
This is a repository copy of Lipid metabolism in astrocytic structure and function.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/164484/

Version: Accepted Version

Article:

Lee, J.A.K., Hall, B., Allsop, J. et al. (2 more authors) (2020) Lipid metabolism in astrocytic 
structure and function. Seminars in Cell & Developmental Biology. ISSN 1084-9521 

https://doi.org/10.1016/j.semcdb.2020.07.017

Article available under the terms of the CC-BY-NC-ND licence 
(https://creativecommons.org/licenses/by-nc-nd/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by White Rose Research Online

https://core.ac.uk/display/328801606?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Title: Lipid metabolism in astrocytic structure and function  

James AK Leea*, Benjamin Halla*, Jessica Allsopa*, Razan Alqarnia and Scott P. Allena# 

Abstract   

Astrocytes are the most abundant glial cell in the central nervous system and are involved in 

multiple processes including metabolic homeostasis, blood brain barrier regulation and neuronal 

crosstalk. Astrocytes are the main storage point of glycogen in the brain and it is well established 

that astrocyte uptake of glutamate and release of lactate prevents neuronal excitability and 

supports neuronal metabolic function. However, the role of lipid metabolism in astrocytes in 

relation to neuronal support has been until recently, unclear. Lipids play a fundamental role in 

astrocyte function, including energy generation, membrane fluidity and cell to cell signaling. There 

is now emerging evidence that astrocyte storage of lipids in droplets has a crucial physiological 

and protective role in the central nervous system. This pathway links β-oxidation in astrocytes to 

inflammation, signalling, oxidative stress and mitochondrial energy generation in neurons. 

Disruption in lipid metabolism, structure and signalling in astrocytes can lead to pathogenic 

mechanisms associated with a range of neurological disorders.  
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1. Introduction 

The brain is made up of a network of neurons, which are supported by various types of glial cells, 

with astrocytes being the most abundant [1, 2]. Astrocytes are involved in various crucial functions 

within the central nervous system (CNS), not least neuronal support. These roles are mostly 

beyond the scope of this review article but have been summarised extensively in recent articles 

[2-4]. An area of research that has emerged in recent years is the importance of lipid metabolism, 

storage and transport in both astrocytes and neurons [5]. Recent evidence suggests that 

disruption in neuron-astrocyte lipid crosstalk contributes to neurological disease pathology [6-8]. 

Therefore, the aim of this article is to discuss the role of lipids within astrocyte structure and 

function under physiological conditions, and how disruption to astrocyte lipid homeostasis can 

contribute to neurological disorders. To set the scene, this article will initially cover a brief 

introduction into astrocyte function in relation to metabolism, inflammation and neuronal support. 

Subsequently, astrocyte lipids will be introduced and discussed in the context of new insights into 

astrocyte membrane structure and membrane transport. Concomitantly, the role of astrocytic lipid 

mobilisation, will be discussed in the context of metabolic function, the emerging role of lipid 

droplet formation in astrocyte neuronal cross-talk and new insights into the role of lipids in CNS 

signalling pathways. Finally, the article will discuss the role of astrocyte lipids in relation to 

neurodegenerative diseases, highlighting potential therapeutic pathways and new avenues of 

research. 

1.1. Astrocyte support in the CNS 

Astrocytes are involved in numerous functions within the brain, including regulation of blood 

brain barrier (BBB) integrity, maintenance of extracellular ion and neurotransmitter homeostasis, 



and neuronal support [2-4]. Astrocytes support neurons in a multitude of ways, including 

neuronal growth and development during childhood [9] and neuronal maintenance throughout 

adulthood [10]. Communication between astrocytes and neurons is an important and tightly 

regulated process, thus making it essential for proper brain function [11]. Astrocyte membranes 

are enriched in glutamate transporters including glutamate transporter 1 (GLT1) and glutamate-

aspartate transporter (GLAST), which allow clearance of glutamate from the synapse of neurons 

after neurotransmission, preventing glutamate mediated excitotoxicity [12]. This communication 

is also crucial for maintenance of the health and normal function of the CNS, as well as 

providing both metabolic and trophic support [13]. 

 

1.2. Astrocyte metabolism 

Evidence suggests that neurotransmission uses the majority of energy in the brain [14] but 

neurons have very limited energy stores so they have to source their energy substrates such as 

glucose externally. However, there are tightly regulated mechanisms that ensure adequate 

delivery of the energy substrates in relation to the amount of neuronal activity occurring at any 

point [15]. Glucose is taken up by astrocyte projections through glucose transporter 1 (GLUT1) 

from peripheral blood circulation, concomitantly activating the glycolytic pathway [16]. For an 

excellent overview of glucose metabolism in the CNS see [17]. As astrocytes are predominantly 

glycolytic in nature [18, 19], glucose is oxidised to pyruvate and then dehydrogenated to lactate. 

If pyruvate is not dehydrogenated to lactate or taken up by the mitochondria and converted to 

acetyl-coA, gluconeogenesis can occur with excess carbon stored as glycogen for times of 

bioenergetic stress, however, this process is tightly regulated.  Using emerging fluorophore 

sensor technology, a recent study suggested that  mitochondria in cultured mouse astrocytes 

can maintain lower levels of pyruvate compared to the cytosol [20]. 

As pyruvate flux into the mitochondria is regulated by the mitochondrial pyruvate carrier (MPC), 

the authors suggest that this is an essential regulatory control point between basal respiration 



and gluconeogenesis in astrocytes. Therefore, this data suggests that modulation of pathways 

such as gluconeogenesis may have therapeutic potential in neurological diseases where there 

is a significant metabolic component such as Alzheimer's disease (AD, see Zulfiqar et al for a 

recent review see [21]). For example, astrocytes expressing the E4 allele of Apo-lipoprotein E 

(APOE), a genetic risk factor for AD, were shown to have increased glucose flux via the pentose 

phosphate pathway (PPP). This led to a concomitant increase in gluconeogenesis as well as 

phospholipid and nucleotide biosynthesis compared to E3 astrocytes [22]. Moreover, an 

increase in gluconeogenesis was observed when the neurosteroid tibolone was used to reduce 

L-glutamate-mediated neurotoxicity in astrocytes [23]. Tibolone has previously been used to 

reduce inflammation in neurons, however emerging mechanistic analysis in murine cortical 

astrocytes subject to brain injury has shown that the drug also reduces reactive astrocyte levels, 

indicating an anti-inflammatory role in glia [24]. 

