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Zusammenfassung

Physik befasst sich mit der Modellierung der Welt. Ein Modell zu bauen kann zwei Bedeu-
tungen haben: Einerseits kann man damit die Konstruktion eines Modells bezeichnen, das
das Verhalten eines Systems imitiert, eine Simulation. Andererseits kann ein Modell etwas
bezeichnen, das Aspekte des Originals zeigt, nur nicht so groß ist, z.B. eine Karte. Diese
Dissertation beschäftigt sich mit der Modellierung der Welt in beiderlei Bedeutungen, und
verbindet diese auch.

Wir betrachten eine Karte als bedingte Wahrscheinlichkeit, denn die Karte hat Freiheits-
grade, die Aussagen über das System ermöglichen. Kartografiert man ein zeitveränderliches
System, so muss man Karten erneuern wenn das System sich verändert. Kennt man die
Zeitevolution des Systems, so kann man Aussagen einer Karte in die Zukunft extrapolieren.
Die Freiheitsgrade einer erneuerten Karte sollte man dann so wählen, dass man möglichst
wenig Informationen über das System verliert. Folgt man diesem Paradigma wiederholt,
so erhält man eine Simulation des Systems, abgebildet durch die Serie an Karten. Auf
diese Art und Weise leiten wir Simulationen eines einfachen fluiddynamischen Systems
von Grund auf her. Dabei ist die durch die Karte induzierte bedingte Wahrscheinlichkeit
entscheidend, da sie die einzige Stellschraube für das resultierende Simulationsschema ist.

Der zweite Teil dieser Arbeit behandelt das Erstellen von dreidimensionalen Karten von
galaktischem Staub. Auch hierbei spielt die Wahl der bedingten Wahrscheinlichkeit, die
von der Karte induziert wird, eine zentrale Rolle. Wir modellieren Staub als ein kor-
reliertes Feld, wobei der Grad der Korrelation ein zusätzlicher Parameter der Karte ist.
Um die Parameter der Karte zu inferieren werden Daten über Staub in drei Dimensionen
benötigt. Diese beziehen wir aus Sternenkatalogen, die Informationen über die Staubdichte
durch Abdunklungswerte von Sternen enthält; Sternen von welchen auch die Positionen
zu gewissem Grad bekannt sind. Drei Staubkarten werden hier präsentiert. Die erste
Staubkarte verwendete synthetische Daten und dient der Validierung unseres Ansatzes. Der
zweiten Staubkarte liegt der neuste und präziseste Katalog von Sternen, durchgeführt von
dem Gaia Satelliten, zu Grunde. Die finale Staubkarte benutzt Daten von allen größeren
öffentlichen Katalogen von Sternen zusammen. Diese Karte zeigt die Abdunklung durch
Staub bis zu einer Distanz von 1000 Lichtjahren in drei Dimensionen. Sie ist sowohl für
Beobachter zur Korrektur von Staubabsorption relevant, als auch für Astrophysiker, die
sich für die Zusammensetzung des interstellaren Mediums interessieren. Auch Parameter
von Simulationen des interstellaren Mediums können durch die hergeleiteten statistischen
Eigenschaften eingeschränkt werden.

Zusammenfassend demonstriert diese Arbeit die Wichtigkeit von Modellen und deren
Aussagen über die Realität, sowie die Bedeutung statistischer Analysen, die von Grund
auf hergeleitet werden.





Abstract

Physics is about building a model of the world. Building a model can have two different
interpretations. On the one hand, it can refer to the construction of a model that mimics
the behavior of a system, i.e. in the form of a simulation. On the other hand it can denote
the process of building something that has properties of the original, i.e. a map. This
dissertation contributes to modeling the world in both meanings of the word, and also
connects them.

We regard a map as a conditional probability, the map has degrees of freedom that
constrain the mapped system. Maps of time variable systems have to be updated as the
system evolves. Given only the information that a map contains about a system at a
previous point in time, and the time evolution of the system, the degrees of freedom of
an updated map should be selected such that the least amount of information about the
system is lost. Iterating this procedure, one obtains a simulation scheme, as the time
evolution of the system is imprinted in the sequence of maps. In this thesis, simulation
schemes for a simple fluid dynamic equation are constructed this way from first principles.
Of paramount importance is the conditional probability of the system given the map data,
as it is the only way to influence the resulting simulation scheme.

The second part of this thesis focuses on constructing three dimensional maps of the
Galactic dust. In this application one has to specify as well, which statements the map
degrees of freedom make about the actual distribution of Galactic dust. We choose to
model dust as a correlated field, where the degree of correlation is an additional parameter
of the map. To infer the parameters of the map, data about dust in three dimensions
is needed. To this end, data from stellar surveys are used, which reflects dust density
through the extinction towards millions of sources; sources of which also the distance is
known to a limited precision. Three dust maps are presented, one using simulated data
through which we verify the validity of our approach, one using data from the most recent
and precise stellar survey obtained by the Gaia satellite, and a final map using data from
a combination of many larger stellar surveys that are available. Our final result is a map
showing the extinction due to Galactic dust up to a distance of about 1000 light years
in three dimensions. The map is of importance for observers, to whom dust extinction
comprises a foreground to observations, as well as for astrophysicists interested in the
composition and structure of the interstellar medium. Also parameters of simulations of
the interstellar medium can be constrained using our derived statistical properties.

In conclusion, this thesis demonstrates the importance of models and how they constrain
reality, as well as the impact of statistical analyses that are derived from first principles.





1 Introduction

Humans have long dreamt of predicting the future. This longing is reflected by its om-
nipresence in the popular literature: From the ancient Greeks to modern Hollywood films,
Oracles and prophecies play fundamental roles; and their tales have fascinated people for
centuries.

In some way, physics can realize the dream of predicting the future. For example the
motion of planetary bodies in the solar system can be predicted to remarkable precision up
to thousands of years in the future. Physics is about modeling the world to such a degree of
fidelity, that accurate predictions can be made about the future, or more generally, about
the behavior of systems.

However, to achieve this goal one needs a model that is predictive for the system at
hand, and one needs to be able to predict the behavior of the model. Furthermore, one
has to infer the model parameters, such that the model accurately matches the reality
one observes. For the motion of planets, it is sufficient to abstract the system to only
few parameters, namely the mass, position, and velocity of the massive planets. For other
systems, such as the movement of water, a simple abstraction can not be achieved, and
models involve many or infinite degrees of freedom. These infinite degrees of freedom are
represented by fields, which have degrees of freedom for every point in space and/or time.
Often, the behavior of models, which follow reality to a sufficient degree, is too complicated
to be explored using analytical calculations.

When constraining models with infinitely degrees of freedom with the finitely many
parameters a computer gives access to, statements can in general only be probabilistic. To
deal with these probabilistic statements over fields, we employ the formalism of information
field theory [28, 65], to which there is a brief introduction in the next section.

1.1 A Formal Introduction to Information Field Theory

In information theory, knowledge I about a quantity s is expressed in terms of a conditional
probability P (s|I). This conditional probability can be updated in light of new information
d by the use of Bayes theorem:

P (s|d, I) =
P (d|s, I)P (s|I)

P (d|I)
(1.1)
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To make an example, we will consider the case of a multivariate Gaussian distribution

P (s|I) = G (s|S(I)) (1.2)

= |2πS|−1/2 exp

(
−1

2
(s)TS−1(s)

)
(1.3)

where |X| denotes the determinant of X, S is the positive definite symmetric covariance
matrix of the Gaussian distribution. We now assert that the new information d is given in
form of a linear measurement with Gaussian additive zero-centered noise:

d = R(s) + n (1.4)

with P (n|I, s) = G (n|N) , (1.5)

with the noise covariance N and the measurement response matrix R. This yields a
likelihood

P (d|s, I) =

∫
dnP (d, n|s, I) (1.6)

=

∫
dnP (d|n, s, I)P (n|s, I) (1.7)

=

∫
dn δ(d−R(s)− n) G (n,N) (1.8)

= G (d|R(s), N) , (1.9)

where we denote with δ the Dirac delta distribution. To derive the posterior density
P (s|d, I), it is useful to introduce the concept of information Hamiltonians. We define

H(a|b) ≡ −ln(P (a|b)) . (1.10)

Using this definition, we obtain

H(d, s) = H(d|s) +H(s) (1.11)

=̂
1

2
(R(s)− d)T N−1 (R(s)− d) +

1

2
sTS−1s+

1

2
tr ln (N) +

1

2
tr ln (S) (1.12)

=
1

2

(
sT
(
RTN−1R + S−1

)
s+ dTN−1Rs+ sRTN−1d+ tr ln (N) + tr ln (S)

)
,

(1.13)

where ”=̂” denotes equality up to irrelevant constants, in this case constants in both s and
d. We define j = RTN−1d and D−1 =

(
RTN−1R + S−1

)
to obtain

H(d, s) =
1

2
(s−Dj)TD−1(s−Dj) +H0(d) , (1.14)
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where we accumulated all constants independent of s into H0(d). From this result it is
easy to see that the posterior in s is again Gaussian

P (s|d) = G (s|m,D) (1.15)

with mean m = Dj (1.16)

and covariance D =
(
RTN−1R + S−1

)−1
. (1.17)

The solution to this multivariate Gaussian conditioning is also known as the generalized
Wiener Filter.

To go from information theory to information field theory, we have to take the continuum
limit, for which we get

si → sx , (1.18)

with x ∈ Rn denoting the spacial coordinate. We denote the field s with an upper index.
This is to distinguish between fields that are element of the vector space, and elements
in the dual space more clearly. Distinguishing between space and dual space is especially
important in infinite dimensions, as they might have different properties and are not iso-
morphic in general. To make this consideration more explicit, consider the continuum limit
of a Riemann sum:

rn =
n∑
n=1

wis
i , (1.19)

where si are the field values at e.g. pixels i, and wi is the volume of the pixels. When
we take the limit n → ∞ by refining the discretization of s, the values si will stay more
or less the same, while the values of wi will shrink as the number of pixels grow. As a
consequence, the field limit of wi is not sensible, as its values tend to zero, however one can
identify w through its action on fields, making it naturally an element of the dual space:

rn → r∞ (1.20)

si → sx (1.21)

wi → wx (1.22)

r∞ = wxs
x (1.23)

To be able to assign values to wx, we need to choose a basis of the dual space. One
convenient way of doing this is by introducing a metric gxy, such that the space and the
dual space can be identified. We choose the standard scalar product

gxys
xty =

∫
dx sxtx . (1.24)

Using this definition, we can write the action of w as

w(s) = wxs
x = wxgxys

y =

∫
dxwxsx =

∫
dx sx = gxy1

xsy . (1.25)
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Thus we get wx = 1x, a field of constant value 1, as expected from a field representing a
Riemann integral.

The matrices S and R become operators in the continuum limit, whose action can usually
be written down in terms of the standard scalar product as

Sij → Sxy (1.26)

Rij → Ri
y (1.27)(

S−1
)

(s) =
(
S−1

)
xy
sy = gxz

∫
dy
(
S−1

)zy
sy (1.28)

R(s) = Ri
ys
y =

∫
dy (R)iy sy . (1.29)

Note that we imposed that only s is a field, the data d are still finite, reflected by the index
notation of R. Although the metric gxy helps to represent operators, it should be noted
that it does not actually influence the result of calculations, as all relevant quantities like

H(s) =
1

2
sx(S−1)xys

y +H0 (1.30)

and mx = DxyRi
xN
−1
ij d

j , (1.31)

are naturally arranged such that indices occur in opposing pairs. This has theoretical and
practical implications. The theoretical implication is that the result of inference is indepen-
dent of the coordinate system, a very reassuring observation. The practical consequence
is that one does not need to take the metric gxy into account when writing computational
code, as it ultimately always cancels out in the end.

For the work carried out in this thesis, the continuum usually has to be discretized again,
in order to handle computations on a computer. Nevertheless, it is advantageous to consider
this continuum limit. If all computer operations are discretized from the continuum, it is
easy to make them consistent to each other. If one in contrast considers the discretization
first, then different operations could be discretized inconsistently to each other, leading to
numerical problems. We will see an example of this discretization consistency in Sec. 2,
where the discretization of space dictates how derivatives have to be discretized.

A question that is often raised, is how to choose an appropriate prior. A good prior
should constrain the signal s to sensible ranges while being as agnostic as possible about
a-priori indistinguishable outcomes. For example if no point in space is a priori special, it
can be argued that the prior covariance matrix should be invariant under shifts:

Sxy = C(x− y) , (1.32)

where C is the correlation kernel. Such covariances are diagonal in Fourier space, a property
that will be used throughout this thesis. By change into the Fourier basis, one gets:

Sxy =
(
F−1
)x
k
Skl
(
F−1
) y

l
(1.33)

with Skl =

{
0 for k 6= l

V Ps(k) otherwise.
(1.34)
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where (F−1)
x
k denotes the inverse Fourier transform, (F−1)

y
l denotes the adjoint inverse

Fourier transform, V denotes the total volume of the space s is defined on, and Ps(k) is the
power spectrum of s. Noteworthy about this definition is the absence of delta distributions.
This absence is achieved by the coordinate free interpretation, if one were to introduce a
metric in order to write Skl as the operator Skl, then the delta distribution would reappear.
We will use this Fourier representation of the signal covariance matrix S in the upcoming
chapters, as it provides the basis for a flexible and sufficiently agnostic prior. However, we
will often adopt the standard definition in order to cause less confusion.

1.2 Overview of my scientific work

1.2.1 This Thesis

Numerical simulations are a core pillar of physics since the dawn of the computer age.
Models which are defined on the continuum are hereby discretized to allow their exploration
on a computer. While simulation on a computer drastically increases the wealth of models
that can be investigated, the necessity of discretizing models to arrive at simulation schemes
introduces further complications. In Chapter 2 of this thesis, we explore a fundamentally
different approach to deriving simulation schemes. Instead of imposing that the differential
equation underlying a model has to be discretized, we assume to have discrete knowledge
about a continuous system.

This knowledge imposes a probability distribution of plausible continuous systems at
each time step of a simulation, parameterized by our finitely many parameters. We then
derive how to change the finite number of parameters representing our knowledge, such that
minimal information about the system is lost while it evolves in time. We hereby revisit
the fundamentals of the approach taken by Enßlin [29] and extent the applicability to the
regime of nonlinear partial differential equations. We furthermore present two different
parametrizations of the continuous probability distribution, and discuss their performance
relative to the commonly used finite difference method. Both these parametrizations are
build from an analogy to the inference of fields [27], where it is common to constrain fields
that have infinitely many degrees of freedom by the use of finitely many data points.

In the remaining chapters we will use the same statistical language to model the inter-
stellar dust in the vicinity of about one thousand light years of the Sun. We do so by
the use of different stellar catalogs, which provide a wealth of data on the stellar paral-
lax, temperature, radius, proper motion, and source intensity at various wavebands. To
reconstruct the dust, we are mostly interested in the G-band extinction of sources, which
can be calculated by assuming stars to be black-body radiators as well as a model for
the wavelength dependence of dust extinction. The parallax of the source supplements
the necessary spatial information to enable determining the distance to the reconstructed
dust extinction. We then combine the information provided by the individual sources by
imposing an underlying coherent three dimensional dust distribution. This dust density is
assumed to be correlated, which allows for interpolation. The degree and form of corre-
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lation is thereby reconstructed from the data, so that we only interpolate to an realistic
extent.

We present a first proof of concept reconstruction in Chapter 3. We verify the validity
of our approach by performing a reconstruction on a synthetic dust density that resulted
from a simulation of the interstellar medium. For our first reconstruction on real data, we
only use data of the Gaia survey, hoping to avoid systematic errors that can occur when
merging different datasets. The resulting map shows nearby dust clouds with a distance
resolution that surpasses other methods in the field substantially. However, the map also
shows some limitations. Smaller dust clouds are not well resolved or might be entirely
absent in the reconstruction.

In Chapter 4 we improve upon our first attempt. By using data that was obtained
through a combination of four available surveys and by improving on our method in terms
of statistical modeling and computational optimization, we are able to achieve significantly
higher resolution while at the same time slightly extending the reconstructed volume. The
final reconstruction is able to compete with other methods in angular resolution, while far
surpassing them in radial resolution. The detailed view we provide enables seeing dust
clouds in unprecedented resolution, provides the ground to estimate distances to molecular
clouds and allows for insights into the dynamic of the Galaxy itself. Our reconstruction
might serve as a benchmark for simulations of the interstellar medium on small scales, as
it is the most resolved three dimensional map of dust density distribution so far.

We shed light on the underlying numerical aspects of dust reconstruction in Chapter 5,
where we reflect upon properties of and decision about the used minimization routine.
The minimization is crucial for performing the dust reconstruction, and the reconstruction
performed in this thesis comprises the largest application of information field theory to
date.

A summary of our findings can be found in Chapter 6.

1.2.2 Additional Work

Additional to the work presented in this thesis, I have contributed to various other projects.
The reconstructions presented in chapter 3 and 4 were performed using the statistical soft-
ware package NIFTy. I have made contributions to NIFTy 3,4,5 and 6 [7, 55, 88] with ideas
and source code. This software package combines statistical functions, Fourier analysis,
implicit operators, and optimization algorithms with tools, that allow the discretization of
fields. Since version 5, it supports automatic differentiation.

