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Abstract

All-solid-state batteries represent promising next-generation battery systems. They offer
the possibility of fast charging, improved capacity and energy density, as well as a drasti-
cally reduced fire risk by replacing the flammable liquid electrolyte by one or more solid
ion conductors. Sulfides are among the potential candidates to be employed in all-solid-
state batteries, because of their high specific ionic conductivities, being essential for fast
charging of the resulting battery, combined with their mechanical softness, allowing for
cold pressing of the electrolyte powder without the need for further high temperature an-
nealing. Since not only conductivity and chemical stability, but also production costs and
weight are important factors that determine the choice of a solid electrolyte, the scope of
this work is to expand the field of low-cost sulfide based solid electrolyte materials utilizing
only earth abundant main group elements while showing high ionic conductivities.

Figure 1: Tetragonal Li7SiPS8 is a glassy
ceramic, where the amorphous phase impedes
the ionic conductivity.

For the lithium based solid electrolytes, this
work shows the synthesis and characteriza-
tion of Li7SiPS8 (LSiPS), a new member
of the tetragonal LGPS (Li10GeP2S12)-type
family of ultrafast Li+ solid electrolytes.
The crystal structure, phase stability, as
well as Li+ conductivity of tetragonal and
orthorhombic LSiPS are reported. The
tetragonal modification shows a total spe-
cific ionic conductivity of 2 · 10−3 S cm−1.
While being fast in absolute terms, the
observed conductivity is unexpectedly low
compared to other members of the tetrag-
onal LGPS-type family. Using a combi-
nation of different solid-state NMR tech-
niques, quantitative phase analysis and impedance spectroscopy an amorphous thiophos-
phate side phase with low Si content was identified that impedes the intergrain conductivity
and therefore masks a potentially higher bulk ionic conductivity. This case study highlights
the importance of analyzing solid electrolytes, especially thiophosphates, beyond the crys-
talline fractions to gain insights into the structure-property relationships of these glassy
ceramics.

In addition, this thesis shows the successful aliovalent substitution of silicon by aluminum
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in Li7+xSi1-xAlxPS8. The increased charge carrier density combined with a flatter energy
landscape resulting from this substitution should increase the total ionic conductivity of
the material, which is corroborated by bond valence energy landscape calculations pre-
sented in this work. However, a slight decrease in conductivity with increasing substi-
tution ratio x was observed which was attributed to a change in the composition of the
amorphous side phase detected by solid state NMR. First investigations showed that upon
addition of lithium chloride and lithium sulfide the formation of these amorphous side
phases can almost completely be inhibited by forming, amongst others, lithium argyrodite
Li7+x-yP1-xSixS6-yCly. The resulting mixture shows an ionic conductivity of 4 · 10−3 S cm−1

with an activation energy of 0.17 eV , doubling the previously reported conductivity.

Figure 2: The right blend of aluminum and
silicon enables high sodium ion conduction in
the solid solution series Na5-xAl1-xSixS4.

Furthermore, new sodium ion electrolytes
in the substitution series Na5-xAl1-xSixS4

(0 ≤ x ≤ 1) are reported in this work.
These exhibit ionic conductivities rang-
ing from 1.64 · 10−7 S cm−1 for Na4SiS4 to
2.04 · 10−5 S cm−1 for Na8.5(AlS4)0.5(SiS4)1.5

(x = 0.75). The crystal structures
of the Na+-ion conductors Na4SiS4 as
well as hitherto unknown Na5AlS4 and
Na9(AlS4)(SiS4) are reported. Using these
experimental data, Na+-ion conduction
pathways for all new structures were calcu-
lated by the bond valence energy landscape
(BVEL) method. These highlight the influ-
ence of the local coordination symmetry of sodium ions on the energy landscape within this
family of compounds. The findings reported in this work show that the interplay of charge
carrier concentration and low site symmetry of sodium ions can enhance the conductivity
by several orders of magnitude.



Chapter 1

Introduction

Since the re-invention of the first battery by Alessandro Volta in 1799, a stack of metallic
copper and zinc discs separated by brine soaked cloth,1,2 the importance of energy stor-
age has drastically increased and is nowadays dominated by the lithium ion (secondary)
battery. Today, these devices are found in nearly all mobile electrical devices, such as
laptops, cell phones or power-tools. Especially, electric vehicles are dependent on the high
energy density lithium ion batteries offer. These batteries are heavily in the spotlight of
politics and industry because they offer, with proper infrastructure and recycling, a way
to decrease CO2 and NOx emissions world-wide.3 Safety, energy density, and hence the
distance the vehicle can travel without re-charging, and price are key concerns for the
lithium ion batteries employed in electric vehicles. The first two can potentially be tackled
by substitution of the flammable liquid electrolyte by one or more solids. However, the
resulting all-solid-state lithium ion batteries (ASSLiBs) require a lithium metal anode to
outperform conventional lithium ion batteries in terms of energy density.4

Sulfide based solid electrolytes are one of the potential candidates to be employed in such
ASSLiB systems, because of their softness and therefore processability by enabling cold
pressing. Additionally, sulfides offer high ionic conductivities, which is essential for fast-
charging of the resulting all-solid-state batteries. However, long-term stability of the solid
electrolyte against the electrode materials is a major concern impacting lifetime and safety
of this type of batteries. Possible solutions to this problem are protective coatings of
the electrode materials or a combination of a multitude of solid electrodes tailored to the
specific electrode materials.5 The scope of this work is to expand the materials space of
sulfide based lithium and sodium solid electrolytes as well as study the impact of crystal-
and micro-structure on the conductivity. The following sections give a more thorough
insight into the topics mentioned above, starting with the conventional lithium ion battery.

1.1 Lithium ion batteries

The following section deals with the history and setup of conventional batteries, i.e. bat-
teries employing a liquid electrolyte, and all-solid-state lithium ion batteries, followed by
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an overview of state-of-the-art solid electrolytes with potential to be used in future battery
applications.

