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Abstract— Objective: Nonlinear modeling of cortical responses 

(EEG) to wrist perturbations allows for the quantification of 

cortical sensorimotor function in healthy and neurologically 

impaired individuals. A common model structure reflecting key 

characteristics shared across healthy individuals may provide a 

reference for future clinical studies investigating abnormal 

cortical responses associated with sensorimotor impairments. 

Thus, the goal of our study is to identify this common model 

structure and therefore to build a nonlinear dynamic model of 

cortical responses, using nonlinear autoregressive–moving-

average model with exogenous inputs (NARMAX). Methods: EEG 

was recorded from ten participants when receiving continuous 

wrist perturbations. A common model structure detection method 

was developed for identifying a common NARMAX model 

structure across all participants, with individualized parameter 

values. The results were compared to conventional subject-specific 

models. Results: The proposed method achieved 93.91% variance 

accounted for (VAF) when implementing a one-step-ahead 

prediction and around 50% VAF for a k-step ahead prediction (k 

= 3), without a substantial drop of VAF as compare to subject-

specific models. The estimated common structure suggests that the 

measured cortical response is a mixed outcome of the nonlinear 

transformation of external inputs and local neuronal interactions 

or inherent neuronal dynamics at the cortex. Conclusion: The 

proposed method well determined the common characteristics 

across subjects in the cortical responses to wrist perturbations. 

Significance: It provides new insights into the human 

sensorimotor nervous system in response to somatosensory inputs 

and paves the way for future translational studies on assessments 

of sensorimotor impairments using our modeling approach.  
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I. INTRODUCTION 

he human nervous system is one of the most complicated 

systems known. There are at least 1011 neurons, 1014 

interconnections, and many thousand kilometers of cabling in 

1.5 kilograms of brain tissue [1, 2]. Our daily activities such as 

movement and perception are fulfilled by the collective 

behavior of neural populations. Despite plenty of knowledge of 

single neuron responses to stimuli, the stimulus-response 

relation at a system level is not yet fully understood [3]. The 

system-level neural response is a complex output of collective 

neuronal activity from neuronal populations and their dynamic 

interactions, and includes highly nonlinear processes [2, 3]. 

Assessing the stimulus-response relation between neural 

populations is essential to a better understanding of the nervous 

system and could lead to an increased insight of normal and 

pathological neural functions [4]. 

A practical way to study a stimulus-response relation in a 

functionally closed-loop system, like the nervous system, is to 

use well-designed  external perturbations as independent input 

[3, 5]. Applying periodic mechanical perturbations to the wrist 

joint of healthy individuals and measuring the associated 

steady-state cortical responses via electroencephalography 

(EEG) allows studying the stimulus-response relation in the 

sensorimotor system [6]. A recent study indicated that over 80% 
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of cortical responses to mechanical perturbations originates 

from nonlinear interactions, and a linear model could only 

explain 10% of cortical response, according to the measured 

variance accounted for (VAF) [7]. Nonlinear modeling of 

cortical responses to mechanical perturbations allows for a 

better understanding of the sensorimotor system and may pave 

the way for assessments of sensorimotor impairments caused 

by neurological disorders, such as Parkinson’s disease, stroke 

and cerebral palsy [4, 8]. 

Our previous studies investigated the cortical responses to  

mechanical perturbations based on their relative phases [9, 10]. 

These studies demonstrated the dominance of quadratic 

nonlinearity in the nervous system. Based on these findings, 

Vlaar and colleagues modeled cortical responses to wrist 

perturbations using regularized Volterra series with a second-

order nonlinearity [11]. The obtained subject-specific models 

explain around 46% (measured by VAF) of cortical response. 

This result is better than using a linear model (explaining 10% 

of cortical response). The study also found that after extensive 

averaging the recorded cortical response contained around 8% 

noise, indicating that more advanced methods may be able to 

model a higher percentage of the response.  

Over the past years, many linear modelling techniques have 

been proposed and successfully applied to neural signal 

modelling for brain-computer-interface (BCI) research. For 

example, in [12], a 2-D linear decoupling model was introduced 

to represent the EEG signals relating to BCI systems. Each of 

the two sub-models (for the horizontal and vertical velocities of 

the cursor, respectively) involves a total of 34×11 = 374 model 

elements (model terms), which were determined by the number 

of sensors (=34) and the maximum lag ( =10) for model input 

variables. In [13], the 2-D model introduced in [12] was 

extended to 3-D, representing the velocities in the x-, y- and z-

axis. Each of the three sub-models involves a total of 64×11 = 

704 model terms. While these models provide a good 

representation of the relevant EEG signals, they have several 

limitations, for example, 1) they lack interpretability in that the 

models include a great number of terms (elements); each of 

which may just make a trivial contribution to explaining the 

target signal, and the contributions are unknown. 2) These 

models cannot reveal the underlying nonlinear relationships 

between the input and output signals of the systems under study. 

3) These models do not answer the question: do subjects 

participating in experiments share any common features, which 

are important and useful for future clinical studies e.g. 

investigating abnormal cortical responses associated with 

sensorimotor impairments and monitoring the functional 

changes in the brain after neurological disorders and during the 

recovery. To overcome the limitations of linear models and 

obtain more useful information from experimental data, this 

study proposes a nonlinear modelling approach which can 

generate parsimonious models. The proposed method will be 

briefly introduced in the next paragraphs first and described in 

detail in Section II.             

Commonly used nonlinear modeling methods includes 

regularization regression, sparse regression (e.g. lasso), basis 

function expansions, neural networks, and linear and nonlinear 

autoregressive moving average. These methods have some 

advantages and disadvantages. For example, neural networks 

normally show excellent prediction performance, but they 

could be very complex and takes a large amount of time for 

training. The regularization regression and lasso methods are 

efficient for structure detection and model term selection [14]. 

In basis function expansions, the basis functions may well 

capture the temporal dynamics without explicitly considering 

sampling resolution and number of lags. However, these 

methods might produce less accurate predictions than neural 

network models. The nonlinear autoregressive–moving-

average with exogenous inputs (NARMAX) model provides 

parsimonious and transparent representation of nonlinear 

systems and in general shows excellent prediction performance 

[16,17]. However, the challenges still remain for building a 

common model structure. Moreover, one needs to construct 

transparent and parsimonious models where the role of 

individual system variables, and their interactions are explicitly 

known, so as to facilitate future translations to clinically related 

research. 