In the domain of radio interferometry, telescopes probe the electromagnetic field at dif-
ferent locations on the Earth. Data from individual telescopes are being correlated to
increase the effective telescope size. However, systematic errors arise from the different
conditions at the telescope sites, especially from the differing electron density in the iono-
sphere, which acts as a lens to the incoming radio waves. These systematic errors need
to be corrected for. The process of calculating these telescope dependent corrections is
called calibration. To infer the calibration solutions, the radio interferometer alternates
between observing the science target and a calibration target, which is usually a known
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point source. Typically, the initial guess for the calibration is then inferred using the cal-
ibration source, and later refined by using the science target. A more elaborate method
is proposed by Arras et al. [8], where the calibration solution is reconstructed in parallel
to the science target. Hereby, the reconstruction of the science target is informed of the
uncertainty of the calibration solution, and vice versa, leading to an overall more consistent
reconstruction. My contribution to the work is in various discussions, by providing minor
code contributions and by helping to develop the model for correlation structure of the
science target, and the calibration solution. I also made contributions to the text of the
publication.

A very extreme case of radio interferometer is the Event Horizon Telescope (EHT)
[32, 33, 34, 35, 36, 37]. This interferometer reaches an effective size comparable to the
size of the Earth by joining and correlating data of many radio telescopes all over the
world. Because of the larger distances of the individual telescopes, and because the in-
dividual telescopes are build differently, calibration is especially hard for the EHT. One
can circumvent this problem by combining the data to calibration invariant quantities, so
called closure quantities [11], and using these for inference. I have contributed to a time
resolved reconstruction of the black hole shadow of M87* [9] using data from the EHT. In
this publication, we present a holistic approach to time domain imaging, where correlations
of the science target in space and time are taken into account. My contribution involves
development and implementation of the algorithm as well as contribution to the text of
the publication.

For some time variable science targets, assuming correlations in time might not be suffi-
cient. One can go one step further and not only reconstruct a time resolved signal, but also
its dynamic. This is a highly degenerate problem. As such, inference is problematic, but
can be stabilized by imposing additional constraints. In this context, I have contributed
to a proof of concept study, where the dynamics is constrained to be local or causal [38].
My contribution includes many scientific discussions as well as helping in reviewing the
manuscript.





2 Towards information optimal
simulation of partial differential
equations

This chapter is published as an article in the journal Physical Review E [63] with me
as the first author. I performed the necessary theoretical calculations, programmed and
ran the simulation, and wrote the text of the publication. Torsten Enßlin has contributed
through many valuable discussions and by reviewing and correcting the text several times.
All authors read, commented, and approved the final manuscript.

2.1 Abstract

Most simulation schemes for partial differential equations (PDEs) focus on minimizing a
simple error norm of a discretized version of a field. This paper takes a fundamentally
different approach; the discretized field is interpreted as data providing information about
a real physical field that is unknown. This information is sought to be conserved by the
scheme as the field evolves in time. Such an information theoretic approach to simulation
was pursued before by information field dynamics (IFD). In this paper we work out the
theory of IFD for nonlinear PDEs in a noiseless Gaussian approximation. The result is an
action that can be minimized to obtain an informationally optimal simulation scheme. It
can be brought into a closed form using field operators to calculate the appearing Gaussian
integrals. The resulting simulation schemes are tested numerically in two instances for the
Burgers equation. Their accuracy surpasses finite-difference schemes on the same resolu-
tion. The IFD scheme, however, has to be correctly informed on the subgrid correlation
structure. In certain limiting cases we recover well-known simulation schemes like spectral
Fourier Galerkin methods. We discuss implications of the approximations made.

2.2 Introduction

Simulation of partial differential equations (PDEs) is a wide field with countless applica-
tions. This stems from the fact that there is no general known analytic solution for most of
the interesting, in practice occurring PDEs. Thus one has to resort to simulation in order
to make predictions about the behavior of the solutions. PDEs are differential equations
for fields, which have infinite degrees of freedom. However, on a computer one is not able
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to store the whole field for any point in time. Furthermore the time evolution has to be
discretized as well, because time is a continuous variable.

Information field dynamics (IFD) [29] takes an approach that differs slightly on a fun-
damental level from conventional field discretization. Instead of simulating a discretized
field, finite information about the real continuous field is stored in a data vector, as if it
were obtained from a measurement. The time evolution of the data is then derived from
the evolution of the real field. This interpretation enables the application of information
theory, specifically information field theory [28, 65] which is information theory for the
reconstruction of fields.

The application of information theory to get an improvement or better understanding of
existing numerical methods is not new. One of the early prominent examples is Ref. [24],
where Bayesian inference is used to compute integrals. There are also examples of groups
working on applying information theory to simulations. Some historic examples are [16,
26, 48, 50] who regard the problem as a hidden Markov model which is then treated in
a Bayesian fashion through a filtering approach. See e.g. [15] for an overview, [79] for a
more generic review of sequential Monte Carlo methods. There is still ongoing research for
the filtering approach, see e.g. [12, 20, 52]. These methods can also be applied to neural
networks, see e.g. [23]. In some cases, for example for linear differential equations, one can
infer the solution directly [73]. Other approaches focus on parametrizing the posterior as
a Gaussian and learning the dynamics in a way motivated by machine learning [74].

The approach that is probably the closest to the one in this paper is described in
[5], where stochastic differential equations are approximately solved using a variational
approach. The differences to our approach lie in the way the probability density is
parametrized and how the KL divergence is used.

All in all, Bayesian simulation is an active and growing field of research.
In our approach, we do not rely on sampling, neither are we restricted to linear PDEs. In-

stead, we approximate the true evolved probability distribution of solutions by a parametrized
one in each time step; and choose the parameters so that the loss of information is mini-
mized. Hereby we parameterize the probability distribution such that it mimics a physical
measurement instrument.

In Sec. 2.3 the reader is introduced to the fundamental concepts of IFD and general
formula for discretizing PDEs. This formula is then tested in Sec. 2.4 for its numerical per-
formance. Advantages and disadvantages of the proposed scheme are discussed in Sec. 2.5.
We conclude in Sec. 2.6.

2.3 General formalism

IFD is a formalism for simulating differential equations for fields s = s(x, t) of the form

ds

dt
= f(s) (2.1)

using only the finite resources that are available on computers. This implies that from the
infinite degrees of freedom of a field s, only finitely many can be taken into account. IFD
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is a specific kind of Bayesian forward simulation scheme.
A forward simulation scheme takes a data vector d0 and returns a new data vector

d1 = d1(d0). Here a data vector is referring to an array of numbers on a computer. The
data d0 are supposed to contain information about the real physical field s0 at time t0.
What kind of information d contains is also specified by the simulation scheme. The new
data vector d1 is supposed to contain information about the field s1 at the time t1 = t0 +dt.
One then iterates the application of this scheme until one arrives at a target time. On this
abstract level IFD yields a forward simulation scheme. The difference to the construction of
most other simulation schemes is its information theoretic foundation and very restrictive
formalism. The formalism is restrictive in the sense that once it is defined what information
the data d contains about the field s, the time evolution of the scheme d1(d0) is completely
specified.

IFD attempts to mimic the optimal Bayesian simulation. In an optimal Bayesian sim-
ulation we take the knowledge about the initial conditions P (s0|“init’) and then compute
the time evolved probability density using the exact analytic time evolution

P (sn|“init”) = P (s0(sn)|“init”)

∣∣∣∣∣∣∣∣∂s0(sn)

∂sn

∣∣∣∣∣∣∣∣ . (2.2)

Here we have assumed that there exists an exact solution for the PDE to be simulated
(at least up to a zero set of P (s0|“init”) ). Thus there is a one to one mapping between
fields s0 at time t0 and fields sn at time tn, such that we can write the initial field s0(sn)

as function of the later field sn, or vice versa. We denote with
∣∣∣∣∣∣∂s0(sn)

∂sn

∣∣∣∣∣∣ the absolute value

of the Jacobi determinant that arises from transforming the probability density. Note that
no information is lost, since time forward and backward evolution is a one to one mapping
of the phase space of the field s. This optimal Bayesian simulation scheme is practically
not accessible in most interesting cases because it requires the exact (backward) time
evolution to be known, the Jacobi determinant to be computable and the storage of whole
probability densities over fields. In this paper, we propose a scheme that aims to overcome
these limitations at the cost of losing some information in the process of simulation. It
does so by parameterizing the probability density and then evolving these parameters such
that the least amount of information is lost in each of the small time steps. We proceed
by describing in detail how the probability density is parametrized, then we describe how
we approximate the time evolution.

In IFD we store a finite amount of data d on the actual continuous field s, as if measured
by an instrument whose action is described by a measurement equation of the following
form:

d = R(s)(t) + n (2.3)

Here n is accumulated numerical noise and R is some response function. As an example for
R one could choose a matrix of Dirac δ-distributions for R to mimic point measurements of
the field at certain locations. This measurement equation does not imply that there is an
actual measurement, it just defines the probability theoretic connection between the data
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d on our computer and the actual physical field s that we want to simulate. The initial
conditions of the PDE will determine the first data d0, future data will then be determined
by the scheme to mimic the time evolution of the field s. To recover the full field s0 from
the data d0 at time t0 one can use Bayes theorem:

P (s0|d0) =
P (d0|s0)P (s0)

P (d0)
. (2.4)

For this, a prior P (s0) is necessary. It reflects the knowledge about s0 when no data d0

are available. A simulation scheme also has to discretize the time evolution such that in a
time step from t0 to t1 = t0 + dt the data gets updated from d0 to d1. In the language just
introduced, the purpose of a simulation scheme is to choose a proper time discretization
d1(d0) that is as close to the real evolution of U(s0) = s1 as possible (or even equal if
feasible) and a proper discretization R of space such that the features of the field are
represented well.

In IFD the time evolution of the data d is defined indirectly, that is we assign d1 such that
the posterior P (s1|d1) using our new data d1 matches the time evolved probability density
P (s1|d0) using our old data d0 as well as possible. Note that P (s1|d0) is what we defined
to be the optimal Bayesian simulation, but simulated only for a small time step dt, where
a linearization of the time evolution might still be justified. Because we cannot store the
whole density P (s1|d0) we store an approximation of it that uses the same parametrization
as the probability density P (s0|d0) but with new values d1 assigned to the parameters
such that it approximates the time evolved probability density P (s1|d0) as well as possible.
For probability densities corresponding to a Bayesian belief, there is only one consistent
notion of “approximating as well as possible”, given the two requirements that the optimal
approximation is no approximation and that an approximation can be judged by what it
predicts for actual outcomes. We refer to Ref. [62] for a practice-oriented discussion why
this uniquely determines the “approximation” KL distance as the appropriate loss function
to be used here, see Ref. [10] for the original proof on probability densities. This proposed
loss is different than that in the originally proposed IFD scheme [29] and leads to matching
the two distributions via

DKL(d0, d1) =

∫
ds1 P (s1|d0)ln

P (s1|d0)

P (s1|d1)
(2.5)

In this matching, d0 is given and d1 is searched for, such that the KL divergence serves as
an action that is minimized to obtain the discretized time evolution d1(d0).

It was also proposed in [62] that for information preserving dynamics, that is for non-

stochastic time evolution, one has P (s1|d0) = P (s0|d0)
∣∣∣∣∣∣∂s0(s1)

∂s1

∣∣∣∣∣∣ and therefore this Kullback-

Leibler distance is equal to the Kullback-Leibler distance with both probability densities
time evolved to the past (note the changed indices):

DKL(d0, d1) =

∫
ds0 P (s0|d0)ln

P (s0|d0)

P (s0|d1)
(2.6)
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Note that the equality between Eqs. (2.5) and (2.6) is nothing else than the invariance
of the KL under invertible transformations. In this case the transformation is the time
evolution of the field s. The latter KL can be calculated once one made a suitable choice
for R. For this note that there is a degeneracy between R and s. That means, if R is
altered by an invertible operator T

R′ = RT (2.7)

then this is equivalent to instead simulating the differential equation for Ts

d

dt
(Ts) =

dT

ds

(
f(T−1(Ts))

)
(2.8)

and using the unaltered response R. This is because

(R′)s(t) = (RT )s(t) = R(Ts)(t) . (2.9)

This provides some freedom to simplify R, thus R can be chosen such that it is linear at the
cost of possibly making the time evolution more complicated. If the prior P (s0) = G (s0, S0)
and the noise P (n0) = G (n0, N0) are zero-centered Gaussian distributions with covariance
matrices S0 and N0, respectively, then the inverse problem can be solved by a (generalized)
Wiener Filter [94] and a Gaussian posterior distribution is obtained:

P (s0|d0) = G (s0 −m0, D0)

= |2πD0|−
1
2 e−

1
2

(s0−m0)†D−1
0 (s0−m0) (2.10)

Here m0 = D0R
†N−1

0 d0 and D−1
0 = S−1

0 + R†N−1
0 R. One also gets a Gaussian posterior

distribution for s1:

P (s1|d1) = G (s1 −m1, D1), (2.11)

with D−1
1 = S−1

1 +R†N−1
1 R (2.12)

and m1 = D1R
†N−1

1 d1 (2.13)

= SR†
(
RS1R

† +N1

)−1
d1 . (2.14)

Note that Eqs. (2.13) and (2.14) are two equivalent ways to obtain a reconstruction m1. In
our paper we will mostly use Eq. (2.14) as the matrix inversion only needs to be computed
for RS1R

† +N1, which is a finite dimensional operator.
To compute the necessary quantities for our action as given by Eq. (2.6) we have to

compute the distribution for s0 given d1. It is obtained from the backward time evolution
of P (s1|d1):

P (s0|d1) = G (U(s0)−m1, D1)

∣∣∣∣∣∣∣∣dU(s0)

ds0

∣∣∣∣∣∣∣∣ (2.15)
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Here U(s(t0)) = s(t1) is the exact analytical time evolution. Using this, the Kullback-
Leibler divergence that needs to be minimized so that d1 is obtained is

DKL(d0, d1) =

∫
ds0 P (s0|d0)ln

P (s0|d0)

P (s0|d1)
(2.16)

=

∫
ds0 G (s0 −m0, D0)

ln
G (s0 −m0, D0)

G (U(s0)−m1, D1)
∣∣∣∣∣∣dU(s0)

ds0

∣∣∣∣∣∣ .
We only minimize for parameters of G (U(s0) − m1, D1), so we can ignore any additive
terms that do not depend on d1. Thus

DKL(d0, d1) =̂∫
ds0 G (s0 −m0, D0) ln

1

G (U(s0)−m1, D1)
. (2.17)

Here “=̂” denotes equality up to irrelevant constants, which in this case are constants that
are not a function of d1. These will drop out when the expression is minimized with respect

to d1 later on. Note that the absolute value of the Jacobian
∣∣∣∣∣∣dU(s0)

ds0

∣∣∣∣∣∣ can be ignored because

it only depends on s0. The integral above can be quite difficult to evaluate in general. For
integrals involving Gaussian distributions there is however a general method [60] to write
down a closed expression for the result. Replacing every instance of s0 with the field
operator

Om0 = m0 +D0
d

dm0

(2.18)

allows us to evaluate the integral at the cost of having to evaluate operator expressions.
The integral is rewritten as

DKL(d0, d1) =̂ ln
1

G (U(Om0)−m1, D1)

=̂
1

2
(U(Om0)−m1)†D−1

1 (U(Om0)−m1)

+
1

2
tr (ln (2πD1)) . (2.19)

We now minimize this Kullback-Leibler divergence with respect to d1. For this we compute
the derivative

dDKL(d0, d1)

dd1

=

(
dm1

dd1

)†
D−1

1 (m1 − U(Om0))

= N−1
1 R(m1 − U(Om0)) (2.20)
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with respect to d1. We now assume that we leave the noise matrix, the response, and
the prior invariant, thus omitting the indices on these operators. At the minimum this
derivative is 0, so we can solve it for d1:

0 = N−1R(m1 − U(Om0))

0 = RSR†
(
N +RSR†

)−1
d1 −RU(Om0)

d1 =
(
N +RSR†

) (
RSR†

)−1
RU(Om0) (2.21)

One way to use IFD is to reformulate a PDE like Eq. (2.1) to an ordinary differential
equation (ODE), for which potent solvers already exist. For this we expand Eq. (2.21) to
first order in dt:

d1 =
(
N +RSR†

) (
RSR†

)−1
R (Om0 + dtf(Om0))

d1 =
(
N +RSR†

) (
RSR†

)−1
R(

SR†
(
N +RSR†

)−1
d0 + dtf(Om0)

)
d1 = d0 +

(
N +RSR†

) (
RSR†

)−1
Rdtf(Om0) (2.22)

Inserting d1 = d0 + dtdd
dt

we arrive at an ODE for d:

dd

dt
=
(
N +RSR†

) (
RSR†

)−1
Rf(Om) (2.23)

Using this in the limit of no-noise N → 0 we get the following compact expression for the
updating rule:

dd

dt
= Rf(Om) = Rf(O

SR†(RSR†)
−1
d
) (2.24)

Eqs. (2.23) and (2.24) are the central equations of this paper, allowing us to discretize
any differential equation. They were derived through minimizing the action given by
Eq (2.6) and thus mimic the Bayes optimal simulation up to a minimized information loss.
Using Eqs. (2.23) and (2.24) and an appropriate choice of the response R of the virtual
measurement connecting field and data, IFD tells us how the differential operators need to
be discretized.