 

1.3 Inflammation 

Astrocytes play an important role in CNS inflammation and undergo a range of functional and 

structural adaptations termed astrogliosis in response to inflammatory conditions induced by 

metabolic stress, infection or injury for an in depth review see [25].   

Astrogliosis can exert either protective or harmful effects depending on the extent of gliosis and 

the specific signalling pathways activated, with evidence suggesting both inflammatory and anti-

inflammatory pathways can be activated. Astrocytes have been shown to stimulate the release 

of, for example, the anti-inflammatory cytokine TGF-β, in response to IL-10, which attenuates 

inflammation in microglia [26]. Conversely astrocytes have been shown to release the pro-

inflammatory cytokines Tumour Necrosis Factor-α (TNF-α) and Interleukin-1β (IL-1-β), as well 

as releasing CC-chemokine ligands (CCCL) and CXC-chemokine Ligands (CXCL). Certain 

CCCLs and CXCLs, along with TNF-α, are responsible for recruiting a diverse range of 

leukocytes by inducing and activating their adhesion molecules [27]. IL-1-β stimulates 



astrocytes to release vascular endothelial growth factor, which increases the ability for 

leukocytes to cross the BBB and enter the CNS parenchyma [28]. 

There is a bi-directional relationship between inflammation and metabolic status not only in 

astrocytes but in the CNS as a whole, which is an emerging area of therapeutic research in 

neurological diseases [29-31]. Preventing astrocyte inflammation through nuclear factor-kappa 

B (NF-κB) inhibition in mice astrocytes for example, has been shown to be beneficial by; 

reducing glial scarring in spinal cord injury; increasing glucose tolerance and promoting energy 

expenditure; and increasing glucose uptake and glycolytic capacity. Moreover astrocytic 

glycolytic inhibition by 2-deoxyglucose has recently been shown to significantly reduce LPS-

induced cytokine release and NF-κB phosphorylation [32-34]. There is also emerging evidence 

of a link between astrocyte lipid signalling and the metabolic inflammatory response which will 

be discussed in section 2. 

 

1.4 Astrocyte metabolic support of neurons 

Astrocytes have been proposed to support neurons metabolically via the release of lactate [35], 

however this is still a controversial area. In order for this theory to remain true, it was proposed 

that neuronal glucose metabolism does not occur in an activity dependent manner, and that 

lactate is the preferred neuronal substrate. Contrary to this however, it is now well established 

that glucose transporters are present in neuronal membranes, indicating that they have the 

potential to transport and metabolise glucose [36, 37]. Moreover, studies have shown that whilst 

there is significant intracellular production of lactate in the brain, lactate uptake remains 

relatively slow. This is in opposition with the theory of lactate being used as a major neuronal 

fuel source [38]. The astrocyte-neuron lactate shuttle hypothesis, originally hypothesised by 

Pellerin and Magistretti, [39], states that neurons stimulate glycolysis in astrocytes through 

glutamate release. Uptake of synaptic glutamate from the neuronal synapse by astrocytes 

activates Na+/K+ ATPase’s due to the increased cellular uptake of Na+ which is co-transported 



with glutamate and consumes the ATP produced by phosphoglycerate kinase [39]. This triggers 

astrocyte glucose uptake via GLUT1, and concomitantly glycolysis which produces pyruvate 

that is converted to lactate via lactate dehydrogenase (LDH). Lactate is transported out of cell 

via monocarboxylate transporter 1 (MCT1) and taken up by neurons via MCT2. LDH converts 

this back to pyruvate for re-entry into the TCA cycle via acetyl CoA [40] (Fig 1). In this way 

lactate can contribute to the activity-dependent energy demands associated with neuronal 

synaptic transmission [41]. Glutamatergic stimulation of astrocytic lactate production has been 

recently challenged due to the fact that; significant lactate oxidation has not been shown during 

brain activation, glial glutamate transporter GLAST forms a macromolecular complex linking 

glutamate uptake with its oxidation and as previously mentioned, neurons express glucose 

transporters and both take up and metabolise glucose [36, 42-44].  

 

1.5 Astrocyte metabolic fuel storage 

Glycogen is one of the major fuel sources for both astrocytes and neurons in the human CNS 

and is stored when glucose is in excess. Interesting recent findings have shown that high 

glucose exposure in astrocytes can lead to increased glycogen storage but at the expense of 

decreased mitochondrial and glycolytic capacity when subsequently metabolically stressed [16]. 

This has implications for neurodegenerative disorders with a significant astrocyte metabolic 

phenotype including amyotrophic lateral sclerosis (ALS). The data suggest astrocytes under 

metabolic stress have less capacity to sustain energetic cellular requirements, which would 

impact the ability of astrocytes to metabolically support neurons for example and is aligned with 

data produced from our laboratory [19]. 

Astrocytic glycogen that is concomitantly utilised by neurons, has been proposed to be a store 

for lactate, rather than glucose, which (as described above) could potentially supply the needs 

of nearby CNS cell populations [37, 45, 46]. As well as glycogen, astrocytes synthesise and 

release various lipid moieties including sterols, fatty acids and triglycerides as well as storing 



phospholipids and sphingolipids in the plasma membrane [47-51]. Neurons do not store 

glycogen and synthesise lipids less efficiently than astrocytes [52]. Therefore, neurons take up 

astrocyte-derived lipids in order to support the formation and function of the synapses [53]. 

There are a variety of lipid classes in astrocytes that play multiple roles in astrocyte function, the 

intracellular localisation of these lipid classes are highlighted in Figure 1 with new insights 

discussed in the following section.  

 

2. Lipids in Astrocytes  

 

2.1. Cholesterol  

Cholesterols are the major form of sterol lipid in the brain. Whilst the majority of sterol synthesis 

occurs in oligodendrocytes in the developing brain and is associated with myelin production 

[54], astrocytes are considered to be the main net producer of cholesterol in the CNS. 

