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Abstract

The explosion of disinformation related to

the COVID-19 pandemic has overloaded fact-

checkers and media worldwide. To help tackle

this, we developed computational methods

to support COVID-19 disinformation debunk-

ing and social impacts research. This pa-

per presents: 1) the currently largest available

manually annotated COVID-19 disinforma-

tion category dataset; and 2) a classification-

aware neural topic model (CANTM) that com-

bines classification and topic modelling un-

der a variational autoencoder framework. We

demonstrate that CANTM efficiently improves

classification performance with low resources,

and is scalable. In addition, the classification-

aware topics help researchers and end-users to

better understand the classification results.

1 Introduction

COVID-19 is not just a global disease pandemic,

but has also led to an ‘infodemic’1 (WHO, 2020)

and a ‘disinfodemic’2 (Posetti and Bontcheva,

2020). The increased volume (Brennen et al., 2020)

of COVID-19 related disinformation has already

caused public mistrust (Clare and Christie, 2020)

and even real-life damage to health and 5G masts.3

Consequently fact-checkers and media world-

wide are having to triage carefully their limited re-

sources in order to uncover and debunk quickly and

effectively the most damaging kinds of COVID-19

disinformation. For example, Brennen et al. (2020)

found that most disinformation in the early stage of

the pandemic made false claims related to actions

and statements by public authorities.

1“an over-abundance of information” (WHO, 2020)
2“the disinformation swirling amidst the COVID-19 pan-

demic” (Posetti and Bontcheva, 2020)
3https://www.bbc.co.uk/news/uk-england-

52164358,https://news.sky.com/story/coronavirus-church-
ordered-to-stop-selling-bleach-based-covid-19-cure-
11975002

Guided by these needs, we developed an au-

tomatic COVID-19 disinformation classifier and

made this available for testing and use by profes-

sionals at AFP and First Draft. 4

The challenges of this task are that: 1) there is

no sufficiently large existing dataset annotated with

COVID-19 disinformation categories, which can

be used to train and test machine learning models.

2) Due to the time-consuming nature of manual

fact-checking and disinformation categorisation,

manual corpus annotation is expensive and slow to

create. Therefore the classifier should robustly han-

dle training with low resources. 3) COVID-19 dis-

information classification is a fast-moving research

area, thus the model should provide suggestions

to researchers about relevant categories. 4) The

classifier and decisions should be self-explanatory,

enabling journalists to understand the rationale for

the auto-assigned category.

To address the first challenge, we created a new

COVID-19 disinformation classification dataset.

The corpus contains disinformation (e.g. false in-

formation or misleading tweets) debunked by the

CoronaVirusFacts Alliance led by the International

Fact-checking Network (IFCN) and has been man-

ually annotated with the categories defined in the

most recent social science research on COVID-19

disinformation (Brennen et al., 2020).

For the remaining challenges, we propose a Clas-

sification Aware Neural Topic Model (CANTM)

which combines the benefits of BERT (Devlin

et al., 2019) with a Variational Autoencoder

(VAE)(Kingma and Welling, 2013; Rezende et al.,

2014) based document model (Miao et al., 2016)

to provide:

1. Robust classification performance especially

on a small training set – instead of training

4https://cloud.gate.ac.uk/shopfront/displayItem/covid19-
misinfo
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the classifier directly on the original feature

representation, the classifier is trained based

on generated latent variables from the VAE

(Kingma et al., 2014). In this case the clas-

sifier has never seen the ‘real’ training data

during the training, thus reducing the chance

of over-fitting. Our experiment shows that

combining BERT with the VAE framework

improves the classification results on a small

dataset, and is also scalable to larger datasets.

2. Ability to discover the hidden topics related

to the pre-defined classes – the success of

the VAE as a topic model5 has already been

proven in previous research (Miao et al.,

2016, 2017; Card et al., 2018). We further

adapt the VAE-based topic modelling to be

classification-aware, by proposing a stacked

VAE and introducing the classification infor-

mation directly in the latent topic generation.

3. The classifier is self-explaining6 – in CANTM

the same latent variable (topic) is used in both

the classifier and topic modelling. The topic

can be seen as an explanation of the classi-

fication model. We further introduce ‘class-

associated topics’ that directly map the topic

words to classifier classes. This enables the

inspection of topics related to a class, thus pro-

viding a ‘global’ explanation of the classifier.

The main contributions of this paper are: 1) A

new COVID-19 disinformation corpus with manu-

ally annotated categories. 2) A BERT language

model with a VAE topic modelling framework,

which shows a performance improvement (over

using BERT alone) in a low resource classifier

training setting. 3) The CANTM model, which

takes classification information into account for

topic generation. 4) The use of topic modelling

to introduce ‘class-associated’ topics as a global

explanation of the classifier. The corpus and source

code of this work will be open-source, and the web

service and API will be publicly available.

2 COVID-19 Disinformation Category

Dataset

The corpus was created in three stages. Firstly,

we collected COVID-19 related debunks of disin-

formation until 13th April, 2020 published on the

5Some researchers distinguish ‘document model’ from
‘topic model’ (Miao et al., 2017; Korshunova et al., 2019). For
simplicity, we consider both as a topic model.

6BERT attention weights could also be treated to explain
the decision, but this is outside the scope of this paper.

IFCN Poynter website7. The data has the following

fields derived from the published html tags:

• ‘Claim’: claim of the disinformation,

rephrased by the IFCN fact-checker;

• ‘Explanation’: the explanation of why this is

a false claim as provided by the fact checkers;

• Source link’: link to original page of the de-

bunk, as published on the fact-checking organ-

isation’s website;

• ‘Date’: date of publication on IFC Poynter

website.

Due to the language restrictions of our human an-

notators, we could only focus on debunks in En-

glish. Thus we applied a language detector8 over

the source of the debunk and filtered out all non-

English debunks automatically. In total, 1,480 de-

bunked claims remained.

Category
Public authority (PubAuthAction)
Community spread and impact (CommSpread)
Medical advice, self-treatments, and virus effects
(GenMedAdv)
Prominent actors (PromActs)
Conspiracies (Consp)
Virus transmission (VirTrans)
Virus origins and properties (VirOrgn)
Public Reaction (PubRec)
Vaccines, medical treatments, and tests (Vacc)
Cannot determine (None)

Table 1: Categories for annotation, the abbreviations

are in the parentheses

The next stage involved manual annotation,

where an adapted version of Label Studio9 was

used as a web-based annotation tool. The claim,

explanation and source link were all provided to

the annotators, who assigned to each text the most

relevant one of 10 COVID-19 disinformation cate-

gories (see Table 1) and indicated their confidence

(from 0-9) in their decision. Originally, these cat-

egories were proposed in a recent social science

analysis of a small sample of 225 debunks(Brennen

et al., 2020). We adopted them unchanged, except

for widening their ‘Public preparedness’ category

to become ‘Public Reaction’ and to include also

disinformation about public protests and other civil

disobedience which are a more recent phenomenon.