2.4 Numerical tests

As a benchmark we simulate the Burgers equation

∂s

∂t
= f(s) = η

∂2s

∂x2
− s ∂s

∂x
. (2.25)

This equation is numerically challenging as it develops shock waves for small diffusion
constants η. First, we have to specify our choice of R. We demonstrate the formalism for
two different choices of R.
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2.4.1 Box grid

We choose

Rix = 1xi,xi+1
=

{
1 xi < x ≤ xi+1

0 otherwise.
(2.26)

This type of grid is commonly used in simulations. Starting from equation (2.24), we
compute:

dd

dt
= Rf(Om)

= R(∆Om −Om∇Om)

= R(∆m−m∇m)

−
∫

dxdydz R·xDxy
d

dmy

(∇xzmz)

= R∆SR†(RSR†)−1d

−R
(
SR†(RSR†)−1d(∇SR†(RSR†)−1d)

)
−
∫

dxdy R·xDxy∇xy (2.27)

We introduce the short hand notation

d′ = (RSR†)−1d (2.28)

so that the IFD Burgers scheme simplifies to

dd

dt
= ηR∆SR†d′

−R
(
SR†d′(∇SR†d′)

)
−
∫

dxdy R·xDxy∇xy (2.29)

Assuming that our a priori knowledge favors no certain points in space or certain direc-
tions, according to the Wiener-Khintchin theorem [95] the covariance operator S has to be
diagonal in Fourier space. This is equivalent to a convolution with a convolution kernel Cx
in configuration (x-) space, such that

(SR†)xi = Cx ∗R†xi =

∫
dy Cx−yR

†
yi . (2.30)

We now compute the three terms of Eq. (2.29) all separately, starting with the term
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Figure 2.1: Simulation of the Burgers equation using a Gaussian velocity profile as initial
condition as represented by the gray line. The dotted line shows the recon-
struction as it is obtained from the IFD formalism, the dashed line shows a
finite-difference simulation with the same resolution. The solid line is a more
exact simulation obtained by simulating with a finite-difference scheme in 4-
times higher spatial resolution.
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Figure 2.2: Zoom in into the simulation of the Burgers equation shown in Fig. 2.1. The
dash-dotted line shows the reconstruction as it is obtained from the IFD for-
malism, but with double the spatial resolution. The other lines are the same
as in Fig. 2.1.
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involving the Laplace operator:

(
R∆SR†d′

)
i

=

∫ xi+1

xi

dx
∑
j

∆

∫ xi+j

xj

dy Sxyd
′
j

=

∫ xi+1

xi

dx
∑
j

∆Cx ∗ 1xj ,xj+1
d′j

=

∫
dx 1xi,xi+1

∑
j

∆Cx ∗ 1xj ,xj+1
d′j

=

∫ xi+1

xi

dx
∑
j

∇ (Cx ∗ (δ(x− xj)− δ(x− xj+1))) d′j

=

∫
dx (δ(x− xi+1)− δ(x− xi))∑
j

(
Cx−xj − Cx−xj+1

)
d′j

=
∑
j

(
Cxi+1−xj − Cxi+1−xj+1

)
−
∑
j

(
Cxi−xj − Cxi−xj+1

)
d′j

=
∑
j

(
Cl(i−j+1) − 2Cl(i−j) + Cl(i−j−1)

)
d′j (2.31)

Here we assumed the xi to be equally spaced with distance l. Note that this version of the
discretized Laplace operator has similarities with the normal finite-difference [21] Laplace
operator, but accounts for the field correlation structure. We continue by computing the
second term

(
R
(
SR†d′(∇SR†d′)

))
i

=

=

∫
dxRix(SR

†d′)x(∇SR†d′)x

= −
∫

dx
[
∇
(
Rix

(
SR†d′

))
x

]
(SR†d′)x

= −
∫

dx (∇Rix)
(
SR†d′

)
(SR†d′)

−
∫

dxRix

(
∇SR†d′

)
(SR†d′) . (2.32)

The last summand in Eq. (2.32) is the same term we started with, only with a negative
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sign. Thus we can bring both to the same side of the equation and get

R
(
SR†d′(∇SR†d′)

)
=

= −1

2

∫
dx (∇Rix)

(
SR†d′

)
(SR†d′)

=
1

2

[(
Cx ∗

∑
j

Rxjd
′
j

)(
Cx ∗

∑
k

Rxkd
′
k

)]xi+1

x=xi

. (2.33)

The third term is ∫
dxdy RixDxy∇xy . (2.34)

This term vanishes in the case of periodic boundary conditions. One can see this by
rewriting ∇xy = ε−1 (δ(x− y + ε)− δ(x− y − ε)) for a sufficiently small ε to obtain∫

dxdy RixDxyε
−1 (δ(x− y + ε)− δ(x− y − ε))

=

∫
dx ε−1Rix

(
Dx(x+ε) −Dx(x−ε)

)
. (2.35)

Because S and R have no favored direction, Dx(x+ε) = Dx(x−ε) and thus the third term
vanishes. Finally we have to compute

d′ =
(
RSR†

)−1
d

=

(∫ xi+1

xi

∫ xj+1

xj

dxdy Cx−y

)−1

dj . (2.36)

Now that one has all the terms of Eq. (2.27) one can choose a prior and obtain a simulation
scheme as a result. Normally, one would choose the prior according to physical properties
of the system, such that it meaningfully encodes our knowledge in the absence of data.
The matter of choosing priors will be further addressed in Sec. 2.5.2. We just want to
demonstrate the formalism, so we simply choose the analytic form of Cx such that we can
easily compute the three integrals given by Eqs. (2.31, 2.33, 2.36). One convenient choice of
Cx is a Gaussian1, for which we know all the above terms analytically. One might equally
well choose any correlation function and do these integrations numerically. Because these
integrals only have to be done once, this does not significantly increase the computation
time of the resulting simulation scheme.

Note that all computed operators are local, meaning that they fall off as Cx falls off.
Thus, they can be truncated at a certain distance and the whole simulation scales only
linearly with the number of data points.

1or a mixture of Gaussians
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Fig. 2.1 shows an example of a simulation that was performed using the scheme that
was worked out in this section. As a comparison, the figure also shows a simulation using
the finite-difference method with the same spatial resolution. This simulation uses 64 data
values and the function

s(x) = e4−(x/64−0.5)2 (2.37)

as initial condition. The simulation space is an interval of length 64 with periodic boundary
conditions. The prior covariance was chosen to be a convolution with a zero-centered
Gaussian that has a standard deviation of 0.5. The diffusion constant η was chosen to be
5. The result of a simulation using the finite-difference method with a four times higher
resolution is displayed as well. This high resolution simulation should capture all features
produced by the Burgers dynamics. To investigate the resolution dependence of the IFD
scheme, we compare the IFD simulation of Fig. 2.1 with a simulation on a two times more
resolved grid in Fig. 2.2. For comparison one can again see the fine resolved finite-difference
method. One can clearly see an increased performance as the resolution increases.

2.4.2 Fourier grid

Now we switch to a different response. We choose a Fourier space grid

Rik =
∑
i

δ(k − ki) (2.38)

with Fourier space grid points ki. There is a choice whether to view the Fourier transform

Fkx = eikx (2.39)

as part of the measurementR or as transformation of the field sk = Fkxsx, see Eqs. (2.7, 2.8, 2.9).
We choose the latter and obtain as transformed time evolution:

dsk
dt

= Fkx
dsx
dt

= Fkx (∆sx − (sx)(∇sx))
= −k2sk + (sk) ∗ (iksk) (2.40)

We insert this into Eq. (2.24) and obtain

dd

dt
= Rf(Om) =

−Rk2SR†
(
RSR†

)−1
d+Rk2SR†

(
RSR†

)−1
d . (2.41)
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Figure 2.3: Simulation of the Burgers equation using a Gaussian velocity profile as initial
condition as represented by the grey line and a Fourier space response. The
dotted line is a reconstruction that is obtained through simulating with the IFD
scheme. This simulation scheme is equivalent to a Fourier-Galerkin scheme.
The solid line is a high resolution simulation using a finite-difference scheme.

If the a priori knowledge does not favor any specific direction or point in space, then S is
diagonal in Fourier space. Thus

(
SR†(RSR†)−1

)
ki

=
∑
lrjp

Sklδlmj
(δmipSprδrmj

)−1

=
∑
j

Skmj
(Smimj

)−1

= δkmi
= R†ki (2.42)
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and the prior covariance drops out, making time evolution on this grid invariant under
Fourier space priors. For the final time evolution we arrive at

ddi
dt

= −k2
i di

+
∑
j

∫
dkdk′ δ(k − ki − k′)diik′δ(k′ − kj)dj

= −k2
i di +

∑
j

dj−iikjdj (2.43)

where the continuous convolution was translated to a finite convolution on a grid. This
resulting time evolution equation can be implemented efficiently and the results can be
seen in Fig. 2.3. The simulation constraints, initial conditions, and degrees of freedom
were chosen to be the same as in Sec. 2.4.1.

The developed Fourier space IFD method is equivalent to a Fourier Galerkin method
[40]. In the Fourier Galerkin method, the error to the correct solution is minimized for
a vector in a subspace. This subset is a linear subspace of the real solution space, with
selected basis functions that are often chosen to be polynomials or, as in the case of the
Fourier Galerkin method, Fourier basis functions. In the case of IFD this subspace is the
co-image of the response R. Thus Galerkin schemes can be regarded as IFD schemes with
R being specified by the Galerkin basis. The prerequisites for this equivalence are that the
prior S commutes with the discretization R†R and that we work in the no-noise regime
N → 0.

2.5 Current advantages and disadvantages

In the current development status of the IFD method, there are some caveats as well as
some advantages over classical approaches. Some of them stem from the theoretical side,
where approximations had to be done in order to arrive at a computable scheme. In this
section we discuss all the observed problems and benefits.

2.5.1 Subgrid structure

Information field dynamics employs the field evolution of the real physical field, and thus
automatically takes into account subgrid structure. However, this leads to problems when
the time evolution is truncated after the first order in dt. In most physical systems, the
time evolution is faster for the smaller scales, thus if we take into account all scales, no
dt is small enough to justify this approximation. In other schemes, the discretized field
automatically yields a cutoff at high frequencies. However for IFD, in the derivation we
truncate the whole time evolution of the real system at first order, which is not justified.
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As an example consider the diffusion equation

ds

dt
= ∆s (2.44)

dsk
dt

= −k2sk . (2.45)

For higher modes k the change of s scales with k2. Thus, if we truncate the Taylor expansion

of the time evolution at order of dt, then for k >
√

2
dt

we get

sk
t+dt = stk − dt k2stk = −

(
1− dt k2

)
stk . (2.46)

where |1− dt k2| > 1, thus the scheme is boosting small frequencies instead of damping
them.

This is, however, a general problem of any simulation scheme.

2.5.2 How to choose a prior

The goal of a prior is to incorporate as much information as one has about the system
and nothing more. If the system has no special directions or singled out locations, one
should choose a prior that is homogeneous and isotropic. These two requirements force the
covariance matrix Sxy =

〈
sxs
†
y

〉
P (s)

to be diagonal in Fourier space. If we restrict ourselves

to Gaussian priors, the prior is fully characterized by its power spectrum P (k) ∝
〈
|sk|2

〉
P (s)

.

Thus, the only a priori information that enters the simulation in the Gaussian case is how
smooth the physical field is. But this is also a significant restriction. For example for
infinitely sharp shocks, as they occur in the Burgers equation with η = 0, no smoothness
at all is justified at the location of the shock, whereas at other points the solution might
be perfectly smooth. To capture this kind of behavior one would need to either use a prior
that allows for higher order statistics, use a dynamical prior which evolves in time, or to
introduce data that capture the discontinuities. In our simulation we observed that the
scheme diverges quickly if an unjustified prior was chosen, that is for example a prior that
enforces significantly more smoothness than is present in the solution.

To choose the right power spectrum of the prior one could use a fine grid simulation and
take the occurring power spectrum as input for a coarser simulation.

2.5.3 Static prior

In the current formulation we assume that the prior does not evolve in time. However,
ideally the prior should evolve with the system. This is because some a priori assumptions
that were made for time step t0 might not be true at a later time (for example initial
smoothness might be violated by the formation of a shock). However, from an agnostic
point of view, if one has no knowledge about points in time, then the prior should be
invariant under time translation. In principle, IFD provides guidance on how to evolve any
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kind of degree of information on the field, like its covariance structure, and not only some
measurement data. By minimizing Eq. 2.19 with respect to any such piece of information,
we obtain an evolution equation for it that loses the minimal amount of information. This
way, when the prior is parametrized, an update rule for it is automatically obtained.

2.5.4 No-noise approximation

To derive our algorithms, we take the limit N → 0. While this significantly simplifies the
derivation of the schemes, it also deprives the resulting schemes of the advantages that
an information theoretic treatment has in general. In the no-noise approximation field
configurations s with Rs 6= d are assigned zero probability, thus the information loss in
the presence of numerical rounding errors and finite time steps, where the evolution of the
data d cannot satisfy Eq. (2.24) exactly, is infinite. Further development in the field of IFD
will have to investigate into approaches incorperating noise.

2.6 Conclusion

The requirement of minimal information loss per time-step defines a unique simulation
framework. This concrete simulation scheme requires the specification of the field mea-
surement (response) and the incorporation of prior known correlation structure. It exhibits
similarities to the finite-difference scheme when the response is a grid of boxes and becomes
a spectral scheme in the case of Fourier space response. This yields a new interpretation for
linear and in some cases even nonlinear Galerkin schemes. These are information optimal
up to the approximations made in this paper if no spatial a priori knowledge about the
field is available.

IFD can thus be regarded as a general theory for simulations that explains what assump-
tions about the simulated field enter a given simulation scheme, if one is able to reproduce
that scheme in IFD. For some schemes one can enhance the performance by using a prior
that is correctly informed on the field correlation structure. When the prior is chosen
incorrectly, for example if it is chosen such that the simulation produces features that are
regarded very unlikely by the prior, the scheme tends to diverge quickly. In principle,
IFD can provide a guideline how to evolve any degree of freedom; by minimizing Eq. 2.6
one gets a unique simulation scheme. An interesting route, at least for the Burgers and
other hydrodynamic equations, would be to automatically infer the position of the virtual
measurements, allowing the scheme to sample the field where it is most informative. The
investigation in that direction is however beyond the scope of this paper and might be the
target of future research.

All in all information theory provides a powerful language to talk about simulation
tasks. Even though the series of approximations made in this paper permitted the result-
ing simulation schemes to only outperform finite differences by a small amount, further
advancements in the field could yield substantial enhancements.



3 Charting nearby dust clouds using
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This chapter is published as an article in the journal Astronomy and Astrophysics [64] with
me as the first author. My contribution is in doing the theoretical calculations, writing and
running the underlying code, and writing the text of the publication. Torsten Enßlin has
contributed through many valuable discussions and by reviewing and correcting the text
several times. All authors read, commented, and approved the final manuscript.

3.1 Abstract

Highly resolved maps of the local Galactic dust are an important ingredient for sky emission
models. In nearly the whole electromagnetic spectrum one can see imprints of dust, many
of which originate from dust clouds within 300pc. Having a detailed 3D reconstruction
of these local dust clouds enables detailed studies, helps to quantify the impact on other
observables and is a milestone necessary to enable larger reconstructions, as every sightline
for more distant objects will pass through the local dust. To infer the dust density we use
parallax and extinction estimates published by the Gaia collaboration in their second data
release. We model the dust as a log-normal process using a hierarchical Bayesian model.
We also infer non-parametrically the kernel of the log-normal process, which corresponds
to the physical spatial correlation power spectrum of the log-density. Using only Gaia
data of the second Gaia data release, we reconstruct the 3D dust density and its spatial
correlation spectrum in a 600pc cube centered on the Sun. We report a spectral index of
the logarithmic dust density of 3.1 on Fourier scales with wavelengths between 2pc and
125pc. The resulting 3D dust map as well as the power spectrum and posterior samples
are publicly available for download.

3.2 Introduction

Emission and extinction by Galactic dust is a prominent astronomical foreground at many
wavelengths. Therefore, knowing its distribution on the 2D sky and in 3D is essential for
many astronomical observations. However, dust is also interesting to be studied on its
own, as it provides information about the physical conditions in the interstellar medium
and informs us about star forming regions. Dust has been mapped out by surveys for a
long time, the first notable contribution being [17]. Their dust reconstruction, as most
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reconstructions of the dust distribution so far, was focused on mapping the dust in 2D
on the sky. This can be done by looking at the sky in infra-red wavelengths, where it is
dominated by dust emission. However, when mapping out dust using infra-red emission
one is biased by the radiation field, as dust emission is not only proportional to the dust
density but also to the amount of starlight absorbed by the dust. Furthermore, dust maps
that were produced by mapping infrared light might contain extended infrared sources
that are not within our galaxy, as was shown by [19]. On the other hand, a hypothetical
cold dust cloud cannot be seen in infra-red, leading to systematic errors in the analysis of
distant targets, for example quasars or the Cosmic Microwave Background (CMB).