Conversely, neurons are considered to be the net consumer [52]. Astrocyte cholesterol 

metabolism is independent of the rest of the cholesterol metabolism in the body, due to the 

presence of the BBB [55]. Cholesterol is one of the most important molecules of the synaptic 

membrane, in which it regulates a multitude of biochemical processes including membrane 

fluidity and ion channel function [53]. Of all the lipids present in astrocytes, cholesterol may have 

the most important role in astrocyte structure. Cholesterol helps regulate cell membrane 

flexibility, through interactions with nearby phospholipids [56]. Other important roles for 

cholesterol have also been identified, including lipid raft formation, glucose transport and 

inflammatory signalling [57-59]. Up to 70% of cholesterol is synthesised de novo in hepatic cells 

in the liver, with the remaining being derived in the intestines from dietary intake. This 

cholesterol is then circulated to all areas of the body via lipoprotein lipid-transfer.  

The BBB, however, allows only High Density Lipoproteins (HDL’s) to enter the brain: as a result, 

lipoproteins found in the brain must have been produced in the CNS. Brain cholesterol is 



therefore believed to be synthesised de novo [60] and is considered the most cholesterol rich 

organ, accounting for around 25% of the total cholesterol content in the body. Estimates based 

on mouse models of the CNS suggest 80% of cholesterol is contained in myelin sheaths [54]. 

Nieweg et. al. [52] demonstrated that astrocytes primarily synthesise cholesterol via the Block 

pathway, and neurons via the Kandutsch-Russell pathway. In addition, cholesterol levels are 

higher in astrocytes with lower expression of cholesterol synthesising enzymes in neurons, 

suggesting neurons derive cholesterol externally [52]. Astrocytes are therefore believed to be 

the main site of cholesterol synthesis, which is an ATP-dependent process that occurs in the 

endoplasmic reticulum (ER) [61]. Cholesterol is then rapidly shuttled to the plasma membrane in 

vesicular and protein-mediated transport systems. Astrocytes also synthesise lipoproteins and 

Apo-lipoproteins for cholesterol transport [62]. Cholesterol-carrying lipoproteins cannot cross the 

BBB to enter the brain readily [63], highlighting the importance of astrocyte-derived cholesterol 

synthesis for glia and neurons. The significance of cholesterol synthesis in astrocytes has been 

demonstrated in studies investigating sterol regulatory element binding protein 2 (SREBP2), a 

transcription factor for several genes involved in sterol synthesis [48, 53, 64]. Astrocyte-specific 

depletion of SREBP2 produced profound effects in mice brains, such as reductions in neurite 

outgrowth, brain size and brain mass. Additionally, changes in liver mass, physical activity, 

motor coordination, memory and a shift towards carbohydrate metabolism were also observed. 

Reductions in brain cholesterol synthesis have been demonstrated in insulin-deficient mice [64]. 

These changes suggest astrocyte cholesterol synthesis may have an important role in metabolic 

disorders.   

In addition to its role in membrane structure, cholesterol has also been shown as an important 

regulator of the activity and localisation of a range of membrane proteins [59, 65]. Membrane 

regions enriched with cholesterol and sphingolipids form lipid rafts and are understood to be a 

key regulator of activity of several membrane proteins [57]. An example of this is Toll Like 

Receptor 4 (TLR4), a receptor that promotes inflammation. Dimerisation of TLR4 is essential for 



its activation and occurs largely in cholesterol-rich membrane regions [66, 67]. In addition to 

receptors, membrane transporter protein levels can also be influenced by the cholesterol content 

of membranes. Depletion of membrane cholesterol leads to increases in GLUT1 trafficking to the 

membrane, which is accompanied by an increase in glucose transport [58]. In our laboratory we 

coined the phrase metabolic flexibility, in relation to the ability of astrocytes to mobilize and 

catabolise alternative energy substrates to meet bioenergetic demand [18]. We proposed that a 

contributing mechanism to reduced metabolic flexibility observed in astrocytes derived from ALS 

patients was impairment of the transport of metabolic substrates across membranes. We 

surmised this was linked to alterations in cholesterol levels as energy production in the presence 

of mitochondrial specific substrates was reduced in ALS astrocytes compared to controls. 

However, treatment of astrocytes with saponin which binds to cholesterol to permeabilize 

membranes, restored mitochondrial substrate energy production in ALS astrocytes to levels 

comparable with control astrocytes. Cholesterol levels have previously been implicated  in ALS, 

with  increasing evidence emerging that cholesterol levels are lower in ALS patients [68, 69] and 

that higher serum cholesterol may prolong survival in patients [70].  

This emerging area of study requires more mechanistic research into the role of membrane 

cholesterol and of metabolic substrate transport. However, therapeutic targeting of this pathway 

could enhance astrocyte metabolic flexibility and increase metabolic support to neurons which 

has the potential to modify disease progression in many neurodegenerative disorders.  

 

2.2. Sphingolipids 

Sphingolipids are a class of lipids characterised by the presence of a sphingosine backbone. This 

includes a range of lipids including ceramide, sphingosine and sphingomyelin. A range of different 

cellular functions for sphingolipids have been described. Sphingolipids are a key structural 

component for membranes, including lipid rafts [57]. Metabolites of sphingolipids have recently 

been identified as important regulators of inflammation, autophagy, cell growth and survival [71-



73]. For an extensive recent review of sphingolipids, see Hannun and Obeid [74] and for a review 

of sphingolipids in the nervous system, see Schnaar et al  [75].  Several roles of sphingolipids in 

astrocyte function have also been described, including inflammatory regulation [76]. Numerous 

changes to sphingolipid structure and metabolism have been described in astrocytes from 

patients with various neurodegenerative diseases [48, 77-79] and will be discussed later in the 

article. Modifications to ceramide sphingolipids such as glycosylation to produce gangliosides, 

have already been associated with neurodegeneration [80-83]. Membrane ganglioside 

interactions with amyloid beta accelerate plaque formation in AD [84, 85] and inhibits alpha-

synuclein fibrillation [86, 87]. Antibody-mediated ganglioside clustering can activate signalling 

pathways that inhibit neurite outgrowth [88, 89]. Sphingolipids are heavily enriched at synapses, 

and production is required for regulation of synapse structure and output [90]. It is currently 

hypothesised that normal production of gangliosides by astrocytes also enhances neurite 

outgrowth, regulates neuronal inflammation and stabilises neuron-glia interactions [83]. These 

findings highlight the importance of sphingolipids in the functioning nervous system, and 

necessitate further work to understand their use as potential therapeutic targets for nervous 

system disorders. 