1.1.1 Conventional lithium ion batteries

The term ’battery’ was coined by Benjamin Franklin in 1748 to denote an array of Leyden
jars, water filled glass jars with two metal electrodes serving as capacitors to store charge
from electrostatic generators.6 After the discovery of the Voltaic pile in 1799, its improve-
ment and commercialization by John F. Daniell and the invention of the lead-acid-battery
in 1859 by Gaston Plante, batteries were categorized in primary (one use) and secondary
(rechargeable) batteries. In contrast to the Leyden jars or capacitors, batteries store elec-
trical energy as chemical energy in the electrodes. These are denoted as cathode and anode
for primary and secondary batteries alike. The cathode is defined as the electrode where
a reduction reaction takes place during the discharge of the battery. Consequently, the
anode designates the electrode where an oxidation reaction takes place during discharge.
The electrical output of a battery is a current I = dq/dt with a voltage V for a time ∆t.
The electrical energy stored in a battery is given by:7∫ ∆t

0

I · V dt =

∫ Q

0

V dq (1.1)

with the battery capacity:

Q =

∫ ∆t

0

Idt =

∫ Q

0

dq (1.2)

The chemical reaction in a battery has an electronic and an ionic component. The elec-
trolyte and if necessary a separator enables ionic transport between the electrodes but
hinders electronic transport, forcing a current to flow outside the battery through a resis-
tance. In equilibrium the open-circuit potential of a cell VOC = Ecell of a battery is given
by the Nernst equation:8

Ecell = E◦cell −
RT

zF
ln Qr (1.3)

with a reaction coefficient:

Qr =

∏
j a

νj
j∏

i a
νi
i

(1.4)

where Ecell is the cell voltage at a given temperature T for the cell voltage at standard
conditions E◦cell for a specific reaction coefficient Qr. aj and ai are the reaction product
and starting material activities, respectively, with their specific stoichiometric coefficients
νj and νi.
The stability ’window’ of an electrolyte is roughly estimated by the energy gap Eg =
E(LUMO) − E(HOMO) between the lowest unoccupied molecular orbital (LUMO) and
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the highest occupied molecular orbital (HOMO) of the solvent molecule(s). A cathodic
electrochemical potential higher than the LUMO, or an anodic electrochemical potential
lower than the HOMO can reduce or oxidize the electrolyte respectively. Hence, Eg of the
electrolyte effectively limits the maximum open circuit potential of one cell and therefore
the energy density of the whole battery, which is one of the key performance indicators of
a battery, especially for mobile applications.
In aqueous solutions this voltage limit is given by the redox couple O2|H2O|H2 with
Eg = 1.23 V . Kinetic energy barriers (overpotential) can in some cases increase this limit
up to VOC ≈ 2 V , like in the case of the lead-acid-battery.7,9 However, to harness higher
voltages per electrochemical cell the transition from protons as charge carriers to the also
small and light lithium ion was made. Lithium metal offers the highest anodic electrochem-
ical potential energy and its salts (e.g. LiPF6) can be dissolved in organic carbonate esters
like propylene carbonate showing specific Li-ion conductivities of σLi > 10−2 S cm−1.10

Moreover, the addition of ethylene carbonate enabled the formation of a stable solid elec-
trolyte interface (SEI) on the lithium metal anode.11 These SEIs kinetically hinder the
decomposition of the electrolyte and make cells feasible with VOC ≤ 5 V vs. Li, although
the degradation is initiated at VOC > 4 V .12

Figure 1.1: Schematic representation of a
conventional lithium ion cell. The electrodes
are made of intercalation compounds: the
cathode is LiCoO2, the anode is graphite and
the liquid electrolyte is e.g. a solution of 1 M
LiPF6 in a mixture of ethylene carbonate and
dimethyl carbonate (EC/DC).

Whittingham et al. explored layered ma-
terials such as TiS2 as cathode materials
for lithium ion batteries. They showed,
that TiS2 can reversibly intercalate lithium
ions between its layers forming LixTiS2

(0 ≤ x ≤ 1) in the process. Using TiS2

as cathode material, lithium metal as an-
ode and the above mentioned solution of
LiPF6 in propylene carbonate a working,
rechargeable battery was demonstrated in
1976 (VOC ≈ 2 V vs. Li).13–15 The dis-
covery of LiTmO2 (Tm = Co,Ni) as suit-
able cathode materials by Goodenough et
al. enabled the construction of high volt-
age lithium ion battery cells showing VOC ≈
4 V vs. Li.16–18 However, the formation of
dendrites using lithium metal as anode on
repeated cycling, causing the cells to short-
circuit, was a safety hazard. The utilization
of graphite as an anode material19,20 made
the handling of these first Li-ion batteries
much safer and lead to their commercial-
ization. Figure 1.1 shows a schematic rep-
resentation of the LiCoO2||C-cell patented
by Yoshino et al. in 1985.21 During charging Li+-ions deintercalate from the cathode
material Li1-xCoO2 (0 ≤ x ≤ 0.5) by oxidizing CoIII to CoIV , diffuse through the elec-
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trolyte and subsequently intercalate into a partially reduced graphite anode to form LixC6

(0 ≤ x ≤ 1). Following these discoveries Sony corporation marketed the first cell phone
which ultimately mobilized our every-day life.

Lithium ion batteries were gradually improved upon until this day, to increase their spe-
cific (volumetric and gravimetric) energy density as well as their power density but the
overall design stayed the same. This improvement was achieved mainly through process-
ing of the utilized electrode materials, e.g. nanostructuring, optimization of the liquid
electrolyte solution and the discovery of new cathode materials. The nowadays utilized
cathode materials can be sorted into three groups of materials: Layered transition metal ox-
ides, such as LiCoO2 (LCO) and nickel, manganese or aluminum substituted versions, e.g.
LiNi0.33Co0.33Mn0.33O2 (NCM111) or LiNi0.8Co0.15Al0.05O2 (NCA), spinels like LiMn2O4

(LMO) and nickel substituted LiNi0.5Mn1.5O4 (LNMO), and olivines, such as LiFePO4