For accurate analyses of objects in our galactic vicinity, it is vital to have a 3D dust
map as a foreground model, which informs us about regions that cannot be observed,
or only be observed with less fidelity, due to dust obscuration. The first non-parametric
reconstruction of galactic dust in 3D published is [6]. Since then there have been many
attempts to chart the dust density in 3D in increasing resolution, accuracy and for an ever
greater part of our galaxy [18, 42, 43, 76, 77, 78, 81, 82, 91, 92]. A large driving force for
3D dust reconstruction and astronomy in general are large surveys like 2MASS [86], Pan-
STARRS [51] and SDSS/APOGEE [1] and WISE [96]. These surveys provide photometric
measurements and some of them spectra for thousands of stars, from which the calculation
of photometric distances is possible. There are two 3D dust reconstructions based on these
data sets that are closely related to the approach taken in this paper.

In [58] reddening data from 71 000 sources has been used to perform a 3D reconstruction
using Gaussian process regression. The resulting dust map covers a 4kpc square of the
galactic plane and 600pc in perpendicular direction with a voxel size of (5 pc)3.

In [44] a 3D dust map is produced by combining the star data of Pan-STARRS and
2MASS, binning it in angular and distance bins, and performing independent Bayesian
reconstructions per angular bin. The result is a dust map that covers three quarters of the
sky to a distance up to 2kpc. This reconstruction shows artificial radial structures called
the ”fingers of God effect” in analogy to the well known phenomenon in cosmology [47, 90].
One way to mitigate this effect is to use more accurate parallax information.

A prominent new survey is performed by the Gaia collaboration [14]. In its second
data release (DR2, [13]) accurate parallaxes for roughly 2 billion stars are published. The
provided catalog also contains estimates of extinction coefficients for a subset of about 88
million stars, using spectral information of the Gaia satellite’s three energy bands. Due
to the limited spectral information, the accuracy of the extinction coefficients estimated
for individual sightlines is quite low. For this reason it is recommended by [4] to not use
the information of individual sightlines but only the joint information of several sightlines.
Even though the data quality of individual sightlines is rather low, the sheer amount of
data points and the accuracy of the parallaxes outweigh this limitation as our work shows.

So far, 3D dust reconstructions have never been performed using solely Gaia data, instead
Gaia data has been used for its accurate parallax measurements only and the more accurate
spectral information of other surveys was used [58, for example].

In this paper we present a 3D dust reconstruction using Gaia DR2 data only. The re-
sults of the reconstruction are provided online on https://wwwmpa.mpa-garching.mpg.

https://wwwmpa.mpa-garching.mpg.de/~ensslin/research/data/dust.html
https://wwwmpa.mpa-garching.mpg.de/~ensslin/research/data/dust.html
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de/~ensslin/research/data/dust.html or by its doi:10.5281/zenodo.2577337, and can
be used under the terms of the ODC-By 1.0 license. The inference of the unknown dust den-
sity from the extinction data is performed by a critical filter, a method for Gaussian process
regression with non-parametric kernel learning, first published in [30]. While the statistical
model used here is up to minor details equivalent to the model introduced in that paper,
the algorithm to arrive at an approximate posterior summary statistics is quite different.
The relevant numerical method used in this paper is outlined in [54], which describes
a general method to derive posterior summary statistics for high dimensional Bayesian
inference problems. For a theoretical discussion of the underlying inference framework of
information field theory we refer to [27]. The algorithm was implemented using the Python
package NIFTy5, which is the newest version of the software package NIFTy [7, 83, 88]1.
Even though mathematical theory, statistical motivations, and numerical details are dis-
tributed over the aforementioned papers, this paper is entirely self-contained by describing
the whole method.

In Sec. 3.3 we discuss which part of the Gaia data we used. We introduce our statistical
model of the interstellar dust density as well as of the measurement in Sec. 3.4. In Sec. 3.5
we present a test application of the algorithm using synthetic data, verifying the predictive
power of the algorithm. The main results of the dust density reconstruction using Gaia data
are presented in Sec. 3.6. This section also contains a brief recommendation on how to use
our results. Our dust reconstruction is compared to other 3D dust density reconstructions
in Sec. 3.7. In Sec. 3.8 we summarize the findings of this paper.

3.3 Data

We used the data from the Gaia DR2 catalog by [13], to reconstruct the galactic dust in
the nearby interstellar medium. From the Gaia data archive we extract the parallaxes, the
G-band extinction, the latitude and longitude as well as their respective uncertainties. A
plot of the full Gaia extinction data set can be seen in Fig. 3.1.

We select sources according to the following criteria:

1. the above mentioned data are available for the source

2. the parallax ω̃ is inside a 600pc cube around the Sun

3. the relative parallax error is sufficiently low, ω̃/σω̃ > 5

4. Priam flag 0100001 or 0100002

The last two criteria are suggested by [4]. There are about 3.7 million stars selected by
these criteria. Fig. 3.1 shows a sky average of the data points used in the reconstruction.
In this data plot one can observe structures present also in other dust maps, for example
the Planck dust map (Fig 3.1).

1The version of NIFTy used for this reconstruction is available on https://gitlab.mpcdf.mpg.de/ift/

NIFTy .

https://wwwmpa.mpa-garching.mpg.de/~ensslin/research/data/dust.html
https://wwwmpa.mpa-garching.mpg.de/~ensslin/research/data/dust.html
https://gitlab.mpcdf.mpg.de/ift/NIFTy
https://gitlab.mpcdf.mpg.de/ift/NIFTy
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Figure 3.1: The top panel shows the natural logarithm of the thermal dust emission map
produced by the Planck collaboration [89]. The color-scheme was saturated
to visually match that of the Gaia dust extinction data shown in the middle
panel. The bottom panel shows the subset of Gaia extinction data within a
600pc cube centered on the Sun; the data used in this paper. The scale is
natural logarithm of the extinction data in magnitudes. Data points in the
same direction were averaged.



3.4 Model 29

3.4 Model

3.4.1 Algorithm

The algorithm is derived from Bayesian reasoning. In Bayesian reasoning information some
data d provides about a quantity of interest s is calculated according to Bayes theorem:

P (s|d) =
P (d|s)P (s)

P (d)
(3.1)

Note that the quantity of interest can be a (possibly high-dimensional) vector, in our case
it is the dust density for every point in space (2563 degrees of freedom after discretization).
There are three main ingredients necessary for the inference of the quantity of interest s:

1. The likelihood P (d|s) of the data d given a realization of the quantity of interest s.
We describe our likelihood in Subsec. 3.4.2.

2. The prior P (s) describing the best available knowledge about the quantity of interest
s in absence of data. We describe our prior in Subsec. 3.4.3.

3. An inference algorithm that yields a statistical summary of P (s|d) given the joint dis-
tribution P (d, s) = P (d|s)P (s) of d and s. We use the inference algorithm described
in [54].

The main quantity of interest s is the logarithmic G-band dust extinction cross-section
density s = ln(αρ/pc), henceforth called the logarithmic dust density. Hereby ρ denotes
the actual dust mass density and α the average G-band dust cross section per mass. The
value of α is uncertain, which is why we report extinction densities, also called dust pseudo-
densities, instead.

We approximate the posterior with a Gaussian

Q(s) = G (s−m,D) (3.2)

=
exp

(
−1

2
(s−m)†D−1(s−m)

)
|2πD| 12

, (3.3)

by adopting a suitable mean m and uncertainty dispersion D. The approximation is
obtained by minimizing the Kullback-Leibler divergence [57]

KL(Q,P ) =

∫
dQ ln

Q

P
(3.4)

with respect to the parameters of Q. This approach is known as variational Bayes [67] or
Gibbs free energy approach [31]. The approach we take in finding the unknown approximate
posterior mean m and covariance D of Eq. 3.3 is described in detail in [54]. It can be
summarized as follows:
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1. Calculate the negative log-probability −log(P (s, d)) for the problem, disregarding
normalization terms like the evidence P (d).

2. Perform coordinate transformations of the unknown quantities until those are a-priori
Gaussian distributed with unit covariance [53, 56].

3. Choose the class of approximating distributions to be Gaussian with variable mean
m and covariance D = (1+Mm)−1, where Mm is the Fisher information metric at the
current m. Here 1 is the contribution of the prior which was transformed in step 2 to
have unit covariance. This uncertainty dispersion is a lower bound to the uncertainty
[22, 75] and has been shown to be an efficient technique to take cross-correlations
between all degrees of freedom into account without having to parameterize them
explicitly [54]

4. Minimize Eq. (3.4) with respect to m using Newton Conjugate gradient as second
order scheme with the covariance D of Q as curvature. The expectation value with
respect to Q is hereby approximated through a set of samples drawn from the ap-
proximating distribution Q. Second order minimization by preconditioning with the
inverse Fisher metric is also called natural gradient descent [2] in the literature.

A description of the used likelihood and the prior follows.

3.4.2 Likelihood

The likelihood P (d|s) can be split into two parts, one part states how the true extinction
depends on the dust density and one part that states how the actual data is distributed
given the true extinction on that line of sight. The first part, which we call the response
R, states how the unknown dust extinction density ρ imprints itself on the data. The
extinction of light on the i-th line of sight Li is given by the line integral

(AG)i = [R(ρ)]i =

∫
Li

dl α ρ(l) . (3.5)

Here α is the average dust cross section per unit of mass and the line of sight Li = Li(ω)
is dependent on the true parallax ω. As noted in section 3.4.1, the value of α is uncertain
and we reconstruct the dust extinction density s = ln (αρ/pc) instead.

The extinction is additive because the extinction data are given in the magnitudes scale,
which is logarithmic. The true parallax ω of the star is uncertain. We assume the true
parallax ω to be Gaussian distributed around the published parallax ω̃ with a standard
deviation equal to the published parallax error σω:

P (ω|ω̃, σω) = G (ω − ω̃, σ2
ω) (3.6)

The parallaxes of Gaia DR2 were shown to be Gaussian distributed with incredible reliabil-
ity by [66]. However, it was also noted by the same authors that there can be outliers. By
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restricting ourselves to close-by sources for which G-band extinction values are published,
we expect to have cut out most of the outliers.

We do not reconstruct the actual positions of the stars in our reconstruction, thus we
have to marginalize them out to obtain the response:

P ((AG)i|ω̃i, σω1 , ρ) =

=

∫
dωi P ((AG)i, ωi|ω̃i, σωi

, ρ)

=

∫
dωi P ((AG)i|ωi, ω̃i, σωi

, ρ)P (ωi|ω̃i, σωi
, ρ)

=

∫
dωi P ((AG)i|ωi, ρ)P (ωi|ω̃i, σωi

)

=

∫
dωi δ

(
(AG)i −

∫
Li(ωi)

dli αρ(li)

)
P (ωi|ω̃i, σωi

)

≈ δ

(
(AG)i −

∫
dωi

∫
Li(ωi)

dli αρ(li)P (ωi|ω̃i, σωi
)

)
= δ

(
(AG)i −

∫
dωi

∫
Li(0)

dli α1[0, 1
ω

](li) ρ(li) G (ωi − ω̃i, σ2
ωi

)

)
= δ

(
(AG)i −

∫
Li(0)

dli αρ(li) sfG

(
1
li
− ω̃i
σωi

))
. (3.7)

Here

sfG (x) = 1−
∫ x

−∞
dt

1√
2π

exp

(
−1

2
t2
)

(3.8)

denotes the survival function of a standard normal distribution and

1[a,b](x) =

{
1 for x ∈ [a, b]

0 otherwise
(3.9)

denotes the indicator function for the closed interval [a, b]. Note that we did an approxi-
mation where we replace the true extinction by the expected extinction. As a consequence
the lines of sight are smeared out by the parallax uncertainty in our approximation. This
smoothing can be regarded as a first order correction for the uncertainty of the parallax
and was already used by [92]. A fully Bayesian analysis would treat the true parallax as
unknown and infer these along the other unknowns, but this is beyond the scope of this
work.

For the algorithm, the integral in Eq. (3.7) is discretized into a weighted sum, such that
each voxel contributes to the line integral over Li exactly equal to the length of the line
segment of Li within that voxel while being discounted by the probability P (l|ω̃, σω) of
that voxel being on the line of sight. Applying the response R thus takes O(NdataNside)
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operations, where Ndata = 3 661 286 is the number of data points used in the reconstruction
and Nside = 256 is the number of voxels per axis. Due to the large number of data points,
evaluating the response on a computer turns out to be numerically expensive. The inference
algorithm (see Sec. 3.4.1) is a minimization for which this response has to be evaluated many
times. To make the dust inference feasible in a reasonable amount of time we restricted
our reconstruction to a 600pc cube centered on the Sun.

The second part of the likelihood states how the published data ÃG is distributed given
the true extinctions (AG)i. We use the data likelihood recommended by the Gaia col-

laboration in [4]. This likelihood assumes the data ÃG to be distributed according to a
truncated Gaussian with a global variance N = (0.46 mag)2

1. This leads to the likelihood

P (ÃG|ρ) =
∏
i

G (ÃGi −R(ρ)i, Nii)

cdfG (R(ρ)i,Nii)(A
max
G )− cdfG (R(ρ)i,Nii)(A

min
G )

(3.10)

for d ∈ [Amin
G , Amax

G ] . (3.11)

Here cdfG (R(ρ)i,Nii) denotes the cumulative density function of a normal distribution with
mean R(s)i and variance Nii. We took the boundaries of the truncated Gaussian to be
Amin
G = 0 and Amax

G = 3.609 mag as recommended in [4].

3.4.3 Prior

We assume the dust density to be a positive quantity that can vary over orders of mag-
nitude. The dust is assumed to be spatially correlated and statistically homogeneous and
isotropic. The statistical model is constructed to be as general as possible with these two
properties in mind.

To reflect the positivity and to allow variations of the dust density by orders of magnitude
we assume the dust density ρ to be a-priori log-normal distributed with

αρ = ρ0 exp(s) , (3.12)

where sx G (s, S) (3.13)

is assumed to be Gaussian distributed with Gaussian process kernel S. Here ρ0 = 1/1000 pc

is a constant introduced to give ρ the correct unit and to bring it to roughly the right order
of magnitude. By using an exponentiated Gaussian process we allow the dust density to
vary by orders of magnitude while simultaneously ensuring that it is a positive quantity.
In Eq. (3.13) S is the prior covariance. If we assume no point or direction to be special
a-priori, then according to the Wiener-Khinchin theorem S can be fully characterized by
its spatial power spectrum Skk′ = 2πδ(k − k′)Ps(k). We non-parametrically infer this
power spectrum Ps(k) as well. There are two main motivations to reconstruct the power
spectrum. From a physical perspective the power spectrum provides valuable insights into
the underlying processes. From a signal processing point of view, many linear filters can
be identified with a Bayesian filter that assumes a certain prior power spectrum. The
optimal linear filter is obtained when the power spectrum used for the filter is exactly



3.4 Model 33

ÃG|AGAG|ρlog(ρ)|SkkSkk

Figure 3.2: Graphical representation of the data model for our reconstruction. The log-
arithmic dust density log(ρ) is a Gaussian process with a smooth Gaussian
process power spectrum Skk′ = 2πδ(k − k′)Ps(k). The true extinctions AG are
directly dependent on the dust density ρ on each line of sight. The measured
extinctions ÃG are assumed to be distributed around the true extinctions AG
following a truncated Gaussian distribution as described in section 3.4.2.

equal to the power spectrum of the unknown quantity [30]. However, the power spectrum
of the unknown quantity is usually also unknown, thus one has to reconstruct it as well.
While this argumentation holds for linear filters, certainly many aspects of it carry over to
nonlinear filters such as the reconstruction performed in this paper.

Fig. 3.2 depicts the hierarchical Bayesian model for the extinction data ÃG resulting from
the logarithmic dust density ln(ρ), which itself is shaped by the power spectrum Ps(k).

Our statistical model for the power spectrum Ps(k) is a falling power law with Gaussian
distributed slope and offset modified by differentiable non-parametric deviations. It is up
to minor details2 an integrated Wiener process [25] on log-log-scale.

This is realized by the following formula:√
Ps(k) =

exp

(
(φmσm + m̄)log(k) + φyσy + ȳ + F−1

log(k)t

(
a

1 + t2/t20
τ(t)

))
(3.14)

Here φm, φy and τ(t) are the parameters to be reconstructed, σm = 1, m̄ = −4, σy = 2., ȳ =
−16, σy = 3., a = 11, t0 = 0.2 are fixed hyperparameters, F−1

log(k)t denotes the inverse Fourier

transform on log-scale, and V = (600 pc)3 is the total volume of the reconstruction. These
hyperparameters settings were determined by trial and error such that data measured from
a prior sample has roughly the same order of magnitude as the actual data and such that
the dust density varies by more than one order of magnitude in prior samples.

In our reconstruction the parameter τ for the smooth deviations of the log-log power
spectrum was discretized using 128 pixels. The mathematical motivation to take Eq. (3.14)
as a generative prior for power spectra is discussed in [8]. As a rule of thumb, k-modes for
which the data constrains the power spectrum very well will be recovered in great detail
due to the non-parametric nature of the model. For k-modes on which the data provide
little information, the power spectrum will be complemented by the prior which forces it
into a falling power law whenever the data is not informative. If the actual physical process
deviates strongly from a falling power law for the unobserved k-modes, the prior might
artificially suppress or amplify the posterior uncertainty of the result, possibly biasing

2The amplitude model given by Eq. 3.14 is not exactly equivalent to an integrated Wiener process,
but shown by [8] to be equivalent to it in a certain limit while still allowing a numerically stable
transformation of the prior to a white Gaussian.
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Figure 3.3: Several prior samples of the logarithmic spatial correlation power spectrum in
units of pc3.

the uncertainty quantification. Fig. 3.3 shows a few examples of prior samples of power
spectra using our choice of hyperparameters. While the individual samples might not look
too different qualitatively, it should be noted on the one hand that any kind of power
spectrum is representable with our model given enough data and on the other hand that
the figure depicts the power spectrum of the log-density on log-log scale. A small deviation
in this figure can have a huge impact on the actual statistics. Reconstructing the power
spectrum is equivalent to reconstructing the correlation kernel. We show our reconstructed
normalized kernel as well as the one assumed by [58] in Fig. 3.4. Certain biases can appear
when using a fixed kernel, for example introducing a characteristic length scale of the order
of the FWHM of the kernel.

