learns by minimizing a cross-entropy objective

function.

2) Solving Magnification Puzzle (JigMag): A basic problem

in pattern recognition is the jigsaw task of retrieving an

original image from its shuffled parts [36]. Convolutional

neural networks (CNNs) have been employed to solve the

jigsaw puzzle [7]. To solve the jigsaw puzzle, it is known that

the network should learn the global semantic representation of

images. This is achieved by concentrating on the differences

between tiles and their positions while avoiding low level

statistics [7]. In histopathology, objects are smaller compared

to natural scene images, and there is no specific ordering

among the objects. For example, the relative positions of

different parts of dog in a natural scene image is consistent,

however we do not have a similar concept in histopathology.

Therefore, solving the jigsaw puzzle is by itself not sufficient

1Magnification levels and their corresponding resolutions vary for each
scanner. However by observing one particular magnification of an image,
other magnifications can be perceived easily for the same scanner.
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Fig. 2. (A) Whole slide images (WSI) in pathology slides organized hierarchically - each level trades-off the degree of detail against the availability
of contextual information. (B) Pathology specific pretext tasks created for Self-Path.

for learning useful semantic representations in histopathology.

Instead, we propose to create a puzzle to reflect the magni-

fication and context characteristics of histopathology images.

Conceptually, classification can be enhanced by having the

network implicitly learn object size and associated contextual

information. Hence, we propose a pretext task focused on

solving this magnification and context puzzle. In this puzzle,

an image consists of image tiles with various magnifications

and the network is tasked with predicting their arrangement.

This set up caters also to the need to classify images containing

objects with varying shapes and sizes.

Specifically, we define v as a vector of image orders in a

2×2 grid where each grid includes a specific magnification.

For example v = [0, 1, 2, 3] defines that image with

magnification 5× is on top left corner, 10× is on top right

and so on. We consider 24 different orders of magnification. To

construct our proposed jigsaw puzzle, we first extract patches

of size 512 × 512 at 40× magnification then each part of

the puzzle is constructed by down-sampling and or center-

cropping to the size of 64 × 64, where each reflects specific

context and resolution of the the original extracted patch. This

pretext task employs a cross entropy loss function.

3) Hematoxylin Channel Prediction: Commonly, histopathol-

ogy images are stained with Hematoxylin and Eosin (H&E).

In H&E images, hematoxylin turns the palish color of nuclei

to blue and eosin changes the color of other contents to pink.

Color deconvolution methods have been applied to specifically

identify cell nuclei in H&E images. Therefore by extracting

hematoxylin channel, one can locate the nuclei and their

approximate shape. Pathologists often use the location, shape

and morphology of nuclei in the hematoxylin channel to

diagnose or classify histopathology images (especially for

malignant features).

Therefore, one way to enhance learning of useful represen-

tations is to enable the classifier to identify the nuclei and their

associated characteristics. We choose to define a pretext task

focused on predicting the hematoxylin channel from H&E. We

use the approach in [37] to extract the hematoxylin channel in

our images and define the ground truth for the self-supervision

task. We scale the values of hematoxylin channel in the range

[0,1] and employ a mean absolute loss for optimizing this task.

D. Pathology-agnostic Self-supervision Tasks

The literature has investigated various pretext tasks like

rotation prediction, flipping, image reconstruction [8], [29].

These were however, not tailored for pathology data. Here, we

systematically study and benchmark efficacy of these pretext

tasks for semi-supervised learning and domain adaptation in

histopathology applications.

1) Prediction of Image Rotation: For predicting rotation, the

input image is rotated with degrees of 0◦, 90◦, 180◦ and 270◦

corresponding to the labels 0, 1, 2 and 3, respectively [29].

2) Prediction of Image Flipping: The label assigned to the

horizontal flipping of image is 1 and 0 if not flipped.

3) Image Reconstruction with Autoencoder: For reconstruct-

ing the image, a convolutional decoder is used on top of the

feature extractor [26], similar to one for predicting hema-

toxylin channel however 3 channels is considered for output.

4) Real vs Fake Prediction (Generative): The generative

learning literature has shown that predicting whether an im-

age is real or fake can help to learn useful representations

for classification [38]. Therefore, we introduce a generative

pretext task focused on real vs. fake prediction. To learn this

pretext task, we train a generative network in an adversarial

fashion by using unlabeled samples. While one could use

a shared encoder to extract features, we found that it is

easier to employ a simpler encoder/discriminator similar to

the generative adversarial network (GAN) in [38].

Page 22 of 31



6 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2020

Formally, real images are drawn from distribution Dreal,

and the generative function learns the distribution Dgen where

the goal is to align this two distributions (Dgen ∼ Dreal).

The generator G(.) takes predefined noise variables z from a

uniform distribution Dnoise. The objective function is defined

as:

Ldis = −Ex∼ Dreal
[log[1− FDis(Fe(x))]]

−Ex∼ Dgen
[log[FDis(Fe(x))]]

Lgen = ‖Ex∼Dreal
[Fe(x)]− Ez∼Dnoise

[Fe(G(z))]‖
1

,

(2)

where Lgen and Ldis are the generator and discriminator

losses, respectively. Fe(x) is the feature from intermediate

layer of feature extractor (last layer before fully connected

layers) and FDis(Fe(x)) is the output of the discriminator

(fake/real head).