Recently, we proposed a biologically inspired approach 

based on the prior knowledge of neuroanatomical connections 

and corresponding transmission delays in neural pathways [15]. 

However, this previous method has the limitation to be applied 

to an unknown “black-box” system. For example, it would be 
hard to apply method to individuals suffering from a stroke, 

since the damage to neuroanatomical connections and 

following neural plasticity will result in an unknown system 

like a “black” box. Thus, a data-based method that is proposed 

in this study seeks to address this limitation. Furthermore, a 

common model structure estimated from different healthy 

subjects may provide a reference of key characteristics shared 

across individuals. This reference is important for future 

clinical studies investigating abnormal cortical responses 

associated with sensorimotor impairments. This will then 

provide a potential quantitative tool for monitoring the 

functional changes in the brain after neurological disorders and 

during the recovery [4]. However, the common model structure 

cannot be achieved by the previous subject-specific 

(nonparametric) Volterra models [11] as well as other system 

identification techniques as discussed above.  

In this study, we modeled the cortical response to mechanical 

perturbation using a polynomial NARMAX method. Such a 

NARMAX method is used since 1) the “true” mathematical 
model of the human sensorimotor system is unknown and 2) 

most nonlinear functions can be approximately represented by 

a polynomial series. A common model structure detection 

(CMSD) method is proposed, which allows for the selection of 

key model terms from many candidates, to build a common 

model structure for multiple datasets. The proposed method was 

applied to the open-access datasets previously recorded by 

Vlaar and colleagues [7, 11]. The datasets are available in 

Nonlinear System Identification Benchmarks website ( 

http://www.nonlinearbenchmark.org/#EEG) 

Results obtained from this study can enhance our 

understanding of the underlying nonlinear behaviors in the 

human somatosensory central nervous system. The proposed 

http://www.nonlinearbenchmark.org/#EEG


> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

3 

method would allow us modeling the human somatosensory 

system in a more precise way than current state of the art 

approaches with few key parameters. The common model 

estimated from different subjects provides a useful reference of 

key characteristics shared across individuals. This may pave the 

way for our future research that aims to quantitatively assess the 

pathological changes in the somatosensory system caused by 

neurological disorders.  

II. NONLINEAR MODELLING USING NARMAX 

The NARMAX method [16-18] provides a powerful tool for 

black-box system identification problems where the true model 

structure is unknown or hard to obtain. A wide range of 

nonlinear systems can be represented well using NARMAX 

modeling. The input-output relationship of a nonlinear dynamic 

system can be represented using polynomial NARMAX model 

as follows:  

 𝑦(𝑡) = 𝑓(𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝑛𝑦), 𝑢(𝑡 − 1), … , 𝑢(𝑡 − 𝑛𝑢),  𝑒(𝑡 − 1), … , 𝑒(𝑡 − 𝑛𝑒)) + 𝑒(𝑡)                                (1) 

 

where 𝑦(𝑡), 𝑢(𝑡) and 𝑒(𝑡) are the output, input and prediction 

error, respectively; 𝑛𝑦 , 𝑛𝑢, and 𝑛𝑒 are the associated maximum 

lags, and 𝑓(∙)  is a nonlinear function which is unknown in 

advance and is identified from experimental data using a model 

structure detection algorithm.  

Most existing model structure detection algorithms focus on 

identifying a model structure based on one single dataset. The 

orthogonal forward regression (OFR) algorithm is a commonly 

used method for such a purpose [17]. The OFR operates in a 

stepwise manner to produce a parsimonious representation of 

the input-output relation. It first defines a dictionary consisting 

of a great number of candidate model terms (e.g. individual 

variables and their interaction terms). Then, an 

orthogonalization transformation is performed over the 

dictionary to generate a subset of model terms. During the 

orthogonaliztion procedure, a simple and effective error 

reduction ratio (ERR) index is used to measure the contribution 

of each model terms. At each step, the algorithm selects a most 

important model term from the dictionary. The selection 

procedure normally generates a small subset of model terms 

which are used for model building.  This algorithm and its 

variants have been successfully applied to studies in various 

research fields including ecological [19], environmental [20], 

geophysical [21], societal [22] and neurophysiological sciences 

[23-26]. The scenario considered in this study, however, is quite 

different from previous studies. In this study there are multiple 

datasets recorded from a series of experiments with different 

inputs (i.e., seven different multi-sine realizations) and from 

multiple participants. Thus, the single-dataset based OFR 

algorithm cannot be used to generate the common model 

structure that represents all datasets (i.e. within and between 

participants). Therefore, a new method that can effectively 

handle multiple-dataset modeling problems is needed. Below, 

we introduce a Common Model Structure Detection (CMSD) 

method to address this need.  

A. Parsimonious Common Model Structure Detection 

The nonlinear autoregressive exogenous (NARX) model, as 

a special case of NARMAX model, is commonly used in 

nonlinear system identification. It can be expressed in a linear-

in-the-parameters form [16, 17, 27]:  

 𝑦(𝑡) = 𝜃1𝜑1(𝑡) + 𝜃2𝜑2(𝑡) + ⋯ + 𝜃𝑀𝜑𝑀(𝑡) + 𝑒(𝑡)   (2)                   

 

where 𝜃1, … 𝜃𝑀 are unknown parameters and M  is the total 

number of candidate regressors, 𝜑1(𝑡), … 𝜑𝑀(𝑡) are model 

terms (also known as regressors) generated from the regressor 

vector [𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝑛𝑦), 𝑢(𝑡 − 1), … , 𝑢(𝑡 − 𝑛𝑢)] 𝑇. For 

example, for a single input and single output (SISO) system 

(where 𝑢(𝑡) and  𝑦(𝑡) are the input and output, respectively), if 

the nonlinear degree is chosen to be 2, and the time lags of input 

and output are chosen to be 𝑛𝑢 = 2 and 𝑛𝑦 =1, respectively, 

then  the candidate model terms include the constant term, 

linear terms 𝑦(𝑡 − 1), 𝑢(𝑡 − 1), 𝑢(𝑡 − 2), and nonlinear terms 𝑦(𝑡 − 1)𝑦(𝑡 − 1), 𝑦(𝑡 − 1)𝑢(𝑡 − 1), 𝑦(𝑡 − 1)𝑢(𝑡 − 2), 𝑢(𝑡 −1)𝑢(𝑡 − 1), 𝑢(𝑡 − 1)𝑢(𝑡 − 2), 𝑢(𝑡 − 2)𝑢(𝑡 − 2). 