Putting together likelihood and prior, the overall joint information Hamiltonian for our
parameters ξ, τ , and φ is

P (d, ξ, τ, φ) = TGAmin
G , Amin

G , 0.46, d(R(αρ))

G ((ξ, φ, τ)T ,1) (3.15)

where [R(αρ)]i =

∫
Li

dl α ρ(l) (3.16)

αρ =
1

1000
exp

(
F−1
xk

√
Ps(k)V (φ, τ) ξk

)
(3.17)
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Figure 3.4: The log-normal process normalized 2-point correlation reconstructed by our
method (solid line) and imposed in the reconstruction by [58] (dashed line). One
can see that the dust is assumed to be strongly correlated at a distance scale
of up to about 30pc. This plot shows normalized one dimensional cuts through
the three dimensional Fourier transform of the log-normal spatial correlation
power spectrum shown in Fig. 3.7. []

√
Ps(k)(φ, τ) =

exp

(
(φmσm + m̄)log(k) + φyσy + ȳ + F−1

log(k)t

(
a

1 + t2/t20
τt

))
(3.18)

TGxmin, xmax, σ, x̄(x) =
∏
i

G (x̄i − xi, σ2)

cdfG (xi,σ2)(xmax)− cdfG (xi,σ2)(xmin)
(3.19)

for x ∈ [xmin, xmax],

is a truncated Gaussian, and V = (600 pc)3. The application, calculation of the gradient,
and the application of the Fisher metric of Eq. (3.15) scales almost linearly with the number
of voxels N3

side, more specifically it takes O(NdataNside+N3
sidelogNside) operations to evaluate

Eq. 3.15, where Ndata = 3 661 286 is the number of data points used in the reconstruction
and Nside = 256 is the number of voxels per axis.
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3.5 Simulated Data Test

3.5.1 Data generation

In this section, a test on simulated data is presented. This test enables comparing the
results of the reconstruction to a known ground truth. As ground truth dust density public
data from the SILCC collaboration [93] was used, more specifically from the magneto-
hydrodynamic simulation of the interstellar medium B6-1 pc at 50 Myr published by [41].
This simulation result spans a cube with size (512 pc)3. We computed our synthetic ground
truth differential absorption ρmock from the gas density of the simulation ρsim via

ρmock

(
x− (150, 150, 0)T

)
= 3

√
ρsim

(
512x

600

)
1017

cm3

g

1

pc
. (3.20)

Thus we stretch the 512 pc simulated cube to the 600 pc of our reconstruction, scale it
with a constant factor, and shift it by 150 pc. The shift is performed in order to have an
underdense region at the center. We also take the third root of the gas density in Eq.(3.20).
There are two reasons for this.

A practical motivation for taking the third root is that it reduces the dynamic range.
If one does not do this, the sky will be dominated by one very small, but very strongly
absorbing blob.

A more physical motivation is that very dense regions lead to star formation. These
forming stars again reduce the density by blowing the material out of these regions. This
feedback mechanism was not included into the simulation by [41] but was shown to have
a strong impact on the gas density in a followup simulation by [46]. The third root can be
seen as a very crude way of reducing the density in these overdense regions.

To obtain the synthetic data from the ground truth differential extinction cube ρmock,
the following operations were performed:

1. Sampling ground truth parallaxes ωi x G (ωi − ω̃i, σ
2
i ) according to the parallax

likelihood published by the Gaia collaboration.

2. Integrating the dust density from the center of the cube to the location of the sampled
star location 1/ω using the full resolution of 5123 voxels3.

3. Sampling an observed extinction magnitude according to the truncated Gaussian
likelihood described in section 3.4.2.

3.5.2 Results

We were able to recover a slightly smeared out version of the original synthetic extinction
cube. In Fig. 3.5 integrations with respect to the x-, y-, and z-axis of the synthetic ex-

3Note that the simulation of which the data is used was performed on an adaptive grid. The full resolution
of 5123 is only realized in the high density regions.
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tinction cube and the reconstructed extinction cube are shown. This visually confirms the
reliability of the reconstruction.

For a more quantitative analysis, we compared the reconstructed differential extinctions
with the ground truth voxel-wise. More specifically, we computed the uncertainty weighted
residual r

r =
ρreconstruction − ρground truth

σρ
, (3.21)

where ρreconstruction and σρ are the posterior mean and standard deviation computed from the
approximate posterior samples. The ground truth differential extinction was recovered well
within the recovered approximate posterior uncertainty, apart from outliers which make
up about 0.15% of the voxels. See Fig. 3.6 for a histogram of the uncertainty weighted
residual.

Overall, the reconstruction seems very reliable on a qualitative and quantitatively level
within the uncertainty for most of the voxels.

3.6 Results from Gaia Data

We reconstruct the dust density in a 600pc cube using 2563 voxels, resulting in a resolution
of (2.34 pc)3 per voxel. For our reconstructed volume we also infer the spatial correlation
power spectrum of the log-density, see Fig. 3.7.

In Fig. 3.8b one can see a projection of the reconstructed dust onto the sky in galactic
coordinates. Fig. 3.9b shows the corresponding expected logarithmic dust density.

In Fig. 3.8a the projection of the dust reconstruction on the galactic plane is shown. This
view is especially interesting to study the dust morphology as this projection introduces
no perspective-based distortion. It is especially suited to spot underdense regions such as
the local bubble in high resolution. A logarithmic plot of the projection on the galactic
plane can be seen in Fig. 3.9a. We show integrated dust density for sightlines parallel to
the x-, y-, and z-axis in Fig. 3.13.

We provide posterior uncertainty estimation via samples. One should note that these
uncertainties might be underestimated due to the variational approach taken in this paper.
One can see a map of the expected posterior variance of the sky projection in Fig. 3.10a
and in the plane projection in Fig. 3.11a.

3.6.1 Using the reconstruction

The results of the reconstruction are provided online on https://wwwmpa.mpa-garching.

mpg.de/~ensslin/research/data/dust.html, or by its doi:10.5281/zenodo.2577337, and
can be used under the terms of the ODC-By 1.0 license. Proper attribution should be given
to this paper as well as to the Gaia collaboration [39].

We give an overview of known systematic effects and advice on how to use the provided
dust map.

https://wwwmpa.mpa-garching.mpg.de/~ensslin/research/data/dust.html
https://wwwmpa.mpa-garching.mpg.de/~ensslin/research/data/dust.html
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Figure 3.5: Results of our test using simulated data. The rows show integrated dust
extinction for sightlines parallel to the z- x- and y- axis respectively. The first
column corresponds to the test reconstruction, the second column is the ground
truth synthetic extinction.
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Figure 3.6: The gray curve shows a normalized histogram of the deviation of the recon-
struction from the true solution, in sigmas. The black curve is the probability
density function of a standard normal distribution, which is plotted as a refer-
ence. Note that the values were clipped to the range from −10 to 10, i.e. the
bump in the gray curve at −10 corresponds to outliers that can be up to 250
sigmas. These outliers correspond to about 0.15% of all voxels.

• We do not recommend to use the outer 15pc of the reconstruction. Periodic boundary
conditions were assumed for algorithmic reasons, which leads to correlations leaking
around the border of the cube. The inferred prior correlation kernel (Fig. 3.4) suggests
that correlations are vanishing after 30pc.

• We provide posterior samples. When doing further analysis of our reconstruction we
recommend doing so for every sample in order to propagate errors.

• It was observed in Sec.3.5.2 that there can be a small number of outliers, that is
differential dust extinction values that are much larger than the reconstructed value,
by amounts that cannot be explained by the reconstructed uncertainty.

• We anticipate a perception threshold that leads to the absence of extremely low
density dust clouds. The two main reasons for this are that the truncated Gaussian
likelihood provides less evidence in the regime where the extinction is close to zero
and that variational Bayesian schemes are known to underestimate errors. Studying
a larger volume will shed further light on this subject, as sightlines for more distant
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Figure 3.7: The log-normal process spatial correlation power spectrum inferred in our re-
construction (solid line) as well as the imposed power spectrum of [58] (dashed
line). The shaded area around the solid line indicates 1σ error bounds. The
unit of the y-axis is pc3. The functions can be interpreted as the a-priori ex-
pected value of |Fln(ρ)|2 /V , where V is the volume the density ρ is defined on
and F is the Fourier transform. The region between 0.0008/pc and 0.426/pc is
almost power-law like with a slope of 3.1, the spectral index of the power law.

stars still provide information about nearby dust clouds. One should note that the
overall Gaia extinction data provides 20 times more sightlines than were used in this
reconstruction.

3.7 Discussion

Here we discuss qualitative, quantitative, and methodological differences to other dust
mapping efforts. In table 3.1 a detailed break down of methodological differences to other
papers are shown. There are three notable differences of our method to other methods
that we would like to stress.

1. The here used dataset is one of largest one used so far.

2. We use a high amount of data while still taking 3D correlations into account.
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Figure 3.8: The left column shows integrated dust extinction from −300 pc to 300 pc for
sightlines perpendicular to the galactic plane. The image covers a 600pc cube
centered around the Sun. The units are e-folds of extinction. The coordinates
are galactice cartesian coordinates. The Sun is at coordinate (0, 0), the galactic
center is located towards the left of the plot, and the galactic West is located
towards the top. The right column shows all-sky integrated dust extinction
maps of the same region, but for sightlines towards the location of the Sun.
The first row is the result of the reconstruction discussed in this paper, the
second row is the reconstruction performed by [58], the last row shows the
reconstruction by [44].
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Figure 3.9: A natural logarithmic version of Fig. 3.8.



3.7 Discussion 43

0.00 0.05 0.10 0.15 0.20 0.25

(a)

0.0 0.2 0.4 0.6 0.8 1.0

(b)

0.00 0.05 0.10 0.15 0.20 0.25

(c)

0.0 0.2 0.4 0.6 0.8 1.0

(d)

Figure 3.10: Uncertainty of the reconstruction of this paper derived from posterior samples
(first row) and of the reconstruction of [44] (second row), both in the sky
projection. The uncertainties are in the same unit as the corresponding maps
in Fig. 3.8, or dimensionless for logarithmic uncertainties. The first column
shows the variance for the dust extinction and the second column shows the
variance of the logarithmic projected dust density on natural log-scale, which
can be interpreted as a relative error.
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Figure 3.11: Posterior uncertainty of the reconstruction of this paper derived from sam-
ples (first row) and of the reconstruction of [44] (second row) in the plane
projection. The uncertainties are in the same unit as the corresponding maps
in Fig. 3.8, or dimensionless for logarithmic uncertainties. The first column
shows the variance for the dust extinction and the second column shows the
variance of the logarithmic projected dust density on natural log-scale which
can be interpreted as a relative error.
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3. We reconstruct the spatial correlation power spectrum. The motivation and impact
of this already briefly discussed in Sec. 3.4.3



this paper [81] [78] [58] [44]
parallax uncertainty smoothing only marginalization by sampling neglected neglected proper uncertainty handling

max distance 300
√

3 pc 5 kpc 6 kpc ≈ 2
√

2 kpc 3 kpc
max voxel resolution 2.3 pc not applicable about 200 pc 5 pc 16.4 pc/0.063 pc
number of datapoints 3.7 million 6 349 21 000 71 357 806 million

power spectrum inference yes no no no no
correlations 3D 3D 2D map only 3D 1D correlations only
positiveness yes only of reddening no yes yes

statistical method Variational Bayes Expectation Propagation analytic maximum posterior Hamiltonian Monte Carlo
data sets Gaia DR2 synthetic Gaia data APOGEE Gaia DR1 + APOGEE + 2MASS Pan-STARRS + 2MASS

Table 3.1: A table comparing different dust inference methods with the one performed in this paper. The first row
indicates how the parallax uncertainty of the stars was treated. Hereby smoothing refers to weighting a voxel
in the line of sight by the survival function of the star radial distance, as is described in Eq. (3.7). The distance
of the furthest point in the reconstruction is given in the second row. The dimensions of the smallest voxel are
given in the third row. For the reconstruction of [81] the concept of voxel resolution is not readily applicable;
[81] use 140 inducing points spanning a region for which one could evaluate the posterior mean at any point.
The resolution for [44] contains two values because the resolution is different in radial/angular direction. The
fourth row provides the number of used data points. The fifth row indicates whether the power spectrum is
inferred. The sixth row states which kind of correlations are assumed for the reconstruction. Whether positivity
of dust density is enforced can be read in the seventh row. The second to last row states the method, with
which the posterior summary statistics was calculated from the unnormalized log posterior. In the last row the
data sets used for the reconstruction are listed.
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We compare our dust map to other maps. Comparisons to 2D dust maps are only
possible on a qualitative level, since it is not clear whether structures visible in the 2D
maps that are not present in the 3D map are simply further away or are too noisy in the
data for the algorithm to pick them up. On a qualitative level it is possible to see several
morphological similarities of our reconstruction in Fig. 3.8b to the Planck dust map [89] in
Fig. 3.1. These figures also show that many dust structures that are not inside the galactic
plane are local features.

The two 3D dust maps mentioned in Sec. 3.2 permit a more thorough analysis. Fig. 3.8
shows a compilation of projected dust densities for our reconstruction as well as the recon-
struction of [58] and [44]4, restricted to the same volume as the reconstruction discussed
in this paper. A logarithmic version of this figure is provided by Fig. 3.9.

While our map seems to agree on large scales with the other maps, there seems to be
a pronounced tension in the predictions of the position of some dust clouds compared
to the reconstruction of [58]. Compared to the map of [44] we recover the small scales
significantly better and suffer far less from radial smearing. It should be noted that [44]
mapped a significantly larger part of our galaxy, and that the region that overlaps with
our map was declared to be not that reliable by the authors themselves. The differences
are probably due to the different nature of the used datasets. The Gaia DR2 data used
in our reconstruction has a vastly higher amount of data points than those used for the
other reconstructions. These data points, taken from Gaia DR2, have a very small parallax
error. Additionally our reconstruction takes the full 3D correlation structure into account.

Our reconstruction as well as the reconstruction of [44] permit quantifying uncertainties
using samples. A plot of uncertainties of the dust density reconstructions projected into
the galactic plane can be seen in Fig. 3.11. Uncertainties of the dust density reconstructions
in the sky projection can be seen in Fig. 3.10.

To quantify the dynamic range of the reconstruction and as a prediction on the variabil-
ity of the logarithmic dust density we calculated histograms of dust density which show
how many voxels have which dust density. These histograms can be seen in Fig. 3.12a.
One can see that the histogram of our reconstruction extends slightly more towards high
dust densities and substantially towards low dust densities. This is possibly because our
reconstruction is more sharply resolved, thus regions of high dust density get captured
better and bleed less into the regions where dust is absent.

We characterize how much pairs of those reconstructions agree by the heatmaps of their
voxel-wise value pairs. These heatmaps can be seen in Fig. 3.12. For two perfectly agreeing
reconstructions the heatmap would show a line with slope 1. Again it can be seen that
the dust density in our reconstruction varies significantly more than in the two other
reconstruction. While all maps agree more or less for high dust densities, our dust map
exhibits vastly more volume with low dust density.

The reconstruction of [58] is performed using Gaussian process regression, as is ours.
Thus one can compute the prior Gaussian process correlation power spectrum used in
their reconstruction. Fig. 3.7 shows both our inferred power spectrum as well as their

4It should be noted that there is a new version [45] that appeared during the revision of this paper.
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Figure 3.12: Panel a shows normalized histograms of dust densities. The solid line corre-
sponds to our reconstruction, the dashed line is the reconstruction of [58] and
the dash-dotted line is the reconstruction of [44]. The other three plots are
heatmaps of voxel-wise correlations between reconstructed logarithmic dust
densities, where the color shows bin counts. The black line in the heatmaps
is the identity function, corresponding to perfect correlation.
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Figure 3.13: The reconstructed dust density in different projections. The rows show inte-
grated dust extinction for sightlines parallel to the z- x- and y- axis respec-
tively. In the first row, the galactic center is located towards the left of the
plot, in the other two rows the galactic North is located towards the top of the
plot. The cube is in galactic coordinates, thus the x-axis is oriented towards
the galactic center and the z-axis is perpendicular to the galactic plane. The
first column shows the integrated G-band extinction in e-folds of extinction,
the second column is a logarithmic version of the first column.
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Figure 3.14: The reconstructed dust pseudo-density in a slice of the galactic plane. The
first plot shows differential dust extinction in the plane containing the Sun.
The second plot of the first row is a logarithmic version of the first plot. The
second row shows the corresponding uncertainty maps. The unit of the dust is
G-band extinction in e-folds per parsec. The coordinates are galactic cartesian
coordinates.
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Figure 3.15: Empirical spatial correlation power spectra of the reconstructed mean dust
density in units of pc. The black line was computed from our reconstruction,
the dark-grey line is computed from the reconstruction of [58] and the light-
grey line is computed from the reconstruction of [44]. For the reconstruction
of [44] unspecified voxel values on sightlines that lacked data were replaced
with 0.

assumed power spectrum. These two power spectra agree more or less for the larger modes
(low k), where the data is very constraining.

