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Abstract

This thesis contains some new results on several di�erent nonlinear elliptic variational
problems with critical exponent and the associated partial di�erential equations.

Paper [P1] gives a classi�cation of positive solutions for the biharmonic Yamabe equation
on Rn \ {0}, n ≥ 5, which possess a non-removable one-point singularity at the origin. It
is shown that these solutions are up to dilation given by a negative power of |x| times a
one-parameter family of radial functions periodic in ln |x|. This is in complete analogy to
the well-known classi�cation in the second-order case.

Paper [P2] extends this classi�cation to include more general critical nonlinearities, e.g.
of Hardy-Rellich type. A main achievement in this paper is the use of the moving planes
method to prove radial symmetry for arbitrary positive singular weak solutions.

Paper [P3] classi�es the solutions of a conformally invariant log-Sobolev equation on the
sphere Sn. It is shown that all positive �nite-energy solutions are given by the conformal
factors. This extends the known classi�cation results concerning both minimizers of the
associated functional and solutions to the corresponding equation with fractional exponent
s > 0.

Paper [P4] is devoted to studying the asymptotics in the three-dimensional Brezis�Nirenberg
problem as the lower-order perturbation tends to its critical value. Our setting includes
non-constant critical potentials and non-constant perturbations. Through a careful expan-
sion of the energy functional, we obtain the asymptotics of the energy to �rst subleading
order in the perturbation parameter as well as precise blow-up asymptotics for a sequence
of almost minimizers and a characterization of their possible concentration points.

In Paper [P5], the methods and results from [P4] are carried over to non-critical (with
respect to the Brezis�Nirenberg problem) dimensions N ≥ 4. This extends and sharpens
previous results in the literature.





Zusammenfassung

Die vorliegende Arbeit enthält einige neue Resultate über eine Reihe nichtlinearer elliptis-
cher Variationsprobleme und die zugehörigen partiellen Di�erentialgleichungen.

In dem Artikel [P1] werden positive Lösungen der biharmonischen Yamabe-Gleichung auf
Rn \ {0}, n ≥ 5, klassi�ziert, welche eine nichthebbare Punktsingularität im Ursprung
besitzen. Die Lösungen sind bis auf Dilatation gegeben durch eine negative Potenz von
|x| mal eine einparametrige Familie radialer Funktionen, die periodisch in ln |x| sind. Dies
ist vollständig analog zu der bekannten Klassi�kation singulärer Lösungen im Fall zweiter
Ordnung.

In dem Artikel [P2] wird diese Klassi�kation auf eine allgemeine Klasse kritischer Nichtlin-
earitäten ausgedehnt. Eines der Hauptresultate dieser Arbeit ist der Beweis von Radial-
symmetrie für beliebige positive singuläre schwache Lösungen mithilfe der Moving-Planes-
Methode.

Der Artikel [P3] befasst sich mit der Klassi�kation der Lösungen einer konform invari-
anten logarithmischen Sobolevgleichung auf der Sphäre Sn. Es wird gezeigt, dass alle pos-
itiven Lösungen mit endlicher Energie durch die konformen Faktoren gegeben sind. Dies
verbessert die bekannten Resultate über Minimierer des zugehörigen Funktionals bzw. über
Lösungen der Gleichung für fraktionellen Exponenten s > 0.

Artikel [P4] befasst sich mit asymptotischer Analysis für das Brezis�Nirenberg-Problem,
wenn der Term niederer Ordnung gegen seinen kritischen Wert konvergiert. Es werden auch
nicht-konstante kritische Potentiale sowie nicht-konstante Störungen betrachtet. Mithilfe
einer sorgfältigen Entwicklung des Energiefunktionals erhalten wir das asymptotische Ver-
halten der Energie zu erster nachführender Ordnung im Störungsparameter sowie die ex-
akten Wachstumsraten und möglichen Konzentrationspunkte für eine Folge von (Fast-)
Minimierern.

In Artikel [P5] werden die Methoden von [P4] im Fall nicht-kritischer (im Brezis�Nirenberg-
Sinn) höherer Raumdimension N ≥ 4 angewendet und analoge Resultate erzielt. Dies
erweitert und verschärft frühere Resultate aus der Literatur.





Acknowledgements

In the very �rst place, I want to express my deep gratitude to my supervisor, Rupert Frank.
I feel lucky and honored to have been able to spend close to four years working with him
and learning from him in countless ways. I thank him for his unfailing helpfulness, his
many advices which turned out useful, precise and adequate in just about any situation.
His way of thinking about mathematics and his working rigor have truly been a source of
inspiration to me over the past years for which I am very grateful.

I also thank all my other coauthors with whom I had the pleasure to collaborate during
my thesis, namely Lukas Emmert, Hynek Kova°ík and Hanli Tang, for their enthusiasm,
their hard work and their good ideas.

For substantial �nancial and idealistic support during a large part of my thesis, I am
indebted to the Studienstiftung des deutschen Volkes.

A sincere thanks goes to all the other members of my thesis committee: to Tobias Weth
and Tianling Jin, who accepted the duty of external referees, and to Thomas Sørensen
and Phan Thành Nam, who were willing to act as head examiner and substitute examiner,
respectively. I thank all of them for their reliability and supportiveness at all stages of the
�nal preparation of this thesis.

From when I started as a PhD student to the hand-in of this thesis, no less than 1295 days
have passed. Spending most of those at the LMU math department was a pleasure thanks
to all of you fellow mathematicians and friends, and the memories of Cabane evenings,
self-made seminars, Schafkopf attempts, blackboard discussions, World Cup defeats and
co�ee sessions could �ll many more pages than the few ones below. Whoever knows they
are meant, thank you for your company and for your friendship!

My parents, Elisabeth and Robert König, have been through more with me than anybody
else. I only begin to understand and appreciate the love and support they have been giving
me until today, and certainly can never honor it enough. Danke, Mama und Papa, dass
ihr mich den sein lasst, der ich bin, und mich ohne an euch selbst zu denken immer und
überall unterstützt!

My last word of thanks I saved for Telse, who always brings me back to the non-mathematical
ground, being the only person in the world who knows how to divide by zero. Thank you
for inspiring, questioning and standing by me every day, in short: thank you for your love.



Formular 3.2

Name, Vorname

Eidesstattliche Versicherung
(Siehe Promotionsordnung vom 12.07.11, § 8, Abs. 2 Pkt. .5.)

Hiermit erkläre ich an Eidesstatt, dass die Dissertation von mir
selbstständig, ohne unerlaubte Beihilfe angefertigt ist.

Ort, Datum Unterschrift Doktorand/in

König, Tobias

München, den 19.03.2020 Tobias König



CHAPTER 1

Introduction

The purpose of this thesis is to give a uni�ed presentation of the following publications1

obtained in the course of my doctoral studies under the supervision of Prof. Rupert L.
Frank.

[P1] Classi�cation of positive singular solutions to a nonlinear biharmonic equation
with critical exponent (with Rupert L. Frank), arXiv:1711.00776, Anal. PDE 12
(2019), no. 4, 1101�1113.

[P2] Singular solutions to a semilinear biharmonic equation with a general critical
nonlinearity (with Rupert L. Frank), arXiv:1903.02385, Atti Accad. Naz. Lincei
Rend. Lincei Mat. Appl. 30 (2019), no. 4, 817�846.

[P3] Classi�cation of solutions of an equation related to a conformal log Sobolev in-
equality (with Rupert L. Frank, Hanli Tang), arXiv:2003.08135, submitted to Adv.
Math.

[P4] Energy asymptotics in the three-dimensional Brezis�Nirenberg problem (with Ru-
pert L. Frank, Hynek Kova°ík), arXiv:1908.01331, submitted to Ann. Henri Poincaré
C.

[P5] Energy asymptotics in the higher-dimensional Brezis�Nirenberg problem (with Ru-
pert L. Frank, Hynek Kova°ík), arXiv:1910.11036, Mathematics in Engineering, 2
(2020), no. 1, 119�140.

The structure of the rest of this thesis is as follows. The purpose of Chapter 1 is to
introduce the mathematical background and to review the existing literature concerning
the problems under study. More precisely, after introducing the basic objects as well as
recalling the Sobolev and HLS inequalities, two main lines of research shall be discussed
in more detail. The �rst, particularly relevant to Papers [P1]�[P3], is the classi�cation
of positive solutions to conformally invariant nonlinear elliptic equations, see Section 1.3.
The second, presented in Section 2.4, is the blow-up asymptotics for Brezis�Nirenberg-type
problems, which are studied in Papers [P4]�[P5].

1The publication of mine Liquid Drop Model for nuclear matter in the dilute limit (with L. Emmert,
R. L. Frank), arXiv:1807.11904, accepted for publication in SIAM Journal on Mathematical Analysis, is
not a part of this thesis for reasons of thematic coherence.

https://arxiv.org/abs/1711.00776
https://arxiv.org/abs/1903.02385
https://arxiv.org/abs/2003.08135
https://arxiv.org/abs/1908.01331
https://arxiv.org/abs/1910.11036 
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Chapter 2 is then devoted to presenting the results from Papers [P1]�[P5]. Building on the
exposition in Section 1, we will introduce, state and comment on the main results of each
paper and give a sketch of the main proof steps.

Finally, a short declaration on my contributions as a coauthor for each of the papers is
given.