(LFP). The layered transition metal oxides show the highest specific capacities compared
to the other cathode materials and are therefore preferred for the use in electric vehicles
(EVs). Whereas LFP shows high specific power, enabling fast charging, as well as high
lifetimes, the spinels on the other hand offer high energy density, achieved through higher
electrochemical potentials up to 4.7 V vs. Li, although they show comparatively low spe-
cific capacities.22 Both olivines and spinels, being comprised of earth-abundant elements
resulting in cheaper batteries, are therefore mainly used in batteries intended for consumer
goods, e.g. cell phones.
The temperature of large lithium ion battery packs, which are for example employed in EVs,
has to be monitored and controlled by separate heating or cooling systems, especially during
charging and discharging.23 Overheating of battery cells can cause a thermal runaway event
by which temperatures can reach as high as 500 °C.24 This can lead to a chain reaction inside
the battery causing the whole battery pack to catch fire, fueled by the flammable organic
electrolyte.25,26 The replacement of the liquid electrolyte by a solid not only minimizes
this safety concern by introducing more chemically and mechanically robust materials,
it also offers the benefit of improved volumetric and gravimetric energy density of the
whole battery pack, because of cell design and also the reduced complexity of temperature
management systems. The concept of the all-solid-state lithium ion battery is discussed in
further detail in the following section.

1.1.2 All-solid-state lithium ion batteries

Conventional lithium ion batteries are highly optimized devices and, by being subject to
intense research for decades, are slowly approaching their physicochemical limits at least in
terms of volumetric energy density in their current designs.4 Replacing the liquid electrolyte
used in conventional lithium ion batteries by one or more solids offers the possibility to
keep reliable, high energy electrode materials as well as their respective manufacturing
procedures. Furthermore, hitherto impossible cell designs can potentially improve the
energy density of the resulting batteries and additionally eliminate safety concerns with
the liquid electrolyte.
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The all-solid-state lithium ion battery (ASSLIB) is not a new concept. The first ASSLIBs,
being lithium-iodine batteries, can be found in pacemakers and are nowadays also employed
in low power devices such as RFID chips. The lithium-iodine batteries are comprised of
a lithium metal sheet as anode wrapped around a iodine containing poly-2-vinyl pyridine
cathode.27 On contact lithium iodide is formed which acts as separator and electrolyte.
Because of the low conductivity of the electrolyte LiI, these batteries show low specific
power and are therefore not applicable for high power uses such as powering an EV.

Figure 1.2: Schematic representation of
a all-solid-state lithium ion cell. The
electrodes are made of lithium metal
and LiCoO2 as anode and cathode, re-
spectively. The electrolyte is a pow-
dered solid which allows for lithium ion
diffusion.

Modern ASSLIB designs are derived from con-
ventional LIBs introduced above, but offer the
prospect of improved energy density, achieved
by substituting the carbon anode by metallic
lithium, and improved power density, by utiliz-
ing solid electrolytes with high specific conduc-
tivities.28 Additionally, for large battery packs,
used for example in EVs, bi-polar stacking of
battery cells and less complex thermal man-
agement systems, as was discussed above, is
envisioned to provide higher volumetric energy
densities, resulting in more compact lithium
ion batteries compared to conventional designs.
First working bi-polar stacked ASSLIB designs
utilizing lithium metal as anode were already
demonstrated.29 A schematic representation of
an ASSLIB cell is given in Figure 1.2. The
choice of solid electrolyte used in these battery
cells is key to their performance and there is a
plethora of suitable materials available including
borides, phosphides, oxides, sulfides and organic
polymers. This work, however, only focuses on
sulfides because of their superior ionic conduc-
tivities and mechanical properties. It is also un-
certain which specific cell design will become accepted in the future. However, to be
compatible with conventional LIB designs and to maximize the energy and power densities
that can be achieved, it seems to be established that lithium metal as anode has to be
employed.4 Therefore, the solid electrolyte in future ASSLIBs has to be either thermody-
namically stable or kinetically inert in contact with lithium metal and high energy cathode
materials, which could be achieved by an electrolyte forming stable SEIs, or both anode
and cathode materials have to be coated and therefore provide an artificial SEI.5 Another
alternative is to use suitable combinations of electrolytes, each forming stable SEIs at the
cathode and anode side, respectively. Section 1.3.1 will give a more in-depth overview of
state-of-the-art lithium ion electrolytes.
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1.2 Sodium ion batteries

In spite of many reports of future lithium shortages resulting from the increasing production
of EVs, estimations on the availability and demand for at least the next 30 years of growing
battery production show no concerning results.30–32 However, regardless whether conven-
tional or solid-state battery technology is employed, the price of lithium will play a more
substantial role in battery production than at this point in time. Combined with geopo-
litical considerations, alternatives to a lithium-based technology should be explored.33–35

In general, since its commercialization far more resources have been spent to improve
conventional LIB technology compared to sodium ion batteries (SIB). Both technologies
experienced a similar development in the 1970s and 80s and just recently the results of
that time were taken up again.36 Unfortunately, with sodium being a less electropositive
and heavier metal than lithium, energy densities of the resulting batteries are bound to
be lower (Na/Na+ = 2.71 V vs. Li/Li+ = 3.04 V ). Additionally, since sodium shows a
bigger ionic radius than lithium (rNa+ = 1.02�A vs. rLi+ = 0.76�A),37 different electrode
materials are required than those used for LIBs. For instance, sodium does not readily form
intercalation compounds with graphitic carbon as lithium does. However, amorphous ’hard
carbon’ appears to be a viable alternative.38 Similar to LIBs transition metal oxides were
explored as cathode materials for SIBs as well. Delmas et al. identified numerous promising
NaxTmO2 (0.5 ≤ x ≤ 1; Tm = Cr,Mn,Co) compounds in this regard.36,39,40 In addition
to these sodium transition metal oxides, silicates and sodium vanadium phosphates have
also been considered, but by and large no large-scale technology has been established yet.36