One can empirically compute power spectra of the dust density using a Fourier trans-
formation. A comparison plot with all the three mentioned reconstruction can be found in
Fig. 3.15. This shows a white noise floor in the reconstruction of [44], which can visually
also be seen as small scale structures in the plane projections shown in Figs. 3.8 and 3.9.

3.8 Conclusions

1. We provide a highly resolved map of the local dust density using only Gaia data.
This map agrees on large scales with previously published maps of [58] and [44], but
also shows significant differences on small scales. These differences might to a large
degree stem from the different data used. Our map shows many structures visible in
the Planck dust map [89].
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2. In comparison to previous maps, we were able to improve on 3D resolution while
still being mostly consistent on the large scales. A comparison to 2D maps like the
Planck dust map seems to confirm the features present in our map.

3. We find that the logarithmic density of dust exhibits a power-law power spectrum
with a 3D spectral index of 3.1, corresponding to a 1D index of 1.1. This is a
significantly harder spectrum as that expected for a passive tracer in Kolmogorov
turbulence, which would be a 1D index of 5/3. The harder spectrum is probably
caused by the sharp edges of the local bubble and other ionization or dust evaporation
fronts.

4. In contrast to other dust reconstructions, we predict very low dust densities inside the
local bubble. This discrepancy is possibly an artifact of our reconstruction as there
are known dust clouds in our vicinity, for example the northern high latitude shells
[72] and the local Leo cold cloud [70]. The Leo cold cloud is however considerably
smaller than a voxel of our simulation. The possibility that Gaia extinction estimates
are biased for small distances can also not be excluded.

5. We hope that by providing accurate reconstructions of the nearby dust clouds, fur-
ther studies of dust morphology will be possible as well as the construction of more
accurate extinction models for photon observations in a large range of frequency
bands.
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This chapter is accepted as an article in the journal Astronomy and Astrophysics [61].
My contribution to the work is the development of the method, implementing and testing
the code, running the reconstruction, and writing of the text. Martin Glatzle contributed
the code used for the computation of the line of sight integrals and has written the first
two paragraphs of the introduction. Torsten Enßlin has contributed through many valuable
discussions and by reviewing and correcting the text several times. All authors read, com-
mented, and approved the final manuscript. You can find larger versions of sub-figures of
figure 4.2 in the appendix.

4.1 Abstract

Mapping the interstellar medium in 3D provides a wealth of insights into its inner working.
The Milky Way is the only galaxy, for which a detailed 3D mapping can be achieved in prin-
ciple. In this paper, we reconstruct the dust density in and around the local super-bubble.
The combined data from surveys such as Gaia, 2MASS, PANSTARRS, and ALLWISE
provide the necessary information to make detailed maps of the interstellar medium in our
surrounding. To this end, we use variational inference and Gaussian processes to model
the dust extinction density, exploiting its intrinsic correlations. We reconstruct a highly
resolved dust map, showing the nearest dust clouds at a distance of up to 400 pc with a
resolution of 1 pc. Our reconstruction provides insights into the structure of the interstellar
medium. We compute summary statistics of the spectral index and the 1-point function of
the logarithmic dust extinction density, which may constrain simulations of the interstellar
medium that achieve similar resolution.

4.2 Introduction

Although dust contributes only a small fraction in terms of mass, it is an important con-
stituent of the interstellar medium (ISM) that is observable in many wavebands of the
electromagnetic spectrum. Dust efficiently absorbs and scatters ultra-violet and visible
range photons, obscuring large parts of the Galaxy and hiding star forming regions at
these wavelengths. The dust absorbed energy is re-emitted in the infrared to microwave
bands, offering a diagnostic for physical conditions of the ISM. The microwave emission of
dust is a significant foreground to the Cosmic Microwave Background (CMB).

Dust plays a role in many processes that drive galactic evolution. Grain surfaces can
adsorb material from interstellar gas and act as catalytic sites for chemical reactions.
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Stars, including the most massive ones, are observed to form from dusty molecular clouds.
Thermal emission from dust grains can be an important cooling channel for these clouds and
grains can drive their chemistry, suggesting that dust plays an important role in regulating
the star formation process. Photons absorbed by dust can convey radiation pressure to
interstellar matter or, if they are energetic enough, eject electrons, contributing to the
heating of interstellar gas.

Finally, the distribution of dust can be used as a tracer of other quantities. A significant
portion of the observed Galactic gamma rays in the GeV-range originates in dense clouds,
where it is produced by hadronic interactions of cosmic rays with gas. This can be seen e.g.
in the morphology of cosmic rays with hadronic spectrum from FERMI [84]. Dust can be
used to trace these dense clouds and identify gamma ray production sites. Another example
is the magnetic field structure of the Galaxy, which is imprinted in the dust density, as
dust filaments tend to be aligned to the line of sight magnetic field [69]. Dust also reveals
the large scale dynamics and structure of the Galaxy, as the gravitational and differential
rotation imprints on the filaments of dust.

Studying how dust is distributed in the Galaxy can not only provide understanding of
its contents and structure but also into its inner workings and aid in the interpretation of
observations in dust affected wavebands. Most 3D mapping efforts so far have aimed at
reconstructing the distribution of dust in our galaxy on large scales. This is interesting as
it reveals the structure of our galaxy such as spiral arms. Some notable recent contribution
in this direction was provided by Green et al. [45], who map three quarters of the sky using
Gaia, 2MASS and PANSTARRS data using importance sampling on a gridded parameter
space and by assuming a Gaussian process prior. Lallement et al. [59] reconstructed a
map extending out to 3 kpc with a 25 pc resolution based on Gaia and 2MASS data with
Gaussian process regression. Chen et al. [18] reconstructed a map extending out to 6 kpc
with a 0.2 kpc radial resolution based on Gaia, 2MASS and WISE data with random forest
regression.

This paper can be regarded as a follow-up to Leike and Enßlin [64]. Some derivations are
kept short here, and we advise Leike and Enßlin [64] as a co-read for the statistically inclined
reader. We focus on reconstructing only the nearby dust clouds, within ∼ 400 pc. While
this prohibits revealing spiral arms, it enables us to achieve higher resolution. This way,
we hope to be able to constrain simulations of the ISM, which achieve similar resolution.
The map might also prove relevant for foreground corrections to the CMB, especially for
CMB polarization studies. It was shown that most of the Galactic infrared polarization at
high latitudes (|b| > 60) comes from close by regions around 200-300 pc [85]. Corrections
maps so far were based on infrared observations, and could be biased through different
starlight illumination or differing dust temperatures.

4.3 Data

For our 3D reconstruction, we use combined observational data of Gaia DR2, ALLWISE,
PANSTARRS and 2MASS. These data-sets were combined and processed to yield one
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consistent catalogue with stellar parameters by Anders et al. [3]. We use these high level
preprocessed data for our reconstruction. Table 4.1 contains a summary of the columns
we extract from this data set. We further only select sources that are inside an 800 pc ×
800 pc×600 pc cube centered on the Sun. To determine whether a source is inside this cube,
we use their 84% distance quantile dist84. We assume a Gaussian error on the parallax,
with mean mω and standard deviation computed from the distance quantiles as

mω =
1

2
(1/dist16 + 1/dist84) (4.1)

σω =
1

2
(1/dist16 − 1/dist84) . (4.2)

Furthermore, we apply the following selection criteria:

SH OUTFLAG = 00000 (4.3)

SH GAIAFLAG = 000 (4.4)

ph ∈ Table 4.2 (4.5)
σω/mω < 0.3 (4.6)

av05 6= av16 . (4.7)

In words, we selected only stars, which do have clean starhorse pipeline flags, a clean Gaia
flag, a specific photo-flag, and sufficiently small parallax error. We require the constraint
on the photo-flag, because we only derived the noise statistic for stars with this flag. For
details see Sec. 4.4.2. Additionally, we excluded stars for which the 5% V-band extinction
quantile is equal to the 16% quantile, as this suggests that the pipeline had difficulties for
these sources.

These criteria result in the selection of a total of 5 096 642 sources. Fig. 4.1 shows an
inverse-noise weighted average of our data projected onto the sky. To consistently combine
the information of many data points, it is crucial to know the likelihood of a data point given
the true amount of extinction for that source. We call this likelihood of one data point given
its true extinction the noise statistic to distinguish it from the likelihood of the whole data
set given the true 3-dimensional dust extinction distribution, which contains additional
operations (see Sec. 4.4 for details). Unfortunately, [3] did not publish a noise statistic for
their data-set, and a noise statistic is not readily derivable from posterior quantiles. This
is because posterior quantiles a give very limited information on the distribution P (a∗|a) of
the true extinction a∗, while a full noise statistic would be given by P (a|a∗). In particular,
there is no natural way to derive an analytic form of P (a∗|a), inhibiting the calculation
of P (a|a∗). We will thus choose a different approach to infer the noise statistic which we
describe in Sec 4.4.2.
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Figure 4.1: A Mollweide projection of the G-band extinction optical depth a to all sources
in the used dataset. For this healpix nside 128 plot, we average the data sources
that are in the same pixel, using the inverse noise dispersion as weights. Pixels
with no data appear in white.

name in Anders et al. [3] our notation explanation
dist16 dist16 16% distance quantile
dist50 dist50 50% distance quantile
dist84 dist84 84% distance quantile
ag50 a 50% G-band extinction quantile

SH PHOTOFLAG ph photo-bands used for data point
SH GAIAFLAG SH GAIAFLAG output flag of Gaia
SH OUTFLAG SH OUTFLAG output flag of the starhorse pipeline

Table 4.1: data columns extracted from Anders et al. [3]
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4.4 Likelihood

4.4.1 Response

If given the true 3D extinction density s(x), we can compute the extinction a∗i for each
source i by computing the line integral Ri

a∗i = Rω∗
i (s) =

∫ 1
ω∗
i

0

s(rθi)dr , (4.8)

where θi is the position of the i-th source projected onto the unit sphere and ω∗i is the
true parallax of the source. The true parallax ω∗i is assumed to be Gaussian distributed
with error and mean computed from the 16% and 84% percentiles of the starhorse dataset
according to Eqs. (4.1), (4.2):

ω∗i x G (ω∗i |
1

2
(ω84,i + ω16,i),

1

4
(ω84,i − ω16,i)

2) . (4.9)

Given this uncertainty of the true source distance, we can compute the expected extinction
density for the source i as a weighted line integral Ri

〈a∗i 〉P (ω∗i |ω16,i,ω84,i)
= Ri(s) =

〈
Rω∗

i (s)
〉
P (ω∗i |ω16,i,ω84,i)

=

∫ 1
ω∗
i

0

s(rθi)(1− cdf(r|ω16,i, ω84,i))dr , (4.10)

where cdf denotes the cumulative density function of Eq. 4.9 with r = (ω∗)−1. We compute
the line integral of Eq. (4.10) on the fly for every step, using a parallelized fortran code1.

The uncertainty of the true position of the source introduces a source dependent supple-
mentary noise contribution σ̂2

i . This uncertainty arises due to the uncertainty of the true
source distance, which introduces uncertainty on the line of sight extinction even when
given the true extinction density s. The standard deviation of this supplementary noise
contribution can be computed as

σ̂2
i = Var [P (a∗i |ω16,i, ω84,i, s)]

= Var

[∫
dω∗i P (a∗i , ω

∗
i |ω16,i, ω84,i, s)

]
= Var

[∫
dω∗i P (a∗i |s, ω∗i )P (ω∗i |ω16,i, ω84,i, s)

]
≤ Var

[∫
dω∗i P (a∗i |s, ω∗i )P (ω∗i |ω16,i, ω84,i)

]
= Var

[∫
dω∗i δ

(
a∗i −Rω∗

i (s)
)
P (ω∗i |ω16,i, ω84,i)

]
. (4.11)

1https://gitlab.mpcdf.mpg.de/mglatzle/gda_futils

https://gitlab.mpcdf.mpg.de/mglatzle/gda_futils
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The last inequality holds as P (ω∗i |ω16,i, ω84,i) has strictly more variance than P (ω∗i |ω16,i, ω84,i, s).
We sample this additional noise contribution before every step of our algorithm. We do
this by drawing M = 20 samples j of parallaxes ωji according to the statistic given by
Eq. (4.9). We then compute

σ̂2
i =

1

M

∑
j

Rωj
i (s) (4.12)

as the sample variance of the extinction estimate using the samples j and the current
reconstructed dust extinction density s. This error correction was not done in Leike and
Enßlin [64]. However, for this paper the smaller data uncertainty and slightly higher
parallax error of the sources raises the importance of computing this error correction,
while the use of the new code for the response enables its calculation.

4.4.2 Noise Statistic

The noise statistic specifies how probable an observed G-band extinction value is, given
one would know the true amount of G-band extinction for that source. Since there is no
detailed noise statistic published for the dataset we use, we have to construct it. To do this,
we look at regions of the sky where there is no significant amount of dust expected. These
regions were identified by using the Planck dust map [89], more specifically the dust map
from the COMMANDER pipeline of the 2014 Planck data release. Here, regions with less
than exp(2)µK/rJ were taken to be dustless. This criterion selects 606 pixels of the healpix
nside 256 dust map, corresponding to 0.077% of the sky. For every SH PHOTOFLAG for
which we have more than 100 values in these dustless regions, we calculate the mean mph

and standard deviation σph of all G-band extinctions. Using these values, we define the
probability to measure an extinction a given the true extinction a∗ as

P (a|a∗, SH PHOTOFLAG = ph) = G (a|a∗ +mph, σ
2
ph) . (4.13)

Table 4.2 show our used means mph and standard deviations σph for all used photoflags
ph. As can be seen by investigating Table 4.2, the mean values deviate strongly from zero,
and correcting the zero-point is vital to our reconstruction. Note that because we fix the
noise statistic for an actual extinction value of zero, the reconstruction might be biased for
high extinction values. We discuss some biases that could be attributed to this effect in
Sec. 4.7.2.

4.5 Prior

We fold our physical knowledge into the prior of the dust extinction density. We choose
the exact same prior model as in [64]. We assume the extinction density s to be positive
and spatially correlated. This can be enforced by assuming a log-normal Gaussian process
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ph=SH PHOTOFLAG mean mph standard deviation σph
GBPRP 0.493 0.439

GBPRPJHKs 0.131 0.259
GBPRPJHKs#W1W2 0.315 0.538
GBPRPJHKsW1W2 0.116 0.232
GBPRPgrizyJHKs 0.223 0.209

GBPRPgrizyJHKsW1W2 0.156 0.172
GBPRPiJHKsW1W2 0.101 0.219
GBPRPiyJHKsW1W2 0.165 0.234

Table 4.2: SH PHOTOFLAG values and the corresponding mean and standard deviations
for sources in dustless regions. Regions are considered as dustless if the Planck
dust map shows weaker emission than exp(2)µK/rJ.

prior

sx = ρ0 exp(τx) , (4.14)

τ x G (τ |0, T ) , (4.15)

where ρ0 is the prior median extinction density and T is the correlation kernel of the
Gaussian process τ . The prior median extinction density is a hyper-parameter of our
model and we choose ρ0 = 1/1000pc−1. We infer the kernel T during our reconstruction.
This can be achieved by rewriting s in terms of a generative model

sx = ρ0 exp(F
√
Tk(ξT )ξk) , (4.16)

where all ξ are a-priori standard normal distributed and Tk(ξT ) is a non-parametric model
for the Fourier transformed correlation kernel Tk, also called the spatial correlation power
spectrum. One should note that this model is degenerate, any change in Tk can be absorbed
into ξk instead, as only the product of these two fields enters the overall dust extinction
density s. Because of this property, the reconstructed power spectrum Tk does not have to
be the empirical power spectrum of sx, that can be calculated by Fourier transforming and
binning. To avoid misunderstandings and artifacts from the degenerate model, we mainly
report the empirical power spectrum in this paper, which is computed from posterior
samples of sx. We now focus on our model for the power spectrum Tk. This model
assumes the spatial correlation power spectrum to be a preferentially falling power-law,
but allows for arbitrary deviations. It can be written as√

Tk(ξT ) = Exp∗Exp
[
(ms + σsξs)ln(k) +m0 + σ0ξ0

+ Fln(k)tsym(A/(1+(t/t0)2)ξφ(t))
]
, (4.17)

where the first part describes a linear function on log-log scale, i.e. a power law; and the
second part describes the non-parametric deviations which are assumed to be differentiable
on log-log-scale. The operation Exp∗ denotes the exponentiation of the coordinate system.
More explicitly, Fln(k)t is Fourier transformation on log-log scale, and the function sym is
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defined as

f : [0, 2b]→ R (4.18)

sym(f)(x) = (f(x)− f(2b− x))
∣∣
[0,b]

, (4.19)

where f
∣∣
M

denotes the restriction of the domain of the function f to M . The function
sym is required to deal with the periodic boundary conditions introduced by the Fourier
transform. Details can be found in the appendix of Arras et al. [8]. The hyper-parameters of
the model are (A, t0,ms, σs,m0, σ0) which we chose to be (11, 0.2,−4, 1,−14, 3) in complete
analogy to Leike and Enßlin [64].