 

2.3. Phospholipids 

Phospholipids are a vital component of cell membranes, making up the majority of the 

“phospholipid bilayer”. As with other lipids mentioned, phospholipids are also synthesised heavily 

in the brain [91]. There are several classes of phospholipids, including phosphatidylcholine, 

phosphatidylserine, phosphatidylethanolamine and phosphatidylinositol. For a recent review of 

these lipids in the brain, see Tracey et al, [5]. In addition to their importance in cellular structure, 

exposure of neural cells to different phospholipids influences cell fate. Acting through the 

MAPK/ERK pathway, treatment of neural cells (including post-mitotic cells) with 

phosphatidylethanolamine, increased differentiation of cells into astrocytes [92]. In contrast, 



phosphatidylcholine treatment reduced astrocyte differentiation. Phosphatidylethanolamine can 

bind to phosphatidylethanolamine binding protein (PEBP1) which can inhibit the MAPK/ERK 

pathway [93], suggesting the lipid may act by binding to PEBP1 and preventing it from inhibiting 

the MAPK/ERK pathway (Fig 2). 

 

2.4. Free fatty acids  

Free fatty acids, also known as Non-Esterified Fatty Acids are fatty acid molecules that are not 

bound to glycerol. Effects of exposure of astrocytes to free fatty acids are beginning to be 

characterised, with current evidence showing their ability to modulate inflammation. When treated 

with saturated fatty acids such as palmitic acid, an increase in pro-inflammatory cytokine 

production by astrocytes has been observed [94]. Several mechanisms have been proposed for 

this in astrocytes including increased ceramide production and activation of p38 or p42/44 MAPK 

pathways [94, 95]. In cells such as macrophages, palmitic acid has been identified as a TLR 

agonist, and can increase ROS production through mitochondrial complex I/III inhibition [96-98].  

Conversely, polyunsaturated fatty acids (PUFA’s), such as the omega-3 fatty acid 

docosahexaenoic acid (DHA), are increased in astrocytes during inflammation including 

palmitate-induced inflammation, suggesting that DHA may have anti-inflammatory properties [94, 

99, 100]. Moreover, in microglia, DHA treatment inhibits NF-kB signalling, concomitantly 

increasing ROS production, leading to raised expression of HO1 via Nrf2 activation [100, 101]. In 

vivo models and human plasma analysis in ALS patients suggests gender-specific effects of DHA 

exists: DHA levels are raised significantly in men but not women, and DHA supplementation 

increased survival in male SOD1-ALS mice, but not females [102, 103]. Further characterisation 

of gender-specific differences in responses to DHA could help identify its effectiveness as a 

potential treatment for diseases such as ALS or AD, both of which feature inflammation as a 

pathogenic mechanism.  



In addition to in vitro studies, astrogliosis has been documented extensively in rodent models in 

response to a high fat diet (HFD) in a range of brain structures, including the nucleus of the solitary 

tract, hypothalamus and substantia nigra [104-108]. Studies have documented the appearance 

of astrogliosis over a range of time periods: from acute 12hr responses [109] to 5 months after 

initiation (chronic) [108], although astrogliosis is usually more subdued after chronic HFD 

exposure. The significance of this astrogliosis response to a HFD has been investigated in 

connection to feeding behaviour of mice. Astrocyte-specific inhibition of NF-kB signalling to 

prevent astrogliosis, produced a 15% higher caloric intake in mice after acute HFD feeding [106]. 

Chronic HFD feeding caused glial ensheathment of pro-opiomelanocortin (POMC) synapses, 

potentially reducing inhibitory appetite signalling [104]. Taken together, these findings suggest 

exposure to elevated fatty acid levels after a HFD can induce astrogliosis, which has a role in 

maintaining energy homeostasis and may become dysregulated during chronic HFD exposure 

(Fig. 3). Targeting hypothalamic astrogliosis during obesity may restore appetite signalling and 

normal energy homeostasis. 

 

In addition to membrane structure, inflammatory regulation and regulation of cell fate, astrocyte 

transport of lipids to neurons for use in metabolism is a crucial part of the astrocytic-neuronal 

communication axis. As astrocytes allow neurons to access their cellular resources, this enables 

metabolism to be maintained throughout higher levels of neuronal activity [8]  which is crucial in 

both physiological and pathological conditions.  

 

3. Lipid metabolism and storage in astrocytes and its role in neuron-astrocyte crosstalk 

Current findings continue to highlight the importance of astrocytes in the maintenance of brain 

homeostasis, with an increasing focus on the ability of these cells to influence neuronal function. 

Lipid metabolism is crucial to normal astrocytic function and therefore a key intermediate in 



neuron-astrocyte crosstalk. The following section highlights recent findings regarding the role of 

lipid metabolism in astrocyte metabolic support of neurons, and the role of astrocyte lipid 

signalling in neuronal morphology and synaptic transmission 

3.1. Fatty acid oxidation and Lipid Droplets 

Lipid droplets (LDs) are a fundamental component of lipid metabolism in astrocytes. LDs are 

ubiquitous cellular organelles that regulate the storage and hydrolysis of fatty acids in 

eukaryotes, forming rapidly in response to increased fatty acid levels and vice versa when fatty 

acids are depleted [110]. LDs consist of a core of neutral lipids made up of mostly cholesteryl 

esters, triacylglycerol and ether lipid monoalk(en)yl diacylglycerol, surrounded by a monolayer 

of phospholipids and proteins [111-113]. Though the process isn’t fully elucidated it is thought 

LDs form in a triphasic process in the ER (Fig.4). Initially, fatty acids are nucleated, then 

undergo a growth phase after which they bud off and enter the cytosol. This theory has been 

supported by cryoelectron microscopy and immunocytochemical analysis [113, 114]. The 

droplets are then broken down by lipases via lipolysis, the rate limiting step of which is carried 

out by adipose triglyceride lipase [115]. The neutral lipids used in this process are derived from 

de novo synthesis from other fatty acids in the ER [116, 117]. In astrocytes, this may include 

excess fatty acids from neurons [8] and dietary fatty acids that cross both the BBB and 

astrocyte/neuron membranes via fatty acid binding proteins (FABPs) [118-120] (Fig. 4). FABPs 

are lipid chaperones in cells that regulate the response of lipids to stimuli. FABP7 is the major 

isoform in the brain, however, FABP3 and FABP5 are also expressed [121]. Astrocytic-FABP7 

plays a role in dendritic morphology and synaptic transmission [122], sleep [123] schizophrenia 

[124] and Down syndrome [125].  