5) Domain Prediction: In order to learn useful representa-

tions to facilitate domain adaptation, it is useful to have a

network learn the common features between source and target

domains. Therefore, we introduce a pretext task to predict if

the image belongs to source or target domain, and employ it in

combination with other pretext tasks for the domain adaptation

experiments.

For this pretext task, we employ a domain adversarial

neural network (DANN) [20]. DANN includes a minimax

game where discriminator Hd (domain prediction head) is

trained to distinguish between the source and target domain,

and the feature extractor is simultaneously trained to con-

fuse the discriminator. Therefore, to extract the common or

domain-invariant features, the parameters of feature extractor

θe (shared encoder in the multi-task setup) are learned by max-

imizing the loss of domain discriminator Ld, while parameters

of the domain discriminator are learned by minimizing the loss

of domain discriminator. Parameters of the main task Fc are

also minimized to ensure good performance on the main task.

Formally:

argminmax
θc,θe θd

1

ηs

ηs∑

i=0

Lc(F
θc
c (F θe

e (xs
i )), yi) +

− αd

ηs+ηt
(
ηs+ηt∑

i=1

Ld(F
θd
d (F θe

e (xi)), di)

, (3)

where di is the domain label for xi and αd is a coefficient for

discriminator loss. In practice, we apply domain confusion us-

ing the Gradient Reversal Layer (GRL), where the gradients of

Ld with respect to the gradients of feature extractor parameters

θe (∂Ld

∂θe
) are reversed during back-propagation.

IV. EXPERIMENTS

A. Datasets

1) Camelyon16: We used the Camelyon 16 challenge

dataset [39] that contains 399 H&E stained WSIs obtained

on patients with breast cancer metastasis in the lymph nodes.

The WSIs were acquired from 2 different centers, namely:

Radboud University Medical Center (RUMC) and University

Medical Center Utrecht (UMCU). RUMC images were gen-

erated by a digital slide scanner (Pannoramic 250 Flash ;

TABLE I

NUMBER OF WSIS AND PATCHES IN EACH DATASET.

Train Validation Test

Camelyon16
WSIs 236 34 129
patches 67054 15586 16562

LNM-OSCC
WSIs 100 14 103
patches 55416 7224 14472

Kather patches 79994 20006 7180

3DHISTECH) with a 20× objective lens (0.243 µm × 0.243

µm) and UMCU images were produced using a digital slide

scanner (NanoZoomer-XR Digital slide scanner C12000-01;

Hamamatsu Photonics) with a 40× objective lens (0.226µm

× 0.226 µm). The tumor regions are exhaustively annotated

by pathologists. We used the official training and testing splits

comprising 270 and 129 WSIs, respectively. We randomly

sampled 34 WSIs of the training set for validation. For our

experiments, we randomly extracted patches from both normal

and tumor regions (Table I).

2) LNM-OSCC: LNM-OSCC is an in-house dataset com-

prising 217 H&E WSIs obtained on patients with Oral Squa-

mous Cell Carcinoma (OSCC). Of these 217 patients, 140 have

metastases in the cervical lymph nodes and 77 do not manifest

metastases in the cervical lymph nodes. The WSIs were

acquired from 2 hospitals using 2 different scanners – (a) 98

WSIs scanned with 40× objective lens using IntelliSite Ultra

Fast Scanner (0.25 µm/pixel) at University Hospital Conventry

and Warwickshire (UHCW), and (b) 119 WSIs scanned at

the School of Medical Dentistry in Sheffield University by

Aperio/Leica CS2 with 20× objective lens ( 0.2467 µm/pixel).

The training set comprises 100 WSIs, the validation set 14

WSIs and testing set 103 WSIs. For those cases in the training

and validation sets that have metastases, a sampling of the

tumor and normal regions were delineated with bounding box

annotations by pathologists. For the testing set, the tumor

regions were exhaustively annotated at the pixel-level.

3) Kather: This dataset contains 107,180 image patches

from H&E stained WSIs comprising human colorectal cancer

(CRC) and normal tissue. For this dataset, only patches were

available (no WSIs).The dataset covers 9 tissue classes: Adi-

pose (ADI), background (BACK), debris (DEB), lymphocytes

(LYM), mucus (MUC), smooth muscle (MUS), normal colon

mucosa (NORM), cancer-associated stroma (STR), colorectal

adenocarcinoma epithelium (TUM). We used the official data

splits comprising 100k patches for training and 7180 patches

for testing. We randomly sampled 20k patches of the training

set for validation.

B. Data Summary

Figure 3 shows some illustrative examples of the different

datasets used in our study. The overall data statistics are shown

in Table I. For Camleyon16 and LNM-OSCC datasets, we

extracted patches from the WSIs, and patches are distributed

equally for each class. For our main task the patch extraction

size is 128 × 128 at 10×. The Kather dataset patches are sized

224 × 224 and we resized to 128 × 128 for our experiments.
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Fig. 3. Exemplar images of different datasets that are used in this study. Red and green boxes denote the tumor and normal image patches.

C. Experimental Setup

1) Networks: We chose Resnet50 [40] as the feature ex-

traction backbone for all our experiments. The classifier head

consists of adaptive average pooling which is followed by

fully connected layer and softmax. The decoder head for

reconstructing image and predicting hematoxylin channel is

similar to the UNet decoder [41] (Supplementary Material)

without using any skip connections. While using the real

vs fake pretext task for image generation, we utilize the

architecture presented in [38] (Supplementary Material) and

find that this simpler feature extractor allows easy and robust

convergence for the image generator.

