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Abstract

This thesis contains some new results on several different nonlinear elliptic variational
problems with critical exponent and the associated partial differential equations.

Paper [P1] gives a classification of positive solutions for the biharmonic Yamabe equation
on R™\ {0}, n > 5, which possess a non-removable one-point singularity at the origin. It
is shown that these solutions are up to dilation given by a negative power of |z| times a
one-parameter family of radial functions periodic in In |z|. This is in complete analogy to
the well-known classification in the second-order case.

Paper [P2] extends this classification to include more general critical nonlinearities, e.g.
of Hardy-Rellich type. A main achievement in this paper is the use of the moving planes
method to prove radial symmetry for arbitrary positive singular weak solutions.

Paper [P3] classifies the solutions of a conformally invariant log-Sobolev equation on the
sphere S"”. Tt is shown that all positive finite-energy solutions are given by the conformal
factors. This extends the known classification results concerning both minimizers of the
associated functional and solutions to the corresponding equation with fractional exponent
s> 0.

Paper [P4] is devoted to studying the asymptotics in the three-dimensional Brezis—Nirenberg
problem as the lower-order perturbation tends to its critical value. Our setting includes
non-constant critical potentials and non-constant perturbations. Through a careful expan-
sion of the energy functional, we obtain the asymptotics of the energy to first subleading
order in the perturbation parameter as well as precise blow-up asymptotics for a sequence
of almost minimizers and a characterization of their possible concentration points.

In Paper [P5|, the methods and results from [P4] are carried over to non-critical (with
respect to the Brezis—Nirenberg problem) dimensions N > 4. This extends and sharpens
previous results in the literature.






Zusammenfassung

Die vorliegende Arbeit enthélt einige neue Resultate iiber eine Reihe nichtlinearer elliptis-
cher Variationsprobleme und die zugehorigen partiellen Differentialgleichungen.

In dem Artikel |[P1] werden positive Losungen der biharmonischen Yamabe-Gleichung auf
R™\ {0}, n > 5, klassifiziert, welche eine nichthebbare Punktsingularitéit im Ursprung
besitzen. Die Losungen sind bis auf Dilatation gegeben durch eine negative Potenz von
|z| mal eine einparametrige Familie radialer Funktionen, die periodisch in In |z| sind. Dies
ist vollstandig analog zu der bekannten Klassifikation singuldrer Losungen im Fall zweiter
Ordnung.

In dem Artikel [P2] wird diese Klassifikation auf eine allgemeine Klasse kritischer Nichtlin-
earititen ausgedehnt. Eines der Hauptresultate dieser Arbeit ist der Beweis von Radial-
symmetrie fiir beliebige positive singulére schwache Losungen mithilfe der Moving-Planes-
Methode.

Der Artikel [P3| befasst sich mit der Klassifikation der Lésungen einer konform invari-
anten logarithmischen Sobolevgleichung auf der Sphére S™. Es wird gezeigt, dass alle pos-
itiven Losungen mit endlicher Energie durch die konformen Faktoren gegeben sind. Dies
verbessert die bekannten Resultate iiber Minimierer des zugehorigen Funktionals bzw. iiber
Losungen der Gleichung fiir fraktionellen Exponenten s > 0.

Artikel [P4] befasst sich mit asymptotischer Analysis fiir das Brezis—Nirenberg-Problem,
wenn der Term niederer Ordnung gegen seinen kritischen Wert konvergiert. Es werden auch
nicht-konstante kritische Potentiale sowie nicht-konstante Storungen betrachtet. Mithilfe
einer sorgfiltigen Entwicklung des Energiefunktionals erhalten wir das asymptotische Ver-
halten der Energie zu erster nachfithrender Ordnung im Stérungsparameter sowie die ex-
akten Wachstumsraten und moglichen Konzentrationspunkte fiir eine Folge von (Fast-)
Minimierern.

In Artikel [P5] werden die Methoden von [P4] im Fall nicht-kritischer (im Brezis—Nirenberg-
Sinn) hoherer Raumdimension N > 4 angewendet und analoge Resultate erzielt. Dies
erweitert und verschérft frithere Resultate aus der Literatur.
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CHAPTER 1

Introduction

The purpose of this thesis is to give a unified presentation of the following publicationsﬂ
obtained in the course of my doctoral studies under the supervision of Prof. Rupert L.
Frank.

[P1] Classification of positive singular solutions to a nonlinear biharmonic equation
with critical exponent (with Rupert L. Frank), arXiv:1711.00776, Anal. PDE 12
(2019), no. 4, 1101-1113.

|[P2| Singular solutions to a semilinear biharmonic equation with a general critical
nonlinearity (with Rupert L. Frank), arXiv:1903.02385, Atti Accad. Naz. Lincei
Rend. Lincei Mat. Appl. 30 (2019), no. 4, 817-846.

|[P3| Classification of solutions of an equation related to a conformal log Sobolev in-
equality (with Rupert L. Frank, Hanli Tang), arXiv:2003.08135, submitted to Adv.
Math.

|P4] Energy asymptotics in the three-dimensional Brezis—Nirenberg problem (with Ru-
pert L. Frank, Hynek Kovaiik), arXiv:1908.01331, submitted to Ann. Henri Poincaré
C.

|P5] Energy asymptotics in the higher-dimensional Brezis—Nirenberg problem (with Ru-
pert L. Frank, Hynek Kovatik), arXiv:1910.11036, Mathematics in Engineering, 2
(2020), no. 1, 119-140.

The structure of the rest of this thesis is as follows. The purpose of Chapter [1] is to
introduce the mathematical background and to review the existing literature concerning
the problems under study. More precisely, after introducing the basic objects as well as
recalling the Sobolev and HLS inequalities, two main lines of research shall be discussed
in more detail. The first, particularly relevant to Papers [P1]-|P3], is the classification
of positive solutions to conformally invariant nonlinear elliptic equations, see Section
The second, presented in Section [2.4] is the blow-up asymptotics for Brezis—Nirenberg-type
problems, which are studied in Papers [P4]-[P5].

IThe publication of mine Liquid Drop Model for nuclear matter in the dilute limit (with L. Emmert,
R. L. Frank), arXiv:1807.11904, accepted for publication in STAM Journal on Mathematical Analysis, is
not a part of this thesis for reasons of thematic coherence.


https://arxiv.org/abs/1711.00776
https://arxiv.org/abs/1903.02385
https://arxiv.org/abs/2003.08135
https://arxiv.org/abs/1908.01331
https://arxiv.org/abs/1910.11036 

2 1. Introduction

Chapter [2|is then devoted to presenting the results from Papers [P1]-|P5]. Building on the
exposition in Section (I we will introduce, state and comment on the main results of each
paper and give a sketch of the main proof steps.

Finally, a short declaration on my contributions as a coauthor for each of the papers is
given.

1.1. Fractional powers of the Laplacian and Sobolev spaces

The main topic of this thesis is to study the behavior of certain classes of solutions to some
variational problems set on spaces of functions. The unifying structural feature that all of
these problems share is that they are elliptic. While the notion of ellipticity can be defined
for a general pseudodifferential operator [78], in all that follows we shall not go beyond
considering the prototypical examples of elliptic differential operators. These are of course
the Laplace operator, given in space dimension n > 1 by A 1= Y"" 851_, and its powers,
which we shall introduce now. The following facts can mostly be found in the introductory
article [32]. For the sake of brevity, we only discuss the operator acting on R" rather than
on domains and make no mention of the more general Sobolev spaces WP with p # 2.
For a much more thorough treatment, see [32] or, e.g., the textbooks |1}, (61, [37].