The main purpose of LD generation is to provide fuel for β-oxidation. β-oxidation of LDs in the 

mitochondria provides an alternative energy generation pathway in times of starvation in several 

tissues, including astrocytes. Nutrient deprivation in rat primary astrocytes demonstrated β-



oxidation of LDs was crucial to the maintenance of cell viability during stress [126]. Moreover, 

inducing recurrent low glucose in human primary astrocytes led to a switch to fatty acid 

metabolism for energy production [127]. Evidence also suggest energy derived from β-oxidation 

in astrocytes metabolically supports neurons [8]. Furthermore, some argue that fatty acid 

oxidation (FAO) plays a more prominent role than that of a backup to glucose metabolism. Most 

reports consider glucose metabolism as the main or only method for metabolism in the brain 

[128]. However, it has been estimated upwards of 20% of energy generation in the brain is 

generated via FAO [129, 130].  Panov et. al. [128] argue FAO occurs concomitant with glucose 

metabolism based on the evidence that in vitro, astrocytes metabolise fatty acids alongside 

other metabolites. Eraso-Pichot et. al. [131] utilising bioinformatic analysis, showed an 

upregulation in FAO genes in human primary astrocytes. They also demonstrated FAO 

occurring in tandem with glycolysis in vitro, suggesting a precedent for FAO in the brain. FAO of 

LDs plays an undeniably important role in maintaining astrocyte-neuron homeostasis and further 

research stands to only emphasise this. 

 

3.2. Astrocyte Lipid Signalling 

3.2.1 Neuronal Morphology 

Studies suggest that astrocyte-neuron crosstalk goes beyond providing metabolic support. 

Emerging evidence demonstrates astrocyte signalling and lipid metabolism mediates neural 

circuit function and formation. One example of this is in neural circuit outgrowth, a process 

which is known to be influenced by astrocytes [132]. Recent evidence suggests this process is 

carried out via the action of phosphatidic acid (PA) [133]. PAs are phospholipids important for 

signalling and activation of lipid-gated ion channels [134] and have long been linked to neurite 

outgrowth [135, 136]. PAs are synthesised by phospholipase D1 (PLD1) and 2 (PLD2) which 



hydrolyse phosphatidylcholine to form PA and choline [137] and diacylglycerol kinase (DGK) 

[138] which phosphorylates diacylglycerol (DAG) to produce PA. This process is important for 

both astrocytes and neurons; in neurons DGK knockout attenuates synaptic vesicle recovery at 

the presynaptic terminal [139], PLD1 dysfunction is linked to impaired neurite outgrowth in 

Alzheimer’s [140] and PLD2 ablation rescues synaptic function [141]; and in astrocytes, 

knockout of PLD1 and 2 reduces astrocyte proliferation in culture [142]. Zhu et. al. [133], 

demonstrated that when PLD1 was knocked down or inhibited in rat hippocampal astrocytes in 

co-culture with neurons, neuronal dendritic branching reduced significantly. PA addition restored 

dendritic branching and increased dendritic outgrowth. Furthermore, astrocyte conditioned 

media recapitulated these effects, demonstrating that PLD1 dendrite outgrowth was mediated 

by PA generation and release from astrocytes. It is possible the process may regulate secretion 

of extracellular vesicles as these processes are known to affect morphology of neurons 

amongst other roles [143]. Inhibition of protein kinase A (PKA) reduced PA-stimulated dendritic 

outgrowth, but not fully, suggesting PKA signalling, which has been shown previously to 

influence dendrite outgrowth [144] was not the sole mechanism by which PA influences neurite 

outgrowth. PLD1 has also recently been shown to affect protein kinase-D1 which affects 

dendritic spine morphogenesis; thus this could be another area of influence for astrocytic PA 

[145]. ]. Therefore, astrocyte PA clearly has an important role in shaping neuronal morphology. 

 

3.2.2. The endocannabinoid system and the neuronal synapse 

The endocannabinoid (ECB) system is made up of G-protein-coupled cannabinoid receptors 

(CBRs) that are activated by ECBs, lipid-based eicosanoid neurotransmitters such as 

anandamide and 2-arachidonoylglycerol (2-AG) [146, 147] . The system has regulatory roles in 

heart, liver and brain function and has been widely studied for its potential role in astrocyte-

neuron communication [148, 149]. ECBs are synthesised generally in response to G-protein 



coupled receptor activation or depolarization, with 2-AG being synthesised from diacylglycerols 

(DAGs) by DAG lipases and phospholipase C [150, 151] whilst anandamide is synthesised from 

N-acyl-phosphatidylethanolamine by PLD [152]. Two CBRs have been characterised in the 

human body, CBR1 [153] and CBR2 [154]. CBR1 is highly expressed in the brain where it 

mediates most notably mood, cognitive ability, appetite and the pharmacological effects of 

cannabis, and is highly important for the control of synaptic transmission. Navarette and Araque 

[148], showed depolarization in pyramidal neurons of the rodent brain leads to ECB release, 

activating astrocyte CBR1 receptors triggering phospholipase-C dependent Ca2+ release from 

astrocytes. This stimulated glutamate release, activating N-methyl-D-aspartate (NMDA) 

receptors in the pyramidal neurons. The same phenomenon has also been reported in the 

human brain [155]. 