4.6 Algorithm

We combine the prior and the likelihood into one generative model of the data. We compute
approximate posterior samples using Metric Gaussian Variational Inference (MGVI) [54].
This variational approach alternates between drawing samples around the current estimate
for the latent parameters and optimizing the current estimate using the average gradient
of the samples. The final set of samples is used to derive an uncertainty estimate on all
our maps as well as on all derived quantities.

For further parallelization, we split the problem into the 8 octants. Each octant has size
410pc× 410pc× 310pc, such that they overlap for 20pc.

We hereby use a threefold parallelization scheme, parallelizing by octants, parallelizing
by samples and a parallelized response. The latter two parallelizations are enabled by our
new fortran implementation, which computes the arising line integrals (Eq. (4.10)) on the
fly. This is in contrast to our previous paper [64], where we computed the line integral
using sparse matrices. Computing the response on the fly takes approximately the same
time, but does not have any additional memory requirements and therefore allows for
parallelization and a larger reconstruction.

The total number of degrees of freedom is ≈ 417 Million, exceeding those of our previous
map by a factor of 30. The total computation time was about 2 weeks of wall clock time,
or about 0.5 Million CPUh on 1920 cores.

The final samples of the independently reconstructed octants are combined into the full
reconstruction using a differentiable variance-preserving interpolation scheme. The details
are described in appendix A.

One noteworthy point is that we cut away the outer 30pc due to artifacts from periodic
boundary conditions, resulting in a final map volume of 740 pc× 740 pc× 540 pc.
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4.7 Results and Discussion

4.7.1 Results

We were able to reconstruct the nearby dust clouds. Fig. 4.2 shows various maps produced
from our result and their relative uncertainty. The maps show tendrils and filaments of
dust on scales as small as 2pc up to scales of several hundred parsecs, at which they become
disconnected.

All octants inferred similar logarithmic convolution kernels, as can be seen in Fig.4.3.
These correlation kernels were computed by taking a slice out of the reconstructed Fourier
transformed square root power spectrum.

A comparison of the empirical power spectra of the 8 different octants can be found in
Fig. 4.4. Most octants have very similar power spectra, only octant 3 deviates strongly.
This octant, located at 180 < l ≤ 270 and b > 0 (disregarding the overlap), is strongly
devoid of dust, explaining the significantly lower power spectrum.

For the power of the full-volume extinction density, we find a power law with spectral
index of 2.52± 0.015 at scales from 2pc to 100pc. For the logarithmic power, we report a
spectral index of 2.82± 0.022 at scales from 2.3pc to 125pc.

Using our reconstruction, we can determine distances to nearby dust clouds. We derive
two distance maps. Fig. 4.5 shows the distance to the nearest dust clouds in all directions,
as well as an uncertainty on that distance estimate. Note that we compute the distance by
checking for the first voxel that exceeds a the threshold of 0.005 e-folds per pc of extinction
density. Some of our samples do not exclude the existence of nearby dense clouds, which
raises the uncertainty in the corresponding directions tremendously. Fig. 4.6 shows the
distance to the densest dust clouds in all directions, as well as an uncertainty on that
distance estimate. Note that the uncertainty estimate is quite high on the boundaries of
dust clouds, as the reconstruction is uncertain which voxel is densest along these lines of
sight.

4.7.2 Comparison

An implicit assumption of the algorithm is that the voxels are smaller than the achievable
resolution. Phrased in physical terms, an increase in pixel resolution can be regarded as
a renormalization and we need to reach the continuous limit, i.e the limit of negligible
discretization effects, for the algorithm to work. This is a byproduct of the inference of
the power spectrum, if the achieved posterior resolution is of the order of the imposed
voxel resolution, then the reconstruction changes drastically from one voxel to another and
the extinction of sources behind an affected voxel also changes dramatically at the bound-
ary. This sudden change in extinction is not compatible with a falling spatial correlation
power law in Fourier space, thus the reconstructed power will fall less steep than the real
one. This would significantly hamper the ability of the algorithm to extrapolate between
measurements. We avoid this behavior by significantly increasing resolution compared to
our previous reconstruction [64]. However, it is conceivable that the reconstruction would
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Result of our 3D dust reconstruction. The first column shows dust extinc-
tion, the second shows the relative error. The first row shows the integrated
extinction in e-folds in a Mollweide projection of the whole reconstructed box
of 740 pc × 740 pc × 540 pc. The second row also shows integrated extinction
in e-folds in the same box, but integrated normal to the Galactic plane instead
of radially. The third row shows differential extinction in e-folds per parsec in
a slice along the Galactic plane.
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Figure 4.3: Reconstructed correlation kernels for the different octants. Note that the
logarithmic dust extinction in our model is the result of an a-priori normal
distributed field that is folded with these kernels, dependent on the octant.
The octants are arranged such that octant i = 4b2 + 2b1 + b0 (for bi ∈ {0, 1})
extends in positive x-direction if and only if b0 = 0, in positive y-direction if
and only if b1 = 0 and in positive z-direction if and only if b2 = 0. Note that
all kernels fall to about 10% in the first 2 pc.
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Figure 4.4: Empirical power spectra of the dust extinction density of the eight octants.
The octants are arranged such that octant i = 4b2 + 2b1 + b0 (for bi ∈ {0, 1})
extends in positive x-direction if and only if b0 = 0, in positive y-direction if
and only if b1 = 0 and in positive z-direction if and only if b2 = 0.
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Figure 4.5: A Mollweide projection showing the distance to the first voxel of our re-
construction that exceeds an extinction estimate of 0.005 e-folds per parsec
(top panel) and corresponding uncertainty map (bottom panel). Directions for
which the threshold is never reached appear in white.
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Figure 4.6: A Mollweide projection showing the distance to the voxel with the highest
extinction estimate in that direction (top panel) and corresponding uncertainty
map (bottom panel).
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still benefit from increasing the amount of voxels. We recommend distrusting the smallest
scales of our reconstruction, only at scales of 2 pc or larger can the result be considered to
be stable. This resolution limit was deduced from the reconstructed logarithmic correla-
tion kernels as seen in Fig.4.3. At this limit, the reconstructed correlation kernels of the
logarithmic dust extinction density have fallen to 10%.

A comparison of our results to Leike and Enßlin [64] can be found in Fig. 4.7; see Fig. 4.8
for a logarithmic version.

We compare our results to the map of Green et al. [45]. Fig. 4.9 shows column density
comparisons of the two reconstructions. Fig. 4.10 shows the same column densities, but on
a logarithmic scale. A more detailed comparison to Green et al. [45] in angular coordinates
can be seen in Fig. 4.11.

In contrast to our old map, we use the dataset of [3], which provides more sources and
tighter constraints on the parallax and G-band extinction than the previously used Gaia
data. The new reconstruction has a volume of 800 pc × 800 pc × 600pc, compared to the
(600 pc)3 cube in Leike and Enßlin [64]. Furthermore, using a designated fortran routine
for the computation of the line of sight integrals lead to the necessary speedup to handle
the additional data constraints and massively more degrees of freedom. Finally, in the
new reconstruction the parallax error is propagated into the measurement error, causing
extinction values with stars of high parallax error to be less informative. In Fig. 4.7 one
can see dust column densities along Galactic x, y, and z coordinates. Both dust maps
agree on the morphology of large dust clouds on large scales. However, the current dust
map contains significantly more dust. Part of the reason is that the data we use in the
reconstruction of this paper has higher resolution and lower noise, allowing more dust to be
reconstructed. We also believe the data used in Leike and Enßlin [64] to be slightly biased
to underestimating the amount of dust, an effect that accumulates in a reconstruction that
uses many data points. In contrast, the data used in this reconstruction might have a
tendency to overestimate the amount of dust, despite our effort to calibrate the zero point
(see Sec. 4.4.2).

We furthermore reconstruct our correlation kernel nonparametrically, which should lead
to an unbiased estimate of the power spectrum. Fig. 4.12 shows power spectra of Leike
and Enßlin [64], the reconstruction of this paper, and of the reconstruction of Green et al.
[45]. Our new reconstruction and Leike and Enßlin [64] seem to have quite consistent
power spectra. The general tendency of the falling power law is also remarkably consistent
with Green et al. [45], however at scales of a few parsec the power spectrum of Green
et al. [45] flattens which we believe to be an artifact of how we put their reconstruction
on a cartesian grid, i.e. the boundaries of the reconstructions intrinsic voxels introduce
steep cuts which flatten the resulting power spectrum. However, none of the power spectra
are consistent within the uncertainties estimates. While this seems problematic, one has
to bear in mind that all reconstructions focus on dust in differing regions, potentially
explaining the difference in the power spectrum. In Fig. 4.13 we show the power spectra of
the logarithmic reconstructions. These seem to be less consistent in general, however one
has to bear in mind that the logarithmic power spectrum is dominated by regions of low
dust content, as these occur more frequently. Using Gaia data our method was found to
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underestimate low dust regions, and we anticipate that with the starhorse data we tend to
overestimate low-dust regions. Nonetheless we find that the spectral index of 2.82± 0.022
at scales from 2.3 pc to 125 pc is compatible with the empirical spectral index of Leike
and Enßlin [64] within a 2σ joint uncertainty margin. The spectral index of the empirical
power spectrum of Leike and Enßlin [64] is 3.2 ± 0.14.2The logarithmic power spectrum
of Green et al. [45] seems to be inconsistent with our measurements. However, this effect
is probably due to how we treat the missing values in that map, where a quarter of the
sky was not measured. We have to set these values and every possible choice will impact
the derived power spectra. We chose to set them to 10−7, which has minimal impact on
the power spectrum on linear scale, but biases the power spectrum of the logarithmic dust
extinction density and could potentially explain the difference.

Fig. 4.14 shows a histogram of dust extinction density per voxel. One can see a good
agreement between the histogram of our old and our current reconstruction in the region
between 10−3 pc−1 and 10−1 pc−1. A dust extinction density of 10−4 pc−1 integrated to the
boundary of our simulation cube yields an integrated extinction of 0.046, which is below
our noise level even when pooling the information of many stars. For this reason, we
do not show the histogram below 10−4 pc−1 as its shape is mostly dependent on how the
reconstruction extrapolates into dustless region. From the histogram it can be seen that
the dust density is well described by a log-normal distribution. Note that since we show
only the part of the histogram that has high signal to noise, this result should be relatively
unbiased by our choice of prior. The fitted log-normal model has a standard deviation of
σ = 1.906± 0.009 and a mean of m = −9.79± 0.04.

4.7.3 Using the reconstruction

One should note that the reconstruction shows a non-negligible amount of dust in the local
bubble. We believe that the level found is an artifact of our noise statistic. As described
in Sec. 4.4, our data model involves some heuristics which might systematically affect the
reconstruction. This causes estimates made with this data to be biased and we were not
able to fully correct for this bias. When integrating the reconstructed dust density to
70 pc, we find that the nearby dust looks like a smeared out version of farther dust clouds,
indicating that it is indeed an artifact related to systematic data biases.

The posterior samples of the extinction density are available for download under https:
//doi.org/10.5281/zenodo.3750926 or by its DOI 10.5281/zenodo.3750926 . When us-
ing the reconstruction we advise to beware of systematic overestimations of dust, especially
in the local bubble. When deriving numeric quantities, we advise to do so for every sample
and then estimate the mean and standard deviation of the results in order to get an error
estimation.

2Note that [64] reports a spectral index of 3.1 for the reconstructed power spectrum. For this paper,
we instead chose to analyze the power spectrum of the resulting maps, which yields slightly different
values but enables us to derive uncertainty estimates for all compared maps in the same way.

https://doi.org/10.5281/zenodo.3750926
https://doi.org/10.5281/zenodo.3750926
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Comparison of column densities of our current reconstruction (left column) and
Leike and Enßlin [64] (right column). The rows show integrated dust extinction
for sightlines parallel to the z- x- and y-axis respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: As Fig. 4.7 but on logarithmic scale.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Column density comparison of our current reconstruction (left column) and
that of Green et al. [45] (right column). The rows show integrated dust extinc-
tion for sightlines parallel to the z- x- and y-axis respectively. Note that for
Green et al. [45] we show the integrated extinction only if more than 50% of
the projected voxels exist in the reconstruction.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: As Fig. 4.9 but on logarithmic scale.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.11: Comparison of integrated extinction of our reconstruction (left column) and
that of Green et al. [45] (right column) in sky projection. The rows show
integrated dust extinction out to the boundary of our 740 pc×740 pc×540 pc
box in an all sky view (first row), as well as two selected directions towards
the Galactic anticenter (middle row) and center (last row).
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Figure 4.12: Empirical power spectra of the dust extinction density of this paper
(solid line), Leike and Enßlin [64] (dashed line) and the reconstruction of
Green et al. [45] (dotted line).

4.7.4 Implications

Our map can be used to constrain simulations of the ISM. For example, in simulations of
radiatively cooling dust clouds in hot winds, it has been shown that dust density power
spectra are flatter than was previously thought [87]. Our maps show power spectra com-
patible with these simulations, and morphologically similar structures. Our reconstructed
spectral index of 2.82 ± 0.022 at scales from 2.3 pc to 125 pc could be used to constrain
parameters of sub-grid models of simulations of the ISM. Furthermore we find the density
histogram of the logarithm of the G-band dust extinction density in e-folds per parsec
shown in Fig. 4.14 is well described by a log-normal distribution with standard deviation
σ = 1.906± 0.009 and mean m = −9.79± 0.04 on extinction density scales from 10−4 pc−1

to 1 pc−1.

4.8 Conclusion

We were able to reconstruct the dust clouds within ∼ 400 pc of the Sun down to a resolution
of 2 pc, improving in resolution and volume on our previous reconstruction [64]. The
resulting map is public and can be downloaded; see Sec. 4.7.3 for details. Distances to
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Figure 4.13: Empirical power spectra of the logarithmic dust extinction density of this
paper (solid line), Leike and Enßlin [64] (dashed line) and the reconstruction
of Green et al. [45] (dotted line).

and densities of all dust clouds larger than 2 pc are expected to be well constrained by
the reconstruction. We report our estimate on the power spectrum of the dust extinction
density as well as the logarithmic density. Furthermore, we provide a histogram of dust
densities in the interstellar medium and find them to be well described by a log-normal
model. We hope that our diverse summary statistics allow simulations of the ISM to be
constrained.
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Figure 4.14: Histogram of dust extinction density per voxel of this paper (solid line),
Leike and Enßlin [64] (dashed line) and the reconstruction of Green et al.
[45] (dotted line). We overplot a log-normal model that was fitted to our
reconstructed logarithmic extinction density (dash-dotted line). The curve of
the fit is described by f(x) ∝ exp (−0.5σ−2 (ln(x)−m)) with σ = 1.906 and
m = −9.79 and follows our empirical distribution function closely.
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4.10 Appendix A: Interpolation scheme

To parallelize the reconstruction, we reconstructed the eight octants of the coordinate
system independently, with a 20 pc overlap region. To get one final reconstruction, we
have to glue these reconstructions together and specify how we deal with the overlap
region. We do so using a differentiable, variance preserving interpolation scheme, i.e.
if the octants are differentiable then the result is differentiable; and the final samples
have at least the variance that the individual reconstructions imposed. We compute the
uncorrected interpolated logarithmic extinction samples τ ′(x)j from the samples of the

https://www.cosmos.esa.int/web/gaia/dpac/consortium
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eight octants oi(x)j as

τ ′(x)j =
∑
i

wi(x)oi(x)j . (4.20)

Hereby the weights wi(x) can be computed as

wi(x) =
2∏

k=0

∣∣∣∣bk(i)− f (xk − 9 pc

18 pc

)∣∣∣∣ , (4.21)

where f(x) =


0 x ∈ (−∞, 0]

x2(3− 2x) x ∈ (0, 1)

1 otherwise,

(4.22)

and bk(i) denotes the k-th digit of i in binary format. Noteworthy properties of this scheme
are that the weights sum to one

∀x
∑
i

wi(x) = 1, (4.23)

and the polynomial f is the unique polynomial of degree 3 such that

f(0) = 0 , (4.24)

f(1) = 1 , (4.25)

∂f

∂x
(0) = 0 , (4.26)

∂f

∂x
(1) = 0 . (4.27)

By using this interpolation scheme only voxels that have a coordinate xk of which the
absolute value is at most 8 pc get non-zero contributions from more than one octant, or
put in a different way: We cut away the outermost 2 pc of all reconstructions, which
mitigates artifacts from periodic boundary conditions. From the preliminary logarithmic
extinction density τ ′(x)j we can compute the logarithmic sample mean τ̄(x) as

τ̄ =
1

N

∑
j

τ ′j . (4.28)

Here N denotes the number of samples. The variance of τ ′j is artificially low at overlapping
regions, as independent samples were averaged. We correct for this effect and compute the
overall logarithmic extinction density samples τ(x)j as

τ(x)j =
τ ′(x)j − τ̄(x)√∑

iwi(x)2
+ τ̄(x) . (4.29)
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4.11 Supplementary Material

This chapter is not part of the publication and was supplemented in this thesis to provide a
more detailed view of the main result of this thesis, the three dimensional dust reconstruc-
tion.