We start by defining, for s > 0, the fractional Laplacian (—A)*® acting on a function
u € C§°(R™), say, by

(=A)w = FH([g]* Fu(€))- (1)

Here F is the Fourier transform defined below. This definition extends naturally to func-
tions u lying in the space H?*(R"), with

H*(R™) := {u € L*(R") : |¢|*Fu € L*(R™)}.
The space H*(R™) is referred to as Sobolev space (of order s > 0). Equipped with the

scalar product (u, v)gs := [g. (14 [€[**) Fu(§)Fu(§) d&, it is a Hilbert space for every s > 0.
Of some importance below will also be a variant of this space, namely the homogeneous

Sobolev space H*(R™) defined as the completion of C§°(R™) with respect to the norm
I€1° Full 2 gy

For s € (0,1) and a sufficiently smooth function u, the fractional Laplacian can also be
expressed as a singular integral by the formula

(=A)*u(z) := C, P.V. / Mdy

T — y|n+2s

n

for some constant C,, s > 0, where P.V. denotes the principal value integral. In the same
parameter regime, as observed by Caffarelli and Silvestre in [21], (—A)® can be viewed as
the Dirichlet-to-Neumann operator of a degenerate elliptic extension problem on the upper
half-space R’"!. For many more equivalent definitions (—A)*, see [56].
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If 0 < s < n/2, then the inverse operator (—A)~* is given through convolution by
(=A) () =cns | |z —y[* "ou(y)dy, (2)
Rn
for a constant ¢, s > 0.

Notation. For p € [1,00), a measurable set 2 C R" and a measurable function u : Q —
C, we shall denote by ||ul| @) == (J, |u|p)1/p its L? norm. If the domain (2 is understood,

we abbreviate ||ul|, := ||ul|zr(q). The scalar product on L*(Q2) is always denoted by (-,-).
For a function u € L*(R™), we take its Fourier transform to be defined by
1 )
— —i€-x
Fu(€) = W/Rn e “Tu(x) de. (3)

With this definition, F extends to a unitary map on L*(R"), see e.g. [73, Chapter IX].

For a differentiable function ® : M — N between Riemannian manifolds M and N and
x € M, we denote by D®(z) the differential of ® at z. If N = R, we write D®(z) = V®(z).

We denote by S" := {z € R"™ : |z| = 1} C R*" the n-dimensional sphere and by
N := (0,...,0,1) and S := (0,...,0,—1) its north and south pole, respectively. We will
always take S to be equipped with the surface measure induced by its embedding into
R+,

Finally, we denote by B, (z¢) := {z € R" : |z — x¢| < r} the open ball in R” with radius
r > 0 and center xy € R™.

1.2. The Sobolev inequality and the HLS inequality

In this section we bring the calculus of variations into play by discussing the fundamental
functional inequalities for the Laplacian and its powers, namely the classical inequalities of
Sobolev and Hardy-Littlewood-Sobolev. The concepts and results introduced in relation
with them will play an important role throughout the following.

For clarity, we start by discussing the historically significant case s = 1. The Sobolev
quotient functional is given, for u € C§°(R") say, by

Sn[U] - fR" ]Vu’Q dx _ fR" u(_Au) dz

B (Jan uns dg) 5 - HUH%

(4)
The exponent 2% is chosen to make the functional invariant under the replacement u(z) —

u(Az). For this reason, the exponent % is said to be critical.

The Sobolev inequality states that
Sy, := inf {Sn[u] 0 ue HI(R”)} (5)
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is a strictly positive number. (A simple scaling argument using the family of functions
(w(A-))as0 shows that the infimum is zero if the exponent 2% in ({)) is replaced by any
other positive number.) This inequality, without finding the value of the sharp constant
Sn, was first proved in the 1930s by Sobolev [84]. Twenty years later, Gagliardo [41] and
Nirenberg [66] gave independently a more modern proof, still without the sharp constant.
The value of the sharp constant was first given in unpublished work by Rodemich [76] and
through a non-rigorous argument by Rosen [77|, who noted that the functions

n—2

A 7 n
Ua;7)\(y) = (m) for some A > 0, reR s (6)
and their constant multiples realize the infimum in . Building on an early result of Bliss
[13], a full proof involving the sharp constant S,, and the family of optimizers (6]) was then
given in independent work by Aubin [7] and Talenti [88],

We now turn to the case of general fractional exponents s € (0,n/2). The fractional Sobolev
inequality asserts that S, s := inf{S, s[u] : 0 # v € H*(R")} is a positive number, that is,

n—2s

[(=A)2ulf2 > S, </ =~ dx) ’ for all u € H*(R™). (7)

In the seminal work [60], Lieb determined the optimal constant S, s for all s € (0,n/2)
and proved that all optimizers for &, s must be of the form

n—2s

U(y> = C <m> for some C 7& O, )\ > 0, T € R™. (8)

In fact, Lieb proved this classification for optimizers of the (diagonal case of the) Hardy-
Littlewood-Sobolev inequality, which says that

// (@)ely) dz dy < CM5 |y, for all v € Ln%(]R") 9)
R xR" ’ n+2s

T — y|n725

Here we take C!'L5 to be the sharp constant. The classification of optimizers for (9)) yields
the one for by observing that the Sobolev and the HLS inequalities are dual to each
other. This means that

slearat= s {wo-ge [[ M}, o

2n |I
veL n+2s (Rn)

i.e., up to a suitable normalization, the HL.S double integral is the Legendre-Fenchel trans-
form of ||(—A)*/?u||2. The relation can easily be proved by using the inversion formula

(2) and completing a square. From the duality relation (10} one can see that u optimizes
n+2s

the Sobolev inequality if and only if v = u»—2s optimizes the HLS inequality and that
moreover the optimal constants are related by S, = ¢, C'\5. See [61} proof of Theorem
8.3] and the introductions of the papers |23, B3] for a more detailed explanation of duality.
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A proof of the classification result which works directly on the Sobolev inequality
instead of using duality, was later given in [86] for positive integers and in [31] for all
fractional exponents s € (0,71/2). By now, many other proofs for (8] have been found, valid
for some or all values of s and based on a wide variety of methods, e.g. mass transportation
[30], the Brunn-Minkowski inequality [14], fast diffusion flows |23], inversion positivity [39]
and second variation [40].

1.3. The Yamabe equation and the role of symmetries

We now turn to discussing the PDE arising from the Sobolev inequality , namely its
Euler-Lagrange equation (up to normalization)

(=A)*u=ur2  on R (11)
Equation (11)) is referred to as the (fractional) Yamabe equation in parts of the literature,
due to its important role, for s = 1, in the Yamabe problem from differential geometry
[99, 93, 6, [79].

By applying (—A)~* to (11), we obtain the equation

n+2s

u@)=«—AYﬂw4ﬂu%=%54 ) g, (12)

n |z —yln2s

which is essentially equivalent to (11]) (see [27, Section 4] for a detailed statement). By
n+2s
setting whz = v, we recognize (12)) in fact to be, up to normalization, the Euler-Lagrange

equation of the HLS inequality (9).

Conformal invariance. The equations and possess a remarkable symmetry
property, namely that of conformal invariance. Recall that a conformal map & : M — N
between two Riemannian manifolds M and N by definition preserves the angle under which
any two given curves intersect. The group of conformal maps from R" U {co} to itself is
generated by the translations, rotations and dilations together with the inversion about the
unit sphere. For more background on conformal maps, see [61], Section 4.4]. Any conformal
map ¢ : R"\ N — R\ ®(N), for some Lebesgue null-set N, induces an isometry from

L%(R") into itself by setting
up(z) 1= det D®(z) "z u(®()). (13)

Conformal invariance now refers to the fact that ug is a solution to equation ([L1)), respec-
tively (12), if and only if w is. This is easiest seen for (12)). Indeed, the property

1

[@(x) — B(y)| = det DP(x)27 |z — y| det DB(y)2=
satisfied by any conformal map, implies via change of variables the transformation rule

nt2s n—2s n+2s

(=8)*uy ™ )(z) = det DO(x) "5 (—A)"u" (@(x),
from which the conformal invariance of easily follows.
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By the same computation for the inverse stereographic projection & : R" — S™\ {S},
which is conformal, Lieb observed in [60] that the HLS inequality can be recast on the
sphere S”, a reformulation that was crucial for his classification of optimizers. Indeed,
given a function u € L%(R”), similarly to (13) we define a function v € L%(S”) by

the relation
n+2s

u(z) = det DS(x) 2n v(S(x)). (14)
Then inequality @D for u is equivalent to the inequality
// @00, 4y < S|P L, (15)
ny§n ’W - n‘n Ln +29 (Sn)

for v with the same sharp constant C’flﬂgs, see e.g. [61, Theorem 4.5]. Moreover, via

Lieb’s classification result for the extremizers can be reformulated by saying that v
extremizes if and only if

(n+2s)/2
V1—|¢)?
v(w) C(l—{-w (16)
for some ¢ # 0 and ¢ € R™™! with |(] < 1.