For stationary energy storage systems the sodium-sulfur secondary battery is a well-known
alternative to the lithium systems. Developed in the 1970s, this type of battery was one of
the first using a solid electrolyte, β-alumina (cf. below), combined with two liquid electrode
materials. However, molten sodium and sulfur require the battery to be operated at around
300 °C which renders the battery too impractical and unsafe to be handled in mobile
applications, especially considering the brittle nature of the oxide electrolyte. Additionally,
the need to non-stop heat the battery, which can be considered as self-discharge, makes
this technology only feasible for large-scale storage facilities where the specific surface area
and therefore heat-loss of the battery is minimized.
There are recent approaches trying to adapt the Na/S battery technology to room tem-
perature by using a S/C-cathode, sodium metal anode, NaCF3SO3 in tetraethylene glycol
dimethyl ether (TEGDME) as electrolyte and Na-β”-alumina as separator.41 This hybrid
between solid-state and conventional battery showed high capacity of over 600 mAh/g with
a coulombic efficiency close to 100%.
In addition to the systems presented, pure solid-state battery systems have already been
presented. For instance, Liu et al. showed that an all-solid-state battery utilizing the
transition metal oxide Na0.66Ni0.33Mn0.67O2 as cathode, Na-β”-alumina as electrolyte and
sodium metal as anode can give a battery system with high reversibility. This battery
showed a voltage range between 2.5 – 3.8 V with a cycle life of 10’000 with 90% capacity
retention at 6 C (Icharge/discharge = C-rate · Q/3600 s), albeit with a capacity of only
Q = 80 mAh at 70 °C.42 Elevated temperatures were used to inhibit dendrite growth on
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the sodium metal during cycling, which would ultimately result in shorting of the battery
cell. This is also common practice for ASSLIBs.
For all-solid-state sodium ion battery cells the same considerations as made for the ASSLIBs
(cf. above) regarding energy density and the stability of the employed electrolyte materials
are true. By and large, sodium battery technology is not yet as mature as that for lithium,
but great efforts have been made in recent years to compensate for this. Considering
the promising results with manganese cathode materials, this technology may allow us
to dispense not only with lithium but also with electrode materials containing cobalt,
decreasing cost and increasing safety, especially paired with all-solid-state technology.

1.3 Solid electrolytes

To be applicable for battery applications a solid electrolyte should possess the following
properties:

� high specific ionic conductivity, comparable to modern liquid electrolytes, at room
temperature (σRT,ion ≥ 1 mScm−1);

� very low partial electronic conductivity to minimize self discharge of the battery;

� inert against lithium metal and high-voltage cathode materials;

� mechanically soft to withstand volume change during cycling and handling of the
battery (e.g. vibrations in EVs) and reduce grain-boundary resistances by current
constriction effects (cf. 3) without the need of high temperature sintering.

The next section gives a short introduction to the structure-property relationships affecting
the ionic conductivity of a solid.
Typically, the diffusion of an ion through a solid is a vacancy driven one. It has to hop
from one possible coordination site to the next which has to be empty at the arrival
time of the ion. This hopping can occur through edges or, more favorably, faces of its
respective coordination polyhedron.43 The movement of the ion away from its energetically
favorable position is associated with an activation energy Ea. The dependence of the
specific conductivity σ on temperature T can be expressed by the Arrhenius equation 1.5:

σ =
σ0

T
e−Ea/kBT (1.5)

with an Arrhenius pre-factor:44,45

σ0 =
zn(Ze)2

kB
e∆Sm/kBa2

0ν0 (1.6)

where z is a geometrical factor (for different geometries, includes correlation factors), charge
carrier density n and their charge Ze, entropy of migration ∆Sm,46 jump distance a0 and
jump frequency ν0.
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Equation 1.5 shows that to obtain a solid electrolyte with sufficiently high specific ionic
conductivity (cf. below) the activation energy for ion migration Ea has to be low and
the Arrhenius pre-factor σ0 has to be high. The first is usually considered to be the most
important factor for high ionic conductivity and is mainly influenced by the coordination of
the diffusing ions, i.e. their percolation pathway through the crystal, and the polarizability
of the anion sublattice. In this regard, Ceder et al. showed that the lowest activation
energies are to be expected, in the case of lithium, for jumps of the cation between face-
sharing tetrahedra in a body centered cubic (bcc) sulfur packing.47 The famous tetragonal
Li10GeP2S12 (LGPS, cf. section 1.3.1), one of the fastest ion conductors, crystallizes with a
slightly distorted variant of this anion packing. Another favorable arrangement of the anion
sub-lattice is the tetragonal close packing (tcp),48,49 a distorted variant of the hexagonal
close packing (hcp) with a sphere density of 71.87%, which offers double the amount
of octahedral and tetrahedral voids than in a hcp, albeit very distorted, and by being
connected by faces and corners, the respective coordination polyhedra offer energetically
facile diffusion paths for the cation.43 An anion arrangement in between a hcp and tcp is
for example realized in the lithium superionic conductor (LISICON) Li2+2xZn1-xGeO4.50

Distorted coordination polyhedra, which occur for example in the tcp, typically flatten out
the energy landscape of the ion occupying the polyhedron and therefore not only influence
the activation barrier for ion migration but also influence the entropy of migration Sm and
therefore the Arrhenius pre-factor in Equation 1.6.45,51 DiSteffano et al. showed recently
for LiTi2(PS4)3 that this effect can lead to a frustrated energy landscape, which is predicted
to result in very high ionic conductivities.52

Many of the effects discussed above can be influenced by substitution of one or more
elements in a given ion conducting compound to influence its properties. Anion substitution
can increase the polarizability of the anion lattice, by for example substituting with a
heavier homologue, resulting in a decrease in Ea which should result in an increase in ionic
conductivity. However, Krauskopf et al. showed that for Na3PS4-xSex this does not have to
be the case, due to ion-phonon interactions affecting the jump frequency ν0 of the diffusing
ion.45 A softer lattice is a more polarizable one, which makes for a material with lower
activation energy of ion migration and a more favorable mechanical behaviour. However,
this also decreases the phonon energy of the lattice, decreasing the attempt frequency of
ion hopping, which can in turn lower the ionic conductivity. This is in accordance with
the empirical Meyer-Neldel rule, stating that logσ0 shows a positive linear correlation to
the activation energy Ea.

