
This is a repository copy of Fixed-Priority Scheduling and Controller Co-Design for Time-
Sensitive Networks.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/164756/

Version: Accepted Version

Proceedings Paper:
Dai, Xiaotian orcid.org/0000-0002-6669-5234, Zhao, Shuai, Jiang, Yu et al. (3 more
authors) (Accepted: 2020) Fixed-Priority Scheduling and Controller Co-Design for Time-
Sensitive Networks. In: IEEE/ACM International Conference on Computer-Aided Design
(ICCAD 2020). . (In Press)

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Fixed-Priority Scheduling and Controller Co-Design for
Time-Sensitive Networks

Xiaotian Dai1, Shuai Zhao1, Yu Jiang2, Xun Jiao3, Xiaobo Sharon Hu4, Wanli Chang1
1University of York, UK 2Tsinghua University, China 3Villanova University, USA 4University of Notre Dame, USA

1{xiaotian.dai, shuai.zhao, wanli.chang}@york.ac.uk
2jy1989@mail.tsinghua.edu.cn 3xun.jiao@villanova.edu 4shu@nd.edu

ABSTRACT

Time-sensitive networking (TSN) is a set of standardised commu-

nication protocols developed under the IEEE 802.1 working group.

TSN aims to support deterministic communication based on net-

work schedules that are distributively configured. It is widely con-

sidered as the future in-vehicle network solution for highly au-

tomated driving, where the requirement on timing guarantee is

alongside the demand of high communication bandwidth. In this

work, we study a setting of periodic control and non-control pack-

ets, with implicit and arbitrary deadlines, respectively. As the FIFO

(first-in, first-out) queues in the 802.1Qbv switch incur long delay

in the worst case, which prevents the control tasks from achiev-

ing short sampling periods and thus impedes control performance

optimisation, we propose the first fixed-priority scheduling (FPS)

approach for TSN by leveraging its gate control features. In this con-

text, we develop a finer-grained frame-level response time analysis,

which provides a tighter bound than the conventional packet-level

analysis. Building upon FPS and the above analysis, we formulate a

co-design optimisation problem to decide the sampling periods and

poles of real-time controllers with settling time as the objective to

minimise, whilst satisfying the schedulability constraint.

CCS CONCEPTS

· Computer systems organisation → Embedded and cyber-

physical systems;Real-time systems; ·Networks→Network

protocols.

KEYWORDS

Time-sensitive networks, real-time communication, fixed-priority

scheduling, scheduling-controller co-design

ACM Reference Format:

Xiaotian Dai, Shuai Zhao, Yu Jiang, Xun Jiao, Xiaobo Sharon Hu, Wanli

Chang. 2020. Fixed-Priority Scheduling and Controller Co-Design for Time-

Sensitive Networks. In IEEE/ACM International Conference on Computer-

Aided Design (ICCAD ’20), November 2ś5, 2020, Virtual Event, USA. ACM,

New York, NY, USA, 9 pages. https://doi.org/10.1145/3400302.3415715

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICCAD ’20, November 2ś5, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8026-3/20/11. . . $15.00
https://doi.org/10.1145/3400302.3415715

1 INTRODUCTION

In recent years, Ethernet, as a data link layer protocol, has evolved

from standard computer networks to applications of industrial

automation (e.g., PROFINET, EtherNet/IP, EtherCat, and Sercos

III [18]), aerospace (e.g., AFDX [3]), energy and power (e.g., IEC

61850 over HSR/PRP), as well as in-vehicle communication (e.g., de-

terministic real-time Ethernet [19]). In the emerging safety-critical

systems such as highly automated vehicles, a large volume of mes-

sages with mixed types need to be transmitted on the same infras-

tructure, which requires deterministic and predictable timing to

guarantee safety. Traditional real-time networks use non-standard

Ethernet to enable high-bandwidth deterministic communication,

which prohibits connectivity between different protocols and com-

ponents from different vendors, as well as increases uncertainty

and difficulty in timing and hazard analysis. Therefore, a network

protocol is demanded to satisfy requirements on both deterministic

end-to-end latency and high traffic load.

Time-sensitive networking (TSN), proposed as an IEEE stan-

dard, offers an interoperable and flexible deterministic Ethernet-

based solution [12]. It is widely considered as the network solution

for future automobiles. The IEEE 802.1 TSN standard includes a

wide range of subsets, in which one of the most important proto-

cols is the 802.1Qbv [5, 11, 20]. The IEEE 802.1Qbv supports time-

aware shaper (TAS) using TDMA (time-division multiple access)-

scheduled queues to access the egress port Ð controlled by a gate

switching logic that is driven by a synchronised global timer and a

look-up scheduling table.

Control loops are often involved in the safety-critical systems,

where guarantees are required on both timing of communication

and control performances (measured by settling time). In general,

short sampling periods enable the potential to achieve good control

performance with frequent interactions between the controller and

the plant. The state-of-the-art network scheduling techniques for

TSN (e.g., [2, 13, 20]) cannot be directly applied, as they consider

neither the hard real-time constraints on network packets nor the

control performance of the system.

Main contributions: To address the above needs, we present

the first integrated solution of network scheduling and controller

co-design for TSN 802.1Qbv. Both periodic control and non-control

packets are considered to best capture the real-world scenarios. The

goal is to achieve timing predictability andmaximise the control per-

formance. Specifically, as the FIFO (first-in, first-out) queues in the

802.1Qbv switch incur long delay in the worst case, which prevents

the control tasks from achieving short sampling periods and thus

impedes control performance optimisation, we propose the first

fixed-priority scheduling (FPS) approach for TSN. The schedules

computed offline can be implemented in the gate control list of the

ICCAD ’20, November 2–5, 2020, Virtual Event, USA X. Dai, S. Zhao, Y. Jiang, X. Jiao, X. Hu, W. Chang

switch and executed accordingly. We develop a finer-grained analy-

sis for the proposed scheduling approach at the frame level, which

bounds the worst-case response time of the network packets more

tightly than the conventional packet-level analysis. Based on FPS

and the analysis, we formulate a co-design optimisation problem

to decide the sampling periods and poles of real-time controllers.