2) Implementation Details: When Resnet50 is used as the

shared encoder, we trained the network for 200 epochs. Our

experiments used batch size 64, Adam optimizer, and learning

rate of 10−3. We fed batches of labeled and unlabeled images

to the network separately. Therefore an epoch is defined as

one full step through all the unlabeled images. Since our

self-supervised experiments utilize fewer labeled images than

unlabeled images, the labeled images are repeated in an epoch.

Experiments related to real vs fake prediction used number

of epochs and batch size of 500 and 32, respectively; and

employed Adam optimizer with learning rate of 3 × 10−4.

For training model in multitask setup, we separately input

batches of images for each task to the network and then sum

their losses with their corresponding weights. Finally we back-

propagate the whole loss through the network.

D. Results of Semi-Supervised Experiments

Here, we compare the effect of different self-supervision

tasks for semi-supervised learning. We compare our mod-

els against the popular semi-supervised benchmarks, namely

Mean Teacher [2] and VAT [3]. We also compare with teacher-

student chain [17] (TSchain). TSchain is a recent semi-

supervised approach for histopathology domain, that predicts

the pseudo-labels for the unlabeled data and then uses all

images for iteratively retraining the model. For performance

evaluations, we follow the typical protocol of varying the

annotation budget for the training set while maintaining a fixed

validation set, and reporting AUCs (average across 3 seeds) on

the test set.

1) Results for LNM-OSCC Dataset: We report performance

of each of the self-supervised tasks on LNM-OSCC dataset in

Table II. We have evaluated the model performance in terms of

AUROC (Area Under the Receiver Operating Characteristic)

for different annotation budgets (1%, 4%, 5%, 10% and 20%

of the available WSIs). The semi-supervised approaches train

on a combination of the labeled and unlabeled WSIs. The

supervised baseline is only trained on labeled images without

utilizing any unlabeled images.

We observe from Table II that at very low annotation

budgets, pathology specific self-supervised tasks outperform

the baselines and the pathology agnostic self-supervised tasks.

For instance, at annotation budgets of 1% (1 labeled WSI,

134 labeled patches) and 4% (4 labeled WSIs, 1120 labeled
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TABLE II

LNM-OSCC RESULTS FOR DIFFERENT ANNOTATION BUDGETS. ANNOTATION BUDGET IS DEFINED AS THE PERCENTAGE OF AVAILABLE WSIS

THAT ARE LABELED. THE NUMBER OF PATCHES ASSOCIATED WITH EACH BUDGET ARE INDICATED IN THE PARENTHESES. THE SUPERVISED UPPER

BOUND PERFORMANCE WHEN USING ALL LABELED DATA IS 98.4%.

% Labeled WSIs (No. Patches) 1%(134) 2%(1024) 5%(1880) 10%(3334) 20%(7558)
AUROC(%) AUROC(%) AUROC(%) AUROC(%) AUROC(%)

Baselines
supervised baseline 73.4 ± 2.0 76.1 ± 5.3 85.3 ± 6.3 86.3 ± 2.7 96.3 ± 0.3
mean teacher [2] 75.1 ± 4.5 78.4 ± 5.6 86.2 ± 7.6 91.4 ± 1.2 97.4 ± 0.3

VAT [3] 74.5 ± 5.6 77.4 ± 3.3 85.3 ± 4.3 92.1 ± 1.2 96.5 ± 0.9
TS chain [17] 75.3 ± 2.4 79.3 ± 2.5 85.2 ± 3.1 94.1 ± 1.7 97.2 ± 0.2

Pathology-Agnostic Self-supervised Tasks
rotation 74.5 ± 5.6 76.3 ± 4.2 88.4 ± 1.5 93.2 ± 0.3 96.2 ± 0.1
flipping 74.6 ± 4.0 74.2 ± 5.3 85.3 ± 4.1 91.4 ± 0.4 94.2 ± 0.4
autoencoder 73.0 ± 6.5 75.1 ± 3.5 84.2 ± 3.3 90.3 ± 1.5 94.3 ± 0.2
generative 73.4 ± 7.1 79.3 ± 4.1 90.3 ± 2.4 95.4 ± 0.2 97.1 ± 0.3

Pathology-Specific Self-supervised Tasks
magnification 76.3 ± 4.0 76.6 ± 3.6 87.4 ± 2.3 92.5 ± 0.2 94.1 ± 0.4
JigMag 80.6 ± 3.5 81.8 ± 5.3 89.5 ± 5.4 92.4 ± 0.5 96.5 ± 0.2
hematoxylin 75.3 ± 7.6 80.2 ± 5.3 87.5 ± 1.2 94.4 ± 1.3 97.4 ± 0.5

Best self-supervised 80.6 ± 3.5 81.8 ± 5.3 90.3 ± 2.4 95.4 ± 0.2 97.4 ± 0.5

patches), JigMag task has the best performance. At annotation

budgets of 1% and 2%, Hematoxylin and magnification tasks

outperform pathology agnostic tasks and generative tasks.