Considering the scenario where a total number of 𝐾 datasets 

is available, our objective is to find a common model structure 

in the form of Eq. (2) that summarizes the common 

characteristics across all datasets. For k-th dataset, the model 

terms [𝜑1(𝑘)(𝑡), … , 𝜑𝑀(𝑘)(𝑡)]  can be generated from the 

associated regressor vector [𝑦(𝑘)(𝑡 − 1), … , 𝑦(𝑘)(𝑡 −𝑛𝑦), 𝑢(𝑘)(𝑡 − 1), … , 𝑢(𝑘)(𝑡 − 𝑛𝑢)]𝑇 .  Here the superscript is 

used to index the datasets. For example,  𝜑 1(𝑘)
 indicates that the 

model term is for the k-th dataset.   

If using all the available model terms, the k-th datasets can 

be represented by a full polynomial NARX model:  

 𝑦(𝑘)(𝑡) = 𝜃1 𝜑1(𝑘)(𝑡) + ⋯+ 𝜃𝑀 𝜑𝑀(𝑘)(𝑡) + 𝑒(𝑘)(𝑡)    (3)               

 

Model (3) can be written in a compact matrix format as:   

 𝒚(𝑘) = 𝜃1 𝝋1(𝑘) + ⋯ + 𝜃𝑀  𝝋𝑀(𝑘) + 𝒆(𝑘)           (4) 

 

where 𝒚(𝑘) = [𝑦(𝑘)(1), … , 𝑦(𝑘)(𝑁 (𝑘))] 𝑇 , 𝜽 (𝑘) =[𝜃1(𝑘), … ,  𝜃𝑀(𝑘)] 𝑇 , 𝒆(𝑘) = [𝑒(𝑘)(1), … , 𝑒(𝑘)(𝑁 (𝑘))] 𝑇  and 𝝋𝑚(𝑘) = [ 𝜑𝑚(𝑘)(1), … ,  𝜑𝑚(𝑘)(𝑁 (𝑘))] 𝑇  for 𝑘 = 1, 2, … , 𝐾  and 𝑚 = 1, 2, … ,𝑀. 

The total number of candidate model terms 𝑀 depends on the 

number of input variables 𝑛𝑢 (i.e., the length of input history), 

the maximum time lags of the output 𝑛𝑦  and the degree of 

nonlinearity d. It can be calculated that  𝑀 = (𝑛𝑢+𝑛𝑦+𝑑)!(𝑛𝑢+𝑛𝑦)!𝑑! . In 

order to determine the maximum time lags for both the input 

and output variables, following the approach described in [25], 

we have carried out pre-modelling experiments and 

simulations. In this study, the maximum time lag is chosen to 

be 𝑛𝑦 = 5 and 𝑛𝑢 = 20, and based on the observations of Vlaar 

[8,11] the second order nonlinearity (d = 2) was set. Thus, the 

total number of candidate terms M is (20+5+2)!/[(20+5)!2!] = 
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351. In practice, a smaller number of the significant model 

terms could be enough to represent the data [17]. Thus, we 

proposed a model structure detection algorithm to select the key 

model terms from these 351 candidates.  

For the k-th dataset, let 𝐷(𝑘) = { 𝜑1(𝑘), … ,  𝜑𝑀(𝑘)} be the full 

dictionary of candidate model terms and 𝝋𝑚(𝑘)
 be the m-th 

candidate basis vector comprised by the candidate model 

terms  𝛿𝑚(𝑘)
. Then, the common model structure detection 

problem is equivalent to finding a common subset 𝐷𝑛 ={ 𝜑𝑙1  , … ,  𝜑𝑙𝑛  }  with {𝑙1, … , 𝑙𝑛} ∈ {1, 2, … ,𝑀} , so that  𝒚(𝑘) (𝑘 = 1, 2 , … , 𝐾)  can be approximated by a linear 

combination of {𝝋𝑙1 , … , 𝝋𝑙𝑛  }, as:  

 𝒚(𝑘) = 𝜃𝑙1(𝑘) 𝝋𝑙1  + ⋯ + 𝜃𝑙𝑛(𝑘) 𝝋𝑙𝑛  + 𝒆(𝑘)             (5) 

 

We used a stepwise forward search approach to identify the 

key model terms in the common model structure. The overall 

mean absolute error (oMAE) was employed to indicate the 

significance and contribution of each model term in reducing 

the modeling error. At the first search step, the oMAE of each 

candidate model term can be estimated from a MAE matrix:  

 

𝜳 (1) = [  
  𝜖1(1) 𝜖2(1)𝜖1(2) 𝜖2(2) ⋯ 𝜖𝑀(1)𝜖𝑀(2)⋮ ⋱ ⋮𝜖1(𝐾) 𝜖2(𝐾) ⋯ 𝜖𝑀(𝐾)]  

  
                     (6) 

                                                    

where 𝜖𝑚(𝑘) is the individual MAE value when the m-th 

candidate model term is used to predict the k-th output: 

 𝜖𝑚(𝑘) = 1𝑁𝑘 ‖𝒚(𝑘) − 𝛼𝑚(𝑘)𝝋𝑚(𝑘)‖1                    (7) 

 

where 𝛼𝑚(𝑘)
 is the parameter and ‖∙‖1 represents the  𝐿1 norm. 

Then, the oMAE associated with the m-th candidate model term  𝛿𝑚(𝑘)  (i.e., when the m-th candidate basis vector 𝝋𝑚(𝑘)
 is used 

to represent all 𝐾 datasets) is defined as the average of the K 

MAE values:   

 𝜖�̅� = 1𝐾 (𝜖𝑚(1) + 𝜖𝑚(2) + …+ 𝜖𝑚(𝐾))                  (8) 

 

Define:  𝑙1 = 𝑎𝑟𝑔 𝑚𝑖𝑛1≤𝑚≤𝑀  {𝜖�̅� }                          (9) 

 

subsequently, the first significant model term can be selected as  𝛿𝑙1(𝑘)
 and the first associated orthogonal vector can be defined 

as 𝒒1(𝑘) = 𝝋𝑙1(𝑘)
. When 𝛿𝑙1(𝑘)

 is selected by the algorithm, the 𝑙1-th candidate model term should be removed from the initial 

dictionary 𝐷(𝑘), as well as the corresponding column of matrix 𝚽(𝑘)  (i.e., the  𝑙1 -th candidate basis vector). After removing  𝛿𝑙1(𝑘)
 from the dictionary, the dictionaries of all 𝐾 datasets are 

reduced and consist of only 𝑀 − 1  candidate model terms. 