1.1. Fractional powers of the Laplacian and Sobolev spaces

The main topic of this thesis is to study the behavior of certain classes of solutions to some
variational problems set on spaces of functions. The unifying structural feature that all of
these problems share is that they are elliptic. While the notion of ellipticity can be de�ned
for a general pseudodi�erential operator [78], in all that follows we shall not go beyond
considering the prototypical examples of elliptic di�erential operators. These are of course
the Laplace operator, given in space dimension n ≥ 1 by ∆ :=

∑n
i=1 ∂

2
xi
, and its powers,

which we shall introduce now. The following facts can mostly be found in the introductory
article [32]. For the sake of brevity, we only discuss the operator acting on Rn rather than
on domains and make no mention of the more general Sobolev spaces W s,p with p 6= 2.
For a much more thorough treatment, see [32] or, e.g., the textbooks [1, 61, 37].

We start by de�ning, for s > 0, the fractional Laplacian (−∆)s acting on a function
u ∈ C∞0 (Rn), say, by

(−∆)su := F−1(|ξ|2sFu(ξ)). (1)

Here F is the Fourier transform de�ned below. This de�nition extends naturally to func-
tions u lying in the space H2s(Rn), with

Hs(Rn) := {u ∈ L2(Rn) : |ξ|sFu ∈ L2(Rn)}.

The space Hs(Rn) is referred to as Sobolev space (of order s > 0). Equipped with the
scalar product (u, v)Hs :=

∫
Rn(1+ |ξ|2s)Fu(ξ)Fv(ξ) dξ, it is a Hilbert space for every s > 0.

Of some importance below will also be a variant of this space, namely the homogeneous
Sobolev space Ḣs(Rn) de�ned as the completion of C∞0 (Rn) with respect to the norm
‖|ξ|sFu‖L2(Rn).

For s ∈ (0, 1) and a su�ciently smooth function u, the fractional Laplacian can also be
expressed as a singular integral by the formula

(−∆)su(x) := Cn,sP.V.

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy

for some constant Cn,s > 0, where P.V. denotes the principal value integral. In the same
parameter regime, as observed by Ca�arelli and Silvestre in [21], (−∆)s can be viewed as
the Dirichlet-to-Neumann operator of a degenerate elliptic extension problem on the upper
half-space Rn+1

+ . For many more equivalent de�nitions (−∆)s, see [56].
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If 0 < s < n/2, then the inverse operator (−∆)−s is given through convolution by

(−∆)−sv(x) = cn,s

∫
Rn
|x− y|2s−nv(y) dy, (2)

for a constant cn,s > 0.

Notation. For p ∈ [1,∞), a measurable set Ω ⊂ Rn and a measurable function u : Ω→
C, we shall denote by ‖u‖Lp(Ω) :=

(∫
Ω
|u|p
)1/p

its Lp norm. If the domain Ω is understood,
we abbreviate ‖u‖p := ‖u‖Lp(Ω). The scalar product on L2(Ω) is always denoted by (·, ·).
For a function u ∈ L1(Rn), we take its Fourier transform to be de�ned by

Fu(ξ) :=
1

(2π)n/2

∫
Rn
e−iξ·xu(x) dx. (3)

With this de�nition, F extends to a unitary map on L2(Rn), see e.g. [73, Chapter IX].

For a di�erentiable function Φ : M → N between Riemannian manifolds M and N and
x ∈M , we denote by DΦ(x) the di�erential of Φ at x. If N = R, we write DΦ(x) = ∇Φ(x).

We denote by Sn := {x ∈ Rn+1 : |x| = 1} ⊂ Rn+1 the n-dimensional sphere and by
N := (0, ..., 0, 1) and S := (0, ..., 0,−1) its north and south pole, respectively. We will
always take Sn to be equipped with the surface measure induced by its embedding into
Rn+1.

Finally, we denote by Br(x0) := {x ∈ Rn : |x − x0| < r} the open ball in Rn with radius
r > 0 and center x0 ∈ Rn.

1.2. The Sobolev inequality and the HLS inequality

In this section we bring the calculus of variations into play by discussing the fundamental
functional inequalities for the Laplacian and its powers, namely the classical inequalities of
Sobolev and Hardy-Littlewood-Sobolev. The concepts and results introduced in relation
with them will play an important role throughout the following.

For clarity, we start by discussing the historically signi�cant case s = 1. The Sobolev
quotient functional is given, for u ∈ C∞0 (Rn) say, by

Sn[u] :=

∫
Rn |∇u|

2 dx

(
∫
Rn u

2n
n−2 dx)

n−2
n

=

∫
Rn u(−∆u) dx

‖u‖2
2n
n−2

. (4)

The exponent 2n
n−2

is chosen to make the functional invariant under the replacement u(x)→
u(λx). For this reason, the exponent 2n

n−2
is said to be critical.

The Sobolev inequality states that

Sn := inf
{
Sn[u] : 0 6≡ u ∈ Ḣ1(Rn)

}
(5)
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is a strictly positive number. (A simple scaling argument using the family of functions
(u(λ·))λ>0 shows that the in�mum is zero if the exponent 2n

n−2
in (4) is replaced by any

other positive number.) This inequality, without �nding the value of the sharp constant
Sn, was �rst proved in the 1930s by Sobolev [84]. Twenty years later, Gagliardo [41] and
Nirenberg [66] gave independently a more modern proof, still without the sharp constant.
The value of the sharp constant was �rst given in unpublished work by Rodemich [76] and
through a non-rigorous argument by Rosen [77], who noted that the functions

Ux,λ(y) :=

(
λ

1 + λ2|x− y|2

)n−2
2

for some λ > 0, x ∈ Rn, (6)

and their constant multiples realize the in�mum in (5). Building on an early result of Bliss
[13], a full proof involving the sharp constant Sn and the family of optimizers (6) was then
given in independent work by Aubin [7] and Talenti [88],

We now turn to the case of general fractional exponents s ∈ (0, n/2). The fractional Sobolev
inequality asserts that Sn,s := inf{Sn,s[u] : 0 6≡ u ∈ Hs(Rn)} is a positive number, that is,

‖(−∆)s/2u‖2
2 ≥ Sn,s

(∫
Rn
u

2n
n−2s dx

)n−2s
n

for all u ∈ Hs(Rn). (7)

In the seminal work [60], Lieb determined the optimal constant Sn,s for all s ∈ (0, n/2)
and proved that all optimizers for Sn,s must be of the form

u(y) = c

(
λ

1 + λ2|x− y|2

)n−2s
2

for some c 6= 0, λ > 0, x ∈ Rn. (8)

In fact, Lieb proved this classi�cation for optimizers of the (diagonal case of the) Hardy-
Littlewood-Sobolev inequality, which says that∫∫

Rn×Rn

v(x)v(y)

|x− y|n−2s
dx dy ≤ CHLS

n,s ‖v‖2
2n
n+2s

for all v ∈ L
2n
n+2s (Rn). (9)

Here we take CHLS

n,s to be the sharp constant. The classi�cation of optimizers for (9) yields
the one for (7) by observing that the Sobolev and the HLS inequalities are dual to each
other. This means that

1

2
‖(−∆)su‖2

2 = sup

v∈L
2n
n+2s (Rn)

{
(u, v)− 1

2
cn,s

∫∫
Rn×Rn

v(x)v(y)

|x− y|n−2s
dx dy

}
, (10)

i.e., up to a suitable normalization, the HLS double integral is the Legendre-Fenchel trans-
form of ‖(−∆)s/2u‖2

2. The relation (10) can easily be proved by using the inversion formula
(2) and completing a square. From the duality relation (10) one can see that u optimizes
the Sobolev inequality if and only if v = u

n+2s
n−2s optimizes the HLS inequality and that

moreover the optimal constants are related by S−1
n,s = cn,sC

HLS

n,s . See [61, proof of Theorem
8.3] and the introductions of the papers [23, 33] for a more detailed explanation of duality.
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A proof of the classi�cation result (8) which works directly on the Sobolev inequality
(7) instead of using duality, was later given in [86] for positive integers and in [31] for all
fractional exponents s ∈ (0, n/2). By now, many other proofs for (8) have been found, valid
for some or all values of s and based on a wide variety of methods, e.g. mass transportation
[30], the Brunn-Minkowski inequality [14], fast di�usion �ows [23], inversion positivity [39]
and second variation [40].

1.3. The Yamabe equation and the role of symmetries

We now turn to discussing the PDE arising from the Sobolev inequality (7), namely its
Euler-Lagrange equation (up to normalization)

(−∆)su = u
n+2s
n−2s on Rn. (11)

Equation (11) is referred to as the (fractional) Yamabe equation in parts of the literature,
due to its important role, for s = 1, in the Yamabe problem from di�erential geometry
[99, 93, 6, 79].

By applying (−∆)−s to (11), we obtain the equation

u(x) = ((−∆)−su
n+2s
n−2s )(x) = cn,s

∫
Rn

u
n+2s
n−2s (y)

|x− y|n−2s
dy, (12)

which is essentially equivalent to (11) (see [27, Section 4] for a detailed statement). By
setting u

n+2s
n−2s = v, we recognize (12) in fact to be, up to normalization, the Euler-Lagrange

equation of the HLS inequality (9).