53,54

Anion substitution can also affect the chemical stability of the electrolyte. In general,
lighter homologues are more electronegative and therefore harder to oxidize. Additionally,
Kanno et al. showed improved stabilities of tetragonal Li9.42Si1.02P2.1S9.96O2.04 against an-
odic reduction in contact with lithium metal.55 In addition to the isovalent substitutions
discussed above, aliovalent substitution of either the anion or cation, in an at least ternary
system, can also affect the charge carrier density n, which allows for the creation of va-
cancies or the occupation of interstitial sites in a given crystal structure in addition to the
effects discussed above. According to Equation 1.6, small changes in n should only have
a small influence, since the Arrhenius prefactor only scales linearly. However, correlation
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effects can amplify this effect by several orders of magnitude.
Like many diffusion processes with high concentrations of charge carriers, the diffusion of
e.g. an alkaline cation in a solid electrolyte is prone to correlation effects. The measure
for the existence of these effects is the Haven ratio HR = Dtr/Dσ, relating the measured
diffusion coefficient of a tracer atom or ion Dtr to the diffusion coefficient calculated from
the conductivity of the diffusing species through the sample Dσ in absence of ion-ion
correlations HR = 1. Here, the Nernst-Einstein equation (Eq. 1.7) links the diffusion
coefficient of an ion to the conductivity:

σ =
Dnz2e2

kBTHR

(1.7)

Dtr can be experimentally determined for example by pulsed field gradient nuclear magnetic
resonance (cf. Chapter 3). However, the Haven ratio HR alone does not give information
about the type of correlation occurring during the diffusion process.56

Since alkali metal sulfides, in particular with small complex anions like thio-phosphates,
offer a combination of beneficial factors discussed above (polarizability, lattice dynamics,...)
which can result in high ionic conductivities (cf. Chapter 1.3.1) combined with mechanical
softness, which is advantageous for the processability and battery life time, they are the
primary focus of this work. The next sections give an overview of state-of-the-art solid
electrolytes containing lithium and sodium, focusing primarily on sulfides since they are
most relevant for this work.

1.3.1 Solid lithium ion electrolytes

One of the first fast lithium ion conductors, orthorhombic Li14Zn(GeO4)4, was found by
Hong in 1978 and became known, in reference to the sodium superionic conductors (NA-
SICON, cf. Chapter 1.3.2), as LISICON.50

This finding together with the commercialization of the conventional LIB started the search
for new materials rivaling liquid electrolytes in conductivity. The most prominent ox-
ide materials that showed specific ionic conductivities in the 1 · 10−3 S cm−1 range were
found in the perovskite-like lithium lanthanum titanate (LLTO, Li3xLa2/3−x�1/3−2xTiO3,
0.06 ≤ x ≤ 0.16), NASICON-like lithium aluminum titanium phosphate (LATP,
Li1.3Al0.3Ti1.7(PO4)3) and garnet-type lithium lanthanum zirconate (LLZO, Li7La3Zr2O12)
with specific bulk ionic conductivities of 1.4 · 10−3 S cm−1,57 3 · 10−3 S cm−1,58 and up to
1 · 10−3 S cm−1,59 respectively. These oxide materials show very high stability against oxi-
dation (> 6 V vs. Li) and are in part inert against metallic lithium.60 As was discussed
before, the specific ionic conductivity and the electrochemical stability of a solid electrolyte
play an important role for its application in solid-state batteries, but they are not the only
important factors. Mechanical properties of the electrolytes, i.e. their plasticity and soft-
ness, determines how well the grains of a compacted powder are contacted after pressing
and weather cracking of the electrolyte can easily occur during cycling of a solid-state
battery. In the case of the above mentioned oxides, sintering with temperatures above
800 °C of compacted powders must be employed to reduce grain boundary resistances to
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yield total ionic conductivities in a useful range for battery applications. However, this
procedure is incompatible with high energy cathode materials.

Figure 1.3: Overview of selected lithium
ion conductors. For compounds crystalliz-
ing homeotypically the same line type was
chosen. The total ionic conductivities and
respective activation energies to create this
graph are given in Table C.1.55,60–67

Substituting the oxide anion by the heav-
ier chalcogenide sulfur is supposed to not
only give a softer, i.e. polarizable, and
therefore an energetically favorable lat-
tice for ion movement (cf. above) but
also a mechanically softer lattice.68 In-
deed, most sulfur electrolytes show very lit-
tle detrimental grain boundary contribu-
tion to the total ionic conductivity, even
for cold pressed powders. The substitu-
tion of oxygen by sulfur in lithium phos-
phates and subsequent tuning of lithium in-
terstitial sites by aliovalent substitution of
phosphorus by germanium led to the dis-
covery of the orthorhombic Li3+xP1-xGexS4

(ortho-LGPS) by Kanno et al. with a total
ionic conductivity at room temperature of
2.2 · 10−3 S cm−1 for x = 0.25.69 Because of
the similarities of the anion sub-lattices of
ortho-LGPS and LISICON, namely a pack-
ing in between a hcp and tcp, this new
class of fast lithium ion conductors was
called thio-LISICONs. The end members
of the solid-solution series Li3+xP1-xGexS4,
β − Li3PS4 (LPS) and Li4GeS4 crystallize
homeotypically, where in the case of the latter additional octahedral voids are filled by
lithium. Furthermore, Murayama et al. showed the flexibility of this system to iso- and
aliovalent substitution on the phosphorous position, influencing the charge carrier density
and polarizability of the anion lattice.70 However, higher conductivities than 6 · 10−4 S cm−1

(Li3.4Si0.4P0.6S4) could not be achieved. With the discovery by Mitsui et al. of an ordered
double salt in the solid-solution series Li3+xP1-xGexS4 with x = 1

3
and a specific ionic con-

ductivity at room temperature of 12 mS/cm,64 solid lithium ion conductors outperformed
organic liquid electrolytes for the first time and started to move into the focus of solid-state
electrolyte research.
Li10GeP2S12 (LGPS) crystallizes in the tetragonal space group P42/nmc (Fig. 1.5), with
a = 8.719(3)�A and c = 12.639(4).71 The topology of its sulfur sublattice, in contrast to
the end members of its solid solution series Li3+xP1-xGexS4, is a distorted variant of the
bcc packing. This was shown to be energetically advantageous for hops of cations between
tetrahedral voids.47 In the case of LGPS, these hops take place between lithium atom Li1
and Li3 situated in channels running parallel to c, which subsequently show the lowest ac-
tivation energy for ion hopping. Additional tetrahedrally coordinated lithium atoms (Li4)
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interconnect these 1D channels and enable 3D diffusion. The octahedrally coordinated
Li2 shows the highest activation barrier and is usually considered to be immobile at room
temperature.72–76 Additionally, the crystal structure features two phosphorous positions,
one (P2) is occupied solely by phosphorous, the other (P1) shows a mixed occupation with
the tetrel atom Ge of 50%. Both are tetrahedrally coordinated by four sulfur atoms form-
ing [PS4]3− and [GeS4]4− anions, which are edge- or corner-sharing to [Li2S6]-octahedra,
respectively. The topology of these anions closely resembles the LiO2 structure type, which
is shown in more detail in Chapter 3.