In addition, we added a new category ‘Cannot de-

termine (None)’ to enable annotators to flag cases

of COVID-19 disinformation that did not fit any of

the other categories.

7https://www.poynter.org/ifcn-covid-19-disinformation/
8https://pypi.org/project/langdetect/
9https://github.com/heartexlabs/label-studio



We recruited 27 volunteers for the annotation,

and randomly split the data into batches of 20 de-

bunks. In the first round, all annotators worked on

unique batches. In the second round, annotators

received randomised debunks from the first round,

which were then used to measure inter-annotator

agreement (IAA) on COVID-19 disinformation

classification.

The exercise produced 2,192 classified debunks

(see Table 2). Amongst these, 424 samples were

double- or multiple-annotated, from which we cal-

culate the IAA. At this stage, vanilla Cohen’s

Kappa (Cohen, 1960) was only 0.46.

To increase the data quality and provide a good

training sample for our ML model, we applied a

cleaning step to filter the annotations. We first mea-

sured annotator quality by observing agreement

change when removing an (anonymous) annota-

tor. This annotator quality was scored based on the

magnitude of score variance. Based on this, we

then removed annotations from the two annotators

with the lowest scores.

We also measured the impact of the annotator

confidence score on the annotation agreement and

the amount of filtered data, and set a confidence

threshold for each annotator, based on the quality

check from the first round (for most annotators,

this threshold was 6). Any annotation below this

threshold was filtered out.

Finally, 1,293 debunks remained with at least

one reliable classification, and IAA was boosted

to 0.7336 (in percentage) and Cohen’s Kappa to

0.7040.

All Cleaned
Single Annotated 1056 1038

Double Annotated 213 186
Multiple Annotated 211 69

Annotation Agreement 0.5145 0.7336
Kappa 0.4660 0.7040

Table 2: Label counts and annotation agreements

of unfiltered annotation (All) and filtered annotation

(Cleaned)

The final dataset was produced by merging the

multiple-annotated debunks on the basis of: 1) ma-

jority agreement between the annotators where pos-

sible; 2) confidence score – if there is no majority

agreement, we use the highest confidence score.

Table 3 shows the statistics of the merged dataset

in each category. The category distribution is con-

sistent with that found in Brennen et al. (2020).

PubAuthAction CommSpread PubRec PromActs
251 225 60 221

GenMedAdv VirTrans Vacc Consp
177 80 76 97

VirOrgn None
63 43

Table 3: Label count after merge in each category

3 Model

In this section, we review some related work, using

this to explain the motivation for our model. Then

we describe our CANTM model in Section 3.2.

Other related work is reviewed in Section 5.

3.1 Background and Preliminaries

Miao et al. (2016) introduce a generative neural

variational document model (NVDM) that models

the document (x) likelihood p(x) using a varia-

tional autoencoder (VAE), which can be described

as:

log p(x) = ELBO +DKL(q(z|x)||p(z|x))

ELBO = Eq(z|x)[log p(x|z)]−DKL(q(z|x)||p(z))

(1)

Where p(z) is the prior distribution of latent vari-

able z. q(z|x) is the inference network (encoder)

used to approximate the posterior distributions

p(z|x). p(x|z) is the generation network (decoder)

to reconstruct the document based on latent vari-

able (topics) z ∼ q(z|x) sampled from the infer-

ence network.

According to Equation 1, maximising the ELBO

(evidence lower bound) is equivalent to maximising

the p(x) and minimising the difference between

q(z|x) and p(z|x). Therefore, maximising ELBO

will be the objective function in the NVDM or VAE

framework, or negative ELBO for gradient descent

optimisation. The latent variable z then can be

treated as the latent topics of the document.

NVDM is an unsupervised model, hence we

have no control on the topic generation. In order to

uncover the topics related to the target y (e.g. cate-

gory, sentiment or coherence) in which we are inter-

ested, we can consider several previous approaches.

The Topic Coherence Regularization (NTR) (Ding

et al., 2018) applies the topic coherence as addi-

tional loss (i.e. loss L = −ELBO + C) to regu-

larise the model to generate more coherent topics.

SCHOLAR (Card et al., 2018) directly inserts the

target information into the encoder (i.e. q(z|x, y)),
making the latent variable also dependent on the

target. However, when target information is miss-

ing at application time, SCHOLAR treats the target



input as a missing feature (i.e. all zero vector) or all

possible combinations. Hence the latent variable

becomes less dependent on the target.

Inspired by the stacked VAE of Kingma et al.

(2014), we combined ideas from NTR and

SCHOLAR. We stacked a classifier-regularised

VAE (M1) and a classifier-aware VAE (M2) en-

abling the provision of robust latent topic informa-

tion even at testing time without label information.

3.2 Classifier Aware Neural Topic Model

(CANTM)

The training sample D = (x, xbow, y) is a triple of

the BERT word-pieces sequence representation of

the document (x), a bag-of-words representation of

the document (xbow) and its associate target label

y.

The general architecture of our model is illus-

trated in Figure 1. CANTM is a stacked VAE con-

taining 6 sub-modules:

1. M1 encoder (or M1 inference network) q(z|x)
2. M1 decoder (or M1 generation network)

p(xbow|z)
3. M1 Classifier ŷ = f(z)
4. M1 Classifier decoder p(x|ŷ)
5. M2 encoder (or M2 inference network)

q(zs|x, ŷ)
6. M2 decoder (or M2 generation network)

p(xbow|ŷ, zs) and p(ŷ|zs)

Sub-modules 1 and 2 implement a VAE similar to

NVDM. The modification over original NVDM is

that instead of bag-of-words (xbow) input and out-

put to the model, our input is a BERT word-pieces

sequence representation of the original document

(x). The reason for this modification is that x can

be seen as a grammar-enriched xbow, and we could

capture better semantic representation in the hidden

layers (e.g. though pre-trained BERT) and bene-

fit the classification and topic generation. Also,

q(z|x) is an approximation of p(z|xbow), and they

do not have to follow the same condition (Kingma

and Welling, 2013), as our model is still under the

VAE framework. Sub-modules 5 and 6 implement

another VAE that models the joint probability of

document xbow and label ŷ. Note that the label

in M2 is a classifier prediction, hence this label

information will always be available for M2 VAE.

To apply CANTM to unlabelled test data, we fix

the M1 weights that are pre-trained with labelled

data, and only train the M2 model. In Sections

3.2.1 to 3.2.5, we will describe the detail of each

sub-module.