Conformal invariance. The equations (11) and (12) possess a remarkable symmetry
property, namely that of conformal invariance. Recall that a conformal map Φ : M → N
between two Riemannian manifoldsM and N by de�nition preserves the angle under which
any two given curves intersect. The group of conformal maps from Rn ∪ {∞} to itself is
generated by the translations, rotations and dilations together with the inversion about the
unit sphere. For more background on conformal maps, see [61, Section 4.4]. Any conformal
map Φ : Rn \ N → Rn \ Φ(N), for some Lebesgue null-set N , induces an isometry from
L

2n
n−2s (Rn) into itself by setting

uΦ(x) := detDΦ(x)
n−2s
2n u(Φ(x)). (13)

Conformal invariance now refers to the fact that uΦ is a solution to equation (11), respec-
tively (12), if and only if u is. This is easiest seen for (12). Indeed, the property

|Φ(x)− Φ(y)| = detDΦ(x)
1
2n |x− y| detDΦ(y)

1
2n

satis�ed by any conformal map, implies via change of variables the transformation rule

((−∆)−su
n+2s
n−2s

Φ )(x) = detDΦ(x)
n−2s
2n (−∆)−su

n+2s
n−2s (Φ(x)),

from which the conformal invariance of (12) easily follows.
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By the same computation for the inverse stereographic projection S : Rn → Sn \ {S},
which is conformal, Lieb observed in [60] that the HLS inequality can be recast on the
sphere Sn, a reformulation that was crucial for his classi�cation of optimizers. Indeed,
given a function u ∈ L

2n
n+2s (Rn), similarly to (13) we de�ne a function v ∈ L

2n
n+2s (Sn) by

the relation
u(x) = detDS(x)

n+2s
2n v(S(x)). (14)

Then inequality (9) for u is equivalent to the inequality∫∫
Sn×Sn

v(ω) v(η)

|ω − η|n−2s
dω dη ≤ CHLS

n,s ‖v‖2

L
2n
n+2s (Sn)

, (15)

for v with the same sharp constant CHLS

n,s , see e.g. [61, Theorem 4.5]. Moreover, via
(14) Lieb's classi�cation result for the extremizers can be reformulated by saying that v
extremizes (15) if and only if

v(ω) = c

(√
1− |ζ|2

1− ζ · ω

)(n+2s)/2

(16)

for some c 6= 0 and ζ ∈ Rn+1 with |ζ| < 1.

Classi�cation of positive solutions and the method of moving planes. An inter-
esting problem posed by Lieb in the above-mentioned work [60], whose by-now complete
solution has sparked many interesting developments, is to classify the positive solutions

u ∈ L
2n
n−2s

loc
(Rn) to (12). More precisely, the goal is to prove that they are all again of the

form (8). In view of the Euler-Lagrange formalism, this clearly extends the classi�cation
of Sobolev optimizers discussed in the preceding section.

For the simplest case s = 1, this classi�cation has been known since the 1980s, by work
of Gidas, Ni and Nirenberg [43, 44] (with an additional decay hypothesis at in�nity) and
Ca�arelli, Gidas and Spruck [22], see also [67]. Their main achievement was to prove
that any positive solution is necessarily radially symmetric about some point in Rn. Once
this is known, equation (11) reduces to an ODE which can be solved explicitly. The
radial symmetry is proved using the method of moving planes, which will be an important
tool in what follows. This device goes back to an idea of Alexandrov [2] and was widely
popularized by Serrin [82] and the above-mentioned works [43, 44]. Many more important
references can be found in the review article [16] and in the discussion below.

Among the cases s 6= 1, the �rst classi�cation result was given for the biharmonic case
s = 2 by Lin [62] using a remarkable adaptation of the moving planes method, which was
extended to cover all integers s less than n/2 by Wei and Xu [97]. See also [92, 24, 98]
for related results. The classi�cation result for the full fractional range was given for the
integral equation (12) independently by Chen, Li and Ou [27] and Yanyan Li [59].

Inversion symmetry and moving spheres. We discuss now in some more depth the
special role of the inversion symmetry since this will be a recurrent theme in Papers [P2] and
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[P3]. In the context of the above-cited classi�cation results, inversion symmetry has been
made crucial use of in at least two di�erent ways. Firstly, when applying the moving planes
method, one can generate decay at in�nity by passing to the Kelvin transform uIλ,x0 of a

solution u (in the notation of (13)) about a regular point x0. Here, Iλ,x0(x) = λ2(x−x0)
|x−x0|2 +x0

is the inversion about the sphere with center x0 ∈ Rn and radius λ > 0. This strategy is
carried out in [P2], see Section 2.2 below.

A more systematic and powerful way of exploiting inversion symmetry in the context of
conformally invariant equations is the method of moving spheres set forth in [68, 29, 58].
Essentially, it replaces the re�ection across a family of hyperplanes, central to the method
of moving planes, by the inversion (Iλ,x0)λ>0 about a family of spheres.

The crucial observation in the moving spheres method is that a function which is inversion
symmetric with respect to spheres of every possible center x0 ∈ Rn is automatically of the
form (8). Surprising though this property may sound, it can be proved by a relatively
simple 'calculus lemma', see [58, Lemma 2.5] for s = 1 and [57, Lemma 11.1] for general
s ∈ (0, n/2). This clari�es the special role of the functions (8) and allows for a more
direct classi�cation proof than the moving planes approach, which only yields the partial
conclusion of radial symmetry up to translation. A somewhat more detailed description of
the argument, applied in the setting of [P3], can be found in Section 2.3 below.

Among the above-cited literature, the work [59] uses the moving spheres approach, in an
integral formulation. The alternative proof in [27] uses the Kelvin transform in connection
with an integral version of the moving planes method, but also invokes inversion symmetry
in a second step to conclude (8). The same spirit is already present in Lieb's classi�ca-
tion argument for optimizers in [60], which also exploits the additional explicit conformal
symmetries obtained by projecting to the sphere.

Classi�cation of positive singular solutions. At this point it is natural to ask about

solutions to (11) which violate the integrability assumption u ∈ L
2n
n−2s

loc
(Rn). The simplest

case to study is to assume a one-point singularity at the origin. That is, we ask which

positive functions u ∈ L
2n
n−2s

loc
(Rn \ {0}) satisfy

(−∆)su = u
n+2s
n−2s on Rn \ {0}. (17)

An explicit example of a solution to (17) which is not in the class (8) of full-space solutions
is given by the pure-power function

u(x) = dn,s|x|−
n−2s

2 , (18)

which for suitable dn,s > 0 indeed solves (17).

For the easiest case s = 1, all positive singular solutions u ∈ L
2n
n−2s

loc
(Rn\{0}) to the equation

−∆u = u
n+2
n−2 on Rn \ {0} (19)
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have been classi�ed in the 1980s in the above-mentioned work of Ca�arelli, Gidas and
Spruck [22] and of Schoen [81]. The result is as follows. There exists a0 > 0 and a family

(ϕa)(0,a0] of periodic functions ϕa : R → R+ such that if u ∈ L
2n
n−2

loc
(Rn \ {0}) is a positive

solution to (17) with u /∈ L
2n
n−2s

loc
(Rn), then

u(x) = |x|−
n−2
2 ϕa(ln |x|+ T ), for some a ∈ (0, a0], T ∈ R. (20)

There are two key steps to the proof of this fact. Firstly, one proves that u is radial via
the method of moving planes [22]. Then, through the logarithmic change of variables

u(x) = |x|−
n−2
2 ϕ(ln |x|) (21)

equation (19) transforms to the ODE

− ϕ′′ + (n− 2)2

4
ϕ = ϕ

n+2
n−2 . (22)

Thanks to the autonomy of (22), the proof can be concluded by simple phase-plane analysis
[81].

The classi�cation (20) yields in turn a precise result on asymptotic radial symmetry for
singular positive solutions u to (19) on the punctured ball {0 < |x| < 1} which is in fact
one of the main results in [22], namely that

u(x) = |x|−
n−2
2 ϕa(x+ T )(1 + o(1)) as |x| → 0.

This asymptotic expansion has been further re�ned in [55].

Secondly, the singular solutions (20) play an important role in the construction of constant
scalar curvature metrics with prescribed isolated singularities by Mazzeo and Pacard [65],
see also [80].

For singular solutions to (17) with general s, the situation is much more challenging.
The best result to date is a two-sided growth bound u ∼ |x|−n−2s

2 , which was proved in
the innovative works [20] (for s ∈ (0, 1)) and [54] (for s ∈ (0, n/2)) by using extension
techniques and some blow-up analysis results from [51, 52].

In Paper [P1], we consider the biharmonic case s = 2. We prove a classi�cation result for
solutions to (17) with s = 2 which is fully analogous to (20). In fact, we show that, even
though the equation is of fourth order, a suitable adaptation of 'phase-plane' analysis still
works. Our methods and results from [P1] have since been used by other authors to study
open questions related to biharmonic equations and Q-curvature [72, 71, 3]. See Section
2.1 for details.

1.4. Blow-up asymptotics in the Brezis�Nirenberg problem

In the following section we introduce the second main topic of this thesis, treated in Papers
[P4] and [P5], which is the study of blow-up asymptotics for elliptic equations with critical
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exponent. In contrast to the above section, the problems are naturally set on bounded
domains of RN . (We switch here to denoting the space dimension by capital N ≥ 3, in
accordance with the notation in [P4] and [P5] and the major part of the related literature.)
Therefore, the role of symmetry and uniqueness will be less dominant in what follows.
Nevertheless the reader will recognize the important role of the Sobolev inequality and
its full-space optimizers. Moreover, the problems we study here only concern the second-
order case s = 1, even though they are meaningful also for fractional exponents, see e.g.
[70, 35, 89, 83].