Figure 1.4: Predicted specific ionic
conductivities at room tempera-
ture for the tetragonal LM PS
(Li10±1TtP2S12, M = Sn, Ge, Si, Al)
system.77

It was shown later, that the tetragonal LGPS phase
can be obtained in a compositional range of 1

3
≤

x ≤ 1
2

in Li3+xP1-xGexS4, resulting in Li7GePS8

as one of the end members of this series with a
specific ionic conductivity of 6 mS/cm.78 Further-
more, Kanno et al. have shown that tetragonal
LGPS constitutes a low-temperature phase in the
Li3+xP1-xGexS4 solid-solution series, which shows a
peritectic phase separation into the thio-LISICON
(ortho-LGPS) phases described above at temper-
atures around 550 °C.79 Additionally, Ge can be
substituted by other tetrel atoms (Si, Sn), result-
ing in superionic conductors containing only earth-
abundant elements.60,67,71,78,80–84 However, the pos-
sible substitutional range decreases from Si (1

3
≤

x ≤ 2
3
) to Sn (x ≈ 1

3
) in Li3+xP1-xTtxS4. How-

ever, Li11Si2PS12 (x = 2
3
) could only be synthe-

sized by pressures exceeding 4 GPa.81 In this re-
gard, Li11Si2PS12, which was found by Kuhn et al.,
showed higher lithium ion-diffusivities than tetrag-

onal LGPS. These findings follow the predictions by Ceder et al. obtained by ab initio
molecular dynamics (AIMD) simulations.77 They report a trend which predicts increasing
conductivities in the series Tt = Sn → Ge → Si for Li10TtP2S12 (Fig. 1.4). However, the
total conductivities of the silicon containing compounds synthesized by conventional solid-
state synthesis with σRT ≈ 2 mScm−1 falls behind these expectations.67,83,84 Chapter 3
gives a more thorough description of the assumed underlying problem of an amorphous
side phase impeding the total ionic conductivity ubiquitous to at least all tetragonal LSiPS
compounds.
According to the AIMD simulations by Ceder et al. the highest conductivities of 33 mS/cm
for a tetragonal LGPS-type compound can be achieved by substituting Ge by Al to form
’Li11AlP2S12’.77 Amaresh et al. showed that only partial substitution of Ge by Al is pos-
sible, up to x ≤ 0.3 in Li10+xGe1-xAlxP2S12, which gave a maximum specific ionic con-
ductivity of 1.7 mS/cm for x = 0.3.85 These same limitations were found by Roling et
al. for Li10+xSn1-xAlxP2S12, resulting in a very similar total specific ionic conductivity of
2 mS/cm for x = 0.3.67 Hitherto, a solid solution series containing Si did not yield the
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Figure 1.5: Crystal structure of LGPS. a: View parallel to c; b: View parallel to [110]; Blue
and green tetrahedra depict [P2S4]- and [P1/Ge1S4]-anions, respectively, grey octahedra
depict [Li2S6]-units, grey atoms represent lithium. The main diffusion channels running
parallell to c are represented by yellow rods. Jumps between Li1 and Li3 inside the channels
or Li1 and Li4 between the channels are represented by blue or red arrows, respectively.

desired tetragonal LGPS-like phase.70 More information on this substitution series can be
found in Chapter 4.1.

The currently fastest lithium ion solid electrolyte material Li9.54Si1.74P1.44S11.7Cl0.3 was
found by Kanno et al. and shows a specific ionic conductivity at room temperature
of 25 mS/cm, although the existence of a supposedly less conducting side phase (cubic
Li6PS5Cl) was observed.55 Recent theoretical studies attribute this jump in conductivity
by one order of magnitude from the diverse LSiPS materials to the higher polarizability
of the [PS3Cl]

2−-anion which enhances cooperative migration of lithium ions.86 Another
explanation for this dramatic increase, which is given in more detail in Chapter 4.2, is a
decrease of the high grain boundary resistivity observed in LSiPS materials compared to
other LGPS-like materials67 by formation of an Li7-xP1-xSixS5-xClx argyrodite phase acting
as a more conductive interface between the crystalline grains of the electrolyte.

Lithium argyrodites (Li7-xPnCh6-xXx, Pn = P,As, Ch = S, Se, X = Cl,Br, I) were just
recently identified as fast sulfur or selenide based lithium ion conductors with ionic con-
ductivities up to 10−2 S cm−1.87–90 Similar to the mineral Ag8GeS6, cubic Li argyrodites are
double salts consisting of [PnCh4]3−-anions, whose topology closely resembles that of the
cubic Laves phase MgCu2 with additional sulfur anions, which can be partially substituted
by halogenide ions, and lithium cations situated in tetrahedral voids.60,91–94 Furthermore,
the ionic conductivity of this class of materials shows a strong dependence on the S – X
disorder, which can be influenced by doping and cooling rate during the synthesis.95 Zeier
et al. showed that, similar to the LGPS-system, a substitution of P by Ge is possible,
further enhancing the ionic conductivity up to 18 mS/cm for x = 0.7 in Li6+xP1-xGexS5I
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by affecting the S – I disorder, charge carrier concentration and polarizability of the anion
sublattice.96

Besides the thio-ortho-phosphates, complex phosphates (pyro-, meta- or hypho-) are also
of scientific interest, but by and large have not yet reached the conductivities of the for-
mer.90,97,98 One prominent exception, is the glassy ceramic Li7P3S11 which features a spe-
cific ionic conductivity of 17 mS/cm.99