3.2.1 M1 Encoder

The M1 encoder is illustrated in the yellow part of

Figure 1. During the encoding process, the input x
is first transformed into a BERT-enriched represen-

tation h using a pre-trained BERT model. We use

the CLS token output from BERT as h. Then lin-

ear transformations l1(h) and l2(h) transform the h
into parameters of variational distribution that are

used to sample latent variable z. The variational

distribution is a Gaussian distribution (N (µ, σ))
The M1 Encoder is represented in Equation 2

q(z|x) = N (µ, σ)

µ = l1(h), σ = l2(h)

h = BERT (x)

(2)

Following previous approaches (Rezende et al.,

2014; Kingma and Welling, 2013; Miao et al.,

2016), a re-parameterisation trick is applied to al-

low back-propagation to go though the random

node.

z = µ+ σ ⊙ ǫ, ǫ ∼ N (0, 1) (3)

where ǫ is random noise sampled from a 0 mean

and variance 1 Gaussian distribution. In the de-

coding process (next section), the document is re-

constructed from latent variable z, hence z can be

considered as the document topic.

3.2.2 M1 Decoder

The decoding process (red part in Figure 1) is to

reconstruct xbow from latent variable z. This is

modelled by a fully connected feed-forward (FC)

layer with softmax activation (sigmoid activation

normalised by softmax function. For the rest of the

paper we will describe this as softmax activation for

simplicity). The likelihood of the reconstruction

p(xbow|z) can be calculated by

p(xbow|z) = softmax(zR+ b)⊙ xbow

Where R ∈ R
|z|×|V |, and |V | is the vocabulary

size. R is a learnable weight for mapping between

topics and words. The topic words for each topic

can be extracted according to this weight. ⊙ is the

dot product.

3.2.3 M1 Classifier and Classifier Decoder

The classifier ŷ = softmax(FC(z)) is a softmax

activated FC layer. It is based on the same latent

variable z from the M1 encoder. Since the M1 VAE

and classifier are jointly trained based on z, it can

be seen as a ‘class regularized topic’ and also serve
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Figure 1: Overview of model architecture, Linear is the linear transformation (i.e. Linear(x)=xW+b), nonLin is

linear transformation with non-linear activation function f(Linear(.)), Softmax is Softmax activated linear function

as a ‘global explanation’ of the classifier. Further-

more, ŷ itself can be seen as a compressed topic of

z, or ‘class-associated topic’. The document can

be reconstructed by ŷ in the same way as the M1

decoder, and the likelihood of p(xbow|ŷ) is given

by:

p(xbow|ŷ) = softmax(ŷRct + b)⊙ xbow

Where Rct ∈ R
|y|×|V | is a learnable weight for

‘class-associated topic’ word mapping.

3.2.4 M2 Encoder

The encoding process of M2 (blue part in Figure

1) is similar to M1, but instead of only encoding x,

M2 encodes both the document and predicted label

from the M1 classifier q(zs|x, ŷ). In the M2 en-

coder process, we first concatenate (⊕) the BERT

representation h and predicted label ŷ, then merge

them through a leaky rectifier (LRelu)(Maas et al.,

2013) activated FC layer. We refer to this as

nonLin in the remainder of the paper.

m = nonLin(h⊕ ŷ)

= LRelu(FC(h⊕ ŷ))

As for the M1 encoder, a linear transformation

then maps the merged feature m to the parameters

of the variational distribution represented by the

latent variable of M2 model zs. The variational

distribution is a Gaussian N (µs, σs):

q(zs|x, ŷ) = N (µs, σs)

µs = l3(m), σs = l4(m)

3.2.5 M2 Decoder

The decoding process of M2 p(xbow, ŷ|zs) is di-

vided into two decoding steps (p(xbow|ŷ, zs) and

p(ŷ|zs)) by Bayes Chain Rule.

The step p(ŷ|zs) can be considered as M2

classifier, calculated by softmax FC layer, the

likelihood function is modelled as p(ŷ|zs) =
softmax(FC(zs)) ⊙ ŷ. The M2 classifier will

not be used for classification in this work, only for

the loss calculation (see Section 3.2.6).

In step p(xbow|ŷ, zs), we first merge ŷ and zs
using nonLin layer t = nonLin(ŷ ⊕ zs) where

t is a ‘classification aware topic’. Then xbow is

reconstructed using a softmax layer. The likelihood

function is:

p(x|ŷ, zs) = softmax(tRs + b)⊙ xbow

where Rs ∈ R
|zs|×|V | is a learnable weight for the

‘classification aware topic’ word mapping.

3.2.6 Loss Function

The objective of CANTM is to: 1) max-

imise ELBOxbow
for M1 VAE; 2) maximise

ELBOxbow,ŷ
for M2 VAE; 3) minimise cross-

entropy loss Lcls for M1 classifier and 4) max-

imise the log likelihood of M1 class decoder

log[p(xbow|ŷ)]. Hence the loss function10 for

10For full details of the ELBO term deriving process please
see Appendix C



CANTM is

L = λLcls − ELBOxbow
− ELBOxbow,ŷ

− Eŷ[log p(xbow|ŷ)]

= λLcls − Ez[log p(xbow|z)] +DKL(q(z|x)||p(z))

− Ezs [log p(xbow|ŷ, zs)]− Ezs [log p(ŷ|zs)]

+DKL(q(zs|x, ŷ)||p(zs))− Eŷ[log p(xbow|ŷ)]

where p(z) and p(zs) are zero mean diagonal

multivariate Gaussian priors (N (0, I)), λ =
vocabSize/numclass is a hyperparameter con-

trolling the importance classifier loss.

4 Experiments

In this section, we evaluate the performance of

CANTM on both COVID-19 disinformation clas-

sification and topic modelling (with 50 topics).

Three experiments are presented. We first com-

pare the performance of CANTM against baseline

approaches on the COVID-19 corpus (Section 4.1);

then we apply CANTM to the IMDB sentiment cor-

pus (Maas et al., 2011) to test its compatibility with

other tasks with larger data (Section 4.3.1); finally,

in Section 4.3 we discuss topic interpretability by

visualising the topic words.

We compare to the following: BERT,

SCHOLAR, NVDM, and LDA. The settings

of CANTM and baselines are:

• BERT (Devlin et al., 2019): We use Hug-

gingface11 (Wolf et al., 2019) ‘BERT-based-

uncased’ pre-trained model and Pytorch im-

plementation in this experiment. As with

CANTM, we use BERT [CLS] output as

BERT representation, and an additional 50

dimensional feed-forward hidden layer (with

leaky ReLU activation) after that.12 Only the

last transformer encoding layer (layer 11) is

unlocked for fine-tuning, the rest of the BERT

weights were frozen for this experiment. The

Pytorch13 implementation of the Adam opti-

miser (Kingma and Ba, 2014) is used in the

training with default settings. The batch size

for training is 32. All BERT-related (CANTM,

NVDMb) implementations in this paper fol-

low the same settings.