The Brezis�Nirenberg problem. The interest in the questions we shall study grew
out of the seminal paper [17] by Brezis and Nirenberg. There, the authors study under
what conditions on the potential a ∈ C(Ω) the following nonlinear elliptic boundary value
problem possesses a solution.

−∆u+ au = N(N − 2)up in Ω,

u > 0 in Ω, (23)

u = 0 on ∂Ω.

Here, Ω ⊂ RN is a bounded open set, N ≥ 3 and p := N+2
N−2

is the critical exponent with
respect to the Sobolev inequality. Our choice of the normalization factor N(N − 2) is
motivated by the fact that the functions Ux,λ introduced in (6) satisfy −∆Ux,λ = N(N −
2)Ux,λ on RN .

By the variational approach, a solution to (23) may be found as an optimizer for the
minimization problem

S(a) := inf
06≡u∈H1

0 (Ω)
Sa[u], (24)

where

Sa[u] :=

∫
Ω

(|∇u|2 + au2) dx

‖u‖2
Lp+1(Ω)

. (25)

Due to the lack of compactness in the embedding H1(Ω) ↪→ Lp+1(Ω), the existence of a
minimizer for (24) cannot be established by the direct method. To remedy this, Brezis and
Nirenberg showed that a su�cient condition for the existence of a minimizer is the strict
inequality [17, Lemma 1.2]

S(a) < S(0). (26)

(This lemma is attributed to Lieb in [17].)

One of the main �ndings in [17] is that the validity of (26) depends rather strikingly on
the space dimension. Indeed, for N ≥ 4, (26) holds whenever a(x) < 0 for some x ∈ Ω.
Since the best Sobolev constant is never achieved on a bounded domain, one easily deduces
from this that in fact the equivalence

S(a) is achieved ⇔ S(a) < S(0) (27)
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holds. On the other hand, in dimension N = 3, there exists µ > 0 such that if ‖a‖∞ < µ,
then Sa = S0. We denote the largest possible of these numbers by µ0 = µ0(Ω) and shall
refer to it as the critical Brezis�Nirenberg constant (of the domain Ω ⊂ R3). The fact that
(27) also holds if N = 3 was proved later by Druet [34].

The question of existence of a solution to (23) is even more subtle than the question for
existence of a minimizer of (24). If the domain Ω is star-shaped, then (23) has no solutions
for a ≥ 0 by the Pohozaev identity. However, if Ω has non-trivial (in a suitable sense)
topology, then (23) may have solutions regardless of the sign of a which do not arise as
minimizers of (24) [9]. For a more detailed discussion, we refer to the excellent review
article [15].

Blow-up asymptotics. The main question to be addressed here in connection with the
Brezis�Nirenberg problem is the study of blow-up of low-energy solutions to (23). We start
by discussing the case of constant potentials for simplicity. Thus we study solutions uε to

−∆uε − (µ0 + ε)uε = N(N − 2)upε in Ω,

uε > 0 in Ω, (28)

uε = 0 on ∂Ω.

If N = 3, we take here µ0 to be the critical Brezis�Nirenberg constant. If N ≥ 4, we take
µ0 = 0. By the results from [17] and [34] presented above, (28) has a solution uε for all
ε→ 0 obtained via minimization of S(−µ0− ε), while there is no such minimizer for ε = 0.
The natural question is thus whether the solutions uε blow up as ε→ 0, in the sense that
‖uε‖L∞(Ω) → ∞. If yes, can one describe in detail the blow-up pro�le, the blow-up speed
and the points of concentration?

The study of this kind of questions has been initiated in [4, 5] and most of all by Brezis
and Peletier in [18].

To describe the related results and conjectures we �x some notation �rst. For a function
a ∈ C(Ω) such that −∆ + a is coercive as an operator on L2(Ω), we let the (Dirichlet)
Green's function Ga be the unique function on Ω × Ω that satis�es in the distributional
sense

(−∆ + a)Ga(x, ·) = (N − 2)|SN−1|δx in Ω,

Ga(x, ·) = 0 on ∂Ω.

Moreover, we let Ha(x, y) := 1
|x−y|N−2 − Ga(x, y) be its regular part. Notice that H0(x, y)

is harmonic, and hence smooth, in y. Through the resolvent formula one can deduce from
this that Ha(x, y) has a continuous extension to the diagonal {x = y} ⊂ Ω× Ω. Thus we
can de�ne the Robin function φa(x) := Ha(x, x). The importance of the Robin function
in connection with problems involving the critical Sobolev exponent has been �rst pointed
out in [79, 15, 8].
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In dimensions N ≥ 4, the blow-up behavior can be considered completely understood by
virtue of the following theorem.

Theorem 1 (Atkinson�Peletier, Brezis�Peletier, Han, Rey). Let N ≥ 4 and let (uε) be
a family of solutions to (28) (with µ0 = 0). Suppose moreover that (uε) is a minimizing
sequence for the Sobolev quotient. Then there is a constant cN only depending on N and a
point x0 ∈ Ω such that as ε→ 0, up to extraction of a subsequence,

lim
ε→0

ε‖uε‖
2(N−4)
N−2

L∞(Ω) = cN |φ0(x0)| if N ≥ 5

and
lim
ε→0

ε log ‖uε‖L∞(Ω) = c4|φ0(x0)| if N = 4.

Moreover, x0 is a critical point for φ0.

Notice carefully that in Theorem 1 the (uε) are not assumed to be minimizers of S(−ε).
Indeed, in [75] Rey constructs a sequence of solutions to (28) satisfying the assumptions of
Theorem 1 and concentrating about any critical point of φ0. For ε small enough, however,
these functions do not minimize S(−ε) unless x0 is a global minimum of φ0, which follows
from the result in [87]. Still, a (much cruder) low-energy condition is imposed through the
assumption that the (uε) are a minimizing sequence of the Sobolev quotient (i.e., of (4),
with Rn replaced by Ω). Such an assumption is clearly necessary for a subsequence of the
uε to have precisely one concentration point by a concentration-compactness argument, see
[85], [63].

Theorem 1 has been proved in [5] when Ω is the ball and conjectured in [18] for general
smooth open sets Ω. The conjecture has been proved subsequently in two independent
works by Han [46] and Rey [74].

The counterpart in dimension N = 3 is the following. We let µ0 > 0 be the critical
Brezis-Nirenberg constant associated to the set Ω ⊂ R3.

Conjecture 2 (à la Brezis�Peletier). Let N = 3 and let (uε) be a family of solutions to
(23). Suppose moreover that (uε) is a minimizing sequence for the Sobolev quotient. Then
there is a universal constant c3 > 0 and x0 ∈ Ω such that as ε → 0, up to extraction of a
subsequence,

lim
ε→0

ε ‖uε‖2
L∞(Ω) = c3

(∫
Ω

G−µ0(x0, y)2 dy

)−1

. (29)

Moreover, x0 is a critical point of φ−µ0.

The statement of Conjecture 2 does not appear explicitly as a conjecture in [18], but it is
contained there in spirit. Indeed, its analogue for the related problem

−∆u = up−ε + µ0u in Ω,

u > 0 in Ω, (30)

u = 0 on ∂Ω,
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with critical constant µ0 > 0 and subcritical exponent p− ε (in the limit ε→ 0) is stated
in [18, Conjecture 3].

Both Conjecture 2 and [18, Conjecture 3] are so far only known when Ω is a ball; see [18,
Theorems 2 and 3].



CHAPTER 2

Overview of the papers

2.1. Paper [P1]. Classi�cation of positive singular solutions to a nonlinear
biharmonic equation with critical exponent

In this paper, we study positive singular solutions to the critical biharmonic equation

∆2u = u
n+4
n−4 on Rn \ {0}, (31)

for dimension n ≥ 5. This is the special case s = 2 of the equation (17) introduced and
discussed in Section 1.3.

Our main result is a complete classi�cation of positive singular solutions to (31), which is
fully analogous to (20) for the classical case s = 1. In view of the regularity theory from
[94], it is no restriction to state it for classical solutions u ∈ C4(Rn \ {0}) only.

Theorem 3. Let a0 =
(
n(n−4)

4

)n−4
4
. There exists a family of functions (va)a∈[0,a0] de�ned

on R with infR va = a and va(0) = maxR v such that u ∈ C4(Rn \{0}) is a positive solution
to (31) if and only if it is of the form

u(x) = |x|−
n−4
2 va(ln |x|+ T ), (32)

for some a ∈ [0, a0] and T ∈ R. Moreover, u is strictly radial-decreasing if a > 0.

If a = a0, then va0 ≡ a0.

If a0 > a > 0, then va is periodic with va(0) > a0 and symmetric with respect to its local
extrema.

If a = 0, then v0 = cn(cosh t)−
n−4
2 , for some explicit constant cn.

Let us give a few remarks concerning Theorem 3.

(1) This theorem answers a�rmatively a recent conjecture on log-periodicity of sin-
gular solutions stated in [45]. Moreover, our result shows that the additional
assumption made there on the positivity of the associated scalar curvature is un-
necessary.