Classification of positive solutions and the method of moving planes. An inter-
esting problem posed by Lieb in the above-mentioned work [60], whose by-now complete
solution has sparked many interesting developments, is to classify the positive solutions

LI’SCQS (R") to (12). More precisely, the goal is to prove that they are all again of the
form In view of the Euler-Lagrange formalism, this clearly extends the classification

of Sobolev optimizers discussed in the preceding section.

For the simplest case s = 1, this classification has been known since the 1980s, by work
of Gidas, Ni and Nirenberg [43), [44] (with an additional decay hypothesis at infinity) and
Caffarelli, Gidas and Spruck [22], see also [67]. Their main achievement was to prove
that any positive solution is necessarily radially symmetric about some point in R™. Once
this is known, equation reduces to an ODE which can be solved explicitly. The
radial symmetry is proved using the method of moving planes, which will be an important
tool in what follows. This device goes back to an idea of Alexandrov [2] and was widely
popularized by Serrin [82] and the above-mentioned works [43), 44]. Many more important
references can be found in the review article [16] and in the discussion below.

Among the cases s # 1, the first classification result was given for the biharmonic case
s = 2 by Lin [62] using a remarkable adaptation of the moving planes method, which was
extended to cover all integers s less than n/2 by Wei and Xu [97]. See also [92], 24], (98]
for related results. The classification result for the full fractional range was given for the
integral equation independently by Chen, Li and Ou [27] and Yanyan Li [59].

Inversion symmetry and moving spheres. We discuss now in some more depth the
special role of the inversion symmetry since this will be a recurrent theme in Papers [P2] and
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[P3]. In the context of the above-cited classification results, inversion symmetry has been
made crucial use of in at least two different ways. Firstly, when applying the moving planes
method, one can generate decay at infinity by passing to the Kelvin transform uy, , of a

solution u (in the notation of (13)) about a regular point xo. Here, I, ,,(z) = Ali(f;jg) + g
is the inversion about the sphere with center zy € R™ and radius A > 0. This strategy is

carried out in [P2], see Section [2.2] below.

A more systematic and powerful way of exploiting inversion symmetry in the context of
conformally invariant equations is the method of moving spheres set forth in [68, [29], 58].
Essentially, it replaces the reflection across a family of hyperplanes, central to the method
of moving planes, by the inversion (I, ;,) >0 about a family of spheres.

The crucial observation in the moving spheres method is that a function which is inversion
symmetric with respect to spheres of every possible center xq € R" is automatically of the
form . Surprising though this property may sound, it can be proved by a relatively
simple ’calculus lemma’, see [58, Lemma 2.5| for s = 1 and [57, Lemma 11.1] for general
s € (0,n/2). This clarifies the special role of the functions and allows for a more
direct classification proof than the moving planes approach, which only yields the partial
conclusion of radial symmetry up to translation. A somewhat more detailed description of
the argument, applied in the setting of |P3|, can be found in Section below.

Among the above-cited literature, the work [59] uses the moving spheres approach, in an
integral formulation. The alternative proof in [27] uses the Kelvin transform in connection
with an integral version of the moving planes method, but also invokes inversion symmetry
in a second step to conclude . The same spirit is already present in Lieb’s classifica-
tion argument for optimizers in [60], which also exploits the additional explicit conformal
symmetries obtained by projecting to the sphere.

Classification of positive singular solutions. At this point it is natural to ask about
_2n
solutions to which violate the integrability assumption v € L*_* (R"). The simplest

loc
case to study is to assume a one-point singularity at the origin. That is, we ask which
_2n_
positive functions u € L > (R™ \ {0}) satisfy

loc

n+2s

(—A)’u = un—2s on R"\ {0}. (17)

An explicit example of a solution to which is not in the class ([§)) of full-space solutions
is given by the pure-power function

n—2s
2

U(I) = dn,s|x|7 ) (18)
which for suitable d, ; > 0 indeed solves (17).

2n

For the easiest case s = 1, all positive singular solutions u € L;-** (R™\{0}) to the equation

n+2

— Au = un-> on R"\ {0} (19)
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have been classified in the 1980s in the above-mentioned work of Caffarelli, Gidas and
Spruck [22] and of Schoen [81]. The result is as follows. There exists ap > 0 and a family

2n_
(¢a) (0,00 Of periodic functions ¢, : R — Ry such that if u € L *(R" \ {0}) is a positive

loc
2n

solution to with u ¢ L' _* (R"), then

loc
u(z) = |x]’n772g0a(ln |z| +T), for some a € (0,a0], T € R. (20)

There are two key steps to the proof of this fact. Firstly, one proves that u is radial via
the method of moving planes [22]. Then, through the logarithmic change of variables

—2

u(z) = |27 p(In ) (21)
equation transforms to the ODE

n_22 n+42
_¢//+_( y ) =iz, (22)

Thanks to the autonomy of , the proof can be concluded by simple phase-plane analysis
[81].

The classification yields in turn a precise result on asymptotic radial symmetry for
singular positive solutions u to on the punctured ball {0 < |z| < 1} which is in fact
one of the main results in [22], namely that

u(@) = 2]~ pa(e + T)(1+0(1)  as |z| = 0.
This asymptotic expansion has been further refined in [55].

Secondly, the singular solutions play an important role in the construction of constant
scalar curvature metrics with prescribed isolated singularities by Mazzeo and Pacard [65],
see also [80].

For singular solutions to (17) with general s, the situation is much more challenging.
The best result to date is a two-sided growth bound u ~ |$|’n%%, which was proved in
the innovative works [20] (for s € (0,1)) and [564] (for s € (0,n/2)) by using extension
techniques and some blow-up analysis results from [51], [52].

In Paper [P1], we consider the biharmonic case s = 2. We prove a classification result for
solutions to with s = 2 which is fully analogous to (20)). In fact, we show that, even
though the equation is of fourth order, a suitable adaptation of "phase-plane’ analysis still
works. Our methods and results from [P1] have since been used by other authors to study
open questions related to biharmonic equations and @Q-curvature |72, [7T1 [3]. See Section

for details.

1.4. Blow-up asymptotics in the Brezis—Nirenberg problem

In the following section we introduce the second main topic of this thesis, treated in Papers
[P4] and [P5], which is the study of blow-up asymptotics for elliptic equations with critical
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exponent. In contrast to the above section, the problems are naturally set on bounded
domains of RY. (We switch here to denoting the space dimension by capital N > 3, in
accordance with the notation in [P4] and [P5] and the major part of the related literature.)
Therefore, the role of symmetry and uniqueness will be less dominant in what follows.
Nevertheless the reader will recognize the important role of the Sobolev inequality and
its full-space optimizers. Moreover, the problems we study here only concern the second-
order case s = 1, even though they are meaningful also for fractional exponents, see e.g.
[70l, 35, [89] [83].

The Brezis—Nirenberg problem. The interest in the questions we shall study grew
out of the seminal paper [17] by Brezis and Nirenberg. There, the authors study under

what conditions on the potential a € C(£2) the following nonlinear elliptic boundary value
problem possesses a solution.

—Au+au = N(N — 2)uf in Q,
u>0 in €, (23)
u=20 on Of).

Here, Q C R" is a bounded open set, N > 3 and p := % is the critical exponent with
respect to the Sobolev inequality. Our choice of the normalization factor N(N — 2) is
motivated by the fact that the functions U, , introduced in @ satisfy —AU, » = N(N —

2)Ux7>\ on RN.

By the variational approach, a solution to may be found as an optimizer for the
minimization problem

S(a):= inf  S,lul, 24
(a) . [u] (24)

where
Jo (IVul? + av?) dz
[ull7 i1 (g

Due to the lack of compactness in the embedding H'(Q2) < LPT1(Q), the existence of a
minimizer for cannot be established by the direct method. To remedy this, Brezis and
Nirenberg showed that a sufficient condition for the existence of a minimizer is the strict
inequality [17, Lemma 1.2]

Salu) == (25)

S(a) < S(0). (26)
(This lemma is attributed to Lieb in [17].)