11https://github.com/huggingface/transformers
12CWNTM contains a sampling layer after the BERT rep-

resentation, this additional layer is added for fair comparison.
Please check Appendix E on impact of the additional hidden
layer

13https://pytorch.org/

• CANTM (our proposed method): We use the

same BERT implementation and settings as

described above. The sampling size (num-

ber of samples z and zs drawn from the en-

coder) in training and testing are 10 and 1

respectively, and we only use expected value

(µ) of q(z|x) for the classification at testing

time. Unless mentioned otherwise, the top-

ics reported from CANTM are ‘classification-

aware’.

• NVDM (Miao et al., 2016): We re-implement

NVDM14, with two versions: 1) original

NVDM as described in (Miao et al., 2016)

(“NVDMo” in the results ); 2) NVDM with

BERT representation (“NVDMb” in the re-

sults).

• SCHOLAR (Card et al., 2018): We use the

original author implementation15 with all de-

fault settings (except the vocabulary size and

number of topics).

• Latent Dirichlet Allocation (LDA) (Blei et al.,

2003): the Gensim (Řehůřek and Sojka, 2010)

implementation is used.

All bag-of-words inputs are pre-processed us-

ing the script publicly available from Card et al.

(2018).15 The vocabulary sizes are 2000 for the

COVID-19 set and 5000 for the IMDB set (consis-

tent with (Card et al., 2018) to make a fair compar-

ison) based on word counts from each set.

4.1 COVID-19 Disinformation Classification

In this experiment, the input text for each instance

is the combination of the Claim and the Explana-

tion (the average text length is 23 words). The

results are reported based on 5-fold cross valida-

tion. Since class distribution is imbalanced, we

report the macro F-1 measure (F-1)16 and accuracy

(Acc.) for the classification task. For the topic

modelling task, the metrics reported are perplexity

(Perp.) and non-negative point-wise mutual infor-

mation (NPMI (Chang et al., 2009; Newman et al.,

2010)). As in previous work (Miao et al., 2016;

Card et al., 2018), the perplexity is estimated by

ELBO, and NPMI scores were calculated based on

the top 10 topic words of each topic.

14Based on code at https://github.com/YongfeiYan/Neural-
Document-Modeling

15 Using code from https://github.com/dallascard/scholar
16The F-1 is calculated as the average F-1 measure of all

classes, please refer to Appendix E for the class level F-1
score.



Acc. F-1 Perp. NPMI
Bert 58.78 54.19 n/a n/a

SCHOLAR 48.17 36.40 2947 0.25
NVDMb n/a n/a 1084 0.09
NVDMo n/a n/a 781 0.08

LDA n/a n/a 8518 0.12
CANTM 63.34 55.48 749 0.14

Table 4: COVID-19 disinformation results, n/a stands

for not applicable for the model

The COVID-19 evaluation results are shown

in Table 13. BERT as a strong baseline out-

performs SCHOLAR in accuracy by more than

10% and almost 18% F-1 measure. This is ex-

pected, because BERT is a discriminative model

pre-trained on large corpora and with a much more

complex model structure than SCHOLAR. Our

model CANTM shows almost 5% increase in ac-

curacy and more than 1% F-1 further improve-

ment over BERT. Training on latent variables with

multi-task loss is thus an efficient way to train

on a small dataset even with a pre-trained embed-

ding/language model.

In the topic modelling task, using BERT in

NVDM has better topic coherence than the vanilla

NVDM, but also increases the perplexity. LDA

has high perplexity in the COVID-19 experiment,

which may be because of the relatively small

dataset and short document length (average 19

words after pre-processing and vocabulary filter-

ing), but LDA still has relatively better topic co-

herence than both NVDM versions. CANTM has

the best perplexity performance, while SCHOLAR

has the best coherence score. It is very difficult

to draw conclusions from the topic modelling task

performance; in Section 4.3 we will discuss the

lack of correlation between topic interpretability

and topic coherence.

4.2 IMDB Sentiment Experiment

The IMDB sentiment corpus contains 50,000

movie reviews annotated with positive and neg-

ative sentiment. The number of positive and nega-

tive labels is balanced in this corpus (25,000 pos-

itive, 25,000 negative, average document length

is 282 words). We use the original train-test split

for evaluation, and report the results on the test

set only. All settings including vocabulary size

and pre-processing steps exactly follow Card et al.

(2018). Hence the NVDM, LDA and SCHOLAR

results are as reported in Card et al. (2018).

The IMDB results are shown in Table 5.

The classification results are consistent with the

COVID-19 experiment. Baseline BERT has better

Metrics Accuracy Perplexity Coherence
NVDM* n/a 1748 0.06

LDA* n/a 1508 0.13
SCHOLAR* 87 1905 0.14

BERT 89.54 n/a n/a
CANTM 90.00 1786 0.06

Table 5: IMDB results, n/a stands for not applicable

for the model (*NVDM, LDA and Scholar results are

borrowed from Card et al. (2018))

accuracy than SCHOLAR, and CANTM further

improves over BERT by about 0.5%. The topic

modelling performance of CANTM is almost the

same as for NVDM, while LDA and SCHOLAR

have the best performance in perplexity and coher-

ence, respectively.

4.3 Topic Interpretability Discussion

CANTM 0.50 please patents link ecuador patent read
click full article guayaquil

CANTM 0.04 cure proven met protection leader pope aa-
jtak within elizabeth developed

SCHOLAR 0.58 article link read please click full ecuador
cases guayaquil ecuadorian

SCHOLAR 0.07 coronavirus story lab china created website
similar general chinese director

Table 6: Topic words of the best and worst coherence

topics NPMI score in parentheses

Table 14 shows the topics from CANTM and

SCHOLAR with the best and worst NPMI scores.

We found there is no strong correlation between

coherence score and topic interpretability in su-

pervised topic models.17 The SCHOLAR topics

are included here to demonstrate this is not just the

case in CANTM. With knowledge of the predefined

classes (see Table 1), the lowest coherence topic

(Row 2, CANTM 0.04) in Table 14 can be eas-

ily interpreted as a mixture of the topics ‘General

Medical advice’ and ‘Prominent actors’, while the

highest two topics (CANTM 0.50 and SCHOLAR

0.58) are more general words appearing in the text.