The goal is to maximise the overall control performance measured

by settling time, whilst satisfying the schedulability constraint.

Organisation of the paper: A brief background of TSN is given

in Section 2, which includes the internal structure of a switch

and the necessary notions; Section 3 presents the frame-level FPS

method, as well as a corresponding schedulability analysis; In Sec-

tion 4, the real-time controller design under performance and net-

work constraints is discussed. Finally, evaluation is reported in

Section 5, followed by some remarks in Section 6 to conclude the

paper.

2 BACKGROUND ON TIME-SENSITIVE
NETWORKING

Time-sensitive networking is an enabler for Ethernet-based com-

munication services that were not originally built to support hard

real-time guarantees, such as OPC Unified Architecture (OPC-UA)1

and Distributed Data Service (DDS)2. The objective of TSN is to

reduce the worst-case end-to-end latency for critical traffics. Here

we briefly discuss the IEEE 802.1Qbv TSN (referred to as Qbv in

the following text). A diagrammatic view of a Qbv-enabled switch

is depicted in Figure 1. From the figure, it can be seen that a Qbv

TSN switch consists of the following major components:

• Scheduled FIFO queues: In a Qbv-enabled TSN switch,

there are eight independent time-divided FIFO queues which

are controlled by transmission gates. The incoming traffic is

filtered by the packet filtering unit which sends a packet to

its designated queue. This information is encoded as Class

of Service (CoS) in the priority code point (PCP) header in

the Ethernet frame.

• Gate control list (GCL): The GCL can trigger gate-open

and gate-close events periodically with a gate control cycle.

The time granularity between events can be as low as 1ns

depending on the specific implementation. The schedule is

located in a GCL look-up table that is distributively con-

figured to each TSN node. If multiple gates are opened at

the same time, the policy in the priority selection unit will

determine which queue is forwarded to the egress port first.

• Time synchronisation: To allow time-divided transmis-

sion that is distributed through the network, a timer is glob-

ally synchronised with all the switches in the same network

using precision time protocols (PTPs), e.g., IEEE 802.1AS or

IEEE 802.1AS-Rev.

The mechanisms of Qbv TSN improve the flexibility in terms

of traffic schedule and control. It enables interoperability between

standard-compliant industrial devices thus allowing open data ex-

change. It also removes the need for physical separation of critical

and non-critical communication networks. However, in a different

1https://opcfoundation.org/about/opc-technologies/opc-ua/
2https://www.omg.org/spec/DDS/1.4/PDF

S
w

it
c
h

in
g

 F
a
b

ri
c

P
a
c
k
e
t

F
il
te

ri
n

g

Gate

Control

List

Gate

Gate

Gate

P
ri

o
ri

ty
 S

e
le

c
ti

o
n

Synchronised
Global Time

...

in
g

re
s
s
 p

o
rt

s

e
x
g

re
s
s
 p

o
rt

s

Scheduled Queues

Figure 1: An overview structure of a 802.1Qbv-capable TSN

switch.

aspect these introduce increased design complexity that needs to

be elaborately handled.

3 TRAFFIC SCHEDULING OF TSN IN
CONTROL SYSTEMS

In this work, we propose an integrated solution that solves the

controller-network co-design problem. Scheduling on a single TSN

switch is considered and can be extended to the entire network.

As we focus on the scheduling aspect, it is assumed the network

communication is ideal: (i) the depth of the queues is sufficient, i.e.,

no traffic overflows; (ii) the channel is error-free and has a constant

transmission rate. These ease the analysis and helps to understand

the nature of the problem. Relaxing them in practice needs limited

modifications and will be discussed in future work. The network

is subjected to two basic traffic types: scheduled and unscheduled

traffic, depending on a certain level of quality-of-service (QoS) is

required or not. In this work, we focus on scheduled traffic and

leave unscheduled traffic be transmitted using residual bandwidth

with best effort.

TSN provides time synchronisation and time-division transmis-

sion, which enables global scheduling through GCLs [20]. Although

the schedule of TSN can be designed by hand, it soon becomes im-

practical as the network turns complex and more packets are added

to the network. In this section, we specify the scheduling policy

adopted for TSN while control systems are considered. The pro-

posed schedule minimises the blocking of packets (including ones

sent by control tasks), to improve schedulability and control per-

formance. We then introduce a fine-grained response time analysis

that bounds the worst-case latency of packets in a single Qbv switch.

Below we first discuss the system model.

System model: The system contains N periodic packets3 Γ =

{τ1,τ2, ...,τN }, including both control (Γc) and non-control packets

(Γnc) sent by tasks from the application. Each packet τi is modelled

as a 7-tuple {Li ,Ci ,Ti ,Di , Pi ,Ri ,Λi }, representing the worst-case

length of the packet Li , transmission timeCi , periodTi , deadlineDi ,

3Continuously released periodic packets will form a flow. For simplicity, we use these
two terms interchangeably.

Fixed-Priority Scheduling and Controller Co-Design for Time-Sensitive Networks ICCAD ’20, November 2–5, 2020, Virtual Event, USA

priority Pi , worst-case latency Ri and the set of frames Λi in each

release, respectively. Frames are transmitted in a non-preemptive

fashion. A global packet transmission ratev is applied to all packets,

thus Ci = Li/v for τi . Each control packet is assigned with an

implicit deadline i.e., Di = Ti . To provide a more general network

model for the system, the non-control packets can have arbitrary

deadlines without any constraint imposed. As a consequence, at a

given time instant there could be several instances of a non-control

packet waiting for transmission in the switch. The priorities of all

packets are assigned according to the deadline monotonic algorithm

(Pi > Pj if Di < D j), and each packet has a unique priority. In

addition, the Maximum Transmission Unit (MTU) is considered,

denoted as M , which defines the maximum data size allowed in

a single transmission. For the ease of presentation, we denote M

as the transmission time for sending data with a size equal to one

MTU. Thus, each packet could be divided into a set of successive

frames, i.e., Λi = {λ1i , λ
2
i , ..., λ

m
i }, withm = ⌈Li/M⌉. For a given

frame λ
j
i , it inherits the analytical properties of τi (i.e., Ti , Di and

Pi), and has its own data length, L
j
i , and transmission time, C

j
i .