Astrocytes also influence long-term changes in synaptic transmission. Spike-timing dependent 

plasticity is a process in which neurons adjust the strength of their signals dependent on the 

timing of input and output action potentials [156], which influences neuronal circuit development 

[157]. Min and Nevian [158], demonstrated that activation of astrocytic CBR1 receptors leads to 

a transient increase in Ca2+ levels and Ca2+ signalling. Subsequent astrocyte glutamate release 

then activates NMDA receptors which triggers ECB mediated spike timing-dependent long term 

depression (t-LTD), showing the vital role astrocyte-ECB interaction plays in t-LTD and thus 

neuronal development. More recent studies have also shown a contrary role for CBR1 in long-

term potentiation (LTP). Mice with a CBR1 knockout demonstrate reduction in LTP at 

hippocampal synapses, whereas CBR1 receptor activation increased exogenous D-serine 

levels (which is needed for LTP [159]), thus CBR1 controls synaptic D-serine and therefore LTP 

[160].  

The endocannabinoid system has also garnered recent attention because of its potential health 

benefits, with the UK government recently shifting cannabis-based products from schedule 1 to 



schedule 2 in the Misuse of Drugs Regulations 2018. The most widely studied cannabinoids are 

tetrahydrocannabinol (THC) and cannabidiol (CBD). THC works purportedly via activation of 

CBR1 [161, 162] whilst CBD has low affinity for CBRs, instead acting as an antagonist of CBR 

agonists [163]. Nabiximols (a.k.a. Sativex), a CBD/THC mix, purified from Cannabis sativa L. is 

prescribed as an analgesic [162, 164, 165], and alleviates the negative effects of cannabis 

withdrawal [166]; whilst Nabilone (a.k.a. Cesamet) and Dronabinol (a.k.a. Marinol®/Syndros) 

are synthetic cannabinoids that mimic THC and may be effective as antiemetic’s [167, 168] and 

analgesics for diseases such as multiple sclerosis and fibromyalgia [169-171]. A recent meta-

analysis of cannabinoids as therapeutics showed moderate support for the alleviation of chronic 

pain and spasticity, low support for cannabinoids as analgesics, and an increased risk of 

adverse events [172]. The suggestion that cannabinoids can treat mental disorders like anxiety 

and depression may also be misplaced as a recent review analysing the available literature on 

THC used therapeutically (with or without CBD) to treat mental disorders highlights [173]. 

Black et al. (2019) show only a few investigations report an improvement in anxiety in treated 

patients (but only in individuals with a pre-existing condition). No improvement was reported in 

other conditions (such as depression) though multiple studies highlight the increased risk of 

adverse events and adverse events due to withdrawal. Cannabinoids therefore have therapeutic 

potential, but further research, particularly concerning true efficacy and long-term effects are 

required and wide-spread use of cannabinoid-based therapies in the near future seems unlikely. 

 

4. How defective lipid metabolism in astrocytes contributes to CNS disorders 

In the previous sections we discussed for the most part the role of lipid metabolism in the 

physiological context. For the remainder of the review, we will discuss the new insights that 

have recently emerged linking disruption with astrocytic lipid metabolism and neurological 

disorders. 



It is well established that metabolic dysfunction influences pathogenesis of a number of 

neurodegenerative disorders including ALS, PD and AD, for in depth reviews see [174-176]. 

The role of astrocytes in disease pathogenesis in ALS for example is well established with new 

astrocyte associated disease relevant pathways being recently identified using human models 

of disease combined with novel approaches such as phenotypic metabolic profiling [10, 18, 19]. 

The role of astrocytes in PD and AD is less well established but studies are emerging linking 

astrocyte metabolic defects with inflammation, BBB disruption and neuronal loss [177-181]. The 

role of lipid metabolism dysfunction as a whole in the CNS is outside the remit of this review 

article and has been covered by other authors in recent review articles [5, 182]. However, in this 

final section we will focus on the role of astrocytic lipid metabolism, signalling and inflammation 

in the context of CNS disorders and we will discuss the emerging role of manipulating astrocyte 

lipid metabolism as a therapeutic approach. 

4.1. Astrocyte LDs in disease. 

As previously mentioned, effective neuronal function is intrinsically linked to astrocyte 

metabolism and cross talk exists where oxidative stress in neurons triggers LD formation in 

nearby astrocytes which can lead to neurodegeneration via lipid peroxidation [6, 7]. This 

formation is dependent on Apo lipoproteins and the neuron-glial lactate shuttle [183]. Inhibition 

or deletion of glial and neuronal MCTs reduced LD accumulation in mouse glial-neuronal co-

cultures and Drosophila respectively. Whilst inhibition of neuronal lactate production and fatty 

acid transport proteins had similar effects in flies. Recent work by Ioannou et. al. [8, 184] 

demonstrated that hyperactive neurons accumulate peroxidated lipids and expel them in 

association with APOE-positive lipid particles. These particles are then concomitantly 

endocytosed by neighboring astrocytes, which incorporate the lipids as droplets. Moreover 

during increased neuronal activity, astrocytes upregulate antioxidant genes and breakdown LDs 

to fuel oxidative phosphorylation. However, the precise role of astrocyte LDs is still unclear as 



are the role of astrocyte LDs in neuroprotection or as a driver of neurodegenerative disorders [6, 

185].  This is an avenue of research which is likely to attract a great deal of attention over the 

next few years due to the potential therapeutic benefits to multiple CNS disorders of 

understanding the associated mechanisms. For example, accumulation of LDs in astrocytes has 

recently been observed in murine  models of ALS, and the role of LDs in motor neuron diseases 

has been recently reviewed [186]. Moreover, in AD it was found that astrocytes expressing the 

E4 APOE allele accumulated higher amounts of LD, and had both decreased fatty acid uptake 

and decreased fatty acid oxidation compared to E3 astrocytes. Furthermore, E4 astrocytes were 

more sensitive to carnitine palmitoyltransferase-1 inhibition than E3 astrocytes indicating a 

preference for mitochondrial fatty oxidation [187]. In a mouse model of Leigh Syndrome where 

the mitochondrial complex I component Ndufs4 was knocked out, neuronal mitochondrial 

abnormalities led to pre-symptomatic glial LD accumulation [6]. This highly significant study 

suggested that LD accumulation may represent an early indicator and/or promoter of 

neurodegeneration. Furthermore, targeted lipase overexpression or lowering ROS levels in 

Drosophila, reduced LD accumulation in glia, potentially delaying the onset of 

neurodegeneration [6]. FABPs are important for LD synthesis in response to reactive oxygen 

species. Knockout of FABP7 in primary mouse astrocytes caused reduced LD formation, 

increased ROS toxicity and impaired thioredoxin signalling in response to ROS induced stress, 

activating apoptosis signalling pathways. Conversely, overexpression of FABP7 in a human-

glioma line increased LD accumulation and expression of antioxidant defence pathways [188], 

suggesting FABP7 protects astrocytes from oxidative stress via generation of LDs, which has 

implications for multiple neurological diseases with oxidative stress as a pathological 

mechanism.  