Accordingly, all 𝐾 matrices associated with these 𝑀 − 1 model 

terms have  𝑀 − 1 columns.  

At a step 𝑠 (𝑠 ≥ 2), each of the K dictionaries consist of 𝑀 −𝑠 + 1 candidate model terms and the bases in each dictionary 

are first transformed into a new group of orthogonalized bases 

through the Gramm-Schmidt (GS) transformation [13,14,24]. 

Here, the GS transformation is used to achieve the following 

objective: to select the most important variables (bases) that are 

most representative for all the K datasets. The orthogonalization 

transformation at the step 𝑠 can be implemented by:  

 𝒒𝑗(𝑘,   𝑠) = 𝝋𝑗(𝑘) − ∑ (𝝋𝑗(𝑘))𝑇𝒒𝑟(𝑘)(𝒒𝑟(𝑘))𝑇𝒒𝑟(𝑘) 𝑞𝑟(𝑘)𝑠−1𝑟=1                (10) 

 

where 𝒒𝑟(𝑘) (𝑟 = 1, 2, … , 𝑠 − 1)  are orthogonal vectors,  𝝋𝑗(𝑘) (𝑗 = 1, 2, … ,𝑀 − 𝑠 + 1 ) are unselected bases and 𝒒𝑗(𝑘,   𝑠)(𝑗 = 1, 2, … ,𝑀 − 𝑠 + 1) are new orthogonalized bases. 

The MAE matrix at the step 𝑠 can be then calculated using the 

new group of K bases [ 𝒒𝑗(1,   𝑠), 𝒒𝑗(2,   𝑠), … , 𝒒𝑗(𝐾,   𝑠)] (𝑗 = 1,2, … ,𝑀 − 𝑠 + 1), and the MAE matrix is:  

 

𝜳 (𝑠) = [  
  𝜖1(1) 𝜖2(1)𝜖1(2) 𝜖2(2) ⋯ 𝜖𝑀−𝑠+1(1)𝜖𝑀−𝑠+1(2)⋮ ⋱ ⋮𝜖1(𝐾) 𝜖2(𝐾) ⋯ 𝜖𝑀−𝑠+1(𝐾) ]  

  
                     (11) 

                     

    The oMAEs of all unselected bases at step 𝑠  can be 

calculated and the s-th model term can be selected to be 𝜑𝑙𝑠(𝑘), 
with: 

  𝑙𝑠 = 𝑎𝑟𝑔 𝑚𝑖𝑛1≤𝑚≤𝑀−𝑠+1  {𝜖�̅� }                     (12) 

 

The s-th associated orthogonal vector is defined as 𝑞𝑠(𝑘) =𝝋𝑙𝑠(𝑘)
. Thus, the model terms of the subset [ 𝜑𝑙1(𝑘), … ,  𝜑𝑙𝑛(𝑘)] 

can be selected step-by-step to identify the common model 

structure for all K datasets. The number of model terms is 

determined by an adjustable prediction sum of squares 

(APRESS) to achieve a balance between model complexity and 

model performance. The details of the APRESS can be found 

in [28]. 

B. Parameter Estimation 

Assume that a total of 𝑛 model terms are selected, the model 

parameter vector for the k-th dataset, i.e. 𝜽 (𝑘) =[𝜃𝑙1(𝑘), 𝜃𝑙2(𝑘), … , 𝜃𝑙𝑛(𝑘)]  can then be estimated from the 

triangular equation 𝑨(𝑘)𝜽(𝑘) = 𝒈(𝑘) , where 𝑨(𝑘)  is a unity 

upper triangular matric, and 𝒈(𝑘) = (𝒚 (𝑘))𝑇𝒒𝑗(𝑘)(𝒒𝑗(𝑘))𝑇𝒒𝑗(𝑘)  (𝑖 = 1,… , 𝑛)   

(see e.g. [26],[27] for details). By averaging the model 

parameters from the K sub-datasets, we can further obtain a 

unique model parameter vector 𝜽  = [𝜃𝑙1  , 𝜃𝑙2  , … , 𝜃𝑙3  ] for the 

common model. 
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C. Noise Modeling 

The EEG signal in this study is collected from ten 

participants, using scalp electrodes. For the data collected from 

real systems, the noise signal 𝑒(𝑡)  is usually a colored or 

correlated noise, which is generally not observed. One of the 

common approaches to handling noise is to model it using 

model residuals. A distinctive feature of the NARMAX model, 

setting it apart from other data based modelling techniques, is 

that it does not make any assumption on the noise distribution 

but only treats the noise to be colored.  

In this study, noise modelling was incorporated in the 

NARMAX procedure for each of the individual models. Let 𝑓(∙) represent an estimator for the model 𝑓(∙), the residuals 𝜀(𝑡) 

can then be estimated as 

 𝜀(𝑡) = 𝑦(𝑡) − �̂�(𝑡) = 𝑦(𝑡) − 𝑓(𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝑛𝑦), 𝑢(𝑡 − 1), … , 𝑢(𝑡 −𝑛𝑢), 𝜀(𝑡 − 1), … , 𝜀(𝑡 − 𝑛𝑒))                                (13) 

 

The algorithm in sections II (A) and (B) includes two extra 

steps: 

  Computing the prediction errors 𝜀(𝑡), 

  Using the value of  𝜀(∙)  from the previous iteration to 

estimate noise model terms in the model 𝑓(∙). 

In most cases, a linear noise model can be used: 

 𝜀(𝑡) = 𝛼1𝜀(𝑡 − 1) + ⋯+ 𝛼𝑛𝑒𝜀(𝑡 − 𝑛𝑒)                 (14)  

                                                                                                        

If this is insufficient, then 𝜀(𝑡 − 𝑝) for  𝑝 = 1,2, … 𝑛𝑒 can be 

included in model (2), where the basic regressor vector is 

defined as 𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝑛𝑦), 𝑢(𝑡 − 1), … , 𝑢(𝑡 −𝑛𝑢), 𝜀(𝑡 − 1), … , 𝜀(𝑡 − 𝑛𝑒) . This will then increase the 

computational workload for the modelling task of study due to 

the huge number of candidate variables for each of the 10 

modelling cases (related to the 10 participants). The model 

validity tests [28-30] were used to determine if the process and 

noise models are adequate.  