3.1 Scheduling Network Packets in TSN

In a typical Qbv switch, the network packets are queued by their ar-

riving time (i.e., FIFO queuing) and are transmitted non-preemptively

[11]. Traditionally, the synthesis of GCL schedule is performed us-

ing Satisfiability Modulo Theories (SMT) [5, 13] or Integer Linear

Programming (ILP) [2]. The defined end-to-end latency imposes

zero-jitter, however, with significantly reduced solution space. The

scheduling in TSN networks with Quality-of-Service (QoS) require-

ments can be either performed at the queue level [20] or packet

level [14]. With the queue-level scheduling, each FIFO queue in the

Qbv switch is assigned with a priority, and packets in a queue with

a higher priority are always transmitted first. However, as pack-

ets in each queue are transmitted strictly in a FIFO order, packets

under the queue-level scheduling approach can incur substantial

blocking, where packets with a tighter deadline but at the end of a

queue cannot be favoured. That is, with the queue-level scheduling,

packets with different deadlines in the same FIFO queue are treated

equally without concerning individual temporal requirements. For

control systems, such a scheduling is not appropriate, as the delay

for transmitting control packets can introduce significant impact

on the control performance of the system. Thus, the packet-level

(more precisely, the frame-level) scheduling is adopted to provide

a finer-grained schedule, where each packet (and its frames) is

scheduled strictly by its priority.

However, even with the packet-level scheduling, packets can still

incur additional delay due to the FIFO queuing, as the actual trans-

mission largely depends on the arriving time of the packets. In the

worst-case, a late-arrived packet with a high priority can be blocked

by all the released packets with lower priorities. To minimise the de-

lay due to FIFO queuing, an alternative is to perform the scheduling

off-line (i.e., prior to execution), with the complete knowledge of all

packets in the system4. The offline scheduling can be performed by

assuming all packets are arrived at the same time, with a packets

transmission order obtained based on their priorities. If packets

4Such an approach is feasible as the packets are deterministic i.e., the packets sent by
each task are known a prior with periodic release.

have different arrival times during run-time, a simple mechanism

that defers the queuing of the early-arrived low-priority frames can

be adopted, to maintain the queuing order obtained from the offline

FPS-NP without imposing extra latency to packet transmission (see

Section 3.2 for deferred queuing). By maintaining the offline pack-

ets transmission order during run-time, the blocking time of each

packet during transmission can be minimised to one frame only, i.e.,

identical to the classic non-preemptive fixed-priority scheduling

(FPS-NP) [8].

Based on the above discussion, to provide a fine-grained sched-

ule and to minimise the delay due to the queuing problems, the

scheduling adopted in this work is conducted before runtime on

the frames of each packet in one hyper-period, with the scheduling

decisions encoded into the GCL. Once a schedule is obtained, the

frames can be statically allocated to the FIFO queues according

to the schedule while the scheduling decisions can be mapped to

the GCL to control the gates of all queues to achieve the desired

execution order. To this end, the scheduling on TSN can be suc-

cessfully mapped to the traditional FPS-NP, in which each packet

is scheduled strictly by its priority and can be blocked maximum

once during the entire transmission.

With the described scheduling approach, we avoid the packets

queuing problem and can achieve the minimised delay for all pack-

ets, in the context of a Qbv switch. This is crucial for control systems

as the resulting control performance can be affected by transmis-

sion delay for the control packets. The experimental results given

in Section 5 provide evidence for this claim and demonstrate the

impact of packets transmission delay on the system schedulability

and control performance. To our best knowledge, this is one of the

earliest work targeting at control systems in which the timeliness

and performance are sensitive to the transmission delay of certain

critical (i.e., control and non-control) packets. For the non-control

packets, meeting their timing requirements is essential for guaran-

teeing the system correctness, whereas minimising transmission

delay of the time-triggered control packets are essential crucial for

control performance.

For unscheduled packet flows that do not have a temporal re-

quirements, the traffics can be scheduled using residual bandwidth

left by the critical traffics with time-aware shapers [16, 17] and

queue partitioning. Supporting such flows has been well-described

by the above work, and will not be re-presented in this paper. Tar-

geting at such systems, a complete scheduling solution is proposed

that minimises the transmission delay for all packets, in the context

of the TSN Qbv switch. Last but not least, different from [5], our

approach makes no assumption on the isolation of incoming pack-

ets and the construction of the GCL, e.g., isolating certain queues

for a specific packet type, to provide a more general approach for

using TSN in control systems.

3.2 Deferred Queue

As described in Section 3.1, for packets with different arriving

times, a mechanism is required to delay the queuing of the early-

arrived low priority packets so that the minimised blocking can be

guaranteed. To achieve this, a deferred queue with priority ordering

is introduced into the Qbv switch, which is integrated into the

packet filtering unit (see Figure 1) for holding early-arrived packets

ICCAD ’20, November 2–5, 2020, Virtual Event, USA X. Dai, S. Zhao, Y. Jiang, X. Jiao, X. Hu, W. Chang

temporarily, until they can be added into the scheduled queues with

a correct order.

Assuming simultaneous release for all packets at the start of the

system, the offline FPS-NP schedule can produce a well-planned

transmission order for all packet instances released in one hyperpe-

riod, in which each packet (a set of successive frames) is scheduled

strictly based on priority. For this schedule, the blocking of each

packet is minimised, as in the worst case, the ready packet with the

highest priority can start transmitting after the currently transmit-

ting frame of a low priority packet has completed. During run-time,

this offline scheduling order is encoded into the priority filtering

unit, which provides a reference of the expect order for incoming

packets.

For each incoming packets, the priority filter examines whether

this packets arrives by the expected order, i.e., all its previous pack-

ets with a higher priority have arrived. If so, this packet is dis-

patched to the scheduled queues immediately, at which it will be

select to transmit by GCL. Otherwise (i.e., certain previous high

priority packets haven’t arrived yet), this packet is hold by the pri-

ority filter until (a) the missing packets arrives or (b) the scheduled

queues are empty and this packet has the highest priority among

all the deferred packets.