CANTM 0.09 worst waste like boring lousy wasted lame
sucks bottom tedious

CANTM 0.03 animation movie enjoy better film disney
time acting recommend make

Table 7: The IMDB topics from the two best and worst

topic coherence scores

Table 7 shows the CANTM-generated IMDB

topics. We select two topics, based on the best

and worst topic coherence score. Since IMDB is

a sentiment-labelled data set, we can clearly see

that the topics generated here are the sentiment

17For a full comparison to NVDM and LDA and discussion,
please check Appendix E



and aspect words. Row 1 is the topic related to

negative sentiment. Row 2 shows the topics related

to positive sentiment in animation movies. Again,

the lowest coherence CANTM topic is still highly

interpretable.

4.3.1 Class-Associated Topics

In Section 3.2.3 we discussed the Class-Associated

Topics, which can be used to visualise the word

distribution in the training data associated with the

pre-defined classes. Table 8 shows an example

of topic words of class-associated topics. As the

topics are guided by the classifier, the topic words

are strongly associated with the pre-defined classes,

and can be used to discover concepts related to

the classes. For example, temperature (topic word

‘hot’ in GenMedAdv) is one of the most connected

concepts to GenMedAdv. In addition, this feature

could be potentially used to check the biases of the

trained classifier.

Vacc cure vaccine new covid developed novel
scientists claimed coronavirus claims

VirOrgn coronavirus shows video bat wuhan novel
source outbreak virus taken

GenMedAdv coronavirus cure experts novel prevent wa-
ter evidence kill scientific hot

Consp coronavirus chinese covid virus lab wuhan
outbreak new china posts

Table 8: Top 10 class topic words for Vaccines(Vacc),

Medical advice(GenMedAdv), General Medical advice

(GenMedAdv) and Conspiracies (Consp)

4.3.2 CANTM with Unlabelled COVID-19

Disinformation

To test the CANTM with unlabelled data, we col-

lected further 4587 COVID-19 debunks (until 26th

May 2020) from IFCN (the same collection as de-

scribed in Section 2). In the training, we reuse

the pre-trained M1 model (with labelled data), and

only train M2 model with −ELBOxbow,ŷ
loss. Ta-

ble 9 shows the example classification-aware topics

trained with newly collected data. We can clearly

see these topics are still classification-related even

without labels. (Row 1: virus transmission; Row

2:Public authority; Row 3:Medical advice and Row

4:Conspiracies)

5 Further Related Work

In addition to the work cited in the previous sec-

tions, the following research is related to our ap-

proach: VAE based topic/document modelling

e.g. Mnih and Gregor (2014) trained a VAE based

document model using the REINFORCE algorithm

police bat cdc spread visit tourists answer data july clip
mention conference professor since april quarantined
starting spoke supporting please
health ever salt swat ginger pope uses welfare hands
singapore
people vaccine since weapon hospital scientific man
group cells working

Table 9: COVID-19 classification-aware topics from

unlabelled data

(Williams, 1992); Miao et al. (2017) introduce

Gaussian Softmax distribution, Gaussian Stick

Breaking distribution and Recurrent Stick Breaking

process for topic distribution construction. Srivas-

tava and Sutton (2017) proposed a ProdLDA that

applies a Laplace approximation to re-parameterise

Dirichlet distribution in VAE. Zhu et al. (2018) ap-

ply a Biterm Topic Model (Cheng et al., 2014; Yan

et al., 2013) into the VAE framework for short text

topic modelling. Topic models with additional

information (e.g. author, label etc.): example

work includes Supervised LDA(Mcauliffe and Blei,

2008), Labeled LDA (Ramage et al., 2009), Sparse

Additive Generative Model (Eisenstein et al., 2011),

Structural Topic Models (Roberts et al., 2014), Au-

thor Topic Model (Rosen-Zvi et al., 2004), Time

topic model (Wang and McCallum, 2006) and

topic model conditional on any arbitrary Features

(Mimno and McCallum, 2008; Korshunova et al.,

2019). NVDM in text classification: Zeng et al.

(2018); Gururangan et al. (2019), apply NVDM

as additional topics feature in text classification.

Compare to these approaches, CANTM is an asym-

metric (different encoder input and decoder output)

VAE that directly use VAE latent variable as clas-

sification feature without external features, hence

we can use latent topics as classifier explanation.

6 Conclusion

In this paper, we introduced the COVID-19 dis-

information corpus, which has 10 manually an-

notated categories of debunked COVID-19 dis-

information. After quality control and a filter-

ing process, the inter-annotator agreement average

Cohen’s Kappa is 0.70. We also present a new

classification-aware topic model, that combines the

BERT language model with the VAE document

model framework and demonstrate improved clas-

sification accuracy over a vanilla BERT model. In

addition, the classification-aware topics provide

class related topics, which are: a) an efficient way

to discover the class of (pre-defined) related topics,

and b) a proxy explanation of classifier decisions.
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7 Appendix A - COVID-19 Annotation Categories Definition

• Public authority: Claims about policy, action, or communication by a public authority (e.g. govern-

ment department, police, fire brigade, government officials), including claims about WHO guidelines

and recommendations as well as those about governments’ action or advice.

• Community spread and impact: Claims about people, groups, or individuals with regard to how

the virus is spreading (internationally, regionally, or within more specific communities); impact on

people, groups (including religions and ethnic minorities), or individuals; deaths, etc.

• Medical advice, self-treatments, and virus effects: Claims about health remedies, self-treatments,

self-diagnosis, signs and symptoms, effects of the virus, etc.

• Prominent actors: Claims about pharmaceutical companies, media organisations, health-care supply

businesses, other companies, or famous people (including celebrities and politicians). Note that

this does not include claims made bypoliticians or other famous people unless they are about other

prominent actors.

• Conspiracies: Claims that the virus was created as a bioweapon, that some organization supposedly

created the pandemic, that it was predicted, etc.

• Virus transmission: Claims about how the virus is transmitted and how to prevent transmission. This

includes cleaning as well as use of specific lighting, appliances, protective equipment, etc.

• Virus origins and properties: Claims about the origins of the virus (e.g,. in animals) or its properties.

• Public Reaction: Claims that encourage hoarding, buying supplies, practising or avoiding social dis-

tancing, compliance or non-compliance with public health measures, protests and civil disobedience

against official measures (including government measures). etc.

• Vaccines, medical treatments, and tests: Claims about vaccines, tests, and treatments, including the

development and availability of a vaccine or a treatment. (Claims about self-treatment fall under the

medical advice category, however.)

• Cannot determine: Use this category if the claim does not fit into any category above, if it does not

seem to contain misinformation, or if you cannot read the language or understand the text for any

reason.

8 Appendix B - Corpus Structure

The COVID-19 Disinformation corpus is organised in Json format with the following fields.