One of the main findings in [17] is that the validity of depends rather strikingly on
the space dimension. Indeed, for N > 4, holds whenever a(z) < 0 for some = € €.
Since the best Sobolev constant is never achieved on a bounded domain, one easily deduces
from this that in fact the equivalence

S(a) is achieved <& S(a) < S(0) (27)
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holds. On the other hand, in dimension N = 3, there exists x> 0 such that if ||a||« < g,
then S, = Sy. We denote the largest possible of these numbers by 1y = po(€2) and shall
refer to it as the critical Brezis—Nirenberg constant (of the domain  C R3). The fact that
also holds if N = 3 was proved later by Druet [34].

The question of existence of a solution to is even more subtle than the question for
existence of a minimizer of . If the domain (2 is star-shaped, then has no solutions
for @ > 0 by the Pohozaev identity. However, if Q has non-trivial (in a suitable sense)
topology, then may have solutions regardless of the sign of a which do not arise as
minimizers of [9]. For a more detailed discussion, we refer to the excellent review
article [15].

Blow-up asymptotics. The main question to be addressed here in connection with the
Brezis—Nirenberg problem is the study of blow-up of low-energy solutions to (23). We start
by discussing the case of constant potentials for simplicity. Thus we study solutions u. to

—Aue — (o + €)ue = N(N — 2)u? in Q,
ue >0 in €, (28)
ue =0 on 0f).

If N = 3, we take here p to be the critical Brezis—Nirenberg constant. If N > 4, we take
to = 0. By the results from [17] and [34] presented above, has a solution u. for all
¢ — 0 obtained via minimization of S(—puo — €), while there is no such minimizer for e = 0.
The natural question is thus whether the solutions u, blow up as ¢ — 0, in the sense that
|te|| oo () — 00. If yes, can one describe in detail the blow-up profile, the blow-up speed
and the points of concentration?

The study of this kind of questions has been initiated in [4], 5] and most of all by Brezis
and Peletier in [18].

To describe the related results and conjectures we fix some notation first. For a function
a € C(Q) such that —A + a is coercive as an operator on L?(2), we let the (Dirichlet)
Green’s function G, be the unique function on 2 x € that satisfies in the distributional
sense

(“A+0)Ga(e,) = (N—2)8¥ s, mQ,
Go(z,-) =0 on 0f).
Moreover, we let H,(z,y) := W — Gu(z,y) be its regular part. Notice that Hy(z,y)

is harmonic, and hence smooth, in y. Through the resolvent formula one can deduce from
this that H,(z,y) has a continuous extension to the diagonal {x = y} C Q x Q. Thus we
can define the Robin function ¢,(x) := H,(x,z). The importance of the Robin function
in connection with problems involving the critical Sobolev exponent has been first pointed
out in [79], 15| [§].
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In dimensions N > 4, the blow-up behavior can be considered completely understood by
virtue of the following theorem.

THEOREM 1 (Atkinson—Peletier, Brezis—Peletier, Han, Rey). Let N > 4 and let (u.) be
a family of solutions to (with o = 0). Suppose moreover that (u.) is a minimizing
sequence for the Sobolev quotient. Then there is a constant cy only depending on N and a
point xo € € such that as e — 0, up to extraction of a subsequence,

2(N—4)
i ef|ucl| %) = enldo(@o)| if N =5
and
11_1%610g HUEHLOO(Q) = C4|¢0(I0)’ ZfN = 4.

Moreover, xy is a critical point for ¢q.

Notice carefully that in Theorem [1| the (u.) are not assumed to be minimizers of S(—e¢).
Indeed, in [75] Rey constructs a sequence of solutions to satisfying the assumptions of
Theorem (1| and concentrating about any critical point of ¢g. For € small enough, however,
these functions do not minimize S(—e) unless xy is a global minimum of ¢g, which follows
from the result in [87]. Still, a (much cruder) low-energy condition is imposed through the
assumption that the (u.) are a minimizing sequence of the Sobolev quotient (i.e., of ,
with R"™ replaced by ). Such an assumption is clearly necessary for a subsequence of the
ue to have precisely one concentration point by a concentration-compactness argument, see
[85], [63].

Theorem 1| has been proved in [5] when € is the ball and conjectured in [18] for general
smooth open sets (2. The conjecture has been proved subsequently in two independent
works by Han [46] and Rey [74].

The counterpart in dimension N = 3 is the following. We let o > 0 be the critical
Brezis-Nirenberg constant associated to the set 2 C R3.

CONJECTURE 2 (a la Brezis—Peletier). Let N = 3 and let (u) be a family of solutions to
. Suppose moreover that (u.) is a minimizing sequence for the Sobolev quotient. Then
there 1s a universal constant cg > 0 and xo € ) such that as € — 0, up to extraction of a
subsequence,

-1
lim € ||u5||%oo(9) = c3 </ G (70,9)? dy) . (29)
e—0 Q

Moreover, xq is a critical point of ¢_,,.

The statement of Conjecture [2/ does not appear explicitly as a conjecture in [18], but it is
contained there in spirit. Indeed, its analogue for the related problem

—Au = uP" + pou in €,
u>0 in Q, (30)
u=>0 on 0f),
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with critical constant p > 0 and subcritical exponent p — € (in the limit e — 0) is stated
in [18 Conjecture 3].

Both Conjecture [2| and [I8, Conjecture 3| are so far only known when € is a ball; see [18]
Theorems 2 and 3.



CHAPTER 2

Overview of the papers

2.1. Paper [P1]. Classification of positive singular solutions to a nonlinear
biharmonic equation with critical exponent

In this paper, we study positive singular solutions to the critical biharmonic equation

A%y = yits on R"\ {0}, (31)
for dimension n > 5. This is the special case s = 2 of the equation introduced and
discussed in Section

Our main result is a complete classification of positive singular solutions to , which is
fully analogous to for the classical case s = 1. In view of the regularity theory from
[94], it is no restriction to state it for classical solutions u € C*(R™\ {0}) only.

n—4

THEOREM 3. Let ag = (#)T. There exists a family of functions (Va)acjo,ao) defined
on R with infg v, = a and v,(0) = maxg v such that u € C*(R™\ {0}) is a positive solution
to if and only if it is of the form

u(w) = [a| =% ve(In |2| + T), (32)
for some a € [0,a0] and T € R. Moreover, u is strictly radial-decreasing if a > 0.
If a = ay, then vy, = ay.

If ag > a > 0, then v, is periodic with v,(0) > ag and symmetric with respect to its local
extrema.

If a =0, then vy = ¢,(cosh t)_%, for some explicit constant c,,.

Let us give a few remarks concerning Theorem [3]

(1) This theorem answers affirmatively a recent conjecture on log-periodicity of sin-
gular solutions stated in [45]. Moreover, our result shows that the additional
assumption made there on the positivity of the associated scalar curvature is un-
necessary.

—4

(2) By undoing the logarithmic change of variables u(z) = |z|~"z v(In|z|), the two
special solutions to mentioned above are recovered as the endpoints of the
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family v,. Indeed, vy and its translates yield the family of smooth solutions from
(8) (with suitable normalization constant ¢). On the other hand, v,, corresponds
to the pure inverse power solution (|18)).

(3) Theorem [3| has since been used by several authors to extend some classical results
from the case s = 1 to the biharmonic setting. Firstly, in the recent preprint [72]
Ratzkin uses Theorem |3| to refine the asymptotic radial symmetry statement for
local solutions of Jin and Xiong [54]. This constitutes the analogue of |55] for
s = 2. Secondly, the same author uses in [71] the family of solutions to prove
a property of a fourth-order conformal invariant which corresponds to a result of
Schoen [81] on the classical Yamabe invariant. Thirdly, in [3] Andrade and do
O use a variant of our ODE analysis to extend the statement of Theorem [3 to
fourth-order systems.

Besides these applications, we believe that Theorem [3| should be useful in the
construction of constant ()-curvature metrics with isolated singularities, similarly
to the works of Schoen [80] and Mazzeo and Pacard [65] for s = 1.