(2) By undoing the logarithmic change of variables u(x) = |x|−n−4
2 v(ln |x|), the two

special solutions to (31) mentioned above are recovered as the endpoints of the
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family va. Indeed, v0 and its translates yield the family of smooth solutions from
(8) (with suitable normalization constant c). On the other hand, va0 corresponds
to the pure inverse power solution (18).

(3) Theorem 3 has since been used by several authors to extend some classical results
from the case s = 1 to the biharmonic setting. Firstly, in the recent preprint [72]
Ratzkin uses Theorem 3 to re�ne the asymptotic radial symmetry statement for
local solutions of Jin and Xiong [54]. This constitutes the analogue of [55] for
s = 2. Secondly, the same author uses in [71] the family of solutions (32) to prove
a property of a fourth-order conformal invariant which corresponds to a result of
Schoen [81] on the classical Yamabe invariant. Thirdly, in [3] Andrade and do
Ò use a variant of our ODE analysis to extend the statement of Theorem 3 to
fourth-order systems.

Besides these applications, we believe that Theorem 3 should be useful in the
construction of constant Q-curvature metrics with isolated singularities, similarly
to the works of Schoen [80] and Mazzeo and Pacard [65] for s = 1.

(4) The model power nonlinearity g(u) = u
n+4
n−4 on the right side of (31) can in fact be

replaced by a large class of functions satisfying a suitable growth bound. Extending
our analysis to these general nonlinearities is the main achievement of Paper [P2],
described in Section 2.2 below.

Sketch of proof. We now explain the proof strategy for Theorem 3.

The �rst step is to observe that any solution u to (31) with a non-removable singularity at
0 must be radially symmetric. This was proved by Lin [62] using the method of moving
planes.

By radial symmetry and the change of variables u(x) = |x|−n−4
2 v(ln |x|), the problem is

thus equivalent to studying solutions v ∈ C4(R) to the ODE

v(4) − Av′′ +Bv = v
n+4
n−4 on R, (33)

with coe�cients

A =
n(n− 4) + 8

2
and B =

n2(n− 4)2

16
. (34)

A similar change of variables could be performed if the right side of (31) was given by any
power nonlinearity up with p > 1. However, only the critical exponent p = n+4

n−4
leads to an

autonomous ODE [42, Section 3], which will be essential for the following analysis.

The existence part of Theorem 3 is proved via a relatively straightforward shooting argu-
ment for the ODE (33). (Alternatively, in [45], existence of a family of positive periodic
solutions parametrized by the period length rather than the minimal value is proved using
a variational argument.)
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We focus in what follows on the proof of the uniqueness statement of Theorem 3, which
contains in fact the main innovation. The idea is to carry out a phase-plane analysis similar
to the second-order case s = 1 for the solutions to the ODE (33). At �rst sight, it cannot be
expected that a similar analysis can give the desired result, e.g. because of the additional
degrees of freedom in the 'phase-plane' and because the maximum principle is in general
unavailable. Indeed, autonomous fourth-order ODEs do exhibit in general a much more
diverse behavior than second-order ones, and their solutions may include non-monotone
kinks, multibump periodic solutions and chaotic solutions, see e.g. [69]. Overcoming these
di�culties is the main achievement in [P1].

The key is to exploit the special structure of the ODE (33). Most importantly, for all
n ≥ 5, its coe�cients A and B satisfy the structural condition

A > 0 and 4B < A2.

This means that (33) can be written in the factorized form(
d2

dx2
− λ
)(

d2

dx2
− µ

)
v = v

n+4
n−4 , (35)

with positive coe�cients λ > µ > 0. Using this second-order-type structure, one can prove
the following comparison lemma, which is central to our argument.

Lemma 4. Let v, w ∈ C4(R) be nonnegative solutions to (33) such that

v(0) ≥ w(0),

v′(0) ≥ w′(0),

v′′(0)− µv(0) ≥ w′′(0)− µw(0),

v′′′(0)− µv′(0) ≥ w′′′(0)− µw′(0).

Then v ≡ w.

Lemma 4 goes back to [19, 95]. In these works, however, the strong additional a priori
assumption of boundedness of v and w was imposed. By combining their proof with a result
of Gazzola and Grunau [42], which asserts that nonnegative solutions can only blow up in
�nite time, we obtain Lemma 4 for arbitrary nonnegative solutions v, w. This simpli�ed
argument is only exposed in Lemma 13 of Paper [P2], but we chose to present it here for
clarity. We point out that in the published version of Paper [P1], we do not use this last
argument, but prove boundedness of v, w instead by an energy argument.

Lemma 4 immediately implies the following corollary.

Corollary 5. Let v, w ∈ C4(R) be solutions to (33) and suppose that v(t0) = w(t0) and
v′(t0) = w′(t0) for some t0 ∈ R. Then v ≡ w.

Corollary 5 states the surprising fact that solutions to (33) which are de�ned on all of R
are uniquely determined by only two instead of four initial values! In particular, if t0 is
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a local extremum of v, by considering w(t) = v(2t0 − t), we obtain symmetry of v with
respect to any local extremum t0. By repeated application of this, any solution with at
least two local extrema is periodic. Using these facts, the proof can be concluded by lifting
the standard second-order phase-plane arguments.

2.2. Paper [P2]. Singular solutions to a semilinear biharmonic equation with
a general critical nonlinearity

In this paper, we extend the techniques from Paper [P1] to prove a classi�cation result
analogous to (3) for positive singular solutions to the class of equations

∆2u =
1

|x|n+4
2

g(|x|
n−4
2 u) in Rn \ {0} (36)

for a general nonlinearity g satisfying the following natural assumptions.
g ∈ C1(R+), g > 0, limt→0 g(t) = 0,
g(t)
t
< g′(t) ≤ n+4

n−4
g(t)
t

for all t > 0,

β := limt→0 g
′(t) < n2(n−4)2

16
,

g(t) ≥ ctq for all t ≥ 1, for some q > 1, c > 0.

(37)

Choosing g(t) = t
n+4
n−4 recovers the equation (31) treated in Paper [P1], but the conditions

(37) also allow for the inclusion of a Hardy-Rellich term |x|−4u and a general subcritical
power uq (or a sum thereof), as in

∆2u = β|x|−4u+ |x|−
n+4
2

+q n−4
2 uq in Rn \ {0}, (38)

with 0 < β < n2(n−4)2

16
and 1 < q ≤ n+4

n−4
.

The way the nonlinearity in (36) is written becomes natural when passing to radial loga-
rithmic coordinates. Indeed, if u is a radial solution to (36), then by the change of variables
u(x) = |x|−n−4

2 v(ln |x|), (36) is equivalent to
v(4) − Av′′ +Bv = g(v) in R, (39)

with A and B as in (34).

The assumptions (37) ensure that the function G(u) :=
∫ u

0
g(t) dt − B u2

2
has a unique

global minimum on (0,∞), which we denote by a0 > 0. Moreover, we denote by µ =
1
2
(A −

√
A2 − 4(B − β)) the smaller one of the two positive roots of the characteristic

polynomial ξ4 − Aξ2 + (B − β) of the linearization of (39). Then our classi�cation result
reads as follows.

Theorem 6. There exists a family of functions (va)a∈[0,a0] de�ned on R with infR va = a
and va(0) = maxR va such that the following holds. The function u ∈ C4(Rn \ {0}) is a
positive solution to (31) if and only if it is of the form

u(x) = |x|−
n−4
2 va(ln |x|+ T ),



2.2 Singular solutions to a biharmonic equation with general nonlinearity 17

for some a ∈ [0, a0] and T ∈ R. Moreover, u is strictly radial-decreasing if a > 0.

If a = a0, then va0 ≡ a0.

If a0 > a > 0, then va is periodic with supR va > a0 and symmetric with respect to its local
extrema.

If a = 0, then for any ε > 0 there is C > 0 such that v0(t) ≤ Ce−(
√
µ−ε)|t| .

This classi�cation result is thus identical to the one from Theorem 3, up to the fact that
for general g there is no explicit expression for the homoclinic solution v0 and we can only
give exponential decay bounds.

While in the ODE part of the proof of Theorem 6, the only novelty compared to Paper
[P1] is the derivation of the exponential decay estimates, a substantial amount of work is
required to prove radial symmetry of any solution u to (36).

We use a variant of the method of moving planes which goes back at least to Terracini
[90] and relies mostly on integral estimates. Unlike the existing symmetry proofs in the
literature for higher-order equations [62, 97], where the method of moving planes is driven
by pointwise estimates, our method can therefore be applied directly to weak solutions of
the equation.

Let us give a somewhat more detailed sketch of the moving planes argument. The �rst step
is to regularize the function at in�nity via a (non-centered) Kelvin transformation. That
is, we �x some z ∈ Rn \ {0}, denote by z∗ = z/|z|2 its inversion about the unit sphere and
consider

v(x) := u∗z(x) :=
1

|x|n−4
u

(
x

|x|2
+ z

)
, x ∈ Rn \ {0, z∗}.

This function satis�es the transformed equation

∆2v = k
n+4
2 g(k−

n−4
2 v) in Rn \ {0,−z∗} (40)

with

k(x) := kz(x) :=
|z∗|

|x||x+ z∗|
, x ∈ Rn \ {0,−z∗} .

We shall show that v is re�ection-symmetric with respect to any hyperplane H passing
through 0 and z. By letting z → 0 along �xed directions, one recovers from this radial
symmetry of u by an easy argument.