• Debunk Date: The date of the disinformation debunked

• Date: The date of the disinformation first posted online

• Country: Country location of the fact-checker

• Claim: The claim of the disinformation

• Explanation: The explanation from the fact-checker of why this is a disinformation

• Source: The link to the disinformation debunk page

• unique wv id: hash code based on the first 200 words of ‘Claim’ and ‘Explanation’

• Factcheck Org: The organisation of the fact-checker from

• annotations: Contains annotations before merge.

• selected label: The merged annotation label



9 Appendix C - Deriving the ELBO

This section describes the details of ELBOxbow
and ELBOxbow,ŷ

derivation and calculation.

z ∼ q(z|x)

log p(xbow) = Ez log p(xbow)

= Ez[log p(xbow, z)]− Ez[log p(z|xbow)]

= Ez[log
p(xbow, z)

q(z|x)
]− Ez[log

p(z|xbow)

q(z|x)
]

= EBLOxbow
−DKL(p(z|xbow)||q(z|x))

= EBLOxbow
+DKL(q(z|x)||p(z|xbow))

ELBOxbow

= Ez[log p(xbow, z)]− Ez[log q(z|x)]

= Ez[log p(xbow|z)] + Ez[log p(z)]− Ez[log q(z|x)]

= Ez[log p(xbow|z)]−DKL(q(z|x)||p(z))

zs ∼ q(z|x, ŷ)

log p(xbow, ŷ) = Ezs log p(xbow, ŷ)

= Ezs [log p(xbow, ŷ, zs)]− Ezs [log p(zs|xbow, ŷ)]

= Ezs [log
p(xbow, ŷ, zs)

q(zs|x, ŷ)
]− Ezs [log

p(zs|xbow, ŷ)

q(zs|x, ŷ)
]

= EBLOxbow,ŷ
−DKL(p(zs|xbow, ŷ)||q(zs|x, ŷ))

ELBOxbow,ŷ

= Ezs [log p(xbow, ŷ, zs)]− Ezs [log q(zs|x, ŷ)]

= Ezs [log p(xbow|ŷ, zs)] + Ezs [log p(ŷ, zs)]− Ezs [log q(zs)|x, ŷ)]

= Ezs [log p(xbow|ŷ, zs)] + Ezs [log p(ŷ|zs)] + Ezs [p(zs)]− Ezs [log q(zs)|x, ŷ)]

= Ezs [log p(xbow|ŷ, zs)] + Ezs [log p(ŷ|zs)]−DKL(q(zs|x, ŷ)||p(zs))

Where p(z) = p(zs) = N (0, I) is a zero mean diagonal multivariate Gaussian prior, hence the
DKL(q(z|x)||p(z)) and DKL(q(zs|x, ŷ)||p(zs)) will be

p(z) = p(zs) = N (0, I)

DKL(q(z|x)||p(z)) = 0.5(σ2 + µ
2 − log(σ2)− 1)

DKL(q(zs|x, ŷ)||p(zs)) = 0.5(σ2

s + µ
2

s − log(σ2

s)− 1)

10 Appendix D – Experimental Details

The bag-of-words pre-processing step is the same as (Card et al., 2018): All characters are transformed to

lower case; stopwords18, punctuation, all tokens less than 3 characters and all tokens that include numbers

are removed.

The pre-processing step for BERT representation is different from bag-of-words pre-processing. For

the COVID-19 corpus, all characters are lowercased, and tokenised by the BERT tokeniser from Hugging-

face19 (Wolf et al., 2019) Library. The IMDB corpus has a longer average document length, and some of

the documents are longer than the pre-trained BERT length limitation (510 + CLS and SEP). Therefore,

we only keep the first 510 tokens.

The ADAM optimiser parameters are default from the Pytorch Library: Learning Rate = 0.001,

betas=(0.9, 0.999). The number of training epochs are 200 as in Card et al. (2018), with early stopping

when no training loss (classification loss for CANTM) decrease after 4 epochs.

18snowball.tartarus.org/algorithms/ english/stop.txt
19https://github.com/huggingface/transformers



The fine tuning layers for BERT (Huggingface BERT-base implementation) are:

• encoder.layer.11.attention.self.query.weight,

• encoder.layer.11.attention.self.query.bias,

• encoder.layer.11.attention.self.key.weight,

• encoder.layer.11.attention.self.key.bias,

• encoder.layer.11.attention.self.value.weight,

• encoder.layer.11.attention.self.value.bias,

• encoder.layer.11.attention.output.dense.weight,

• encoder.layer.11.attention.output.dense.bias,

• encoder.layer.11.intermediate.dense.weight,

• encoder.layer.11.intermediate.dense.bias,

• encoder.layer.11.output.dense.weight,

• encoder.layer.11.output.dense.bias

The number of parameters in CANTM (include BERT) are 110,464,382 and number of trainable

parameters are 8,066,942. The experiment hardware environment are: Intel(R) Xeon(R) Bronze 3204

CPU, TITAN RTX GPU, average epoch run time for COVID corpus is 41 seconds. The full list parameters

number and epoch time shown in Table 10. Please note Gensim LDA does not have GPU support, hence

it running on single core CPU.

Model num. params epoch time (sec.)
CANTM 110,464,382 41

BERTraw 109,489,930 36
BERT 109,521,200 37

SCHOLAR 740,360 0.05
NVDMb 109,661,140 37
NVDMo 1,152,600 20

LDA 151,750 0.6

Table 10: Number of parameters and epoch training time. Gensim LDA does not have GPU support

11 Appendix E – Additional Experiment Results

To ensure fair comparison between CANTM with the BERT classifier, we first compared: 1) BERT with

additional hidden layer that matches the dimension of latent variables (denoted BERT in the result); 2)

BERT without additional hidden layer, i.e. applying BERT [CLS] token output directly for classification

(denoted BERTraw in the result). The COVID corpus results are shown in Table 11; the BERT with

additional hidden layer has better performance in both accuracy and F-measure. Therefore, we report the

BERT result in the paper.