Note that the condition (b) can lead to a transmission order dif-

ferent from the expected one, as certain packets can be transmitted

before a late-arriving higher priority packet. However, this does

not introduce extra delay and can help increasing the throughput.

With the deferred queuing, it is possible that all scheduled queues

are empty while some packets are stored in the priority filter. Under

this situation, the priority filter selects the packet at the head of the

queue (i.e., with the highest priority) and send its frames into the

scheduled queue for a direct transmission one by one, until a higher

priority packet arrives. This guarantees that the transmission never

stops as long as there exist waiting packets (either in the priority

filter or the scheduled queues). In addition, for the late arriving

high priority packet, its blocking is still at most C
j
i , where it can be

transmitted directly after the currently-transmitting frame.

3.3 Worst-Case Response Time Analysis

With the scheduling in TSN mapped to the traditional FPS-NP, the

worst-case response time for transmitting a packet in a single Qbv

switch can be obtained, which bounds the time duration from when

the packet enters into the switch to when the packet is transmit-

ted. Due to the different deadline constraints of the control and

non-control packets (i.e., implicit and arbitrary deadlines respec-

tively), different analysis techniques are applied for each packet

type. However, as both control and non-control packets are sched-

uled strictly by the FPS-NP, the basic philosophy for analysing both

types of packets is similar to that in [8], but with modifications and

improvements in order to reflect the unique features of the Qbv

switch and to support the analysis at the frame level.

The response time equation of a packet τi is given in the follow-

ing equation for both control and non-control packets:

Ri = max
∀λ

j
i ∈Λi

R
j
i (0), if τi ∈ Γc

max
n=0...

⌈
ti +Ji
Ti

⌉
−1

(
R
j
i (n)

)
, if τi ∈ Γnc

(1)

In Equation (1), R
j
i (n) denotes the response time for transmitting

the nth instance of frame λ
j
i in τi ’s busy period ti , and Ji denotes

the queuing time, i.e., the time window from when the first frame

of τi reaches the Qbv Switch, until when the last frame is queued.⌈
ti+Ji
Ti

⌉
gives the total number of times that a non-control packet

can be sent within its busy period [8].

The analysis of a control packet is relatively straight forward,

as at any given time, there can only exist one instance of a control

packet in the system i.e., implicit deadlines. Thus, the worst-case

response time of a control packet can be safely bounded by com-

puting the maximum response time of all its frames5. However, for

a non-control packet, multiple instances of each of its frames can

co-exist due to the arbitrary deadline. Thus, the response time of a

frame (with an arbitrary deadline) must be obtained by computing

the maximum response time of all its instances within the busy

period ti .

Similar to [8], the busy period of a non-control packet is com-

puted by Equation (2), where Bi gives the worst-case blocking that

τi can experience due to transmitting a low priority frame andhep(i)

refers to all indices of packets that have equal or higher priorities

than Pi , including i . The recursive calculation can starts with ti =

Bi+Ci , and is guaranteed to converge [8], given that the total utiliza-

tion for packets in hep(i) is less than 1, i.e.,
∑
∀j ∈hep(i)(Cj/Tj) ≤ 1.

We later decompose Bi in Equation (5).

ti = Bi +
∑

∀k ∈hep(i)

⌈
ti + Jk
Tk

⌉
Ck (2)

The response time of a frame is bounded by Equation (3), in

which J
j
i denotes the time to en-queue frame λ

j
i , W

j
i gives the

maximum queuing delay that λ
j
i can incur in a FIFO queue before

it is selected to be transmitted and C
j
i denotes its transmission

time. The time for queuing λ
j
i into a FIFO queue also contains the

enqueue time of frames of τi that are prior to λ
j
i in one transmission.

In addition, for the non-control frames, n ·Ti is subtracted as this is

the arrival time of its nth instance, relative to the start of the busy

period. Note, for control frames, n is always 0.

R
j
i (n) =

∑

q∈[1, j]

J
q
i +W

j
i (n) +C

j
i − n ·Ti (3)

Equation (4) gives the queuing delayW
j
i of frame λ

j
i , where hp(i)

returns a set of packets with a priority strictly higher than Pi . This

equation is also applicable to either control or non-control frames,

with n = 0 for all control frames. Figure 2 provides an example

illustrating the worst-case delay of the third (n = 2) instance of the

second frame (i.e., j = 2) in packet τi . As shown in the figure, in

the worst case, the frame (in red) has to wait for five types of other

frames to transmit before it can start, which are mapped to four

types of delay, as follows. In the worst case, a frame can incur four

sources of delay when waiting in a FIFO queue: (i) the blocking

caused by a low-priority frame that is currently transmitting i.e.,

Bi ; (ii) the delay by τi ’s frames prior to λ
j
i (with potential existence

5From Equation 1, the response time of a packet equals to the response time of its last
frame in each transmission, which takes into account the delay for transmitting the
previous frames in one transmission.

Fixed-Priority Scheduling and Controller Co-Design for Time-Sensitive Networks ICCAD ’20, November 2–5, 2020, Virtual Event, USA

frames of τi
send within ti

higher priority
frames

a lower priority
frame

n = 2 n = 1 n = 0

3 2 1 3 2 1 3 2 1

Figure 2: The worst-case delay of a frame, which is caused

by a low priority frame (in grey), high priority packets (in

orange), instances of τi ’s frames prior to λ
j
i (in blue), previ-

ous instances of λ
j
i (in green) and previous instance of τi ’s

frames after λ
j
i (in yellow).

of multiple instances); (iii) the delay by previous instances of λ
j
i and

the frames after λ
j
i in each τi ’s instance sent before λ

j
i ; and (iv) the

interference from the frames of each packet with a higher priority

than Pi . Note that (iii) accounts for the delay cause by both the

previous instances of λ
j
i itself and the frames after λ

j
i in previous

instances. These delays are captured by the equation respectively.