When annotation budget increases to 10%, we observe that

the generative task performs much better (AUC 95.4%), sug-

gesting that the generated images can help the classifier to

boost the performance. Overall, our LNM-OSCC experiments

suggest that for limited annotation budgets, pathology specific

pretext tasks are helpful for enhancing the model performance,

with JigMag outperforming other approaches.

2) Results for Camelyon16 Dataset: We report performance

of each of the self-supervised tasks on Camelyon16 dataset in

Table III. We have evaluated the model performance in terms

of AUROC (Area Under the Receiver Operating Characteris-

tic) for different annotation budgets (1%, 2%, 5%, 10% and

20% of the available WSIs). The semi-supervised approaches

train on a combination of the labeled and unlabeled WSIs. The

supervised baseline is only trained on labeled images without

utilizing any unlabeled images.

Similar to LNM-OSCC dataset, pathology specific tasks

outperform other semi supervised methods. In particular, the

JigMag task improves the performance over the supervised

baseline by 13.4%, 11.8% and 6.2% at 1% (2 WSIs), 2%

(4 WSIs) and 5% (8 WSIs) annotation budgets, respectively.

At 1% annotation budget, only magnification and JigMag

outperform mean teacher and supervised baseline. Unlike

LNM-OSCC, the generative model cannot achieve highest

AUROC for any annotation budget, but it’s performance is

competitive with mean teacher and VAT. Similar to LNM-

OSCC, JigMag could achieve highest performance overall, and

the main boost is obtained at very low annotation budgets.

3) Results for Kather Dataset: We report performance of

each of the self-supervised tasks on Kather dataset in Table IV.

Since there are 9 classes in the Kather dataset, Macro AUROC

is used for evaluation of classification performance. Unlike the

other 2 datasets, only patches were available for this dataset,

therefore the annotation budget only reflects the proportion

of the overall patches that is labeled. Further, we observe

that at 2% annotation budget, the performance of supervised

baseline is still high (Macro AUC of 98%). Hence using semi-

supervised approaches would not add much benefit. Hence, we

focus on the very low annotation budget regime where some

degradation of Macro-AUC can be observed for supervised

model – i.e., annotation budgets of 0.1%(100 labeled) and

at 1% (800 labeled images). Moreover, as this dataset does

not include WSIs, we were unable to extract large patches or

patches at different magnificationsand hence could not evaluate

JigMag and magnification self-supervised tasks on this dataset.

From Table IV, we observe that at 0.1% annotation bud-

get, predicting hematoxylin channel as a self-supervised task

improves the performance by 2.8% and 1.2% compared to

the baseline and mean teacher, respectively. At 1% annotation

budget, we see that the various self-supervised tasks can again

improve performance compared to the baseline. Predicting

hematoxylin channel can also give the superior performance,

suggesting that the prediction of rough nuclear segmentations

can be helpful for semi-supervised learning.

E. Domain Adaptation Experiments

We conduct two domain transfer experiments, (i) Came-

lyon16 to LNM-OSCC (Cam16→LNM-OSCC) and (ii) LNM-

OSCC to Camelyon16 (LNM-OSCC→Cam16). In both cases,

we do unsupervised domain transfer, where the source is the

labeled set and the target set is completely unlabeled.

We evaluate our approach against the naive supervised base-

line, and two other domain adaptation methods WDGRL [21]

and DANN [20]. The supervised baseline employs Resnet50

and is trained with source domain data only. WDGRL trains

a domain critic network to estimate the Wasserstein distance

between the source and target feature representations. The

feature extractor network will then be optimized to minimize

the estimated Wasserstein distance in an adversarial manner.

By iterative adversarial training, WDGRL learns feature rep-

resentations invariant to the covariate shift between domains.

DANN is a domain prediction approach based on the GRL

unit and was mentioned in Section III-D.

We report the results obtained with Self-Path (using differ-

ent pretext tasks) and the comparisons with the supervised and
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TABLE III

CAMELYON16 RESULTS FOR DIFFERENT ANNOTATION BUDGETS. ANNOTATION BUDGET IS DEFINED AS THE PERCENTAGE OF AVAILABLE WSIS

THAT ARE LABELED. THE NUMBER OF PATCHES ASSOCIATED WITH EACH BUDGET ARE INDICATED IN THE PARENTHESES. THE SUPERVISED UPPER

BOUND PERFORMANCE WHEN USING ALL LABELED DATA IS 94.2%.

Labeled WSIs (No. Patches) 1%(600) 2%(1000) 5%(2600) 10%(6400) 20%(13540)
AUROC(%) AUROC(%) AUROC(%) AUROC(%) AUROC(%)

Baselines
supervised baseline 68.3 ± 5.1 74.5 ± 5.8 81.2 ± 2.5 88.4 ± 2.3 92.1 ± 0.5
Mean Teacher [2] 73.7 ± 3.8 78.5 ± 2.6 84.5 ± 2.4 92.7 ± 1.9 93.1 ± 0.9
VAT [3] 70.9 ± 5.8 77.4 ± 3.3 81.3 ± 5.2 90.3 ± 2.3 92.8 ± 1.5
TS chain [17] 74.9 ± 6.9 76.9 ± 3.2 83.8 ± 2.1 93.1 ±2.5 93.9 ± 1.3