(4) The model power nonlinearity g(u) = w1 on the right side of can in fact be
replaced by a large class of functions satisfying a suitable growth bound. Extending
our analysis to these general nonlinearities is the main achievement of Paper [P2],
described in Section 2.2 below.

Sketch of proof. We now explain the proof strategy for Theorem [3]

The first step is to observe that any solution u to (31)) with a non-removable singularity at
0 must be radially symmetric. This was proved by Lin [62] using the method of moving
planes.

By radial symmetry and the change of variables u(z) = |z|~"Z v(In|x|), the problem is
thus equivalent to studying solutions v € C*(R) to the ODE

— AV + By = v on R (33)
with coefficients
—4 2 —4 2

A similar change of variables could be performed if the right side of was given by any
power nonlinearity v with p > 1. However, only the critical exponent p = "+4 leads to an
autonomous ODE [42] Section 3|, which will be essential for the following analy51s

The existence part of Theorem [3]is proved via a relatively straightforward shooting argu-
ment for the ODE (33)). (Alternatively, in [45], existence of a family of positive periodic
solutions parametrized by the period length rather than the minimal value is proved using
a variational argument.)
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We focus in what follows on the proof of the uniqueness statement of Theorem [3| which
contains in fact the main innovation. The idea is to carry out a phase-plane analysis similar
to the second-order case s = 1 for the solutions to the ODE . At first sight, it cannot be
expected that a similar analysis can give the desired result, e.g. because of the additional
degrees of freedom in the 'phase-plane’ and because the maximum principle is in general
unavailable. Indeed, autonomous fourth-order ODEs do exhibit in general a much more
diverse behavior than second-order ones, and their solutions may include non-monotone
kinks, multibump periodic solutions and chaotic solutions, see e.g. [69]. Overcoming these
difficulties is the main achievement in [P1].

The key is to exploit the special structure of the ODE (33). Most importantly, for all
n > 5, its coefficients A and B satisfy the structural condition

A>0 and 4B < A%
This means that can be written in the factorized form

d2 d2 n+4
(@—)\> (@—M)U:U"‘l, (35)

with positive coefficients A > p > 0. Using this second-order-type structure, one can prove
the following comparison lemma, which is central to our argument.

LEMMA 4. Let v,w € C*(R) be nonnegative solutions to (33)) such that

Then v = w.

Lemma [] goes back to [19}, 95]. In these works, however, the strong additional a priori
assumption of boundedness of v and w was imposed. By combining their proof with a result
of Gazzola and Grunau [42], which asserts that nonnegative solutions can only blow up in
finite time, we obtain Lemma {4| for arbitrary nonnegative solutions v,w. This simplified
argument is only exposed in Lemma 13 of Paper |[P2], but we chose to present it here for
clarity. We point out that in the published version of Paper [P1]|, we do not use this last
argument, but prove boundedness of v, w instead by an energy argument.

Lemma [4] immediately implies the following corollary.
COROLLARY 5. Let v,w € C*(R) be solutions to and suppose that v(ty) = w(ty) and
V'(to) = w'(to) for some to € R. Then v =w.

Corollary 5| states the surprising fact that solutions to (33)) which are defined on all of R
are uniquely determined by only two instead of four initial values! In particular, if ¢ is



16 2. Overview of the papers

a local extremum of v, by considering w(t) = v(2ty — t), we obtain symmetry of v with
respect to any local extremum 5. By repeated application of this, any solution with at
least two local extrema is periodic. Using these facts, the proof can be concluded by lifting
the standard second-order phase-plane arguments.

2.2. Paper [P2]. Singular solutions to a semilinear biharmonic equation with
a general critical nonlinearity

In this paper, we extend the techniques from Paper [P1| to prove a classification result
analogous to for positive singular solutions to the class of equations
1 n—
A= ——g(lz]Tu) iR\ {0} (36)

_|x2

for a general nonlinearity g satisfying the following natural assumptions.

g€ CI(R+)7 g > 07 hmtﬁo g(t) = Oa

9 < g'(t) < g—j@2 2 for all ¢ > 0, (37
B = limy o g'(t) < =04
g(t) > ct? forall t > 1, for some ¢ > 1, ¢ > 0.

Choosing g(t) = ¢4 recovers the equation treated in Paper [P1], but the conditions
also allow for the inclusion of a Hardy-Rellich term |z|~*u and a general subcritical
power u? (or a sum thereof), as in

A%y = Bl tu+ |z~ T in R\ {0}, (38)

n?(n—4)>2
16

with 0 < 8 < andl<q§2—fi.

The way the nonlinearity in is written becomes natural when passing to radial loga-
rithmic coordinates. Indeed, if u is a radial solution to , then by the change of variables

n—4

7 v(In|z|), is equivalent to
v® — A" + Bv=g(v) inR, (39)

u(x) = |z|”

with A and B as in (34).

The assumptions ensure that the function G(u) := [} g(t)dt — B“; has a unique
global minimum on (0,0c0), which we denote by ag > 0. Moreover, we denote by u =
2(A — /A2 —4(B — 3)) the smaller one of the two positive roots of the characteristic
polynomial £* — A¢? 4+ (B — f3) of the linearization of (39). Then our classification result
reads as follows.

THEOREM 6. There exists a family of functions (Va)acp,qo] defined on R with infrv, = a
and v,(0) = maxg v, such that the following holds. The function u € C*(R™\ {0}) is a
positive solution to if and only if it is of the form

u(z) = |x|_%va(ln lz| +T),



2.2 Singular solutions to a biharmonic equation with general nonlinearity 17

for some a € [0,a0] and T € R. Moreover, u is strictly radial-decreasing if a > 0.
If a = ay, then v,, = ay.

If ag > a > 0, then v, is periodic with supg v, > ag and symmetric with respect to its local
extrema.

If a = 0, then for any € > 0 there is C > 0 such that vy(t) < Ce~ VA=t

This classification result is thus identical to the one from Theorem [3| up to the fact that
for general g there is no explicit expression for the homoclinic solution vy and we can only
give exponential decay bounds.

While in the ODE part of the proof of Theorem [6] the only novelty compared to Paper
[P1] is the derivation of the exponential decay estimates, a substantial amount of work is
required to prove radial symmetry of any solution u to (36).

We use a variant of the method of moving planes which goes back at least to Terracini
[90] and relies mostly on integral estimates. Unlike the existing symmetry proofs in the
literature for higher-order equations [62], [97|, where the method of moving planes is driven
by pointwise estimates, our method can therefore be applied directly to weak solutions of
the equation.

Let us give a somewhat more detailed sketch of the moving planes argument. The first step
is to regularize the function at infinity via a (non-centered) Kelvin transformation. That
is, we fix some z € R" \ {0}, denote by 2* = z/|z|? its inversion about the unit sphere and
consider

o(e) = (@) = ——u 2t z),  zeR"\{0,2").
(|$| )

|:L.|n—4

This function satisfies the transformed equation

Ay = knTHg(k_nT_zlv) in R"\ {0, —2"} (40)
with ]
z* n *
k(x) = k.(x) R z € R"\ {0, —=z"}.

We shall show that v is reflection-symmetric with respect to any hyperplane H passing
through 0 and 2. By letting 2 — 0 along fixed directions, one recovers from this radial
symmetry of u by an easy argument.

The main step is thus to carry out the method of moving planes for equation ([(#0). Without
loss, we assume that z; = 0 and H = {z; = 0}. For any number A < 0, we let X, = {z; >
AL, 2t = (2N — 21, 29, ..., 2,), Ua(2) = v(z?) and ky(z) = k(2?).

We need to analyze the positivity of the difference function w® := v —wv, on the half-space
Y. This function satisfies

A%y > 1My on Xy, (41)
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with

) — g @k (@) 7).

n—4 n—4

v(@)ka(z)” 2 —ua(@)ka(z)” 2

The following lemma gives a type of small-volume maximum principle which drives the
moving planes method in our setting. It may be compared with Lemmal9 from [P3] below.