The main step is thus to carry out the method of moving planes for equation (40). Without
loss, we assume that z1 = 0 and H = {x1 = 0}. For any number λ < 0, we let Σλ = {x1 >
λ}, xλ = (2λ− x1, x2, ..., xn), vλ(x) = v(xλ) and kλ(x) = k(xλ).

We need to analyze the positivity of the di�erence function w(λ) := v−vλ on the half-space
Σλ. This function satis�es

∆2w(λ) ≥ V (λ)w(λ) on Σλ, (41)
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with

V (λ)(x) = kλ(x)4 g(v(x)kλ(x)−
n−4
2 )− g(vλ(x)kλ(x)−

n−4
2 )

v(x)kλ(x)−
n−4
2 − vλ(x)kλ(x)−

n−4
2

.

The following lemma gives a type of small-volume maximum principle which drives the
moving planes method in our setting. It may be compared with Lemma 9 from [P3] below.

Lemma 7 (Lemma 10 in [P2]). There is a constant ε0 > 0, depending only on n, such that

if |{w(λ) < 0}| > 0, then
∫
{w(λ)<0}

(
V (λ)

)n
4 ≥ ε0.

To prove Lemma 7, the underlying simple idea is to multiply (41) by w(λ)
− and integrate

over Σλ. Using integration by parts and Sobolev's and Hölder's inequalities, one deduces
the inequality

‖w(λ)
− ‖2

2n
n−4

. ‖V (λ)1{w(λ)<0}‖n/4‖w
(λ)
− ‖2

2n
n−4

, (42)

which implies the conclusion of the lemma. This idea in its basic form is attributed to [12]
in the review article [16]. The relevance of replacing pointwise estimates by integral ones
was emphasized in Terracini's works [90, 91]; see also [27] for a version of this argument in
the integral equation setting. Implementing the above idea and deriving (42) rigorously in
our setting requires some careful estimates and approximations, however. This is because
(36), (40) and (41) only hold in the weak sense and the class of test functions is restricted
due to both the presence of singularities and because the equation is of fourth order. Details
can be found in Section 2 of [P2].

2.3. Paper [P3]. Classi�cation of solutions of an equation related to a
conformal log Sobolev inequality

This paper, joint with Rupert Frank and Hanli Tang, is concerned with the endpoint case
s = 0 of the classi�cation results described in Section 1.3 above. To motivate our main
theorem, let us �rst introduce the corresponding variational framework. The latter has a
particularly nice expression on the sphere Sn, where the following log-Sobolev inequality
proved by Beckner [10, 11] holds.∫∫

Sn×Sn

|v(ω)− v(η)|2

|ω − η|n
dω dη ≥ Cn

∫
Sn
|v(ω)|2 ln

|v(ω)|2|Sn|
‖v‖2

2

dω , (43)

for all v ∈ C∞(Sn), say. Here, the constant

Cn :=
4

n

πn/2

Γ(n/2)
, (44)

is sharp, as can be seen by testing against the conformal factors

v(ω) = c

(√
1− |ζ|2

1− ζ · ω

)n/2

, (45)
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where c 6= 0 and ζ ∈ Rn+1 with |ζ| < 1. To recognize (43) as the endpoint case s = 0 of the
fractional Sobolev inequality (7) respectively the HLS inequality (9), recall from Section
1.3 the equivalent formulation of (9) on Sn to be∫∫

Rn×Rn

v(x)v(y)

|x− y|n−2s
dx dy ≤ CHLS

n,s ‖v‖2
2n
n+2s

. (46)

Then (43) is obtained from (46) through a di�erentiation argument in the limit s → 0,
which we explain brie�y in the following. There are several equivalent ways to do this, e.g.
using expansion in spherical harmonics, as done in [10]. We present here an alternative
argument sketched in [11] which does not rely on spherical harmonics. Writing∫∫

Sn×Sn

|v(ω)− v(η)|2

|ω − η|n−2s
dω dη = 2

∫∫
Sn×Sn

v(ω)(v(ω)− v(η))

|ω − η|n−2s
dω dη

we obtain by the HLS inequality (15) that∫∫
Sn×Sn

|v(ω)− v(η)|2

|ω − η|n−2s
dω dη ≥ 2CHLS

n,s |Sn|
2s
n

(
‖v‖2

L2(Sn) − |Sn|−
2s
n ‖v‖2

L
2n
n+2s (Ω)

)
. (47)

Here we used the relation
∫
Sn

1
|ω−η|n−2s dη = |Sn|− 2s

n CHLS

n,s (for any ω ∈ Sn), which follows
from evaluating (15) with the extremizing function v ≡ 1. Since the HLS constant is given
by [61, Theorem 4.3]

CHLS

n,s = π
n
2
−s Γ(s)

Γ(n
2

+ s)

(
Γ(n/2)

Γ(n)

)−2s/n

∼ 2πn/2

Γ(n/2)

1

2s
+ o(

1

2s
) as s→ 0,

the right side of (47) tends to

− 4πn/2

Γ(n/2)

d

dα

∣∣∣
α=0

(
|Sn|−

α
n ‖v‖2

2n
n+α

)
=

4πn/2

nΓ(n/2)

∫
Sn
|v(ω)|2 ln

|v(ω)|2|Sn|
‖v‖2

2

dω

in the limit s→ 0. This yields (43).

This passage to the limit does not preserve the characterization of optimizers (16), which
for (43) was recovered in [11] by an additional argument. As discussed in Section 1.3 for
the case s > 0, it is an interesting and non-trivial question to extend this classi�cation to
solutions of the Euler-Lagrange equation ful�lled by optimizers. This equation reads, in
the weak sense and for functions u normalized so that ‖u‖2

2 = |Sn|,

E [ϕ, u] :=
1

2

∫∫
Sn×Sn

(ϕ(ω)− ϕ(η)) (u(ω)− u(η))

|ω − η|n
dω dη = Cn

∫
Sn
ϕ(ω)u(ω) lnu(ω) dω

(48)
for all ϕ ∈ D. Here the �nite-energy space D is given by

D :=

{
v ∈ L2(Sn) :

∫∫
Sn×Sn

|v(ω)− v(η)|2

|ω − η|n
dω dη <∞

}
.

Our main result gives an answer to this question.
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Theorem 8. Let 0 6≡ u ∈ D be a nonnegative weak solution of equation (48). Then

u(ω) =

(√
1− |ζ|2

1− ζ · ω

)n/2

for some ζ ∈ Rn+1 with |ζ| < 1.

That is, analogously to the case s > 0, the set of positive �nite-energy solutions to the
Euler-Lagrange equation (48) is precisely given by the conformal factors.

From the di�erentiation argument above, it is clear that the quadratic form E , respectively
the underlying operator

Hu(ω) := P.V.

∫
Sn

u(ω)− u(η)

|ω − η|n
dη

is closely related to the logarithmic Laplacian (−∆)L with Fourier symbol 2 ln |ξ| on Rn,
which was studied recently in [25, 48]. Analogously, this operator is given, at least formally,
by di�erentation of (−∆)su at s = 0.

We prove Theorem 8 by the same method that was already employed in [59] to solve the
classi�cation problem s > 0, namely the method of moving spheres discussed in Section
1.3.

Since, unlike for s > 0, (48) does not admit a simple reformulation as an integral equation,
we use what has come to be called the direct method of moving spheres. This means
that we apply the moving spheres argument directly to some non-local integro-di�erential
equation, in our case (48), instead of its integral equation version. This approach has been
pioneered in work of Jarohs and Weth [49, 50] and systemized by Chen, Li, Li and Zhang
in [26, 28]. It emphasizes the role of small domain maximum principles for non-local
operators as the main technical ingredient.

To complete the picture, we note here that in the integral equation setting, which is usually
less challenging to deal with, maximum principles similar in spirit appear implicitly in
earlier works like [27, 59, 64]. For non-local di�erential operators, versions of the strong
maximum principle appear e.g. in the works [38, 53].

The adaptation of the direct method to the case s = 0 is not straightforward. Deriving
the relevant maximum principles in the logarithmic setting is therefore one of the main
accomplishments in this paper. The additional di�culties have two di�erent, yet related,
sources. Firstly, since the regularity proof from [59, Theorem 1.2] cannot be directly
applied in our case, we cannot study the pointwise version of (48), but rather have to stick
with the weak version. In particular, the proof of the needed strong maximum principle is
made much more delicate by this restriction than e.g. the corresponding version, valid for
C1,1 functions, in [28, Theorem 2.2]. Secondly, it turns out that we cannot use bounds in
the usual Lp norms to estimate the logarithmic nonlinearity. We need to substitute those
by suitable inequalities of Orlicz type.
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We now give a sketch of the proof of Theorem 8, which proceeds via the method of moving
spheres, lifted from Rn to Sn via stereographic projection. That is, for every λ > 0 and
x0 ∈ Rn, we let Iλ,x0(x) = λ2(x−x0)

|x−x0|2 +x0 be the inversion about the sphere in Rn with radius
λ and center x0. Setting ξ0 = S(x0), we consider the conformal map Φλ,ξ0 : Sn \ {S, ξ0} →
Sn \ {S, ξ0} given by

Φλ,ξ0 = S ◦ Iλ,x0 ◦ S−1. (49)

Given a positive solution u to (48), the method of moving spheres consists in comparing u
to its re�ection

uλ,ξ0(ω) := detDΦλ,ξ0(ω)1/2u(Φλ,ξ0(ω)).

on the 'half-sphere' Σλ,ξ0 := S(Bλ(x0)). By conformal invariance of the equation, uλ,ξ0 is
a solution to (48) if and only if u is. The main step in the moving spheres method then
consists in showing a strong symmetry property of the solution u, namely that

for every ξ0 ∈ Sn \ {S}, there exists λ = λ(ξ0) ∈ (0,∞) such that uλ,ξ0 ≡ u. (50)

The proof of (50) proceeds through the analysis of the positivity of the di�erence function
wλ,ξ0 := uλ,ξ0 − u. Notice that as a consequence of Φλ,ξ0 being an involution, wλ,ξ0 is
antisymmetric, meaning that it is the negative of its re�ection with respect to Φλ,ξ0 .