4.2. Astrocyte lipid signalling and inflammation in disease  



A mechanism of dysfunction exists between LDs and lipid signalling in the CNS.  Lipoprotein 

lipase (LPL) is a serine hydrolase that releases free fatty acids from circulating triglyceride-rich 

lipoproteins and has previously been implicated in CNS metabolic regulation [189]. A recent 

study showed that LPL loss in mice hypothalamic astrocytes led to decreased LD content [47]. It 

was suggested that LPL mediates lipid partitioning and is needed for nutrient sensing and 

energy homeostasis regulation in the CNS. LPL deficient mice suffered glucose intolerance and 

weight gain when fed a HFD, as well as a compensatory upregulation of lipogenesis-related 

genes, glycolytic flux and ceramide. 

Ceramide is an important multifunctional intracellular signaling molecule where alterations in 

levels have been linked to neurological diseases. Recently, a connection was suggested 

between ceramide levels and inflammation in frontotemporal lobar dementia (FTLD) patient 

astrocytes [79]. Moreover, in patients with Pick’s disease, (a form of frontotemporal dementia), 

ceramide 16:0 levels were shown to be raised in astrocytes but not in other forms of glia, such 

as microglia. Although these lipids compose a small fraction of total ceramide from the 

membrane, increases in astrocyte ceramide 16:0 have previously been observed in active 

multiple sclerosis lesions (with increased acid sphingomyelinase expression), have been 

observed in AD patients and have been linked to increased apoptosis in cells  [77, 78, 190]. 

These data in combination with the increase in ceramide and sphingosine-1-phosphate receptor 

3 levels observed in astrocytes from patients with capillary cerebral amyloid angiopathy [191], 

potentially indicate a common pathogenic mechanism between neurological diseases.  

As previously mentioned, dietary fatty acids have also been shown to modulate inflammation. 

Conjugated linoleic acid has been shown to alter the levels of TNF-α, IL-1β, and RANTES in 

cultured human astrocytes [192]. Within the context of ischemia, intravenous injection of α-lipoic 

acid reduced neuronal damage in a rat model of ischemia but did not reduce astrogliosis [193]. 

Whilst inhibition/deletion in mice of (seladin-1)3β-Hydroxysteroid-Δ24 reductase (DHCR24), (a 



cholesterol biosynthetic pathway enzyme), led to increased ischemic lesion and inflammation 

after middle cerebral artery occlusion [194]. Loss of seladin-1/DHCR24 as observed in AD 

brains, decreased plasma membrane cholesterol levels and concomitantly the formation and 

stability of lipid rafts. In mice, loss of seladin-1/DHCR24 led to a decreased association of the 

glutamate transporter EAAT2 with lipid rafts and decreased glutamate uptake in astrocytes. 

These data indicate that DHCR24 mediated lipid raft integrity plays a crucial protective role in 

the ischemic brain by guaranteeing EAAT2-mediated uptake of glutamate excess. These highly 

significant results link cholesterol, inflammation and lipid raft integrity to EAAT2-mediated 

uptake of glutamate excess via seladin-1/DHCR24.  This has implications for a variety of 

neurological disorders including ischemia, AD and ALS with similar pathways observed in 

psychiatric disorders.  

4.3. Is astrocyte lipid pathway manipulation beneficial in neurological disorders? 

The synaptic phospholipid, lysophosphatidic acid (LPA), has been shown to regulate cortical 

excitation/inhibition balance and sensory information processing [195-197]. In a recent study, 

the LPA-synthesizing enzyme autotaxin (ATX) which is expressed in the astrocytic compartment 

of excitatory synapses modulating glutamatergic transmission was found to be sorted to 

excitatory not inhibitory synapses [198]. This sorting was regulated by neuronal activity via 

astrocytic glutamate receptors. Therefore, pharmacological ATX inhibition has been proposed 

as a method to reverse cortical hyperexcitability in schizophrenia, suggesting that manipulating 

astrocytic lipid function may be a viable therapeutic approach in neurological disorders. But is 

that the case? 

The ability to manipulate catabolic pathways to increase carbon flow through those pathways or 

to  mobilise internal energy stores such as fatty acids in times of bioenergetic need may be a 

viable metabolic based therapeutic approach. Catabolic manipulation ties into the concept of 



metabolic flexibility mentioned previously and theoretically would not only be beneficial  for 

astrocyte bioenergetic function, but also for the ability of astrocytes to support neuronal function 

in times of stress [18, 19]. With this in mind oleoylethanolamide (OEA), a bioactive lipid mediator 

produced by glial cells after tissue damage has been shown to upregulate PPAR-α in TGF-β1 

treated astrocyte C6 cells [199]. These data indicate that OEA may attenuate astrocytic scar 

formation and improve motor function after ischemic stroke. Fatty acid supplementation may 

also be beneficial in reducing astrocyte activation and inflammation in PD. 6-hydroxydopamine 

treated male rats supplemented with omega-3 polyunsaturated fatty acids showed reduced 

GFAP and iNOS staining in the striatum and substantia nigra pars compacta indicating a 

reduction in the inflammatory profile in these animals [200]. Enhancing FAO in astrocytes using 

a synthetic peroxisome proliferator activated receptor delta agonist GW0742 may also have 

therapeutic potential in AD [201]. iPSC astrocytes generated from AD patients with a FAO 

defect showed an increase in carnitine palmitoyltransferase-I-a expression and FAO capacity 

when treated with GW0742. Similar effects in FAO were observed using GW0742 in the amyloid 

precursor protein/ presenilin 1 AD mouse model as well as reversed memory deficits, increased 

neurogenesis and reduced cortical inflammatory genes. However, in iPSCs, GW0742 did not 

protect against pro-inflammatory activation and in the mouse model, astrogliosis was 

unaffected, indicating that increasing FAO does not reverse the metabolic deficit fully. This may 

be because astrocyte metabolic adaptation to fatty acid dependent respiration in times of 

glucose hypometabolism (as observed in AD for example [21] comes at a cost. Recent work in 

primary astrocytes has suggested that glucose starvation leads to activation of 5' adenosine 

monophosphate-activated protein kinase. This causes a concomitant upregulation of uncoupled, 

fatty acid dependent mitochondrial respiration with reduced coupling efficiency [127], potentially 

leading to enhanced oxidative stress. With these data in mind and in combination with the 

earlier discussion around the links between certain fatty acids and inflammation, careful 



mechanistic analysis must be performed to fully elucidate the action of any potential lipid based 

metabolic interventions including high fat diets. 