Metrics Acc. F-1
BERT 58.78 (3.36) 54.19 (6.85)

BERTraw 58.77(3.56) 49.74 (7.62)

Table 11: BERT setting comparison on COVID-19 disinformation standard deviation in parentheses

Table 12 shows the class level F1 score of the COVID-19 disinformation corpus. CANTM has the best

F1 score over most of the classes (CommSpread, MedAdv, PromActs, Consp, Vacc,None), also with better



PubAuth CommSpread MedAdv PromActs Consp
BERT 61.17(4.50) 62.27(5.83) 75.03(6.54) 60.12(3.25) 49.92(12.04)
BERTraw 65.64(2.91) 59.35(4.77) 75.82(5.53) 65.51(4.34) 41.90 (10.46)
SCHOLAR 47.92(9.77) 48.84(11.56) 71.11(6.99) 46.93(8.66) 31.30(13.78)
CANTM 64.35(1.44) 66.50(3.87) 79.68(2.12) 67.21(3.72) 60.06(6.80)

VirTrans VirOrgn PubRec Vacc None
BERT 42.67(8.70) 57.62(6.72) 23.68(10.01) 64.62(9.66) 12.59(11.35)
BERTraw 41.42(5.36) 53.20(15.92) 27.19(13.55) 65.48(9.62) 1.90 (3.8)
SCHOLAR 11.71(10.06) 45.15(20.49) 5.71(11.42) 55.37(15.78) 0.0(0.0)
CANTM 40.21(8.56) 55.19(3.43) 25.04(9.87) 72.28(8.40) 15.52 (15.0)

Table 12: COVID-19 disinformation class level F1 score, standard deviation in parentheses

Acc. F-1 Perp. NPMI
Bert 58.78(3.36) 54.19(6.85) n/a n/a

Scholar 48.17(6.78) 36.40(10.85) 2947(353) 0.25(0.015)
NVDMb n/a n/a 1084(88) 0.09(0.004)
NVDMo n/a n/a 781(35) 0.08(0.001)

LDA n/a n/a 8518(1132) 0.12(0.005)
CANTM 63.34(1.43) 55.48(6.32) 749(63) 0.14(0.012)

Table 13: COVID-19 disinformation results, n/a stands for not applicable for the model

standard deviations. Except for the None class, standard deviations for CANTM are below 10. From the

results, the most difficult class to classify is ‘None’. This class represents anything that the annotators

could not decide on, and therefore it could be anything that does not belong to the other 9 classes. In

future work, we might need a better algorithm to handle this problem.

Table 13 shows the results of the COVID-19 performance with different baselines. The scores reported

are the same as Table 4 in the paper, but standard deviation is added (standard deviation here is the average

standard deviation from all classes). According to the results, CANTM not only improves the accuracy

and F1 measure over the BERT baseline, but also improves standard deviation.

Table 14 shows the topics of the best and worst NPMI scores from CANTM and the baselines. We

already discussed the fact that topic interpretability is not strongly associated with the NMPI score in

supervised topic models (CANTM and SCHOLAR) in the paper. However, we found additionally that

the NPMI score may have a better connection to the topic interpretability with the unsupervised topic

modelling (LDA and NVDM). The best NMPI LDA topic (LDA0.149) can be interpreted as a mixed topic

of Russian public authority and medical advice. However, the lowest NMPI LDA topic (LDA0.013) is

difficult to interpret.

12 Appendix E – CANTM Topics

In this section we demonstrate the topics generated from CANTM (Table 15 to Table 18 are the COVID-19

topics from CANTM.) Table 15 is Classification-Aware topics Table 16 is Classification-Regularised

topics Table 17 is Classification-Associate topics Table 18 is Classification-Aware topics updated from

unlabelled data.

CANTM 0.50 please patents link ecuador patent read click full article guayaquil
CANTM 0.04 cure proven met protection leader pope aajtak within elizabeth developed
SCHOLAR 0.50 claim posts facebook false novel times shared multiple twitter thousands
SCHOLAR 0.05 people china doctors conditions barack obama masks pre existing containing
LDA 0.149 putin keep implemented contrary days code president avoiding drinking talk
LDA 0.013 cross breath anything empty generator broadcast hanks indicates external apparently
NVDM 0.192 scientifically context reached notification decided vitamin carrying alternative hair preventing
NVDM 0.037 publish quarantine corporation dna listed staff described restricted popular platform

Table 14: Topic words of the best and worst coherence topics



pope vatican francis filipinos region bat mosque seeks giuseppe daniel
strains animal reddit new visited tourist soup original suspected scene
production couple alongside lankan concentration photos image airport unleashed testing
article day click full johannesburg positive read tested italian due
please patents link ecuador patent read click full article guayaquil
korean robredo chloroquine request remedy existing zoology approved vice end
prime lockdown trupti modi police curb wake detained commissioner minister
lions committed drowned protests earthquake gandhi police detained indoors image
cure proven met protection leader pope aajtak within elizabeth developed
bodies originally show seconds london setting stopped rahul libya people
art islamic victims washed tribute lying bodies doctors hong suicide
times quoted robredo novel philippine graphic saddam contracting facebook activist
conspiracy russian movie update anything unleashed disaster trump doctored guard
case patients lockdown wake complete mock medical announcement government streets
died girl jan january kills ecuadorian link first please ecuadorians
strains drug traditional along replies comfort kit focus institute cure
developed treatment check development tea alcohol breath medicine warm study
tweet biden quote leni giuseppe rodrigo paid rappler urged visiting
juice via solution steam chicken lace coronavirus dettol kills effect
palau source spreading via soup says circulated animal claim online
coronavirus cure patents garlic study water sputum ecuador election vinegar
warned times facebook written letter claims transmission advisory data posts
kill ramesh intermediate related viral virus research patented negated book
philippines positive confirmed advisory task patient mask pakistan italian remains
cases case died sars handling chickens ebola reported dead thousand
contaminated steroids advice ministry purported gargling issued issuing colored red
warm dry avoiding remedy practices transmission treatments vinegar ways bakery
abdullah desai badawi swat lockdown minister force extension region police
langowan vatican market indonesia seconds palau wuhan prime roof alkaline
trump president donald quote approval forward roche friday felt intermediate
breath cause patented seconds garlic vinegar scientific deaths studies bat
ministry advisory case bakery aap wash pib notice positive dismissed
bat joe match origin palau flu federal bloggers source former
click humans viruses full indonesia cattle bat ago two let
wife justin multiple illegally bed hospital prayers photo migrants trudeau
pib government considering edited disaster issued forward act offense affairs
restaurant ahmad uploaded saddam former china nazi pretty mosque xia
vinegar india clapping ronaldo salt getting mask wear suggesting message
affairs salt vinegar drinking method test lemon fda ministry media
woman video hospital patients thanksgiving barcelona drill tribute newly gandhi
biden obama bill joe allah china narendra funding giuseppe evers
dead lives tribute night circulated photo left italian croatia picture
covid said kindly virus known use clearly gargling cure suggest
bicarbonate drinking cured dryer effective still eliminates temperature ice lemon
dry maximum masks voted outbreaks doctors happens sars temperatures mask
click full tested read confirmed vatican dettol please seeks positive
positive delhi jan doh january tea chart pope negative strains
posts youtube viewed multiple television issue cases based incidents prevention
barcelona couple development image photograph happens croatia broiler picture virus
link ecuador please article read full lions russian biden saves