W
j
i (n) =Bi + (n + 1) ·

∑

q∈[1, j−1]

C
q
i + n ·

∑

q∈[j, |Λi |]

C
q
i

+

∑

∀λ
q

k
∈Λk ,∀k ∈hp(i)

⌈
W

j
i (n) + J

q

k

Tk

⌉

C
q

k

(4)

Finally, Bi is given by Equation (5), where lp(i) returns the pack-

ets with a priority lower than Pi . The maximum blocking time that

τi (and any of its frames) can incur is the longest transmission time

among the frames of all the lower priority packets.

Bi = max
∀λ

q

k
∈Λk ,∀k ∈lp(i)

(C
q

k
) (5)

Equation (1-5) summarises the response time analysis for bound-

ing the worst-case transmission latency (i.e., the response time)

of packets in a Qbv switch for time-critical control systems. The

analysis considers both implicit and arbitrary deadlines for different

packet types and is fine-grained, which provides the worst-case

transmission latency of each frame. Arguably, by intuition, a trivial

modification that treats each frame as an independent task can be

applied in an existing packet-level analysis (e.g., the one in [9]), to

support the analysis at the frame-level. However, additional tech-

niques are still required to guarantee the correct transmission order

between frames that belong to the same packet and instance so

that the transmission time of each individual frame can be obtained.

This is achieved in our analysis by Equation (4), which carefully

examines the transmission order of different types of frames (includ-

ing the ones in τi) and provides a tighter upper bound compared to

a packet-level analysis.

The proposed analysis and scheduling techniques for a single

switch can be extended to support the network topology level with

multiple switches and end-nodes. For the proposed method, it can

be implemented in each switch. For a given switch, the proposed

schedule takes all packets that will go through this switch and

then produced a static schedule. In addition, the deferred queue

is applied in each switch to handle the case in which low priority

packets arrive earlier than expected. To compute the end-to-end

worst-case transmission time of a packet τi that travels through

more than one switches, the input packets of each of the switches

should be given and the worst-case delay of τi in each switch can

be effectively upper bounded by summing the worst-case delay it

can incur in each switch by the above analysis.

However, with only one switch, the worst-case delay of a packet

can be bounded by considering all the input packets with a synchro-

nous release at the begin of the system. This assumption, however,

may not hold in the scenario of multiple switches, in which the ac-

tual arrival time of a packet at a given switch depends on the delay

it incurs at the previous switches. Thus, the analysing approach

above would contain certain degree of pessimism as not all the in-

put packets in a switch will cause a delay on τi , depending on their

arrival times. In addition, as an offline scheduling technique, the

proposed schedule would incur scalability issues when the number

of switches and nodes increases. These are identified as desirable

research directions that will be addressed in future work.

4 CONTROLLER SYNTHESIS AND PERIOD
ALLOCATION

For a safety-critical autonomous system, for example, a self-driving

car, the control functions are crucial and should always be a major

concern. Further to the introduced scheduling and analysis that

guarantee the timing of control packets, a well-designed controller

is also required, in order to satisfy the control performance require-

ment and even maximise it under the schedulability constraint of

the network.

Most real-time controllers targeting settling time (which will

be formally defined later in this section) can run at different fre-

quencies [1, 6, 7]. In the TSN context, this rate is bounded by (i) the

maximum transmission capability; (ii) the lowest control perfor-

mance requirement. Hence, there exists an optimised operational

point that would produce acceptable network schedulability with

maximised control performance.

4.1 Control Model

For a linear-time-invariant (LTI) controlled plant, its system dy-

namics can be described using the following differential equations:

Ûx(t) = Ax(t) + Bu(t),

y(t) = Hx(t)
(6)

in which A, B and H are system matrices that represent the system

physical properties; x(t) is the system state(s); y(t) is the system

output(s) and u(t) is the control input(s). Assuming the sampling

time is Ts and the sensor-to-actuator delay is within one sampling

period, at discrete time instant k , the system dynamics evolve with

the following equations:

x(k + 1) = Adx(k) + Bdu(k − 1),

y(k) = Hx(k)
(7)

where u(−1) = 0 for k = 0 and

Ad = eA ·Ts ,Bd =

∫ Ts

0
eAτdτ · B (8)

ICCAD ’20, November 2–5, 2020, Virtual Event, USA X. Dai, S. Zhao, Y. Jiang, X. Jiao, X. Hu, W. Chang

To further simplify the equation, define an augmented variable z

as: z(k) =
[
x(k) u(k − 1)

]T
, and substitute x(k), u(k) with z(k)

in Equation (7):

z(k + 1) =

[
Ad Bd
0 0

]
z(k) +

[
0

1

]
u(k) (9)

Assuming a full state-feedback controller is used, the control input

u(k) is calculated by:

u(k) = −Kz(k) + Fr (k) (10)

where K is the feedback gain, F is the feedforward gain and r (k)

is the reference. By combining Equation (9) and (10), the system

equation therefore becomes:

z(k + 1) = (Ad − BdK︸ ︷︷ ︸
Acl

)z(k) + BdFr (k)
(11)

To satisfy control stability, all the eigenvalues of the closed loop

dynamic matrix, i.e. Acl in Equation (11), have to be inside the unit

circle. The exact value of Ad and Bd is dependent on the sampling

periodTs as seen from Equation (8), which is equal to the period of

the control packet, Ti . This control model will be used through the

rest of this paper.

4.2 Problem Definition

We use settling time (ts) as the index of quality-of-control (QoC),

which is widely used in control engineering as a compulsory design

requirement [4]. Settling time is defined as the time duration from

when a control system is subjected to a disturbance to when it

enters steady-state, i.e., the current output has reached and stays

within 5% deviation of the targeted output. There is an upper bound

requirement on the settling time, e.g., the settling time of a control

system should not be longer than 0.5 seconds.