D. Model Evaluation 

We compared the estimated outputs obtained from one-step-

ahead (OSA) and k-step-ahead (3-step ahead in this study) 

predictions with the measured output to evaluate the model.  

(i) 1-step-ahead model predicted output: 

 �̂�(𝑡) = 𝑓 (𝑦(𝑡 − 1),… , 𝑦(𝑡 − 𝑛𝑦), 𝑢(𝑡 − 1),… , 𝑢(𝑡 − 𝑛𝑢))   (15) 

 

(ii) 2-step-ahead model predicted output: 

 �̂�(𝑡 + 1) = 𝑓(�̂�(𝑡), 𝑦(𝑡 − 1),… , 𝑦(𝑡 − 𝑛𝑦 + 1), 𝑢(𝑡), 𝑢(𝑡 − 1),                          … , 𝑢(𝑡 − 𝑛𝑢 + 1))                                          (16) 

 

(iii) 3-step-ahead model predicted output: 

 

    �̂�(𝑡 + 2) = 𝑓(�̂�(𝑡 + 1), �̂�(𝑡), 𝑦(𝑡 − 1),… , 𝑦(𝑡 − 𝑛𝑦 + 2),                            𝑢(𝑡 + 1), 𝑢(𝑡)… , 𝑢(𝑡 − 𝑛𝑢 + 2))                    (17) 

 

where �̂�(𝑡) represents the model predicted output, while 𝑦(𝑡) 

is the corresponding measured output. We used 1) the 

correlation coefficient (Corr), 2) the variance accounted for 

(VAF) and 3) the normalized root means square error (NRMSE) 

to determine the model performance (see Table I). 

III. DATA AND PREPROCESSING 

A. Data 

In this proof-of-concept study, the experimental data were 

recorded from ten healthy participants (age range 22-25 years; 

5 women; all right-handed) who received continuously angular 

position perturbations (i.e., the external input to the nervous 

system) to their right wrist under passive conditions (i.e., the 

participant had to relax). The experimental procedure was 

approved by the Human Research Ethics Committee of the 

Delft University of Technology. All participants signed 

informed consent before participating in the experiments.  

The experimental setup is shown in Fig.1. Perturbation 

signals were applied to the participants’ wrist as an external 
input to the nervous system via a wrist joint manipulator 

(Wristalyzer by MOOG Inc, Nieuw-Vennep, The Netherlands). 

Participants were instructed to relax their wrist muscles and not 

to voluntarily react to the perturbation signal. The wrist is an 

ideal joint to study the cortical response to external input, since 

the wrist (and the hand in general) has a large cortical 

representation. Furthermore, the wrist joint is relatively 

lightweight and therefor relatively easier to perturb than other 

joints. Participants were instructed to relax their wrist muscles. 

Surface electromyography (EMG) was recorded from the flexor 

carpi radialis and the extensor carpi radialis muscles and online 

monitored to ensure no voluntary reaction to the perturbation 

signal. The perturbation signals were periodic multi-sine 

signals [31], i.e., the sum of multiple sinusoids with the 

frequencies of 1, 3, 5, 7, 9, 11, 13, 15, 19, and 23 Hz and a 

period of 1 s. The multi-sine signals have several advantages 

over other signals (e.g. white noise, step signal) for system 

identification of the sensorimotor system [7, 11]: 1) Its excited 

frequencies cover the frequency band of neural activity in the 

human sensorimotor system [15]; 2) the periodical 

characteristics of a multi-sine signal allow for leakage-free 

 
Fig. 1.  Experimental setup. Participants were seated with their right forearm 

attached to an arm support and their hand strapped to the handle of a one-degree 

freedom wrist joint manipulator. During each realization, a designed multi-sine 

signal (as shown in the bottom-left for example) was applied as the input to 

perturb peripheral nervous system sensors via the wrist joint manipulator.  
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analysis of the steady-state response and averaging to reduce 

the effect of random signals, e.g. background noise from 

spontaneous neural oscillations in the brain [32].  

In this study, seven different realization of the multi-sine 

signal (with the same frequencies) were generated using 

different (random) phase realizations. Our main objective is to 

evaluate sensory function, therefor we need a small perturbation 

which is large enough to evoke a cortical response. All 

perturbation signals had the same root-mean-square of 0.02 

radians, with peak-to-peak value less than 0.06 radians. The 

signals were designed to have the equal power on the first three 

frequency components (i.e. 1, 3, 5 Hz) and a decaying power 

spectrum (-20dB/decade slope) for the remaining frequency 

components, resulting in a flat velocity spectrum for these 

frequencies. In the time domain, the instantaneous velocity was 

changing over the time as a multisine with the same frequencies 

as the perturbation signal, i.e., the first derivative of the 

perturbation signal. This design is a trade-off between reduced 

predictability of signal (to prevent the anticipation of 

participants during the experiment) and the sensitivity of the 

muscle spindles [7]. Our main objective is to evaluate sensory 

function. Based on our previous studies, this perturbation is able 

to evoke a steady-state cortical sensory response [7, 11]. 

The seven multisine realizations were the identical for all 

participants but applied in a random order during 49 trials of 36 

seconds for each subject. Six seconds were removed from each 

trial to reduce transient effects, resulting in a total of 1470 

recorded periods, i.e. 210 periods for each realization. Cortical 

responses to the perturbations were recorded by a 126-channel 

EEG cap (WaveGuard cap, ANT Neuro) according to the 5-10 

system with Ag/AgCl electrodes. Both the applied perturbation 

signal and the recorded EEG signals were sampled at 2048 Hz 

and stored for offline analyses using a Refa System (TMSi, 

Oldenzaal, the Netherlands). More details about the datasets 

can be found in [7].   

B. Preprocessing 

The preprocessing procedure was in line with previous 

studies [7, 11] and described below. EEG signals recorded from 

scalp electrodes have a very poor signal to noise ratio (SNR). 