VO (2) = hy(a)* 4

LEMMA 7 (Lemma 10 in [P2|). There is a constant €y > 0, depending only on n, such that
if {w™ < 0}| > 0, then f{w<k)<0} (V)1 > e,

To prove Lemma (7, the underlying simple idea is to multiply by w? and integrate
over X). Using integration by parts and Sobolev’s and Holder’s inequalities, one deduces
the inequality

A A
lo o S VL 00 <o llpall® [ on (42)

which implies the conclusion of the lemma. This idea in its basic form is attributed to [12]
in the review article [16]. The relevance of replacing pointwise estimates by integral ones
was emphasized in Terracini’s works |90}, [91]; see also [27] for a version of this argument in
the integral equation setting. Implementing the above idea and deriving rigorously in
our setting requires some careful estimates and approximations, however. This is because
, and only hold in the weak sense and the class of test functions is restricted
due to both the presence of singularities and because the equation is of fourth order. Details
can be found in Section 2 of [P2].

2.3. Paper [P3]. Classification of solutions of an equation related to a
conformal log Sobolev inequality

This paper, joint with Rupert Frank and Hanli Tang, is concerned with the endpoint case
s = 0 of the classification results described in Section above. To motivate our main
theorem, let us first introduce the corresponding variational framework. The latter has a

particularly nice expression on the sphere S, where the following log-Sobolev inequality
proved by Beckner [10), 11] holds.

2 Sn
// o) = vl 4, > ¢, \v(w)|21nwdw7 (43)
s xsn !w — [ sn [ollz
for all v € C*°(S"), say. Here, the constant
4 ﬂ_n/2
= 44

is sharp, as can be seen by testing against the conformal factors

5\ /2
o(w) = <_V1—’C’) , (45)

1-C-w
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where ¢ # 0 and ¢ € R" with |(] < 1. To recognize as the endpoint case s = 0 of the
fractional Sobolev inequality respectively the HLS inequality (9)), recall from Section
the equivalent formulation of @ on S™ to be

o(@)v(y)
// ] Iw—yln —dzdy <0HLS||U||22,L : (46)
TLX n 2s

Then (43) is obtained from ( . through a differentiation argument in the limit s — 0,
which we explain briefly in the following. There are several equivalent ways to do this, e.g.
using expansion in spherical harmonics, as done in [10]. We present here an alternative
argument sketched in [1 1] which does not rely on spherical harmonics. Writing

2
[[ R gy [t
S xSn |W 77|n s S xSn |W n|n2s

we obtain by the HLS inequality (13]) that

|v(w) —wv(n)* ) HLS (g 3 n
//"XS" o — 2 dwdn > 20, (S % ||U||L2(Sn IS N (47)

Here we used the relation fsw 77|n e dn = \S”\’*CHLS (for any w € S"), which follows

from evaluating (15) with the extremlzmg function v = 1. Since the HLS constant is given
by [61, Theorem 4.3]

., D(s) (D(n/2)\ > 272 1 1
CHLS: 5—S ~ - — -0
" TGt (T T2 Ty 0
the right side of (47)) tends to
4772 d o 4qm/? lv(w) %S|
_ R Sn “n 2n ) = — 21 —d
72 o (ST F 100 ) = Srcgy [ W@ ==

in the limit s — 0. This yields .

This passage to the limit does not preserve the characterization of optimizers , which
for (43) was recovered in [11] by an additional argument. As discussed in Section for
the case s > 0, it is an interesting and non-trivial question to extend this classification to
solutions of the Euler-Lagrange equation fulfilled by optimizers. This equation reads, in
the weak sense and for functions u normalized so that ||ul|3 = |S",

1 (e(w) = o)) (u(w) = u(n)) _ W) u(w) Inu(w) dw
_5//nxgn - dwdn =C, SHQO( ) u(w) Inu( >d(48)

for all ¢ € D. Here the finite-energy space D is given by

D= {v € L*(S"): //nxsn w dwdn < oo}.

Our main result gives an answer to this question.
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THEOREM 8. Let 0 # u € D be a nonnegative weak solution of equation . Then

w(e) = ( /1= |C|2.) n/2

1—-C-w

for some ¢ € R" with |(] < 1.

That is, analogously to the case s > 0, the set of positive finite-energy solutions to the
Euler-Lagrange equation (48)) is precisely given by the conformal factors.

From the differentiation argument above, it is clear that the quadratic form &, respectively
the underlying operator

Hu(w) := P.V. /n % dn

is closely related to the logarithmic Laplacian (—A)L with Fourier symbol 21n |[£| on R™,

which was studied recently in [25], 48]. Analogously, this operator is given, at least formally,
by differentation of (—A)*u at s = 0.

We prove Theorem [§ by the same method that was already employed in [59] to solve the
classification problem s > 0, namely the method of moving spheres discussed in Section

L3l

Since, unlike for s > 0, does not admit a simple reformulation as an integral equation,
we use what has come to be called the direct method of moving spheres. This means
that we apply the moving spheres argument directly to some non-local integro-differential
equation, in our case , instead of its integral equation version. This approach has been
pioneered in work of Jarohs and Weth [49, 50| and systemized by Chen, Li, Li and Zhang
in |26, 28|. It emphasizes the role of small domain maximum principles for non-local
operators as the main technical ingredient.

To complete the picture, we note here that in the integral equation setting, which is usually
less challenging to deal with, maximum principles similar in spirit appear implicitly in
earlier works like [27), 59, [64]. For non-local differential operators, versions of the strong
maximum principle appear e.g. in the works [38], 53].

The adaptation of the direct method to the case s = 0 is not straightforward. Deriving
the relevant maximum principles in the logarithmic setting is therefore one of the main
accomplishments in this paper. The additional difficulties have two different, yet related,
sources. Firstly, since the regularity proof from [59] Theorem 1.2| cannot be directly
applied in our case, we cannot study the pointwise version of , but rather have to stick
with the weak version. In particular, the proof of the needed strong maximum principle is
made much more delicate by this restriction than e.g. the corresponding version, valid for
CY! functions, in [28, Theorem 2.2]. Secondly, it turns out that we cannot use bounds in
the usual LP norms to estimate the logarithmic nonlinearity. We need to substitute those
by suitable inequalities of Orlicz type.
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We now give a sketch of the proof of Theorem [§| which proceeds via the method of moving
spheres, lifted from R™ to S™ via stereographic projection. That is, for every A > 0 and

A2 (z—
zo € R™, we let Iy, (z) = |$(fx0x|3)

A and center xg. Setting § = S(x), we consider the conformal map ®y¢, : S*\ {5, &} —
S"\ {5, &} given by

+ 2 be the inversion about the sphere in R” with radius

(I))\éo =So [)\7900 9] 871. (49)

Given a positive solution u to , the method of moving spheres consists in comparing u
to its reflection

g (W) = det DBy g (W) (P g, (w))-

on the ’half-sphere’ ¥y ¢, := S(Bx(x¢)). By conformal invariance of the equation, u, ¢, is
a solution to if and only if u is. The main step in the moving spheres method then
consists in showing a strong symmetry property of the solution u, namely that

for every & € S"\ {5}, there exists A = A\(&) € (0,00) such that uye, =u.  (50)

The proof of proceeds through the analysis of the positivity of the difference function
Wyrg, = Urg — U. Notice that as a consequence of ®,¢ being an involution, w)g, is
antisymmetric, meaning that it is the negative of its reflection with respect to ®, ¢,.

The following maximum principle, valid for antisymmetric functions, plays an important

role in the proof of .

LEMMA 9 (Lemma 4 in [P3]). Let A > 0 and & € S™\ {S}, let Q C )¢, be measurable
and let V : 0 — R be a measurable function with

/eQV—/Cn < [s"|. (51)
Q

If w € D is antisymmetric with respect to Xy ¢, and satisfies
5[90,w]+/<,0‘/w20 for any 0 < ¢ € D with ¢ =0 on Q° (52)
Q

and
w>0 ae onXyg \Q, (53)

then w > 0 a.e. on ).

Assumption can be thought of a small volume assumption on the domain €2, which
is standard for the maximum principles involved in the direct moving spheres method, as
is antisymmetry. The new feature, which takes the logarithmic character of our problem
into account, is the fact that we need to measure the smallness of the potential V_ in an
integral norm involving the exponential rather than a p-th power.