Finding an optimal period is crucial for (i) guaranteeing the per-

formance of the controller itself; and (ii) ensuring enough residual

time slots for non-control-related packets so they can alsomeet their

deadlines. Based on the aforementioned objectives and constraints,

the period assignment problem can be solved as an optimization

problem, which is formulated as follows:

minimise J =
∑

D

w j · t
∗
s, j

subject to Ri ≤ Di

ts, j ≤ t+s, j

|uj (k)| ≤ umax

Ti = n · tдcd ,n ∈ N+

where i ∈ Γ, j ∈ Γc

(12)

where w j ∈ (0, 1] is the weight (i.e., relative importance) of the

corresponding control task and
∑
w j = 1; t∗s, j ∈ [0, 1] is the nor-

malised settling time of the jth controller;D represents the solution

space of all poles that can ensure control stability; ts, j is the settling

time of the jth controller, and t+s, j is the maximum allowed settling

time; uj (k) is input at discrete instance k , which is constrained by

umax as the maximum input threshold; The last constraint defines

the time-granularity of a feasible period. To benefit from harmonic

periods and to reduce the size of the GCL table, each Ti must be

an integer multiple of tдcd , the greatest common divisor of all the

packet periods. This is in accordance with common practice.

4.3 Solving the Network and Control
Co-Design Problem

In a typical control application, while the periods of non-control-

related packets are inflexible, the control-related packets often have

adjustable periods. This additional flexibility allows fine tuning of

controller periods to achieve the best overall performance (defined

as in Equation (12)). To solve the defined problem, a controller’s

period and its corresponding parameters under that period both

have to be decided. These two steps are dependent on each other

but can be decomposed into two sub-problems, i.e., the optimiza-

tion process needs to (i) find the feasible periods that can satisfy

schedulability constraints; (ii) find the controller parameters under

the feasible periods that would satisfy control stability and minimal

performance requirement, and on top of that, maximise the control

performance as much as possible.

For the first problem, due to the existence of harmonic periods

and that the number of control tasks is often small, the search space

is manageable and thus can be solved through exhaustive search.

For larger scale problems, heuristic methods can be used instead to

find the feasible period configurations.

For the second problem, as pole placement for the minimum set-

tling time under input constraints is a non-convex and non-linear

problem, the solution space cannot be searched easily. We use Parti-

cle Swarm Optimisation (PSO) to find the optimal controller param-

eters (by pole placement [4]) under certain sampling period that

can minimise the settling time, while given the control performance

and input saturation as constraints. PSO is a population-based opti-

mization approach for iterative improvement of candidate solutions

given a non-linear non-convex objective function and a metric of

quality [15].

The optimization process is given in Algorithm 1. The solution

space is first formulated in Line 4. The schedulability is then tested

(Line 6) to obtain potential period configurations, and under each

period configuration, the optimal poles of each control task can be

found through PSO (Line 8). To speedup the process, the optimal

poles under the feasible range of periods can be obtained in advance.

The identified configuration is appended into the feasible solutions

provided that the minimum control performance and the input

constraints are both satisfied (Line 10-13). Finally, the best candidate

that has the minimum J is selected from all the feasible solutions

(Line 16-20). No feasible solution is found if S∗ = Ø, in which case

the algorithm fails to find a solution that satisfies all the constraints.

5 EVALUATION

To evaluate the proposed co-design method, experiments are im-

plemented in MATLAB (R2019b) and are running on a desktop

PC. The experiment scripts and data can be publicly accessed6. To

demonstrate the feasibility of the proposed method, we evaluate

our approach on synthetically generated packets using UUnifast

[10]. The network transmission speed v is 100 Mbps. The greatest

6The MATLAB code used in the experiments can be accessed at the following link:
https://github.com/automaticdai/research-sched-tsn.

Fixed-Priority Scheduling and Controller Co-Design for Time-Sensitive Networks ICCAD ’20, November 2–5, 2020, Virtual Event, USA

Algorithm 1: Periods and control poles assignment

1 Input: Γ = {Γc , Γnc }

2 Output: schedulability, S∗

3 Initialise: feasible and best solutions: Sf = Ø, S∗ = Ø

/* construct candidate solutions: */

4 formulate the solution space: S = {S1, S2, ..., Sn }.

/* explore each candidate: */

5 for Sk in S do

6 if RTA_schedulability(Γk) is True then

7 for j in Γ
k
c do

8 {ts, j ,uj } = pso_find_control_parameters(Tj)

9 end

10 if ∀j in Γ
k
c : ts, j ≤ t+s, j and |uj | ≤ umax then

11 Jk =
∑
w j · ts, j

12 Sk → Sf

13 end

14 end

15 end

/* find the best candidate solution: */

16 for Sk in Sf do

17 if Jk < J ∗ then

18 S∗ = Sk
19 end

20 end

/* return feasibility: */

21 if S∗ is not é then

22 return (feasible, S∗)

23 else

24 return (infeasible, Ø)

25 end

common divisor of the periods, tдcd , is 100 µs . The transmission

timeCi of all control packets is 120 µs (which can fit into one MTU).

The enqueue time Ji is set to be Ci/100. The control packets have

implicit deadline with Di = Ti , and for non-control packets, the

deadline is assigned randomly in [0.5, 1]multiplying its period. The

transmission rate of non-control packets ranges from 0.5ms to 200

ms , i.e., 5-2000 Hz. To control the size of the GCL table, we con-

strain the period of non-control packets to be within a pre-defined

set of harmonic periods (in ms): {0.5, 1, 2, 5, 10, 20, 50, 100, 200}.

The controlled system consists of a number of direct current (DC)

motors which are commonly used in autonomous and robotic sys-

tems, e.g., motion control, manipulator and joints. The dynamics of

the DC motors are modelled as a second-order plant in the form of

time-domain state-space model. In our setup, we have three motor

systems with slightly different parameters to control, of which the

parameters are given in Table 1. The controller is designed with

pole-placement and the system is fully observable and controllable.