5. Conclusions 

Astrocytes play a key role in the CNS from maintenance of the BBB, cell to cell communication 

and maintenance of metabolic homeostasis. Astrocyte lipids play a crucial role in these 

functions from maintaining membrane flexibility, reducing inflammation and influencing organelle 

structure and intracellular signalling. The differential use of lipids in astrocytes compared to, for 

example neurons, plays a key protective role in the CNS. This review article has summarised 

the current, ongoing research in the area of astrocyte lipid metabolism and contextualized those 

findings with historical scientific research in the CNS. We have highlighted throughout, key 

emerging areas in lipid function in astrocytes and the importance of these pathways in both 

health and disease and also astrocyte metabolic function as a whole. The emerging field of 

astrocyte LD storage has revealed the links between astrocyte lipid metabolism, oxidative 

stress, metabolic function, lipid signaling and anti-inflammatory pathways. Disruption in these 

pathways can alter the metabolic balance in the CNS causing energy generation dysregulation, 

inflammation, excitotoxicity and toxicity, which are pathogenic mechanisms relevant to many 

neurodegenerative disorders including ALS, PD, AD and ischemic stroke to name a few. Further 

characterisation of the pathways in health and disease will aid the understanding of the 

mechanisms behind these pathogenic mechanisms and will identify novel therapeutic targets or 

nutritional supplementation strategies to help ameliorate the dysfunction and benefit patients.     

Author contributions 

J.A.K.L., B.H., J.A., R.A., and S.P.A., wrote the manuscript and designed the figures.  

Declaration of Competing Interest 



The authors are not aware of any conflicts of interest that may affect the objectivity of this 

review. 

Acknowledgements 

This work was supported by funding from the Sheffield Institute foundation. 

Figure Legends 

Figure 1. Intracellular lipid localisation in astrocytes and astrocyte-neuron 

communication. 

Demonstrated is the intracellular localisation of sterol lipids (SL), phospholipids (PL), 

triacylglycerol’s (TAG), fatty acids (FAs) and sphingolipids (SpL). (A) FAs are the precursor for 

most types of lipids (excluding sterol lipids) and are synthesised and stored in the cytosol (as 

shown). Sterol lipids, phospholipids and sphingolipids are important in maintaining astrocyte cell 

and organelle membranes including mitochondria and can be metabolised to produce regulatory 

molecules for intracellular processes. Triacylglycerol’s are mainly synthesised and located in the 

endoplasmic reticulum (ER). Astrocytes metabolically communicate with neurons via 

monocarboxylate transporters (MCT1/2) including supplying neurons with lactate according to 

the lactate shuttle hypothesis. As shown, (B) an influx of glutamate into astrocytes, co-

transported with Na+ from the neuronal synapse, results in glucose uptake into astrocytes via 

Glut-1 receptors (C). (D) Glucose is metabolised to pyruvate which either enters the 

mitochondria or (E) is dehydrogenated to lactate by LDH. (F) Lactate is then transported out of 

astrocytes via MCT1 receptors, and taken up by MCT2 receptors on neurons. (G) Lactate is 

then converted back to pyruvate via neuronal LDH (or glucose is taken up by Glut-3 on neurons 

and oxidised to pyruvate) where it can then enter the mitochondria and be converted to acetyl 

CoA.  



Figure 2. Phosphatidylethanolamine promotes neural stem cell differentiation into 

astrocytes, whilst phosphatidylcholine inhibits differentiation to astrocytes.  

Phosphatidylethanolamine (PtE) binds to phosphatidylethanolamine binding protein (PEBP), 

inhibiting its inhibitory action of mitogen-activated protein kinase (MAPK), which promotes 

differentiation into astrocytes. Phosphatidylcholine (PtC) exposure activates protein kinase A 

(PKA), which promotes differentiation into neurons and inhibits differentiation to astrocytes.  

Figure 3. Schematic representation of the influence of different structural lipids on 

astrocyte function.  

Saturated fatty acid exposure promotes astrogliosis by activation of mitogen-activated protein 

kinase (MAPK). During astrogliosis, PUFA production increases, leading to an increase in 

docosahexaenoic acid (DHA) extracellularly, which can inhibit astrogliosis. Sterol regulatory 

element binding protein 2 (SREBP2) promotes synthesis of cholesterol, that regulates lipid raft 

formation and inhibits glucose transporter 1 (GLUT1) translocation to the membrane. Astrocyte 

production of cholesterol and gangliosides promotes neuron outgrowth in nearby neurons. 

Changes to ceramide concentrations in astrocyte membranes observed in various neurological 

diseases implicate them in cellular functions such as inflammation and apoptosis.        

Figure 4. Lipid droplet synthesis in astrocytes 

 

Lipid droplet synthesis occurs in the ER in a triphasic process (A): (i) Nucleation-neutral lipids 

accumulate in the ER bilayer (ii) Growth–LDs form into a sphere and are wrapped in the ER 

bilayer as neutral lipids accumulate (iii) Budding–LDs then bud off into the cytosol. Fuel for this 

synthesis comes in the form of FAs which are converted into neutral lipids in the ER. In 

astrocytes FAs for neutral lipid synthesis can come from the following sources: (B) Excess 

neuronal FAs - FAs complex with Apo-lipoproteins which are then shuttled to astrocytes and 



broken down by lysosomes; FAs derived from this process subsequently enter the ER. (C) 

Dietary FAs- FAs from the diet cross the BBB by binding with FABPs that transport them 

through transporters such as CD36. LDs generated in the ER can then be metabolised by β-

oxidation to provide metabolic support for neurons (D).  
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