Table 15: Full list of Classification-Aware topics for COVID-19 corpus, each line is a topic



lace lay manufactured imports treated demonstration strewn pedestrian gas fronts
chance indoors supermarket bodies citizens streets items frequently thrown fronts
media coronavirus viral taken world social shows video novel man
health coronavirus pandemic cases one covid organization italy countries outbreak
khan living foundation patents london dinner camilla fictional cornwall actor
therefore tony recommendations airborne mouth facial generally copd hair chance
shows actually chinese victims photo art august biden italy protesters
seconds karnataka enter went husband breath converted bjp colored cuban
local click newspaper passengers actor employee corporation link article bank
internet went america mumbai related recent worked extended offense june
deaths covid number health account cases take state confirmed obama
washed wake sea video wife ministry recorded case trudeau department
coronavirus new people cases china kill evidence virus article kills
world doctors health people medical according food sri misleading facebook
found pictures images march viral image old disease along chicken
kong hong video wuhan shows clips police suspected bodies seconds
often buy allow masks buying lockdown important australian mask march
please link alongside full click jair kit crying read article
coronavirus claim evidence said twitter novel facebook times posts multiple
disease using prevention says whether election official cure study research
available president south buy priyanka bill trump testing test vaccine
click please full read labs cuban guayaquil ministry ecuador treating
number aap severe transmission mers likely centre posts worked philippines
china reported internet link francis sars read pope manufactured contain
stated scientific various name oil cure made barack israel clarified
ahmad weave seek jinping badawi abdullah ultraviolet xia additionally soup
place viruses new yet animal products strain sanitizer strains get
considering federal ireland announce patrolling passengers wife anti presidential rubbished
flu sars inaccurate studies important mers around type runny suggests
full medicine ashore items sea wash migrant click ecuadorian organization
link covid two full read doctor confirmed created please click
purportedly notice doses supermarkets try promotes abortion experts levels earthquake
coronavirus ministry novel home caused related video traditional viral youtube
indian claim minister india also false misleading claims prime sri
italy bodies pictures china prayer mosque plates video allah coffins
tested buckingham tourists hand lysol ronaldo advises washington met manufacturer
two wuhan china denied chinese center report confirmed reports officials
desai visuals dung saddam cow july kills sold older lips
satellite accurate sulfur sun dioxide kingdom forecasts translated maps camilla
tested positive doctor coronavirus help recent person getting india novel
stopped company sanitizer label desai trupti saddam theories entering buying
coronavirus different million new family covid say allegedly respiratory death
video man covid first circulated claiming false woman least taken
shows covid hospital video wuhan doctor photo cure woman test
twitter facebook photo times italy claim victims curfew health image
key copd recognized tourist antibiotics rabies rumour short emphasized medication
year modi india old positive narendra curfew muslim wife announced
military full code daniel roche speech event archive please actor
spread show patients new covid virus viral also outbreak response
movie picture couple italian lions lion photograph volleyball barcelona tom

Table 16: Full list of Classification-Regularised topics for COVID-19 corpus, each line is a topic

PubAuthAction china government people claim india march facebook coronavirus outbreak covid
CommSpread coronavirus photo covid people shows video claim novel confirmed shared
GenMedAdv coronavirus cure experts novel prevent water evidence kill scientific hot
PromActs coronavirus said novel trump video shared president media covid hospital
Consp coronavirus chinese covid virus lab wuhan outbreak new china posts
VirTrans coronavirus covid evidence virus claim spread video said people surfaces
VirOrgn coronavirus shows video bat wuhan novel source outbreak virus taken
PubPrep video shows facebook image shared show times outbreak false circulated
Vacc cure vaccine new covid developed novel scientists claimed coronavirus claims
None video image taken shared covid due streets old india reports

Table 17: Full list of Classification-Associate topics for COVID-19 corpus, each line is a topic



say carry meeting come weed china publicly regularly director consumption
mention conference professor since april quarantined starting spoke supporting please
fake ministry close study refused february attempt video beaten administration
photo post french smoking circulating bank side account eating image
police bat cdc spread visit tourists answer data july clip
announced lockdown stay school office deadly arrested ground degrees always
lockdown every end afp common true islamic concerns rapid undergoing
health ever salt swat ginger pope uses welfare hands singapore
news president victims use minutes cases day continue laboratory developed
corporation denied present force official palau show give post pneumonia
says reports elderly infection claimed beijing speech generally reporting experts
video french time patient includes place victims threatened forward close
leave taken investigation recommendations ventilators exposed organisms people deaths put
italy aired patent election malaria pepper working contrary five growing
suicide included indicates kansas temperatures staying jamaat communities italy two
prayer effective discovered led herbal cov patient article china takes
people vaccine since weapon hospital scientific man group cells working
prime vaccination worldwide due zone created planning airlines producing ultraviolet
evidence human gives even temperature science end claimed across conte
video south covid emergency response never chinese seconds changed images
leave research conspiracy indian starting individuals though text tanker germany
correlation visible sometimes lay produce outright super district initiation six
newly hanks definitively last six hence lack barack elizabeth subway
modular considering stories gotabaya strewn abdullah vibration ramesh miami commission
match preventions relationship indonesia eliminate herbal obama diagnosed bjp japan
key screening dung worldwide try teacher carbon thai decisions spokesman
key advising physically solutions restriction doh camilla promotes vibration scattered
sunday ready netflix production pib telecast cause nazi emergency stopped
reports known study findings hospitals movement vaccine garlic family onion
stating died gas kill best strain announcing chain mass acid
outright experts warm respiratory helps announcements damage factual instead crisis
false ago video president cases undergoing clarification chinese bulletin project
hours cause jamaat make romania xia stock effort isolation kenyan
new medical police city media china social agency also back
coronavirus dangerous medicine advise intermediate graphics brazil ebola imposed generator
quarantine warm sent claims cells members bill conte soup company
government face available outbreak exist proof head service found cruise
found suspended man joe congress whatsapp trump weed claim sauna
case facebook north used production many protocol context citizens text
cures issued onion spokesperson failure even spread actually returned moment
virus published confirmed phishing link cure station extension taking spread
continues widespread stands visible patrolling mandate strewn violating absolutely sophie
trump items blood guard technology told home amid suspended intermediate
coffins announcement october protect coast capacity company carry supplies committed
shows please war paulo nose road flu refer runny post
spain published people south taken showing offering reviewed anything mock
police july infected coffins protocol experts receive say world website
outbreak social hospital virus bats eligible latest hoax taken risk
video north social lemon whole report sources rahul ground ahmad
cases lost official found students manipulated support patients thousand forward

Table 18: Full list of Classification-Aware topics for unlabelled COVID-19 corpus, each line is a topic