The following maximum principle, valid for antisymmetric functions, plays an important
role in the proof of (50).

Lemma 9 (Lemma 4 in [P3]). Let λ > 0 and ξ0 ∈ Sn \ {S}, let Ω ⊂ Σλ,ξ0 be measurable
and let V : Ω→ R be a measurable function with∫

Ω

e2V−/Cn < |Sn| . (51)

If w ∈ D is antisymmetric with respect to Σλ,ξ0 and satis�es

E [ϕ,w] +

∫
Ω

ϕV w ≥ 0 for any 0 ≤ ϕ ∈ D with ϕ = 0 on Ωc (52)

and

w ≥ 0 a.e. on Σλ,ξ0 \ Ω, (53)

then w ≥ 0 a.e. on Ω.

Assumption (51) can be thought of a small volume assumption on the domain Ω, which
is standard for the maximum principles involved in the direct moving spheres method, as
is antisymmetry. The new feature, which takes the logarithmic character of our problem
into account, is the fact that we need to measure the smallness of the potential V− in an
integral norm involving the exponential rather than a p-th power.

Once property (50) is established, the proof can be concluded in a relatively standard
manner. Indeed, (50) translates back to the usual moving spheres inversion symmetry
condition on the functions v(x) = detDS(x)1/2u(S(x)) de�ned on Rn. By using [39,
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Theorem 1.4], which generalizes [58, Lemma 2.5] to arbitrary �nite measures, we conclude
that v must be of the form

v(x) = c

(
2b

b2 + |x− a|2

)n/2
. (54)

for some a ∈ Rn, b > 0 and c ≥ 0. Projecting back to the sphere, we �nd that u must be of
the form (45), for some c ≥ 0 and ζ ∈ Rn+1 with |ζ| < 1. Finally, we use (48) to determine
that c = 1. This completes the proof of Theorem 8.

2.4. Paper [P4]. Energy asymptotics in the three-dimensional
Brezis�Nirenberg problem

This paper, joint with Rupert Frank and Hynek Kova°ík, deals with the blow-up asymp-
totics for almost minimizers of a Brezis�Nirenberg-type functional in the critical dimension
N = 3.

To motivate our results from the viewpoint of the Brezis�Peletier conjectures discussed in
Section 1.4, for an open and bounded set Ω ⊂ R3, consider the following slight generaliza-
tion of (28).

−∆uε + (a+ εV )uε = 3u5
ε in Ω,

uε > 0 in Ω, (55)

uε = 0 on ∂Ω.

Here, we allow for a ∈ C1(Ω)∩C(Ω) and V ∈ C(Ω) to be non-constant potentials without
restrictions on their signs.

Our results from Paper [P4] are relevant for describing the subclass of energy-minimizing
solutions to (55), that is, the (uε) arising as minima of the functional Sa+εV introduced in
Section 1.4.

The following notion, introduced in [47], serves as a generalization of the Brezis�Nirenberg
criticality discussed in Section 1.4, to a non-constant potential. We say that a ∈ C(Ω) is
critical if S(a) = S(0), but S(ã) < S(a) for every ã ∈ C(Ω) with ã ≤ a and ã 6≡ a. A
noteworthy equivalent characterization proved by Druet [34] is that a is critical if and only
if infΩ φa = 0, where φa is the Robin function introduced in Section 1.4. In particular, the
set

Na := {x ∈ Ω : φa(x) = 0}
is non-empty. Notice that if a is critical, then −∆ + a is coercive as a consequence of
Hölder's inequality.

To state the main result of Paper [P4], we need to introduce some more notation. Recall
that the family (Ux,λ) of normalized Sobolev optimizers has been de�ned in (6). We de�ne
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PUx,λ ∈ H1
0 (Ω) to be the unique function satisfying

∆PUx,λ = ∆Ux,λ in Ω, PUx,λ = 0 on ∂Ω . (56)

Moreover, let
Tx,λ := span {PUx,λ, ∂λPUx,λ, ∂xiPUx,λ (i = 1, 2, 3)}

and let T⊥x,λ be the orthogonal complement of Tx,λ in H1
0 (Ω) with respect to the inner

product
∫

Ω
∇u · ∇v dy. We denote by Πx,λ and Π⊥x,λ the orthogonal projections in H1

0 (Ω)

onto Tx,λ and T⊥x,λ, respectively.

Finally, we set

QV (x) :=

∫
Ω

V (y)Ga(x, y)2 dy, x ∈ Ω , (57)

and
Na(V ) := {x ∈ Na : QV (x) < 0} .

Here is the detailed statement of the main result of [P4]. We denote S := S(0) in the
following.

Theorem 10. Let Ω be of class C2 and assume that a is critical with a(x) < 0 for all
x ∈ Na. Moreover, suppose that Na(V ) 6= ∅. Let (uε) ⊂ H1

0 (Ω) be a family of functions
such that

lim
ε→0

Sa+εV [uε]− S(a+ εV )

S − S(a+ εV )
= 0 and

∫
Ω

u6
ε dx =

(
S

3

) 3
2

. (58)

Then there are (xε) ⊂ Ω, (λε) ⊂ (0,∞) and (αε) ⊂ R such that

uε = αε
(
PUxε,λε − λ−1/2

ε Π⊥xε,λε(Ha(xε, ·)−H0(xε, ·)) + rε
)

(59)

and, along a subsequence,

xε → x0 for some x0 ∈ Na(V ) with
QV (x0)2

|a(x0)|
= sup

y∈Na(V )

QV (y)2

|a(y)|
,

φa(xε) = o(ε) ,

lim
ε→0

ε λε = 4π2 |a(x0)|
|QV (x0)|

,

αε = s+O(ε) for some s ∈ {±1} .

Finally, rε ∈ T⊥xε,λε and ‖∇rε‖2 = o(ε).

The assumption that a < 0 on Na is not severe, as for critical a one always has a ≤ 0 on
Na, see Corollary 2.2 of [P4]. Moreover, the denominator in (58) is always non-zero under
the assumption that Na(V ) 6= ∅, see Theorem 11 below.

As we already tried to make clear above, Theorem 10 should be seen as a variational
version of the Brezis�Peletier-type conjecture stated in Conjecture 2. As a consequence
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of the variational approach, the result only holds for energy-minimizing solutions and the
bounds are only obtained in H1 instead of L∞ norm. On the other hand, Theorem 10
also holds for almost minimizers (in the sense of (58)), which do not need to satisfy a
corresponding equation.

As a byproduct of the proof of Theorem 10, we obtain the asymptotics of the energy
S(a+ εV ) as ε→ 0.

Theorem 11. (i) Assume that Na(V ) 6= ∅. Then S(a+ εV ) < S for all ε > 0 and

lim
ε→0+

S(a+ εV )− S
ε2

= −
(

3

S

) 1
2 1

8π2
sup

x∈Na(V )

QV (x)2

|a(x)|
. (60)

(ii) Assume that Na(V ) = ∅. Then S(a+ εV ) = S + o(ε2) as ε→ 0+. If, in addition,
QV (x) > 0 for all x ∈ Na, then S(a+ εV ) = S for all su�ciently small ε > 0.

Theorem 11 further clari�es the role of the assumption Na(V ) 6= ∅ made in Theorem 10.
Indeed, we see that the condition Na(V ) 6= ∅ is 'almost sharp' in the sense that unless
minNa QV = 0, the asymptotics of S(a+ εV ) as ε→ 0 are trivial.

The �rst step in the proof of Theorems 10 and 11 is to prove a sharp upper bound on the
minimal energy S(a+ εV ). We test Sa+εV with the family of functions

ψx,λ(y) := PUx,λ(y)− λ−1/2(Ha(x, y)−H0(x, y)) . (61)

with parameters x ∈ Ω and λ > 0 to be determined. (The intuition behind this choice
of test functions can be sketched non-rigorously as follows. Suppose that uε is a true
minimizer. From (63) below, we should have u5

ελ
1/2 ∼ δx0 , so that by (55) we get u(x) ∼

(−∆ + a)−1u5
ε ∼ λ−1/2Ga(x0, y). But now, as λ→∞,

PUx,λ + λ1/2H0(x, ·) ∼ Ux,λ ∼
λ−1/2

|x− y|
for any �xed x ∈ Ω (see [75, Proposition 1] for the �rst asymptotic equality). Thus as
x → x0 and λ → ∞, the ψx,λ ∈ H1

0 (Ω) should be a good approximation to the expected
limiting pro�le Ga(x0, ·) of the minimizers uε.)