Pathology-Agnostic Self-supervised Tasks
rotation 69.8 ± 4.8 74.5 ± 3.1 80.4 ± 2.5 90.1 ± 2.0 92.4 ± 2.5
flipping 70.2 ± 6.2 75.4 ± 3.5 81.6 ± 5.1 89.4 ± 0.6 92.3 ± 1.6
autoencoder 70.1 ± 2.4 75.6 ± 4.1 82.3 ± 4.5 90.5 ± 2.3 92.4 ± 1.1
generative 72.5 ± 5.5 77.6 ± 5.4 82.4 ± 7.2 92.6 ± 3.2 93.6 ± 1.5

Pathology-Specific Self-Supervised Tasks
magnification 77.5 ± 3.1 84.6 ± 5.2 85.1 ± 3.6 93.2 ± 3.4 93.4 ± 2.5
JigMag 81.7 ± 3.8 86.3 ± 5.2 87.4 ± 4.5 90.6 ± 4.6 92.8 ± 2.4
hematoxylin 72.8 ± 4.6 78.3 ± 4.5 84.6 ± 3.4 92.3 ± 4.1 93.7 ± 2.5

Best Self-supervised 81.7 ± 3.8 86.3 ± 5.2 87.4 ± 4.5 93.2 ± 3.4 93.7 ± 2.5

TABLE IV

KATHER RESULTS FOR DIFFERENT ANNOTATION BUDGETS.

ANNOTATION BUDGET IS DEFINED AS THE PERCENTAGE OF AVAILABLE

WSIS THAT ARE LABELED. THE NUMBER OF PATCHES ASSOCIATED

WITH EACH BUDGET ARE INDICATED IN THE PARENTHESES. THE

SUPERVISED UPPER BOUND PERFORMANCE WHEN USING ALL LABELED

DATA IS 99.4%.

Labeled WSIs (No. Patches) 0.1%(100) 1%(800)
AUROC(%) AUROC(%)

Baselines
supervised baseline 87.5 ± 2.0 92.5 ± 1.2
mean teacher [2] 89.1 ± 1.5 93.9 ± 0.3
VAT [3] 88.5 ± 1.4 92.6 ± 0.4
TS chain [17] 88.9 ± 0.3 93.5 ± 0.2

Self-supervised tasks
generative 88.4 ± 3.5 92.3 ± 2.6
rotation 87.4 ± 1.6 93.3 ± 0.4
flipping 88.6 ± 0.8 93.0 ± 0.9
autoencoder 89.3 ± 1.3 94.3 ± 1.2
hematoxylin 90.3 ± 0.7 95.1 ± 0.5
Best self-supervised 90.3 ± 0.7 95.1 ± 0.5

domain adaptation baselines in Table V. We observe that the

pathology-specific pretext tasks can help the model outperform

the baseline by a large margin. For Cam16→LNM-OSCC, the

pathology-specific pretext tasks provide more than 10% boost

in AUROC over the supervised baseline. The combination of

all pathology specific pretext tasks achieves the best perfor-

mance. Amongst the individual pretext tasks, JigMag achieves

the best performance (∼2% better than DANN and WDGRL).

Further, we note that the pathology agnostic generative model

also performs well – with 1.9% higher AUROC than WDGRL

and 11% higher AUROC over the supervised baseline. This

suggests that the images from the generator can contribute to

learning useful domain-invariant features as well. We see sim-

ilar trends for LNM-OSCC→Cam16 – where again combining

pathology specific tasks has the best performance and JigMag

provides the second best performance. We highlight that we

have used domain prediction with GRL layer in all non-

generative methods as it improves the performance. Generative

models, owing to adversarial training can still achieve very

high performance, even without GRL.

TABLE V

AUROC RESULTS FOR DOMAIN ADAPTATION

Cam16→LNM-OSCC LNM-OSCC→Cam16
Baselines

supervised baseline 79.53 ± 0.2 63.73 ± 0.5
DANN 89.23 ± 1.5 71.15 ± 0.6
WDGRL 89.64 ± 2.6 72.65 ± 2.2

Pathology-Agnostic Self-supervised Tasks
rotation 86.14 ± 3.4 66.91 ± 4.1
flipping 82.14 ± 3.6 65.95 ± 4.4
autoencoder 89.90 ± 2.8 71.62 ± 2.6
generative 91.54 ± 3.5 74.14 ± 2.7

Pathology-Specific Self-supervised Tasks
magnification 89.69 ± 3.6 73.62 ± 4.1
JigMag 92.34 ± 4.4 74.51 ± 3.6
hematoxylin 90.47 ± 4.5 73.24 ± 3.8
mag+hem+JigMag 92.85 ± 3.6 74.95 ± 3.5

1) WSI Analysis: While the results thus far are reported at

the patch level, it is also useful to consider the WSI-level

performance. For the Cam16→LNM-OSCC domain adapta-

tion task, we now report the WSI-level results for the top

two best performing Self-Path settings i.e., combination of all

pathology specific pretext tasks and JigMag pretext task. We

also provide comparisons with the supervised baseline (source

only), WDGRL, and the pathology agnostic generative pretext

task.

In order to quantify WSI-level performance, we aggregate

patches belonging to a WSI and construct a WSI-level heat

map based on the patch level predictions. For heat map

generation, there are two steps. First, we extract patches of

128 × 128 at 10× magnification with overlap of 50% from

tissue regions of WSIs. Second, we aggregate the prediction

of each patch together to build the final heat map of WSIs.