Once property is established, the proof can be concluded in a relatively standard
manner. Indeed, translates back to the usual moving spheres inversion symmetry
condition on the functions v(z) = det DS(x)Y2u(S(z)) defined on R". By using [39]
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Theorem 1.4], which generalizes [58, Lemma 2.5] to arbitrary finite measures, we conclude

that v must be of the form
2 n/2
—c| ——F ) 54
v(x) C(b2+|x—a\2> (54)
for some a € R™, b > 0 and ¢ > 0. Projecting back to the sphere, we find that u must be of

the form (45)), for some ¢ > 0 and ¢ € R"*! with |¢| < 1. Finally, we use to determine
that ¢ = 1. This completes the proof of Theorem

2.4. Paper [P4]. Energy asymptotics in the three-dimensional
Brezis—Nirenberg problem

This paper, joint with Rupert Frank and Hynek Kovarik, deals with the blow-up asymp-
totics for almost minimizers of a Brezis—Nirenberg-type functional in the critical dimension
N = 3.

To motivate our results from the viewpoint of the Brezis—Peletier conjectures discussed in
Section for an open and bounded set 0 C R?, consider the following slight generaliza-

tion of (28).
—Au, + (a + eV)u, = 3u’ in €,
e > 0 in Q, (55)
U =10 on 0f).

Here, we allow for a € CH(Q)NC(Q) and V € C(Q) to be non-constant potentials without
restrictions on their signs.

Our results from Paper [P4] are relevant for describing the subclass of energy-minimizing
solutions to , that is, the (u.) arising as minima of the functional S,y introduced in
Section

The following notion, introduced in [47], serves as a generalization of the Brezis—Nirenberg
criticality discussed in Section to a non-constant potential. We say that a € C(Q) is
critical if S(a) = S(0), but S(a) < S(a) for every @ € C(Q) with @ < a and @ # a. A
noteworthy equivalent characterization proved by Druet [34] is that a is critical if and only
if infq ¢, = 0, where ¢, is the Robin function introduced in Section In particular, the

set

N, ={z€Q : ¢,(x) =0}
is non-empty. Notice that if a is critical, then —A + a is coercive as a consequence of
Holder’s inequality.

To state the main result of Paper [P4], we need to introduce some more notation. Recall
that the family (U, ) of normalized Sobolev optimizers has been defined in (). We define
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PU,.» € H}(Q) to be the unique function satisfying
APU, =AU,y €,  PUs,=0 ondQ. (56)

Moreover, let

Ty = span {PU, »,0\PU,,0,,PU,\ (1 =1,2,3)}
and let T, be the orthogonal complement of T, in Hj(€2) with respect to the inner
product fQ Vu - Vudy. We denote by II, \ and Hi/\ the orthogonal projections in H}(Q)
onto T; \ and T}, respectively.

Finally, we set

Qula)i= [ V) GulwyPdy, s, (57)
Q
and
No(V):={x e N,: Qv(x) <0}.
Here is the detailed statement of the main result of [P4]. We denote S := S(0) in the

following.

THEOREM 10. Let Q be of class C? and assume that a is critical with a(z) < 0 for all
x € N,. Moreover, suppose that N,(V) # 0. Let (u.) C H}(Q) be a family of functions

such that
. Sareviud — S(a+€V) / 6 S
l = = _ .
lim —=— Slat eV 0 and i u, dx 3 (58)

Then there are (xz¢) C €2, () C (0,00) and () C R such that
Ue = e (PUpn, — A VP10 (Ho(ze, -) — Holze, ) + 1) (59)

and, along a subsequence,

Njw

Qv (zo)® sup Qv (y)?

Te = T for some xq € No(V) with ——— = ,
|a(zo)| yENa(V) la(y)]
Pa(Te) = 0(€),

lim €\, = 472 atwo)l.
e—0 €

Qv (o)
ae. = s+ O(e) for some s € {£1}.

Finally, re € Ty and ||Vrc[l2 = o(e).

The assumption that @ < 0 on N, is not severe, as for critical a one always has a < 0 on
N, see Corollary 2.2 of [P4]. Moreover, the denominator in is always non-zero under
the assumption that N, (V') # 0, see Theorem [11] below.

As we already tried to make clear above, Theorem should be seen as a variational
version of the Brezis—Peletier-type conjecture stated in Conjecture 2 As a consequence
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of the variational approach, the result only holds for energy-minimizing solutions and the
bounds are only obtained in H' instead of L>® norm. On the other hand, Theorem
also holds for almost minimizers (in the sense of (58))), which do not need to satisfy a
corresponding equation.

As a byproduct of the proof of Theorem [10] we obtain the asymptotics of the energy
S(a+€eV)ase— 0.

THEOREM 11. (i) Assume that No(V) £ 0. Then S(a+€V) < S for all e > 0 and
S(ateV)—5 (3>5L o Q)

872 seniu(v) la(z)|

lim

e—0+ 62

60

: (60)

(i1) Assume that No(V) = 0. Then S(a+€V) =S+ o(e?) as e — 0+. If, in addition,
Qv(z) >0 for all x € N, then S(a+ €V) =S for all sufficiently small ¢ > 0.

Theorem [11] further clarifies the role of the assumption N, (V) # 0 made in Theorem
Indeed, we see that the condition N,(V) # 0 is ’almost sharp’ in the sense that unless
miny;, Qv = 0, the asymptotics of S(a + €V') as € — 0 are trivial.

The first step in the proof of Theorems [10[ and [11]is to prove a sharp upper bound on the
minimal energy S(a + €V'). We test S,1y with the family of functions

wz,)\(y> = PUx,A(y) - >‘_1/2(Ha<x>y) - Ho(l’,y)) . (61)

with parameters z €  and A > 0 to be determined. (The intuition behind this choice
of test functions can be sketched non-rigorously as follows. Suppose that u. is a true
minimizer. From below, we should have u’A'/2 ~ §,,, so that by we get u(z) ~
(—A 4 a)'u? ~ A\7V2G, (70, y). But now, as A — oo,

)\71/2

'l

for any fixed x € Q (see [75, Proposition 1] for the first asymptotic equality). Thus as

T — z9 and A — oo, the ¥, € Hj(Q) should be a good approximation to the expected
limiting profile G,(x, -) of the minimizers w..)

PU x4+ M2 Hy(z,) ~ Uy ~

We compute
1

Sa+eV [wm A ( ) ’ 4m ¢a

1

( ) 5 — 21 a(x) A2 — (1577 — 128) ¢, (2)? x?)

) + o(e/\ . (62)

In view of Druet’s result, the subleading A\~! is minimized by taking € A,. Optimizing
the remaining terms first in A > 0 and then in 2 € N, (V) yields the upper bound in the

expansion ([60).
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Let us insert a brief comment on a subtlety in the choice of the test functions in . In
view of the expansion , it may be surprising that one can get the sharp upper bound by
testing with the ¢, \. After all, the v, , differ from by A2 T, \(H, (2, -) — Ho(x, ),
which can be shown to be of order O(A™!), but not smaller. However, due to cancellations
in the quotient the contribution to S, caused by this additional term is only of the order
o(A7?) and thus negligible for our purposes.

The strategy in the proof of the corresponding lower bound is to start with an arbitrary
sequence (u) of almost minimizers (normalized so that [, u®dx = [o, US| da = (S5/3)%?)
and to show that they must essentially coincide with the test function 9, ) used to derive
the upper bound. The starting point for this is the asymptotic decomposition

tue = ¢ (PU,_ . + we), (63)
where up to a subsequence
a.— s  forsome s € {—1,+1},
Te — Xp for some xy € Q,
Aedist(ze, 002) — o0,

IVw|la — 0 and we € Ty .

(64)

The asymptotics and are well-known for exact minimizers u. of S(a + €V') and
can be derived from results of Struwe [85] and Bahri-Coron [9], see e.g. [75] Proposition
2]. The proof extends to almost minimizers without major problems.