5.1 Evaluation of Network Scheduling
Performance

A concrete example of a packet set scheduled by the proposed

method is given in Table 2. The packets are ordered with their

Table 1: Parameters of the controlled plants used in the ex-

periment

Plant A B H wi

p1

[
−10 1

−0.02 −2

] [
0 2

]T [
1 0

]
0.5

p2

[
−9.167 0.833

−0.019 −1.961

] [
0 1.961

]T [
1 0

]
0.3

p3

[
−8.571 0.714

−0.019 −1.923

] [
0 1.923

]T [
1 0

]
0.2

deadlines and the calculated latency is on the last column. It can

be seen that the packet set is schedulable as ∀i : Ri ≤ Di . To

further evaluate the effectiveness of the scheduling model, the

proposed method (P-DM) is compared with queue-level scheduling.

Specifically, we consider the following two policies:

• Q-RND: Each queue has its own priority. Packet priority is

assigned randomly, i.e., each packet is assigned to a random

queue;

• Q-DM: Each queue has its own priority. Each packet is as-

signed to a queue according to its deadline (with deadline

monotonic);

For each policy, we have three network scenarios: (i) L ś the

network is lightly loaded with a total utilisation
∑
U = 0.5; (ii) M

ś network is medium-loaded (
∑
U = 0.7); and (iii) H ś network is

heavily loaded (
∑
U = 0.9). Under each scenario, we also have two

total numbers of packets: 10 and 20.

For each case, we independently generate 10,000 sets of packets

according to the properties introduced at the beginning of this

section. To quantify the schedulability, we use schedulable ratio Φ,

defined as the number of schedulable packets divided by the total

number of packets:

Φ =
#(schedulable packets)

#(all packets)

Using the random generated packet sets, the result in terms of

schedulable packets is given in Table 3. From the result, it can be

seen that the random priority policy Q-RND can barely find any

solution, except a few schedules are found in L-10. Comparing P-

DM with Q-DM, the two methods have competitive performance

when the network is lightly loaded. For the medium and heavy-

load cases, the P-DM is significantly better. Comparing H-10 and

H-20 for P-DM, it is observed that the later case produced a higher

schedulability. As the total utilization is constrained, this could be

due to the fact that shorter interference duration of higher priority

packets in (L/M/H-20) is preferred to the longer case in our method.

5.2 Control Performance Maximisation

It is common for a control system to have non-control timing-

critical traffics that communicate considerable amount of data along-

side the control packets. In this evaluation, we consider a real-world

scenario in which the non-control packets are pre-defined, and the

control packets with flexible transmission rate need to be fitted

into the schedule at a later stage. The schedule should not violate

ICCAD ’20, November 2–5, 2020, Virtual Event, USA X. Dai, S. Zhao, Y. Jiang, X. Jiao, X. Hu, W. Chang

Table 2: Compare Packet-Level and Queue-Level Scheduling

(unit: µs)

Packet Ci Ti Di Ji Ri

τ0 37 1,000 598 1 158

τ1 11 1,000 625 1 169

τ2 87 2,000 1,840 1 256

τ3 438 10,000 6,271 5 700

τ4 145 10,000 6,749 2 841

τ5 515 50,000 31,437 6 1,410

τ6 668 50,000 45,357 7 2,215

τ7 183 200,000 124,352 2 2,390

τ8 5,335 200,000 192,926 54 8,105

Table 3: Evaluation of Scheduling Policies (index by Φ)

L-10 L-20 M-10 M-20 H-10 H-20

P-DM 0.999 1.000 0.992 0.999 0.619 0.816

Q-RND 0.002 Ð Ð Ð Ð Ð

Q-DM 0.924 0.970 0.741 0.808 0.147 0.101

the schedulability of non-control traffics while achieve the highest

possible control performance.

Specifically, we study the cases where the network is heavily

loaded with a total utilization of non-control packets from 0.70

to 0.95. For each utilisation, 2,000 random generated non-control

packets sets are produced. The number of non-control packets is

fixed to 10. The input constraint for all controllers is umax = 24.

The other parameters follow the configurations introduced at the

beginning.

The results are shown in Figure 3 and 4. For both figures, the

x-axis is the total utilisation of non-control traffics, i.e.,
∑
Unc . Fig-

ure 3 represents the percentage of feasible solutions that satisfy

both schedulability and control requirements. From the figure it

can be seen that as the network load increases, the percentage of

feasible solutions drops quadratically but still at an acceptable level.

For example, the feasible percentage is above 60% whenUnc = 0.9.

Even for the extreme case whenUnc is 0.95, the method still man-

ages to find more than 25% feasible solutions. Figure 4 shows the

minimum/average/maximum cost of all the feasible solutions. In

the figure, the min/avg/max cost all increases as the network be-

comes more loaded. However, the average and minimum control

cost increases much slower than the maximum, which indicates

the effectiveness of the method as the method is still able to find

relative good controller periods and poles.

6 CONCLUSION

Timing-sensitive networking provides a potential solution to en-

hance real-time communication, which satisfies both real-time and

high bandwidth requirements. However, the mechanisms of TSN re-

quire an elaborate design tomake it fully beneficial. In this paper, we

proposed an integrated network and control co-design method on

IEEE 802.1 Qbv time-sensitive network. This work can be used for

automotive and autonomous systems in which the timing determin-

ism in communication contributes a major part in safety assurance

0.7 0.75 0.8 0.85 0.9 0.95

Network Load

20

40

60

80

100

S
c
h
e
d
u
le

 P
a
c
k
e
t
S

e
ts

 (
p
re

c
e
n
ta

g
e
)

Figure 3: Scheduling performance Ð percentage of feasible

solutions, Φ (y-axis) versus total utilization of non-control

traffics,Unc (x-axis).

0.7 0.75 0.8 0.85 0.9 0.95

Network Load

0

0.2

0.4

0.6

0.8

1

C
o
n
tr

o
l
C

o
s
t
(n

o
rm

a
lis

e
d
)

min

avg

max

Figure 4: Quality-of-control measured by J (lower is better)

in Equation (12) versus network load of non-control packets

Unc . Avg: average; Min: minimum; Max: maximum.

and verification processes. Specifically, we introduced a network

scheduling model using non-preemptive fixed-priority schedul-

ing (FPS-NP) and the mapping of the schedule into the TSN gate

control list. The schedulability of the network is discussed using

non-preemptive response-time analysis with the consideration of

multi frames and unconstrained deadlines. An optimisation method

is also proposed that could find the feasible solution withmaximised

overall quality of control constrained by network schedulability.