Due to the volume conduction EEG signals are “blurred” copies 
of multiple underlying source activities and noise [33]. We used 

independent component analysis (ICA) to extract the EEG 

source activities for modeling purposes. ICA [34] is a widely 

used preprocessing technique to separate the most important 

signal contributions from noise by decomposing EEG signals 

into independent components. Before applying ICA, the 

continuous EEG signals were filtered by a 1–100 Hz zero-phase 

shift band-pass filter to remove possible high-frequency noise 

from neck muscles and slow trends in the data (e.g., blood 

pressure, heartbeat, breathing and sweat potentials). Notch 

filters implemented in Fieldtrip toolbox [35] were applied to 

remove the 50 Hz line power noise and the harmonics. ICA was 

performed using the Infomax algorithm [36] as implemented in 

CUDAICA [37]. Subsequently, all signals were resampled to 

256 Hz and segmented into 1 s periods, i.e. the period of the 

perturbation signal.  We carefully examined independent 

components to identify the components associated with eye 

movement and muscle artifacts and removed them [38]. The 

SNRs for rest non-artifact ICA components are calculated using 

the algorithm from Vlaar et al. (2015) [39]. For each participant, 

the ICA component with the highest SNR was used as the 

system output. The contribution (or weights) of this ICA 

component to EEG channels was projected to the scalp and 

considered as the spatially distribution of the ICA component 

in the scalp for building a forward model in the source 

localization [40]. A dipole fitting algorithm implemented in the 

Fieldtrip toolbox [35] was used to verify that the sources of all 

selected components were located in the primary sensorimotor 

areas in the contralateral hemisphere.  

The “true” output signal in the studied system is the 

perturbation “evoked” cortical activity from the primary 

sensorimotor areas. This “evoked” cortical activity is phase 

locked to the perturbation, known as a type of event-related 

potentials (ERPs) [41-43]. The ERPs are mixed with 

background “spontaneous” neural activity. Thus, we averaged 

the signal over perturbation periods to remove the 

“spontaneous” background noise and extract the ERPs [44], 

leaving 1 s (256 sampled input-output data points) per dataset 

as shown in Figure 2. There is a scale difference between the 

Fig.2. Input-output data pairs of the seven realizations of one 

representative participant (the input signals were amplified 100 

times to make the input and the output in the same scale).  
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amplitudes of the input (i.e., the mechanical perturbation signal) 

and output signals (i.e., the IC component of EEG signal) in the 

original experimental datasets. To avoid the ill-conditioned 

problem in the relevant procedures (e.g. calculation of designed 

matrices and associated model parameters), the input signals are 

scaled up as 𝑢 = 𝑢′ × 100 , where 𝑢  is the amplified input 

signal and 𝑢′ is the original input signal, so that the amplitude 

of the input signals used for model identification is at a similar 

scale as that of output signals. 

C. Training and Testing Dataset 

The cortical responses were recorded from 10 participants. 

Each participant had 7 datasets according to the 7 different 

realizations of the multi-sine input signal. Thus, there are 70 

datasets in total. The mean SNR across all datasets is 12.5, so 

the noise is around 8% of the signal.  The first six realizations 

of each participant were used for model identification and the 

remaining one was used for model evaluation.  

In this study, by averaging the model parameters from the 6 

estimated datasets for the same participant, we can further 

obtain a unique model parameter vector for each participant 𝜽  = [𝜃𝑙1  , 𝜃𝑙2  , … , 𝜃𝑙3  ]. 
IV. MODELING RESULTS.  

    This section presents two identified model for cortical 

responses to mechanical wrist perturbations, which are the 

subject-specific structure model and common structure model.  

A. Subject-specific Structure Models for Cortical Responses 

to Mechanical Wrist Perturbations  

As a reference, subject-specific NARX models (a NARMAX 

model specified by Eq. (2)) were first identified for each 

participant using the OFR algorithm. The number of model 

terms of each subject-specific model is determined by the 

APRESS criterion [28], to avoid overfitting. Their 

performances are shown in Table I, where Corr, VAF and 

NRMSE represent the ‘correlation coefficient’, ‘variance 

accounted for’ and ‘normalized root mean square error’, 
respectively. For Corr and VAF, the higher the value is, the 

better the performance is. For NRMSE, a lower value indicates 

a better performance. The model terms for each participant are 

quite different.  The performances of subject-specific models 

vary from different subjects. The model for the 10th subject has 

the best performance, while the model for the 3rd subject has the 

worst performance. Overall, all the subject-specific models 

perform well with Corr being over 0.96 and VAF over 93% for 

one step ahead prediction. For k-step ahead prediction, most of 

the models perform well, while some of the models can be 

further improved (e.g. the 3rd model). The person-specific 

TABLE I PERFORMANCE STATISTICS OF THE SUBJECT-SPECIFIC 

STRUCTURE NARX MODELS. NARX: NONLINEAR AUTOREGRESSIVE 

EXOGENOUS. OSA:  ONE-STEP-AHEAD. 

NO. OF 

PARTICIPANT 

CORR 

(NARX  

OSA) 

CORR 

(NARX  

K-STEP 

AHEAD) 

VAF 

(100%) 

(NARX  

OSA) 

VAF 

(100%) 

(NARX  

K-STEP 

AHEAD) 

NRMSE 

(NARX  

OSA) 

NRMSE 

(NARX  

K-STEP 

AHEAD) 

P1 0.9775 0.7976 95.55 63.57 0.0384 0.1103 

P2 0.9749 0.6930 95.02 47.34 0.0416 0.1359 

P3 0.9646 0.6254 93.04 34.47 0.0458 0.1411 

P4 0.9625 0.7030 92.57 46.97 0.0522 0.1402 

P5 0.9725 0.8193 94.56 66.97 0.0453 0.1109 

P6 0.9716 0.7930 94.37 62.75 0.0441 0.1140 

P7 0.9803 0.8397 96.08 70.11 0.0476 0.1319 

P8 0.9607 0.6432 92.28 40.07 0.0575 0.1601 

P9 0.9608 0.6400 92.27 39.22 0.0521 0.1460 

P10 0.9845 0.8772 96.92 76.92 0.0333 0.0908 

Mean 0.9710 0.7431 94.27 54.84 0.0458 0.1281 

Std. 0.0080 0.0878 1.57 14.14 0.0067 0.0198 

 

TABLE II OMAE VALUES AND ERROR REDUCTIONS (ER) OF THE 

SELECTED 20 COMMON MODEL TERMS 

(ER= OMAE VALUE OF PREVIOUS TERM - OMAE VALUE OF CURRENT 

TERM) 

NO 
MODEL 

TERMS 
OMAE ER NO 

MODEL 

TERMS 
OMAE ER 

1 y(t-1) 9.45 - 11 u(t-15)u(t-18) 5.50 0.0291 

2 y(t-2) 7.16 2.3419 12 u(t-6)u(t-12) 5.46 0.0375 

3 y(t-3) 6.37 0.7899 13 u(t-1)u(t-8) 5.43 0.0366 

4 y(t-4) 6.02 0.3456 14 u(t-4)u(t-10) 5.38 0.0411 

5 y(t-5) 5.70 0.3291 15 u(t-2)u(t-8) 5.35 0.0323 

6 u(t-7)u(t-14) 5.65 0.0412 16 u(t-4)u(t-5) 5.30 0.0423 

7 u(t-1)u(t-1) 5.62 0.0311 17 u(t-3)u(t-9) 5.26 0.0455 

8 u(t-1)u(t-18) 5.59 0.0325 18 constant 5.23 0.0364 

9 u(t-20u(t-20) 5.56 0.0312 19 u(t-9)u(t-20) 5.20 0.0317 

10 y(t-1)y(t-1) 5.53 0.0285 20 u(t-1)u(t-6) 5.17 0.0291 

 

Fig. 3. Estimated parameters of ten models (one per subject) with 

the common model structure. 