Figure 4.15: Integrated G-band extinction to the boundary of our reconstruction volume,
viewed from the location of the Sun.
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Figure 4.16:
Relative uncertainty map to Fig. 4.15.
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Figure 4.17: Column density of G-band extinction in the Galactic plane around the Sun.
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Figure 4.18: Relative uncertainty map to Fig. 4.17
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Figure 4.19: Differential G-band extinction within 2 pc of the Galactic plane.
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Figure 4.20
Relative uncertainty map to Fig. 4.19.





5 Computational aspects

This chapter discusses some numerical aspects of the employed algorithms. We presented
some of the first applications of the MGVI algorithm [54], and as such we would like to
discuss some numerical considerations and practices that are relevant for the understand-
ing, application, and derivation of MGVI. Here, we especially focus on the minimization,
discussing why we use the Newton conjugate gradient method and test the performance of
two different variants of the method. The discussed aspects might generalize to other high
dimensional minimization problems.

Many of the numerical considerations are not new and can be found in books about
numerical optimization such as Nocedal and Wright [68]. We reproduce some of these
considerations here for clarity and educational purposes, and in order to make this thesis
self-contained. Though some aspects of this chapter are introductory, a familiarity of the
reader with the Newton method as well as the conjugate gradient algorithm is assumed.

5.1 Discussing the heuristic of the Newton conjugate
gradient algorithm for minimizations in a high
dimensional setting

5.1.1 Theory

The goal of minimization is to find the location of a local minimum x of an objective
function f . Minimizers do so by proposing a series of trial points xi, where the function f ,
its gradient, and metric M can be evaluated. By metric M we mean a position dependent
positive definite operator that is equal to the second derivative of f near its minima1.

In this chapter we will mainly regard the Newton conjugate gradient minimizer and the
gradient descent minimizer and explain their properties and limitations in high dimensional
minimization.

One way to classify minimizers that is often considered is their convergence order. A
minimizer is said to have convergence order λ if and only if the series

ln (|xi − x|) ∈ O(iλ) , (5.1)

i.e. it is said to have linear convergence order if the difference to the true value reduces
by a factor in every iteration of the minimization. In theory, if it takes a certain time to

1In practice, the metric will not be exactly equal to the second derivative at the minima, but many
considerations apply nonetheless.
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evaluate the first digit of the minimum’s location, one just has to invest 16 times more
time to get to double precision floating point accuracy. Thus, looking at the definition
from a practitioner’s perspective, it is not clear why anyone would need faster than linear
convergence. We will see that the problem is not the linear convergence, but the factor by
which one shrinks the distance to the minimum being too close to 1.

To investigate this, it is instructive to consider the performance of a steepest descent
scheme, which always follows the gradient downwards. Let us assume the objective function
f given by the simple quadratic form

f(x) =
1

2
x†Mx =

1

2
x†
(

1 0
0 1002

)
x . (5.2)

Consider the initial value for the minimization to be x0 = (1, 1/1002)†. Then the gradient of
f is

∂f

∂x
(x0) = Mx0 =

(
1
1

)
. (5.3)

A gradient descent scheme then descents in negative gradient direction, i.e. x1 = x0 −
α(Mx0), where α is the step size. Choosing

α =
(Mx0)†(Mx0)

(Mx0)†M(Mx0)
=

2

1 + 1002
, (5.4)

minimizes the objective function along the descent direction and yields the new position

x1 =

(
1− x†0M

2x0

x†0M
3x0

M

)
x0

=

(
1− 2

1002+1
0

0 1− 1002 2
1002+1

)
x0

=

(
1− 2

1002+1
0

0 −(1− 2
1002+1

)

)
x0 . (5.5)

Thus, x1 is closer to the minimum of f by a factor z

z =
‖x1‖
‖x0‖

≈ 1− 2

1002
. (5.6)

In other words: To decrease the distance to the minimum by a factor of e it takes at least
5000 evaluations of the objective function and its derivative. One might expect that this
bad convergence rate is an artifact of the specific numbers and initial conditions of our
example. However, one can show that in general the convergence rate of a steepest descent
approaches (Theorem 3.4 of Nocedal and Wright [68]) is

z =
1

1 + 1/C
− 1

C + 1
≈ 1− 2

C
, (5.7)
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where C is the condition number of the matrix M , i.e. the quotient of its largest and
smallest eigenvalue.

One can generalize this consideration to all minimization problems, as near the minimum
x, the objective function f is well approximated by the quadratic form

f(x+ dx) ∈ f(x) + dx†Mdx+ O(dx3) . (5.8)

Typically, one has no control over the condition number of M and it tends to be very large
in high dimensions. The more parameters a minimization problem has, the less likely it
is that all eigenvalues of M end up at the same order of magnitude, and the less possible
it is to somehow tune the problem by hand in order to reduce the condition number. To
draw a conclusion out of the considerations so far, the linear convergence order of steepest
descent is problematic for minimizations, not because linear convergence is bad in general,
but because one has no control over the factor z by which one shrinks the distance to the
minimum in each step, and z tends to be very close to 1. To give some rough order of
magnitude, for our minimization problem in chapter 3 the condition number of the metric
is about2 106, and in chapter 4 we had C ≈ 107.

One way to overcome the complexity induced by a large condition number in minimiza-
tion is by using a second order minimizer, such as the Newton conjugate gradient. We
also applied the Newton conjugate gradient algorithm for our Bayesian inverse problem
presented in Chapter 3 and 4. The Newton conjugate gradient iterates between deter-
mining the descent direction and performing a line search in the descent direction. The
descent direction di in the i-th step of the iteration is found by numerically solving the
linear inverse problem

Midi =
∂f

∂x
(xi) , (5.9)

with M the metric at location xi for the descent direction di. This linear inverse problem
can also be regarded as a minimization problem with objective function

fCG =
1

2
d†iMidi − d†i

∂f

∂x
(xi) , (5.10)

The numerical inversion of the linear problem given by Eq. (5.9) is not exact, and the
resulting descent direction has a residual

rji =
∂f

∂x
(xi)−Mid

j
i , (5.11)

which quantifies how good Eq. (5.9) was solved. Here the upper index j denotes that j
iterations of the conjugate gradient algorithm were performed. Once the descent direction
di is calculated, x′i+1 = xi − di is proposed as the new iteration step. To increase the
stability of the minimization, a line search is performed in this descent direction, and the

2The exact value can vary during minimization.
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new location is the result of that line search. However, the involved criteria and algorithms
for the line search are tedious and ultimately irrelevant for this discussion. For the coming
section we will assume xi+1 = xi − di, which is true when xi is near the minimum x.

Choosing a step xi+1 = xi − di minimizes the quadratic part of Eq. (5.8). The residuals
to the actual objective function are thus of third order in the difference to the minimum’s
location. In the Newton conjugate gradient algorithm, one needs to specify how many
conjugate gradient steps are taken to solve the linear inverse problem given by Eq. (5.9).
This choice involves a tradeoff. On the one hand, taking more steps for solving the linear
problem given by Eq.(5.9), one might end up with a descent direction that ideally directly
leads towards the minimum. On the other hand, computing steps for the conjugate gradient
algorithm is almost as expensive as proposing a new location xi+1. For the new location,
the approximation given by Eq. (5.8) is more accurate. This makes conjugate gradient
steps at the new location more efficient than at the old location xi.

According to Nocedal and Wright [68], the point at which the conjugate gradient is
usually terminated is determined by imposing a factor ηi by which the norm of the residual
rji has to have decreased:

‖rji ‖ ≤ ηi

∥∥∥∥∂f∂x (xi)

∥∥∥∥ , (5.12)

For example the Python package Scipy [49], which bases its Newton conjugate gradient
method on Nocedal and Wright [68], chooses

ηi = min

(
0.5,

√∥∥∥∥∂f∂x (xi)

∥∥∥∥
)
, (5.13)

with the norm ‖.‖ being the 1-norm. In words, the conjugate gradient algorithm is run
until the 1-norm of the residual is half its initial value, unless its 1-norm was smaller than
0.5 to begin with. This dependence of η on the 1-norm is troublesome from the perspective
of dimensional analysis, as the gradient is in general not a unitless quantity, but 0.5 is.
To be more precise, the magnitude of the norm of the gradient ∂f

∂x
could be anywhere,

it can vary wildly for different objective functions. Thus one would expect that for one
minimization problem one is either always in the regime where ηi = 0.5, or always in the
regime where ηi =

∥∥∂f
∂x

(xi)
∥∥. In fact for MGVI, one tends to be in the branch were ηi = 0.5,

as the 1-norm scales with the number of dimensions, and through our standardization [53]
the entries of the gradient usually are at least of order 1.

In the software package NIFTy 6, the conjugate gradient is instead terminated if

|fCG(dji )− fCG(dj−1
i )| ≤ η′ (f(xi)− f(xi−1)) , (5.14)

with η′ = 0.1 and fCG as in Eq. (5.10). This satisfies the requirements of dimensional
analysis, as now both sides of the equation have the same units. We will evaluate the
performance of this heuristic rule in several examples.
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5.1.2 Tests

We will test the performance of the Newton conjugate gradient with heuristic I given
by Eq. (5.12) and the here proposed heuristic II given by Eq. (5.14) by applying them to
the minimization of different objective functions. We use increasingly practice relevant
examples, designed to mimic the optimization tasks that are being solved with NIFTy.

Rosenbrock function

The Rosenbrock function [80] and its multidimensional analogs are popular minimization
benchmarks. It is given by

fRosenbrock : RN → R , (5.15)

fRosenbrock(x) =
N−1∑
i=0

b (xi+1 − x2
i )

2 + (1− xi)2 , (5.16)

with the parameter b usually taken to be b = 100. We define a metric for it by noticing it
can be interpreted as a sum of two N − 1 dimensional Gaussian likelihoods

fRosenbrock =̂ − ln
(
G (0|xi+1 − x2

i , 2b
−11)

)
− ln (G (1|xi, 21)) . (5.17)

with ”=̂ denoting equality up to irrelevant constants. By writing the Rosenbrock function
in the form of Eq. (5.17) we can identify its metric with the Fisher metric of the likelihood.

Poisson log-normal

The objective function defined in this subsection is a variant of demo 2 of NIFTy5 [7].
The objective function is the posterior Hamiltonian of a log-normal process regression task
using a Poisson likelihood with homogeneous exposure. The objective function can be
defined as

fPoisson(ξk) =
1

2
ξ†kξk + λ(ξk)− d†lnλ(ξk) (5.18)

with λ(ξk) = F−1 1

20 + k2
ξk , (5.19)

where F is the Fourier transform, 1/20+k2 is a falling square root power spectrum enforcing
a differentiable field, and ξk are the latent degrees of freedom. The target of the Fourier
transform is a one dimensional grid of length 1 with 1024 pixels. The data d is generated
by sampling normal distributed ξk from which λ can be calculated. The data d is then
drawn to be Poisson distributed with rate λ.

Radial tomography

The objective function defined in this subsection is a variant of demo 3 of NIFTy5 [7]. It
can also be regarded as a simple variant of the models introduced in Chapters 3 and 4.
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The objective function is the Kullback Leibler divergence to the posterior Hamiltonian of
a Gaussian process regression task. This Gaussian regression task involves a Gaussian like-
lihood for radial integrations of positive field along several lines of sight. The Hamiltonian
can be defined as

Htomography(ξ) =
1

2
ξ†ξ +

1

2
(d− θ(Rs))†N−1(d− θ(Rs)) (5.20)

with s = F−1A(ξl)ξk (5.21)

and θ(x) =
1

exp(−x) + 1
, (5.22)

where F is the Fourier transform, ξ = (ξk, ξl)
T are the latent degrees of freedom, R is the

response which integrates radial lines of sight, N = 0.001 1 is the diagonal noise covariance,
and A(ξl) is a smooth square root power spectrum parameterized by the latent parameters
ξl. The target of the Fourier transform is a N×N grid. The radial lines of sight are chosen
with random target inside the reconstructed square and there are M lines. The data d is
generated by sampling normal distributed ξ from which s can be calculated. The data d is
then drawn to be independently normal distributed with mean θ(Rs) and variance 0.001.
The overall objective function is then calculated by

ftomography(m) =
1

10

5∑
i=0

[Htomography(m+ ξi) +Htomography(m− ξi)] (5.23)

with ξi being independent Gaussian samples using the Bayesian Fisher metric of Htomography

as covariance. The overall setup performs one iteration of the MGVI algorithm [54] with
five mirrored samples on a two dimensional tomography inverse problem.

5.1.3 Results

We minimized all objective functions using both termination criteria for the conjugate
gradient defined in Sec. 5.1.1. We terminated the minimization when(

∂f

∂x

)†
M−1

(
∂f

∂x

)
< C , (5.24)

with C = 10−6 for fRosenbrock, C = 10−4 for fPoisson and C = 10−2 for ftomography. Table
5.1 shows a summary of the results. Overall, both termination criteria for the conjugate
gradient perform similarly for the chosen problems.

Heuristic II is overall more stable under coordinate transformations. In all examples,
both heuristics are within a factor 2 of each other in terms of number of model applications.
Based on the here performed tests, no heuristic outperforms the other significantly, however
heuristic II can be preferred due to its invariance under coordinate transformations.
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fRosenbrock(x) fRosenbrock(10−4x) fPoisson f
(1)
tomography f

(2)
tomography

heuristic I 5340 6896 916 2692 194866
heuristic II 6056 6056 626 3582 118606

Table 5.1: Calls to the objective function, its gradient, or metric during minimization.
Calls to the metric are counted twice, they involve both the Jacobian of the
model as well as its adjoint. The rows show the two tested heuristics for termi-
nating the conjugate gradient. The columns are the different objective functions
defined in Sec. 5.1.2. Hereby f

(1)
tomography is defined to have N = 128 pixels per side

and M = 100 lines of sight, whereas f
(2)
tomography has N = 512 and M = 10000.





6 Conclusion

In this dissertation, two different applications of Bayesian reasoning on continuous fields
are discussed. In the first part, we investigate simulation schemes constructed by a prin-
ciple of minimal information loss. Contrary to common simulation schemes which require
a discretization of the partial differential operators, discretization in information field dy-
namics requires the specification of what statements the simulation parameters make about
a continuous field to be simulated. Based on this parameterized probability distribution,
the simulation scheme that causes the least information loss per time step is uniquely de-
fined. We investigate two different parametrizations and their resulting simulation schemes
in simulating the Burger’s equation. When comparing the found solutions to the results
of finite difference schemes, we find an overall better performance when using the same
amount of degrees of freedom. While the general direction of inferring solutions to PDEs
using Bayesian reasoning seems promising, the approach that was investigated in this thesis
has limited applicability. On the one hand, the increase in numerical performance comes at
the cost of additional computations that have to be performed. Additionally, the choice of
parametrization seems to play a fundamental role for the performance. The performance
for an IFD method derived for one application might not translate to a different setup using
the same differential equation, if the prior on the continuous field is not flexible enough.
Choosing a different prior that might cope with the new situation enforces the user to re-
calculate the updating rule for the new parameters. This derivation involves the analytical
calculation of several integrals, a hurdle that makes the method not readily applicable in
other contexts or for other differential equations. All these drawbacks could potentially
be overcome by future work. The use of explicit matrices in the simulation is the largest
drawback, as it enforces a quadratic scaling of the computational cost with the number
of degrees of freedom. However, the cost of explicit matrices can often be overcome by a
clever choice of basis, or by the use of sparse or implicit operators.

In the second part of this thesis, we present an example where such quadratic scaling
was overcome by the use of the MGVI algorithm [54] in the context of inference. Hereby, a
complex posterior distribution is approximated by a Gaussian with full covariance, that is
represented through an implicit operator. This enables a fast inference with more accurate
uncertainty estimates compared to methods that only involve diagonal covariance matrices
[54]. We apply this algorithm to infer the dust extinction density in a vicinity of about
300 pc of the sun. A large scale validation example shows that the uncertainties that the
algorithm imposes indeed represent the true uncertainty quite well, with the exception of
a few outliers. Using data from the Gaia catalog, we reconstruct a three dimensional dust
extinction map showing the nearby dust clouds. Our work contributes to the modeling
of the magnetized Local Bubble [71]. However, our reconstruction seems to be artificially
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void of dust. We attribute this effect to the likelihood, which is not very informing in
regions with low but non-zero dust extinction. Furthermore, it only included Gaia data
although further datasets were available.

We improve upon this first proof of concept in chapter 4, where we present an improved
version of our algorithm and reconstruction, using a richer dataset. The main algorithmic
improvements involve optimizations in runtime and parallelization. However, also improve-
ments in the treatments of parallax uncertainty were achieved. The dataset used in this
second reconstruction incorporates a larger amount of sources, and up to 3 times more
precise dust extinction measurements. The resulting map covers a slightly larger area in
vastly higher resolution, revealing nearby dust features in unprecedented resolution. By
reconstructing the dust density in such detail, we pose a challenge to simulations of the
interstellar medium to reproduce our results, or a possibility to tune the simulation hyper
parameters such that they produce the dust statistics we observe for the Galaxy.

Finally, chapter 5 provides insights into the inner workings of the employed minimiza-
tion procedure, discusses the Newton conjugate gradient algorithm and reflects upon its
implementation in NIFTy. We discuss the tradeoff between conjugate gradient and Newton
steps, and analyze two possible heuristics in several numerical examples. Our numerical
results show that both heuristics show comparable performance for standard minimization
benchmarks.
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