Furthermore, there is a plethora of interesting compounds from different material classes,
the enumeration and description of which would however go beyond the scope of this work
and can be found elsewhere.60,100,101

1.3.2 Solid sodium ion electrolytes

When talking about solid sodium ion electrolytes one has to mention the Na-β-alumina
system which was found by Beevers and Ross more than 80 years ago.102 Its composition
can be expressed as Na2O · n(Al2O3) with 5 ≤ n ≤ 11. This set of compounds is fa-
mously employed as the solid electrolyte in the sodium-sulfur battery (cf. above). The
structure of β-alumina can be described as being comprised of so-called spinel blocks, in
which Al3+ is tetrahedrally and octahedrally coordinated by oxide anions forming a ccp
lattice, and Na – O layers interrupting these blocks featuring mobile sodium ions. The
number of interrupting layers, and therefore charge carriers, is directly dependent on n,
where compounds with n = 11 or n = 5 are denoted β- or β′′-alumina, respectively. All
other possible compositions with n in between 5 and 11 yield materials showing coher-
ent intergrowth between those two structures. Since Na-β′′-alumina shows the highest
charge carrier concentration it consequently also shows the highest specific ionic conduc-
tivity at room temperature in this system of up to 14 mS/cm.103–106 Another important
system of solid electrolytes showing 3D sodium diffusion, rather than the 2D- diffusion in
layers of mobile ions in β-alumina, is the NASICON system. This class of materials was
found by Hong and Goodenough 1976 as Na1+xZr2SixP3-xO12 (0 ≤ x ≤ 3).107 Consider-
ing the abundance of available materials, a general formula AM(SiO4)z(PO4)3−z results,
where the A-site cation is octahedrally coordinated by oxygen and can be occupied by a
mono-, di-, tri-, or tetravalent atom, the M -site cation is also octahedrally coordinated
and can be occupied by either a di-, tri-, tetra- or pentavalent atom, where in the latter
case the A-site cation has to be vacant to maintain charge neutrality.108 Guin and Tietz
report a plethora of existing compounds for sodium occupying the A-site alone, resulting
in Na1+2w+x -y+zM

(II)
w M

(III)
x M

(V)
y M

(IV)
2-w -x -y(SiO4)z (PO4)3-z .

109 Due to the abundance of possi-
ble iso- and aliovalent substitution in this system, the charge carrier concentration and
polarizability of the anion sub-lattice can be carefully tuned, resulting in a maximum ionic
conductivity at room temperature of 5 mS/cm for Na2.96Nb0.04Zr1.96(SiO4)2(PO4).110

However, the mentioned materials exhibit the same problems already discussed for the
lithium solid electrolytes, where oxide materials generally show high grain boundary resis-
tances requiring high sintering temperatures to give sufficiently high total conductivities.
In this regard, sulfide materials offer an advantage in processability by allowing for simple
cold-pressing of the powdered materials. One of the most promising materials in this class
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is Na3PS4. This material shows two modifications, a low-temperature tetragonal and a
high-temperature cubic one with a transformation from α- to β-Na3PS4 at 261 °C.111 This
high temperature phase was thought to be obtainable at room temperature by mechanical
milling, improving the conductivity of the tetragonal α-phase by two orders of magnitude
from 10−6 S cm−1 to 4.6 · 10−4 S cm−1.112,113 However, Zeier et al. showed that this phase’s
local structure is better described by the tetragonal α-phase and that the jump in conduc-
tivity results from the higher defect concentration introduced by the mechanical stress of
the milling process.114 The topology of the crystal structure of α-Na3PS4 can be described
as a slightly distorted NaCl-packing of Na+-cations and [PS4]3−-anions, where the tetra-
hedral anions are rotated in a way that allows for rows or zig-zag lines of sodium atoms
to form diffusion paths.111 Noteworthy is the tolerance of this structure to substitution,
which allows for a wide diversity of compounds in this system. By isovalent substitution
of S by Se, values up to 1.16 · 10−3 S cm−1 can be achieved for Na3PSe4.45,115,116 Addition-
ally, isovalent substitution on the pnictogen position by antimony gives air stable Na3SbS4

showing a conductivity of up to 3.1 mS/cm, which in addition to a solid-state reaction can
also be obtained by liquid synthesis.117

Similar to the LGPS-system, phosphorus can also be aliovalently substituted by the tetrel
elements Si and Sn. In the case of silicon only a partial substitution is possible. Tani-
bata et al. reported a maximum conductivity of 7.4 · 10−4 S cm−1 for a glass ceramic of
composition 94(Na3PS4) · 6(Na4SiS4).118 Substitution by tin on the other hand results in
a double salt with very similar topology to tetragonal LGPS, with conductivities varying
from 4 · 10−5 S cm−1 for Na10SnP2S12 to 4 · 10−3 S cm−1 for Na11Sn2PS12.80,119,120

The highest measured sodium ion conductivity so far was found for Na2.9Sb0.9W0.1S4 by
Zeier et al. with 41 mS/cm.121 The isotypic phosphorus containing compound Na2.9P0.9W0.1S4

shows also a very high specific ionic conductivity of 13 mS/cm. These jumps in conductiv-
ity by more than one order of magnitude are explained by a decrease in activation energy
from 0.25 eV to below 0.20 eV by substitution of [PnS4]3− (Pn = P, Sb) by the more po-
larizable [WS4]2−-anion, which also leads to an increase in sodium vacancies, and, in the
case of Na2.9Sb0.9W0.1S4, a phase transition to the cubic high temperature phase.
Similar to the lithium ion solid electrolytes, a wide variety of different sodium ion solid
electrolytes are available beside those which are mentioned here, including materials from
the class of polymers, phosphides, and borides, to only name a few. The enumeration and
description of these materials is however beyond the scope of this work and can be found
elsewhere.101,122,123
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Chapter 2