We compute

Sa+εV [ψx,λ] = S +

(
S

3

)− 1
2

4π φa(x)λ−1

+

(
S

3

)− 1
2 ( ε

λ
QV (x)− 2π2 a(x)λ−2 − (15π2 − 128)φa(x)2 λ−2

)
+ o(λ−2) + o(ελ−1) . (62)

In view of Druet's result, the subleading λ−1 is minimized by taking x ∈ Na. Optimizing
the remaining terms �rst in λ > 0 and then in x ∈ Na(V ) yields the upper bound in the
expansion (60).
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Let us insert a brief comment on a subtlety in the choice of the test functions in (61). In
view of the expansion (59), it may be surprising that one can get the sharp upper bound by
testing with the ψx,λ. After all, the ψx,λ di�er from (59) by λ−1/2 Πx,λ(Ha(x, ·)−H0(x, ·)),
which can be shown to be of order O(λ−1), but not smaller. However, due to cancellations
in the quotient the contribution to Sa+εV caused by this additional term is only of the order
o(λ−2) and thus negligible for our purposes.

The strategy in the proof of the corresponding lower bound is to start with an arbitrary
sequence (uε) of almost minimizers (normalized so that

∫
Ω
u6
ε dx =

∫
R3 U

6
0,1 dx = (S/3)3/2)

and to show that they must essentially coincide with the test function ψx,λ used to derive
the upper bound. The starting point for this is the asymptotic decomposition

uε = αε (PUxε,λε + wε) , (63)

where up to a subsequence

αε → s for some s ∈ {−1,+1} ,
xε → x0 for some x0 ∈ Ω ,

λεdist(xε, ∂Ω)→∞ ,

‖∇wε‖2 → 0 and wε ∈ T⊥xε,λε .

(64)

The asymptotics (63) and (64) are well-known for exact minimizers uε of S(a + εV ) and
can be derived from results of Struwe [85] and Bahri-Coron [9], see e.g. [75, Proposition
2]. The proof extends to almost minimizers without major problems.

If we expand the functional Sa+εV [uε] according to the decomposition (63), the remainder
terms containing w will a priori be of order o(1) as ε → 0, which is by far not precise
enough. However, the key point is that we can improve the bound on w by using the
orthogonality condition on w from (64), the sharp upper bound already proved in (62) and
the coercivity inequality∫

Ω

(
|∇v|2 + av2 − 15U4

x,λv
2
)

dy ≥ ρ

∫
Ω

|∇v|2 dy , for all v ∈ T⊥x,λ. (65)

This is a variant of an inequality proved by Rey [75, Appendix D], which is stated in (70)
below. Inequality (65) has been proved and applied in the present context by Esposito
[36], who used it to give a simple alternative proof of Druet's result that infΩ φa = 0 for
critical a. As can be guessed from (62), this amounts to expanding Sa+εV [uε] to the �rst
subleading order λ−1.

To derive the results stated in Theorems 10 and 11, however, it is apparent from (62)
that we need to expand the energy to the second subleading order λ−2. Hence the idea
is to iterate the procedure of expanding and using coercivity to conclude a sharper error
bound. This requires substantially more work and new techniques. In particular, we need
to use the inequality (65) two more times before we can expand uε and S(a + εV ) to
the needed precision. In this process, the zero-modes, i.e., the functions in Tx,λ, need to



26 2. Overview of the papers

be specially taken into account, which can be seen as a re�ection of the translation and
dilation invariance of the Sobolev inequality.

2.5. Paper [P5]. Energy asymptotics in the Brezis�Nirenberg problem. The
higher-dimensional case

Paper [P5], also joint with Rupert Frank and Hynek Kova°ík, is a companion work to
Paper [P4] and contains the corresponding asymptotics of the Brezis�Nirenberg quotient
functional and its almost minimizers in space dimension N ≥ 4.

As already mentioned in the discussion in Section 1.4, the Brezis-Nirenberg problem in
case N ≥ 4 presents fewer di�culties and subtleties than the critical case N = 3. Indeed,
the Brezis�Nirenberg result from [17] implies that for N ≥ 4 the only critical function is
a = 0, and that S(εV ) < S(0) if and only if

N (V ) := {x ∈ Ω : V (x) < 0}
is non-empty.

Here are the main results of Paper [P5]. We use the notation introduced in Section 2.4.
Moreover, we denote SN := S(0) and φ(x) := φ0(x).

Theorem 12. Let Ω ⊂ RN be open and bounded of class C2 and suppose that N (V ) 6= ∅.
Let (uε) ⊂ H1

0 (Ω) be a family of functions such that

lim
ε→0

SεV [uε]− S(εV )

SN − S(εV )
= 0 and

∫
Ω

|uε|
2N
N−2 dx =

(
SN

N(N − 2)

)N
2

. (66)

Then there are (xε) ⊂ Ω, (λε) ⊂ (0,∞), (αε) ⊂ R and (wε) ⊂ H1
0 (Ω) with wε ∈ T⊥xε,λε such

that
uε = αε (PUxε,λε + wε) (67)

and, along a subsequence, xε → x0 for some x0 ∈ N (V ). Moreover, there are constants
aN , bN and DN such that{

φ(x0)−
2

N−4 |V (x0)|
N−2
N−4 = supx∈N (V )

(
φ(x)−

2
N−4 |V (x)|

N−2
N−4

)
, N ≥ 5,

φ(x0)−1|V (x0)| = supx∈N (V ) (φ(x)−1|V (x)|) , N = 4,{
‖∇wε‖2 = o(ε

N−2
2N−8 ), N ≥ 5,

‖∇wε‖2 ≤ exp
(
− 2

ε
(1 + o(1))σ4(Ω, V )−1

)
, N = 4,{

limε→0 ε λ
N−4
ε = N (N−2)2 aN φ(x0)

2 bN |V (x0)| , N ≥ 5,

limε→0 ε lnλε = 2φ(x0)
|V (x0)| , N = 4,αε = s

(
1 +DNε

N−2
N−4 + o(ε

N−2
N−4 )

)
, N ≥ 5,

αε = s
(

1 + exp
(
− 4

ε
(1 + o(1))

(
supx∈N (V ) (φ(x)−1|V (x)|)

)−1
))

, N = 4,
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for some s ∈ {±1}.

The corresponding energy asymptotics are the following.

Theorem 13. There exists a constant CN such that as ε→ 0+,

S(εV ) = SN − CN sup
x∈N (V )

(
φ(x)−

2
N−4 |V (x)|

N−2
N−4

)
ε
N−2
N−4 + o(ε

N−2
N−4 ) if N ≥ 5 (68)

and

S(εV ) = S4 − exp
(
− 4

ε
(1 + o(1))

(
sup

x∈N (V )

(
φ(x)−1|V (x)|

))−1 )
if N = 4. (69)

The proof of Theorems 12 and 13 is along the same lines as those of the results from
Paper [P4] sketched in Section 2.4. As already pointed out above, the case N ≥ 4 is
technically less involved. This is re�ected in the proofs by the fact that testing with the
simpler family of functions PUx,λ (without the correction term −λ−1/2(Ha(x, ·)−H0(x, ·))
appearing in (61)) already yields the sharp upper bound for the energy in (68) resp. (69).
As a consequence, in the asymptotic decomposition (63) (which holds in N ≥ 4 as well)
we do not need to extract a subleading term of uε, so that only one application of the
appropriate coercivity inequality [75, Appendix D]∫

Ω

|∇v|2 dy −N(N + 2)

∫
Ω

Up−1
x,λ v2 dy ≥ 4

N + 4

∫
Ω

|∇v|2 dy , for v ∈ T⊥x,λ (70)

su�ces.

We explained in Section 2.4 that Theorem 10 from Paper [P4] can be seen as an H1

version of the three-dimensional critical Brezis�Peletier Conjecture 2 for energy-minimizing
solutions. In the same way, Theorem 12 is related to the higher-dimensional Brezis�Peletier
conjecture from Theorem 1 which was solved by Han [46] and Rey [74]. For the special
case of constant V and exact minimizers (uε), Theorems 12 and 13 are essentially proved in
a work by Takahashi [87] by combining variational ideas similar to ours with results from
Han and Rey. We also mention the work [96] which has a result and proof similar to [87],
but for the subcritical problem (30) (with µ0 = 0). Paper [P5], other than elucidating the
methods and ideas from [P4], therefore has the merit of giving a new self-contained proof
of Takahashi's results and extending them to non-constant V and to almost minimizers
(uε).

To conclude the discussion, let us brie�y review the similarities and discrepancies between
the cases N = 3 and N ≥ 4 re�ected in the results of Papers [P4] and [P5]. On the one
hand, given the fundamentally di�erent behavior of dimension N = 3, one may �nd the
structure of the asymptotics surprisingly similar in the two cases. Namely, any normalized
minimizing sequence uε develops the asymptotic pro�le PUxε,λε , where the concentration
scale λε is given to leading order by an inverse power of ε times a coe�cient determined by
an auxiliary optimization problem in x which involves the Green's function of −∆+a (with
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critical a) and the perturbation potential V . On the other hand, an important di�erence
is that for N ≥ 4 merely the local values V (x) are relevant to said optimization problem,
while in N = 3 the global behavior of V enters through the quantity QV (x). Moreover, in
N = 3, concentration points are a priori restricted to the set Na, while in N ≥ 4 no such
additional restriction occurs.
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