We demonstrated our methods through extensive number of exper-

iments. Future work that further improves this method includes:

(i) exploration of dependability, for example, scheduling of flows

with dependency modelled using directed acyclic graph (DAG); (ii)

extend the scheduling model and analysis to the network topology

level with a large number of switches and end-nodes.

REFERENCES
[1] K-E Arzén, Anton Cervin, Johan Eker, and Lui Sha. 2000. An introduction to

control and scheduling co-design. In Proceedings of the 39th IEEE Conference on
Decision and Control, Vol. 5. IEEE, 4865ś4870.

[2] Bharat Bansal. 2018. Divide-and-conquer scheduling for time-sensitive networks.
Master’s thesis. University of Stuttgart, Germany.

[3] Henri Bauer, Jean-Luc Scharbarg, and Christian Fraboul. 2010. Improving the
worst-case delay analysis of an AFDX network using an optimized trajectory
approach. IEEE Transactions on Industrial informatics 6, 4 (2010), 521ś533.

[4] Wanli Chang and Samarjit Chakraborty. 2016. Resource-aware automotive
control systems design: A cyber-physical systems approach. Foundations and

Fixed-Priority Scheduling and Controller Co-Design for Time-Sensitive Networks ICCAD ’20, November 2–5, 2020, Virtual Event, USA

Trends in Electronic Design Automation 10, 4 (2016), 249ś369.
[5] Silviu S Craciunas, Ramon Serna Oliver, Martin Chmelík, and Wilfried Steiner.

2016. Scheduling real-time communication in IEEE 802.1 Qbv time sensitive net-
works. In Proceedings of the 24th International Conference on Real-Time Networks
and Systems. ACM, 183ś192.

[6] Xiaotian Dai and Alan Burns. 2020. Period adaptation of real-time control tasks
with fixed-priority scheduling in cyber-physical systems. Journal of Systems
Architecture 103 (2020), 101691.

[7] Xiaotian Dai, Wanli Chang, Shuai Zhao, and Alan Burns. 2019. A Dual-Mode
Strategy for Performance-Maximisation and Resource-Efficient CPS Design. ACM
Transactions on Embedded Computing Systems (TECS) 18, 5s (2019), 85.

[8] Robert I Davis, Steffen Kollmann, Victor Pollex, and Frank Slomka. 2011. Con-
troller area network (CAN) schedulability analysis with FIFO queues. In 2011
23rd Euromicro Conference on Real-Time Systems. IEEE, 45ś56.

[9] Robert I Davis, Steffen Kollmann, Victor Pollex, and Frank Slomka. 2013. Schedu-
lability analysis for Controller Area Network (CAN) with FIFO queues priority
queues and gateways. Real-Time Systems 49, 1 (2013), 73ś116.

[10] Paul Emberson, Roger Stafford, and Robert I Davis. 2010. Techniques for the
synthesis of multiprocessor tasksets. In proceedings 1st International Workshop on
Analysis Tools and Methodologies for Embedded and Real-time Systems (WATERS
2010). 6ś11.

[11] IEEE 802.1 Task Group. 2016. Standard for Local and Metropolitan Area Networks
ś Bridges and Bridged Networks - Amendment 25: Enhancements for Scheduled
Traffic. Standard. IEEE.

[12] Stephan Kehrer, Oliver Kleineberg, and Donal Heffernan. 2014. A comparison
of fault-tolerance concepts for IEEE 802.1 Time Sensitive Networks (TSN). In
Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA).

IEEE, 1ś8.
[13] Ramon Serna Oliver, Silviu S Craciunas, and Wilfried Steiner. 2018. IEEE 802.1

Qbv gate control list synthesis using array theory encoding. In 2018 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS). IEEE, 13ś24.

[14] Giuseppe Piro, Luigi Alfredo Grieco, Gennaro Boggia, Rossella Fortuna, and Pietro
Camarda. 2011. Two-level downlink scheduling for real-time multimedia services
in LTE networks. IEEE Transactions on Multimedia 13, 5 (2011), 1052ś1065.

[15] Yuhui Shi et al. 2001. Particle swarm optimization: developments, applications
and resources. In Proceedings of the 2001 congress on evolutionary computation,
Vol. 1. IEEE, 81ś86.

[16] Sivakumar Thangamuthu, Nicola Concer, Pieter JL Cuijpers, and Johan J Lukkien.
2015. Analysis of ethernet-switch traffic shapers for in-vehicle networking
applications. In 2015 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 55ś60.

[17] Daniel Thiele, Rolf Ernst, and Jonas Diemer. 2015. Formal worst-case timing
analysis of Ethernet TSN’s time-aware and peristaltic shapers. In 2015 IEEE
Vehicular Networking Conference (VNC). IEEE, 251ś258.

[18] J-P Thomesse. 2005. Fieldbus technology and industrial automation. In 2005
IEEE conference on emerging technologies and factory automation, Vol. 1. IEEE,
651ś653.

[19] Tsung-Yu Tsai, Yao-Liang Chung, and Zsehong Tsai. 2010. Introduction to packet
scheduling algorithms for communication networks. In Communications and
Networking. IntechOpen.

[20] Luxi Zhao, Paul Pop, and Silviu S Craciunas. 2018. Worst-case latency analysis
for IEEE 802.1 Qbv time sensitive networks using network calculus. IEEE Access
6 (2018), 41803ś41815.

	Abstract
	1 Introduction
	2 Background on Time-Sensitive Networking
	3 Traffic Scheduling of TSN in Control Systems
	3.1 Scheduling Network Packets in TSN
	3.2 Deferred Queue
	3.3 Worst-Case Response Time Analysis

	4 Controller Synthesis and Period Allocation
	4.1 Control Model
	4.2 Problem Definition
	4.3 Solving the Network and Control Co-Design Problem

	5 Evaluation
	5.1 Evaluation of Network Scheduling Performance
	5.2 Control Performance Maximisation

	6 Conclusion
	References