We then post-process these heat maps to obtain the WSI-

level prediction. The post-processing steps are uniform for

all models in this section, and as follows: we extract 10

morphological and geometrical features from objects within

binarized heat map at three thresholds of 0.25, 0.5 and 0.9.

Then we calculate the mean, stddev, minimum and maximum

of object features for each WSI. Therefore, in total we use

120 features for constructing feature vectors. Afterwards, we
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TABLE VI

CAM16 → LNM-OSCC DOMAIN ADAPTATION RESULTS ON THE

WSI-LEVEL. THE UPPER BOUND PERFORMANCE USING ALL LABELS

FOR TARGET DOMAIN IN SUPERVISED FASHION IS 93.3%.

AUROC(% ) Average Precision(%)

supervised baseline (source only) 75.2 81.7
WDGRL 85.8 91.6
generative 90.4 95.2
JigMag 91.6 96.7
mag+JigMag+hem 91.6 96.3

employ the random forest algorithm for classification of the

features. Finally, we evaluate the model on the test set of

LNM-OSCC.

The results are shown in Table VI. The supervised baseline

has WSI-level AUROC of 75.2% whereas Self-Path with

JigMag pretext task and Self-Path with the combination of

all pathology specific pretext tasks each improve the perfor-

mance by 16.4%. Further, we note that Self-Path with JigMag

improves performance over WDGRL by 2% at the patch-

level and a ∼6% improvement at the WSI-level. This suggests

that the magnification puzzle and the pretext tasks that can

help learn from various image resolutions in a self-supervised

manner enable strong performance boost at WSI-level (beyond

patch-level).

These improvements are also evident in the WSIs overlaid

with the heatmaps, as visualized in Figure 4. This figure shows

that the supervised baseline (source only) model (middle

column) has many false negatives and often misses tumor

regions. However, WDGRL, Self-Path with JigMag, and Self-

Path with generative pretext task can all increase true positives

while decreasing false negatives. We note that WDGRL and

Self-Path with generative pretext task do not perform as well

as Self-Path with JigMag - mainly because they suffer larger

number of false positives at the patch-level classification.

V. DISCUSSION

In this section we describe sensitivity analyses and dis-

cuss the model performance by changing the values of loss

weights, decreasing the annotation budget and combing all

pathology specific tasks. Moreover, we conduct an experiment

to show the usefulness of transfer learning using our proposed

self-supervised tasks. For following experiments, we choose

Camelyon dataset. Since the variation of hyperparameters are

studied, it is expected that these trends will be similar on other

dataset.

A. Effect of Loss Weight for Each Task

We consider the task of training with 1% of annotation

budget on Camelyon16 dataset. To understand the effect of loss

weights for each pretext task, we experiment with different val-

ues of α and show the results in Table VII. Overall, assigning

more weights on each task shows better performance. More

precisely, when α is set to 1, maximum value of AUROC is

obtained. Therefore we can conclude when we are using only

one pretext task, the pretext task and the main task should have

similar weight to be effective for semi-supervised learning.

The optimum value of α may change when we use all tasks

Fig. 4. Three WSI samples and their overlaid heatmaps. from top to
bottom, first row: the overlaid ground-truth mask, second row: overlaid
heat map of model predictions when it is trained using only Camlelyon16
data, third row: Overlaid heatmap of WDGRL predictions, fourth row
depicts the overlaid predictions of Self-path using generative task and
the last row shows the heatmaps generated Self-path using JigMag
task. The circle indicates a region which is missed using the supervised
baseline (source only) model and green arrows point to the false positive
regions generated by WDGRL where using generative task and JigMag
task eliminate those regions. Black arrow also shows regions that are
misclassified by generative model but are correctly classified as normal
regions by Jig-Mag. (Best viewed in color, zoom in to see more details)

together which we investigate in the next section. In here,

by choosing the alpha values greater than one, the pretext

task will be dominant. Therefore the main task does not learn

discriminant features for separating the classes. Moreover, we

are interested to see the values of alpha up to one (when it is

similar to the main task).

B. Combining tasks

We now evaluate the effect of the loss weights (α’s) when

combining all pathology specific tasks. We consider the task of

training with 1% and 2% of annotation budget on Camelyon16

dataset, and experiment with different combinations of loss

coefficients. The results, in Table VIII, suggest that assigning

high weights (similar to main task) to all pretext tasks can

degrade the performance. For example, if all tasks are given

α = 1, overall the weights for pretext tasks would be 3× more

than the main task which would cause drop in performance.

However by assigning smaller weight values for each task, we

can achieve better performance. Particularly, best performance
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TABLE VII

AUROC PERFORMANCE OF PATHOLOGY SPECIFIC TASKS WITH

DIFFERENT VALUES OF α ON CAMELYON16 DATASET.

α magnification JigMag hematoxylin

1 77.5 ± 3.1 81.7 ± 3.8 72.8 ± 4.6
0.8 77.1 ± 2.8 81.5 ± 3.4 71.3 ± 2.4
0.6 76.4 ± 4.0 78.8 ± 2.6 70.2 ± 3.5
0.5 74.6 ± 3.4 78.4 ± 2.4 70.3 ± 4.6
0.2 72.5 ± 3.7 74.1 ± 4.6 69.5 ± 4.4

TABLE VIII

USING ALL PATHOLOGY SPECIFIC TASKS FOR SEMI-SUPERVISED

LEARNING ON CAMELYON16 DATASET. αmag , αJigMag AND αhem

INDICATE THE LOSS COEFFICIENT FOR MAGNIFICATION, JIGMAG AND

HEMATOXYLIN TASKS, RESPECTIVELY.