 

Fig. 4. T values of the 20 terms for the tested ten subjects 
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models will be very interesting in-patient population. However, 

this study is more focused on identifying a common model 

structure to reveal the key characteristics shared among all the 

10 different healthy subjects, so that a reference can be obtained 

for future clinical studies. In next section, we will identify the 

common model to see which terms are shared by all the 

participants.  

B. Common Structure Models for Cortical Responses to 

Mechanical Wrist Perturbations  

A common model structure was built to characterize the 

cortical response behavior of the 10 participants. The common 

model structure was identified using the proposed CMSD 

method based on 60 datasets (first 6 realizations of each of the 

10 participant). The duration of each time lag is 3.9 ms.  

According to the APRESS criterion [28], the optimal number 

of model terms should be 20. The common model structure 

includes the most important 20 model terms (regressors) 

selected from a great number of candidates (i.e. 351 candidates) 

(see Table II). Although the same model structure was obtained 

for all participants, subject-specific parameters were estimated 

to indicate the individual differences (see Fig. 3). As shown in 

Fig. 3, the variations of estimated parameters of the first 11 and 

the 18th, 19th model terms are quite small; this means that the 

system components are similar for all the 10 participants. The 

variations of the other terms are large; this indicates that the 

contributions of these terms vary for different participants.  
The significance of each model terms is assessed by the 

proposed oMAE (see Section II-A). The oMAE values of all 

selected model terms in the common structure are presented in 

Table II. As shown, the inclusion of each model term 

progressively reduced the prediction error. Additionally, the t-

statistics (with 95% confidence) of each selected model terms 

are presented in Fig. 4. The t-statistics indicate that the selected 

model terms are significant for most of the participants. It is 

worth mentioning that the significance of each model term 

varies for different participants. While the treatment for each 

participant should be mainly determined by its most significant 

model terms, the less significant terms should also be 

considered.  As shown in Table II, the first 5 autoregressive 

terms are important in reducing the prediction error. However, 

this does not indicate that a linear auto-regressive (AR) model 

is sufficient to describe the system. The VAF of the linear AR 

model with only the 5 AR terms y(t-1) ... y(t-5) is only 36.83% 

in the 3-step ahead prediction. These results show that the 

inclusion of AR terms has significantly improved the model 

performance. The reason is that the AR terms are very 

important in neuron systems. However, the previous models 

[e.g. [9-11]] do not include the auto-regressive (AR) part. The 

new NARMAX model can better capture the system feedback 

components and thus help improve the performance.  

We compared the OSA prediction as well as k-step ahead (k 

= 3) model predicted outputs with the measured output using 

correlation coefficient, VAF and NRMSE to evaluate the 

models (see Table III). Comparisons of the NARX model 

predicted output (obtained from the k-step ahead prediction) 

and the corresponding measured cortical responses are shown 

in Fig. 5 for the ten participants. As shown in Fig.5, waveforms 

of predicted outputs and measured cortical responses look very 

TABLE III PERFORMANCE STATISTICS OF NARX MODELS WITH THE 

COMMON STRUCTURE. NARX: NONLINEAR AUTOREGRESSIVE 

EXOGENOUS, OSA:  ONE-STEP-AHEAD, CORR: CORRELATION 

COEFFICIENT, VAF: VARIANCE ACCOUNT FOR, NRMSE: NORMALIZED 

ROOT MEAN SQUARE ERROR. 
 

No. of 

participant 

CORR 

(NARX-

OSA) 

CORR 

(NARX-  

K-STEP 

AHEAD) 

VAF 

(100%) 

(NARX-

OSA) 

VAF 

(100%) 

(NARX-  

K-STEP 

AHEAD) 

NRMSE 

(NARX-

OSA) 

NRMSE 

(NARX-  

K-STEP 

AHEAD) 

P1 0.9773 0.7556 95.52 57.08 0.0397 0.1224 

P2 0.9735 0.6366 94.74 39.53 0.0435 0.1459 

P3 0.9642 0.5750 92.95 31.17 0.0467 0.1437 

P4 0.9591 0.5891 91.94 32.26 0.0543 0.1563 

P5 0.9698 0.7848 94.04 61.57 0.0468 0.1191 

P6 0.9681 0.7028 93.72 49.18 0.0464 0.1323 

P7 0.9784 0.8084 95.73 65.35 0.0487 0.1398 

P8 0.9587 0.5952 91.90 32.57 0.0584 0.1689 

P9 0.9607 0.6164 92.24 37.98 0.0515 0.1461 

P10 0.9813 0.8024 96.28 64.21 0.0362 0.1126 

Mean 0.9691 0.6866 93.91 47.09 0.0472 0.1387 

Std. 0.0079 0.0898 1.54 13.28 0.0062 0.0165 

 
Fig.5. Comparisons of the model predicted outputs (k-step ahead 

prediction) and the corresponding measurements of cortical 

responses for the ten participants. 

 

 
Fig.6. Auto-correlations of the model residuals for the ten 

participants (blue lines indicate 99% confidence bounds) 
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similar across participants. We applied Kolmogorov-Smirnov 

test on the model residual. The results show that the residuals 

do not follow the normal standard distribution. Since the 

common model estimation requires that the model fits different 

data realizations, the model residual may not be a perfect white 

noise. The Kolmogorov-Smirnov test might be too sensitive for 

this real data modelling problem. Thus, we used autocorrelation 

to evaluate if the model can approximately fit the data, with the 

results shown in Fig. 6. For most participants, the statistically 

significant non-zero auto-correlation values rarely occur with 

very small magnitudes, indicating that the estimated NARX 

models describe the inherent dynamics of the cortical responses 

well.  