If we expand the functional S,y [uc] according to the decomposition (63), the remainder
terms containing w will a priori be of order o(1) as ¢ — 0, which is by far not precise
enough. However, the key point is that we can improve the bound on w by using the
orthogonality condition on w from , the sharp upper bound already proved in (62]) and
the coercivity inequality

/ (IVo]* + av* = 15U; \v*) dy > p/ (Vo|* dy, for all v € T,,. (65)
0 0

This is a variant of an inequality proved by Rey [75, Appendix D|, which is stated in (70))
below. Inequality has been proved and applied in the present context by Esposito
[36], who used it to give a simple alternative proof of Druet’s result that infg ¢, = 0 for
critical a. As can be guessed from (62), this amounts to expanding S,iev[uc] to the first
subleading order A1,

To derive the results stated in Theorems and , however, it is apparent from (62))
that we need to expand the energy to the second subleading order A=2. Hence the idea
is to iterate the procedure of expanding and using coercivity to conclude a sharper error
bound. This requires substantially more work and new techniques. In particular, we need
to use the inequality two more times before we can expand u, and S(a + €V) to
the needed precision. In this process, the zero-modes, i.e., the functions in T} 5, need to
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be specially taken into account, which can be seen as a reflection of the translation and
dilation invariance of the Sobolev inequality.

2.5. Paper [P5]. Energy asymptotics in the Brezis—Nirenberg problem. The
higher-dimensional case

Paper [P5], also joint with Rupert Frank and Hynek Kovaiik, is a companion work to
Paper [P4]| and contains the corresponding asymptotics of the Brezis—Nirenberg quotient
functional and its almost minimizers in space dimension N > 4.

As already mentioned in the discussion in Section [I.4] the Brezis-Nirenberg problem in
case N > 4 presents fewer difficulties and subtleties than the critical case N = 3. Indeed,
the Brezis—Nirenberg result from [17] implies that for N > 4 the only critical function is
a =0, and that S(eV') < S(0) if and only if

NV)={zeQ:V(z)<0}
is non-empty.
Here are the main results of Paper [P5]. We use the notation introduced in Section
Moreover, we denote Sy := S(0) and ¢(x) := ¢o(x).

THEOREM 12. Let Q C RY be open and bounded of class C? and suppose that N'(V') # ().
Let (u.) C H3(Q) be a family of functions such that

. Sevlud —S(eV) / e SN
lglé Sy—S() 0 and A [ue| V-2 dz = NV —2) . (66)

Then there are (x.) C Q, (A) C (0,00), (@) C R and (w.) C Hy(Q) with we € Ty, such
that

vz

Ue = e (PUy_ . + we) (67)
and, along a subsequence, x. — xy for some xy € N(V). Moreover, there are constants
an, by and Dy such that

{¢(1’0)_N24 V()| 3 = sup,enr) (¢(a) 7 V@I F), N =5,
Blao) IV (@0)| = subseny) (6(@) V(@) N=4
[Veelle = ofe2=s), N =5,

[Vl < exp ( —2(1+0(1)) 04(, V)—l), N =4,

. N—4 _ N(N=2)%an ¢(z0)

limc_ E)\E - 2¢(2b)N|V(go)| . , N=23,

lim._g € In A, = m, N =4,

a.=s 1+DN€%+O(€%)>, N > 5,

—N— — N — —"

ac =5 (1+exp (=4 (1+0(1)) (supsenyy (6(@) V@) ), N =4,
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for some s € {£1}.

The corresponding energy asymptotics are the following.

THEOREM 13. There exists a constant Cy such that as € — 0+,

S(eV) = Sw—Cy sup_ (¢( ) |V (2)| N ) N1 4 o(eNH) it N>5 (68)
and
S(eV) =8, —exp ( _4 (14 o0(1)) ( sup (gzﬁ(:c)l\V(:c)D) ) if N =4. (69)
€ zeN (V)

The proof of Theorems and is along the same lines as those of the results from
Paper |P4] sketched in Section As already pointed out above, the case N > 4 is
technically less involved. This is reflected in the proofs by the fact that testing with the
simpler family of functions PU, , (without the correction term —\"Y2(H,(z,-) — Ho(z, "))
appearing in (61))) already yields the sharp upper bound for the energy in resp. (69).
As a consequence, in the asymptotic decomposition (63) (which holds in N > 4 as well)
we do not need to extract a subleading term of u., so that only one application of the
appropriate coercivity inequality [75, Appendix D]

/|Vv|2dy—N(N+2) /UI/\ v’ dy > /|VU|2dy, for ve T+  (70)
Q Q N +4 ’
suffices.

We explained in Section that Theorem (10| from Paper |[P4] can be seen as an H'
version of the three-dimensional critical Brezis—Peletier Conjecture 2| for energy-minimizing
solutions. In the same way, Theorem [12]is related to the higher-dimensional Brezis—Peletier
conjecture from Theorem [I| which was solved by Han [46] and Rey [74]. For the special
case of constant V' and exact minimizers (u.), Theorems [12{and [13|are essentially proved in
a work by Takahashi [87] by combining variational ideas similar to ours with results from
Han and Rey. We also mention the work [96] which has a result and proof similar to [87],
but for the subcritical problem (30) (with o = 0). Paper [P5], other than elucidating the
methods and ideas from [P4|, therefore has the merit of giving a new self-contained proof
of Takahashi’s results and extending them to non-constant V' and to almost minimizers

(ue)-

To conclude the discussion, let us briefly review the similarities and discrepancies between
the cases N = 3 and N > 4 reflected in the results of Papers [P4]| and |[P5]. On the one
hand, given the fundamentally different behavior of dimension N = 3, one may find the
structure of the asymptotics surprisingly similar in the two cases. Namely, any normalized
minimizing sequence u. develops the asymptotic profile PU,_ »_, where the concentration
scale A\, is given to leading order by an inverse power of € times a coefficient determined by
an auxiliary optimization problem in x which involves the Green’s function of —A+a (with
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critical a) and the perturbation potential V. On the other hand, an important difference
is that for N > 4 merely the local values V (z) are relevant to said optimization problem,
while in N = 3 the global behavior of V' enters through the quantity Qv (x). Moreover, in
N = 3, concentration points are a priori restricted to the set N,, while in N > 4 no such
additional restriction occurs.



Statement on my contributions as a coauthor

Conformally to the requirements, I attempt to estimate in the following my contributions
to the papers |P1|-|P5] as a coauthor. Such a listing is necessarily both subjective and

inexact,

especially in a field like mathematics where the quintessential ’research work’ is

highly non-tangible and division of labor only works at a rudimentary level. T nevertheless
hope that the following description can be useful to assess my thesis accomplishments.
What is common to all the papers below is that the first impetus to study the problem
was given by my advisor, Rupert Frank.

[P1]

[P2]

[P3]

Classification of positive singular solutions to a nonlinear biharmonic equation with
critical exponent (with Rupert L. Frank), Anal. PDE 12 (2019), no. 4, 1101-1113.

and

Singular solutions to a semilinear bitharmonic equation with a general critical non-
linearity (with Rupert L. Frank), Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl.
30 (2019), no. 4, 817-846.

I did almost all of the research work, as well as the redaction of the main
body of papers |P1] and |P2|, autonomously, supported by regular discussions
with Rupert Frank.

Classification of solutions of an equation related to a conformal log Sobolev in-
equality (with Rupert L. Frank, Hanli Tang), arXiv:2003.08135, submitted to
Adv. Math.

Hanli Tang and I completed most of the research work autonomously. Rupert
Frank supported us by regular discussions, contributed a number of valuable ideas
and took part in the final redaction of the proofs.
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|P4] Energy asymptotics in the three-dimensional Brezis—Nirenberg problem (with Ru-
pert L. Frank, Hynek Kovaiik), arXiv:1908.01331, submitted to Ann. Henri Poincaré
C,

and

|P5| Energy asymptotics in the higher-dimensional Brezis—Nirenberg problem (with Ru-
pert L. Frank, Hynek Kovatik), Mathematics in Engineering, 2 (2020), no. 1,
119-140:

Papers [P4] and [P5] originated in an unfinished project that my two coauthors
began several years ago. After I was introduced to the problem by my advisor, I
was able to contribute a new idea that made it possible to overcome the decisive
remaining difficulty and complete the proof of the result. This corresponds essen-
tially to Section 6 and Appendix A of [P4]. In [P5] I worked out Section 5 and
Appendix A and was in charge of the redaction of the main body of the text.
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