αmag αJigMag αhem 1% 2%

1 1 1 79.1 ± 4.5 83.5 ± 5.1
0.25 0.5 0.25 83.2 ± 4.3 86.3 ± 5.3
0.5 0.25 0.25 80.2 ± 2.5 85.4 ± 3.1
0.25 0.25 0.5 79.6 ± 2.7 84.3 ± 5.5
0.25 0.25 0.25 80.3 ± 3.4 85.5 ± 1.8

is obtained when more weight is assigned to JigMag task and

lower weights to Hematoxylin and magnification tasks. This is

in line with previous experiments which showed that JigMag

had better performance as compared to other tasks. We can,

therefore, recommend that a good strategy can be to start with

heavy weight to JigMag for computational pathology tasks

before combining it with other self-supervision tasks.

C. Performance at Very Low Annotation Budget

In section IV-D, we evaluated the performance of self-

supervised tasks with different annotation budgets. we ob-

served, despite high boost in performance by applying self-

supervised tasks, the supervised baseline also gives reasonable

results (e.g., 73.4% on LNM-OSCC for 134 patches). To assess

performance at even lower annotation budget, we further

decreased number of patches annotated (while maintaining the

same number of WSIs) to 50 for LNM-OSCC and Camelyon

datasets. As shown in Table IX, Self-Path with pathology-

specific pretext tasks can improve the AUC by about 10%

over the supervised baseline. Again, the JigMag pretext task

is the best performing pretext task. Moreover, we also note

that combining all pathology specific tasks (with loss weights

0.25, 0.25 and 0.5 for hematoxylin, magnification and JigMag

respectively) can result in even better performance.

D. Transfer Learning

We finally investigate the usefulness of the representations

learned by Self-Path for related tasks. For this, we conduct a

transfer learning experiment using Camelyon16 dataset. We

first train Self-Path with each self-supervised pretext task

on the entire dataset, and then fine-tune the backbone (the

model excluding the final linear layer/decoder) for the main

task. We compare the performance against the naive method

of training the network from scratch with random weight

initializations (Scratch). The results for different pretext tasks

at varying annotation budgets are shown in Table X. We can

see that the representations learned by Self-Path with transfer

TABLE IX

AUROC RESULTS FOR VERY LOW BUDGET OF ANNOTATION:HERE ONLY

25 IMAGE PATCHES ARE USED IN EACH CLASS

Camelyon16 LNM-OSCC
Baselines

supervised baseline 55.3 ± 5.1 54.8 ± 8.1
mean Teacher 65.4 ± 4.8 60.4 ± 5.4
VAT 64.3 ± 6.4 58.6 ± 6.5
TS chain 62.4 ± 10.6 59.4 ± 7.7

Pathology-Agnostic Self-supervised Tasks
rotation 62.6 ± 4.6 58.7 ± 4.6
flipping 65.7 ± 9.3 58.9 ± 5.3
autoencoder 65.1 ± 6.4 59.6 ± 4.3
generative 64.2 ± 5.7 60.1 ± 10.3

Pathology-Specific Self-supervised Tasks
magnification 65.3 ± 7.5 62.2 ± 6.7
JigMag 66.2 ± 6.4 63.5 ± 7.9

hematoxylin 64.2 ± 7.4 62.4 ± 4.6
mag+hem+JigMag 66.5 ± 5.5 64.1 ± 5.5

TABLE X

RESULTS OF TRANSFER LEARNING OF SELF-SUPERVISED TASKS WITH

DIFFERENT BUDGET OF ANNOTATIONS USING CAMELYON16 DATASET.

1% 2% 5% 10% 20%

Scratch 68.3 74.5 81.2 88.4 92.1
magnification 72.6 77.4 84.8 89.9 92.2
JigMag 73.3 79.4 85.8 90.4 92.7
hematoxylin 72.9 79.5 85.9 88.6 92.3

learning enable performance improvement over ‘Scratch’ in

each case. Again, Self-Path with JigMag achieves the best

performance. The improvements with fine-tuning is largest in

the low annotation regime, and drops off when more annotated

data are available. These results suggest that the pretext tasks

in Self-Path enable learning of useful representations. Overall,

with annotation budget of over 20%, fine-tuning gives the same

result as training from scratch. Therefore multi-task approach

where self-supervision task and main task are trained together

leads to better results than fine-tuning.Therefore multi-task

approach where self-supervision task and main task are trained

together leads to better results than fine-tuning. This phe-

nomenon is also shown by [42].