V. DISCUSSION  

This study focused on modeling the cortical responses to 

position perturbations applied at the wrist joint. Our results 

indicated that the cortical response can be well explained by the 

NARMAX method using a common model structure for all 

participants. 

In modeling, the performance of a common structure model 

(and using individualized model parameter values) is slightly 

lower than subject-specific structure models. However, a 

subject-specific model structure could not summarize common 

characteristics across subjects. A common model structure 

attempts to capture the common characteristics shared by and 

buried in all datasets, by sacrificing local properties hidden in 

individual datasets. A key advantage of the common model 

structure for the cortical response is that the model structure 

reveals the most important inherent features that can explain all 

data from different participants. Nevertheless, the parameter 

values may differ from subject to subject when the common 

model structure is used (see Fig. 3). This result is consistent 

with previous EEG studies demonstrating individual 

differences in estimated parameter [45, 46]. The common model 

structure approach may especially be useful for future 

pathophysiological research to detect abnormalities after 

neurological dysfunction. 

Following the same procedure as used in the NARX 

modelling, we investigated the performance of the Volterra 

models. The subject specific Volterra models achieve average 

correlation of 0.6625 and VAF of 42.84%. A common structure 

Volterra models with 20 model terms are also built. The mean 

correlation coefficient, VAF, and NRMSE are 0.4893, 23.27% 

and 0.1690, respectively. From these results and that reported 

in Table III, the NARX models outperform the Volterra models. 

These indicate that the inclusion of autoregressive terms, as 

with a NARX model, improves the model prediction 

performance substantially. It is because that the NARX model 

structure captures inherent dynamics in the nervous system 

using autoregressive variables. The OSA yielded much better 

performances than the k-step ahead for both subject-specific 

models as well as the common model. The k-step ahead 

prediction for brain activity is still a recognized challenge in the 

specific field of brain signal modeling due to the complexity of 

brain dynamics [47], as well as the poor signal to noise ratio 

and the non-stationary properties of EEG signals [48]. In this 

study, the sampling rate of EEG signal is 256 Hz, then each 

sample time lag is approximately 4 milliseconds (ms). Thus, k-

step ahead prediction actually estimates brain activity based on 

the measured brain “state”, i.e. the output, around 12 ms ago (in 

case k is 3 steps).  

As shown in Fig. 3, all model terms (except the constant 

term) are dynamic components with specific time lags. Our 

dynamic modeling is in line with dynamic properties of the 

human nervous system summarized in a recent review article 

[47]. Multiple nonlinear terms and time lags in the common 

model structure revealed that the processing of somatosensory 

information in the human nervous system involves multiple 

neuronal circuitries with different neural transmission delays. 

These results provide new evidence to support our previous 

theoretical explanations on neurophysiological mechanisms 

underlying nonlinear processing of somatosensory information 

in the human nervous system [4].  

The human nervous system receives the mechanical 

perturbation to the wrist via mechanoreceptors including 

muscle spindles, Golgi tendon organs, and cutaneous afferents. 

There are two kinds of sensory fibers in muscle spindles: type 

Ia primarily sensing muscle stretch velocity and type II 

primarily sensing muscle stretch. Golgi tendon organ (Ib fibers) 

detects the tendon strain and as such the force in the muscle-

tendon complex. The transmission delays for type Ia fibers are 

much shorter than those for type II and Ib fibers. Finally, 

cutaneous afferents (A fibers) conduct the activity of skin 

sensors resulting from the mechanical perturbation. When the 

participants are subjected to the mechanical perturbations, all 

these sensory fibers are active and sense different modalities 

with different transmission delays. Nonlinear terms with input 

signal u are likely associated with nonlinear encoding and 

processing of external inputs in the nervous system. Different 

time lags in these nonlinear terms (e.g. u(t-2)*u(t-8)) may be 

related to different transmission delays in the sensory input 

pathways from the mechanoreceptors to the brain. The 

individual differences are reflected on the subject-specific 

parameters (see Fig. 3.). However, invasive recording or animal 

models will be needed in the future to further interpret the 

relation between specific fibers and the terms in the common 

model structure, as well as the individual difference.   

In the model, we also found (AR) terms with output signal y, 

both linear (e.g., 𝑦(𝑡 − 5)) and nonlinear (e.g. 𝑦(𝑡 − 1)𝑦(𝑡 − 1)).  
These output related terms indicate that both linear and 

nonlinear neuronal interactions occur at the cortex, presumably 

caused by cortical neural networks or the inherent dynamics of 

the cortical processes. Nevertheless, the linear terms have much 

large weights than the nonlinear terms (see Fig. 3), indicating 

the dominance of the linear terms in the AR part of the model. 

This result is in line with our recent brain network modeling 

study, showing that the local neuronal interaction at the cortex 

may be dominated by linear interactions [49].  

In this study, we used EEG source component obtained by 

independent component analysis (ICA) instead of raw EEG in 

our modeling as we explained in III.B Preprocessing. The raw, 

single-trial EEG data has strong background noise, so it is not 

suitable for a modeling study. We used a series preprocessing 

steps (as detailed in III.B Preprocessing) to improve its SNR, 

so as to avoid overfitting in the modeling. The proposed 

modeling method includes the history of the output signal in the 

prediction. That allows us to capture system dynamics, which 

is important in the modeling. The proposed method has the 
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potential to advance brain signal modeling. It may have clinical 

value in assessing sensorimotor impairments, since previous 

studies have indicated clinical relevance of cortical response to 

somatosensory input in stroke rehabilitation [49, 50].  

However, we acknowledge that the multi-step ahead 

prediction is still a recognized challenge in time series 

forecasting, especially for cortical activity. In the future, we 

will work on improving the long-term prediction performance 

of the common structure models. 

VI. CONCLUSION  

This study modeled the nonlinear cortical responses to wrist 

position perturbations using the NARMAX method. Different 

from previous studies, we used a common model structure, with 

individualized parameter values, to describe the data for all 

participants. The identified common model generates good 

model predictions (OSA and k-step-ahead) for the cortical 

responses and reveals the most important model terms which 

can explain system behaviors of all participants. Our results 

suggest that the measured cortical response is a mixed outcome 

of the nonlinear transformation of the external input and local 

neuronal interaction or inherent neuronal dynamics at the 

cortex. This proof-of-concept study may bring us with a useful 

tool to improve our understanding of the human sensorimotor 

system.  
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