VI. CONCLUSIONS

In this paper, we proposed Self-Path – a generic framework

based on self-supervision tasks for histopathology image clas-

sification – to address the challenge of limited annotations

in the area of computational pathology. We introduced 3

novel self-supervision tasks to cater to the contextual, multi-

resolution and semantic features in pathology images. We

showed that such pathology specific self-supervision tasks

can improve the classification performance for both semi-

supervised learning and domain adaptation. Moreover, we

thoroughly investigated general self-supervised approaches

such as generative models within this pipeline and showed that

using the pathology-specific tasks, despite being simple and

easy to implement, can improve performance over generic self-

supervision in many scenarios involving limited annotation

budget or domain shift. In particular, we note that the JigMag

self-supervision can be extremely helpful when the amount of

labeled data is very small. Unlike baseline methods that are

highly dependent on hyperparameters values, our method can
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achieve good performance without exhaustive hyperparameter

tuning. Self-Path can be applied to other problems in compu-

tational pathology, where annotation budget is often limited or

large amounts of unlabeled image data are available. In our

sensitivity analyses, we considered only domain specific tasks

and showed that their combination leads to better performance

compared to using only one pretext task in the multitask

setup. Using all domain agnostic task as pretext task can

also potentially increase the performance and requires further

exploration. Other future directions include employing other

self-supervision tasks (such as predicting the Eosin channel or

a combination of Hematoxylin and Eosin after estimating the

two channels, rather than keeping them fixed), increasing the

number of magnification levels, increasing the JigMag grids to

incorporate wider and more complex puzzles for the network

to solve, exploring different variations of orders for JigMag

(here all 24 orders were used) and a deeper investigation into

other domain adaptation tasks.
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Supplementary Material for Self-Path:
Self-supervision for Classification of Pathology

Images with Limited Annotations

TABLE I

PERFORMANCE OF DIFFERENT BASELINE MODELS ON THE THREE

DATASETS. THE EVALUATION WAS DONE USING ONLY THE SUPERVISED

LOSS AND KEEPING THE LABELING BUDGET AT ONE PERCENT.

Kather Camleyon16 LNM-OSCC
Labeled patches 800 600 134

Resnet50 0.9137 0.6467 0.7387
Resnet101 0.9015 0.6515 0.7314
Densenet121 0.9014 0.6514 0.7265
InceptionV3 0.8914 0.6618 0.7264

TABLE II

NETWORK ARCHITECTURE WHILE USING THE GENERATIVE REAL VS

FAKE SUBTASK. CONV.T STANDS FOR TRANSPOSED CONVOLUTION.

Generator

latent space (100)
dense 4×4×512 batchnorm ReLU

5×5 Conv.T 512 batchnorm ReLU stride=2
5×5 Conv.T 256 batchnorm ReLU stride=2
5×5 Conv.T 128 batchnorm ReLU stride=2
5×5 Conv.T 128 batchnorm ReLU stride=2
5×5 Conv.T 3 weightnorm Tanh stride=2

Discriminator

128×128×3 images
dropout, p = 0.2

3×3 conv. weightnorm 96 lReLU
3×3 conv. weightnorm 96 lReLU

3×3 conv. weightnorm lReLU stride=2
dropout, p = 0.5

3×3 conv. weightnorm 128 lReLU
3×3 conv. weightnorm 128 lReLU

3×3 conv. weightnorm 128 lReLU stride=2
dropout, p = 0.5

3×3 conv. weightnorm 192 lReLU
3×3 conv. weightnorm 192 lReLU

3×3 conv. weightnorm 192 lReLU stride=2
dropout, p = 0.5

3×3 conv. weightnorm 192 lReLU
3×3 conv. weightnorm 192 lReLU
3×3 conv. weightnorm 192 lReLU

Adaptive maxpool
weightnorm dense 2

I. NETWORK ARCHITECTURE

The performance on classification tasks was evaluated using

supervised learning. ResNet50 was chosen since it has overall

good performance while having lower number of parame-

ters. The AUC-ROC performances can be seen in table I.

ResNet50 was used as the backbone architecture in all the

self-supervision experiments except when the generative real

vs fake prediction had to be used. While using the real vs fake

auxiliary task for image generation, we utilize the architecture

TABLE III

NETWORK ARCHITECTURE FOR HEMATOXYLIN/DECODER TASKS

Decoder

Resnet50 backbone
1×1 Conv.T 512 ReLU stride=1
BilinearUpsample scale factor=2
3×3 Conv.T 512 ReLU stride=1
BilinearUpsample scale factor=2
3×3 Conv.T 256 ReLU stride=1
BilinearUpsample scale factor=2
3×3 Conv.T 256 ReLU stride=1
BilinearUpsample scale factor=2
3×3 Conv.T 128 ReLU stride=1
BilinearUpsample scale factor=2
3×3 Conv.T 65 ReLU stride=1

1×1 Conv.T Number of classes stride=1

TABLE IV

HYPER-PARAMETERS OF MODEL WHEN RESNET 50 IS USED AS

FEATURE EXTRACTOR

Hyperparameters Values

Batch size 64
Epoch 200

Optimizer ADAM (α = 3 ∗ 10
−3 , β1 = 0.9)

presented in table II and find that this simpler feature extractor

allows easy and robust convergence for the image generator.

II. HYPER-PARAMETERS

The hyper-parameters when using the various network ar-

chitectures for training are shown in table IV and table V.

table IV is the hyper-parameter setting when using ResNet50

as the backbone and table V are the settings used when the

generative real vs fake sub-task is used.

TABLE V

HYPER-PARAMETERS FOR REAL VS FAKE PREDICTION SUBTASK

Hyperparameters Values

Batch size 32
Epoch 500
Leaky ReLU slope 0.2
Exp. moving average decay 0.999

Optimizer ADAM (α = 3 ∗ 10
−4 , β1 = 0.5)

Weight initialization Isotropic gaussian (µ = 0, σ = 0.05)
Bias initialization Constant (0)
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