Selected experimental methods

2.1 Powder X-ray diffraction

Powder X-ray diffraction (PXRD) is a versatile tool to determine phase composition of
a crystalline mixture in powder form. Since nearly all products were obtained as micro
crystalline powders, it was the primary analytical method in this work to characterize
samples. This section will give a brief theoretical background on the methods used to
analyze the obtained data of PXRD measurements. This includes especially Rietveld
refinement as a tool to determine exact phase compositions, including amorphous content,
and in combination with charge flipping and simulated annealing implemented in Topas v.
5 the determination of crystal structures from PXRD data. For a more in-depth description
on the following subjects the reader is pointed to the textbooks by Massa1 and Dinnebier.2

2.1.1 Rietveld analysis

The Rietveld method is used to fit the intensities of a measured crystalline sample ob-
tained from a diffraction experiment using either X-rays or neutrons. This is done by the
least squares method minimizing the weighted difference between the in i steps measured
intensities Iobs,i and the calculated intensities Icalc,i (Equ. 2.1):3∑

i

(wi(Iobs,i − Icalc,i))→Min (2.1)

For powder X-ray data the intensities are calculated by Equation 2.2:3

Icalc,i =
∑
p

(Sp
∑
s(p)

(|Fcalc,s,p|2Φs,p,iCorrs,p,i)) +Bkgi (2.2)

with:4

F (s) =
n∑
j=0

tj(s)fj(s)e2πisxj (2.3)
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Where Sp is the scale factor of the respective phase p. The reciprocal scattering vector s can
be expressed as a function of the reciprocal lattice vectors a∗,b∗, c∗ using the integer Miller
indices : s = (ha∗, kb∗, lc∗). Fcalc,s,p is the calculated structure factor of one crystalline
phase as a sum over all atomic form factors fj(s) (ignoring anomalous scattering) of atom
j with their respective displacement parameter tj at position xj = (x, y, z) as a vector of its
fractional coordinates. Φs,p,i is the profile function of the respective reflection of a specific
phase being a convolution of the instrumental resolution function and microstructural
parameters of the respective phase, i.e. crystallite size and micro-strain. Bkgi is a function
to fit the background of the measurement caused by e.g. non-coherent elastic scattering
from an amorphous phase. In this work Chebyshev polynomials were used. Corrs,p,i
are correction functions. The for PXRD data most commonly used ones are given in
Equation 2.4:5

Corr(s) = M(s)LP (s)A(s)PO(s)E(s)... (2.4)

M(s) is the multiplicity of the reflection, LP (s) is the solely geometrical Lorenz-polarization
factor, A(s) is the linear absorption coefficient ,PO(s) is a correction for a preferred orien-
tation of crystallites and E(s) a correction for extinction for highly crystalline samples.
The fit quality of a Rietveld refinement is, similar to single crystal structure refinements,
expressed in agreement factors the so-called R-factors. These are given in the following
equations:6

profile R-factor:

Rp =

∑
i |Iobs,i − Icalc,i|∑

i Iobs,i
(2.5)

weighted profile R-factor:

Rwp =

√∑
iwi(Iobs,i − Icalc,i)2∑

i I
2
obs,i

(2.6)

expected R-factor:

Rexp =

√
N − P∑
iwiI

2
obs,i

(2.7)

Goodness of fit:

Gof = χ2 =

(
Rwp

Rexp

)2

=

(√∑
iwi(Iobs,i − Icalc,i)2

N − P

)2

(2.8)

where N are the number of data points and P are the number of parameters.
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As was stated above the phase composition of a mixture of crystalline products can be
determined. The weight fraction of a phase Wα can be calculated by Equation 2.9, knowing
the formula units per unit cell Z, the molecular weight M and the volume per unit cell V
of all crystalline phases i:7

Wα =
SαZαMαVα∑
i SiZiMiVi

(2.9)

Using a fully crystalline internal standard with a similar absorption coefficient as the sample
and known weight fraction Wstd(known) the with Equation 2.9 calculated weight fractions
Wα(calc) can be corrected using Equation 2.10 to obtain the absolute values Wα(abs.).
Since the obtained values should sum up to 1.0, Equation 2.11 gives the absolute weight
fraction of unknown material Wunknown(abs.) of the measured sample. In this work this
relation was used to determine the amorphous content of samples:7

Wα(abs.) = Wα(calc)
Wstd(known)

Wstd(calc)
(2.10)

Wunknown(abs.) = 1.0−
∑
i

Wi(abs.) (2.11)

2.1.2 Structure determination from PXRD data

Structure determination from PXRD data was performed using the program Topas v. 58

and was done in the following steps:

� Indexing of the diffraction data and selection of meaningful results, i.e. unit cell
dimensions

� Integration of the reflection intensities by performing a Pauli fit using selected result
and generation of hkl-file

� Phase retrieval and generation of electron densities by applying the charge flipping
algorithm (CFA) implemented in Topas.9–11 Figure 2.1 shows a scheme of the the
unmodified CFA. The CFA constructs initial electron densities ρ from the Fourier
magnitudes calculated from observed reflection intensities and randomly generated
phases. By flipping the electron density below a defined threshold δ, typically 0.1 of
the electron density of the respective light atom in the crystal structure,9 positivity
of the electron density is enforced, excluding random noise. After Fourier trans-
formation the Fourier magnitudes of the new structure factors are replaced by the
observed ones and structure factors for not observed reflections are set to zero. By in-
verse Fourier transformation new electron densities are calculated. If the convergence
criterion is not met the algorithm starts another iteration.

Topas uses a modified version of this algorithm improving stability and convergence
time by e.g. including symmetry operations and combination of the CFA with the
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tangent formula from the classical direct methods.11,12 This alteration is necessitated
by the typically poor data quality of PXRD data compared to single crystal data.

� Rietveld refinement using the from charge flipping obtained atom positions.

� Difference Fourier synthesis to obtain light atom positions or, if this failed, simulated
annealing within reasonable barriers.13

τi =

{
ρi if ρi ≥ δ
−ρi if ρi < δ

FT{τi} → τ̂j

ω̂j =

{
|Fj,obs|
|τ̂j | τ̂j if hj ∈M

0 if hj 6∈M

FT−1{ω̂j} → ωi

ρnewi = ωi

converged?construct initial ρ final ρ

no

yes

Figure 2.1: Scheme of the unmodified charge flipping algorithm. τ , ω are intermediate
electron densities ρ, and τ̂ and ω̂ are their Fourier transforms respectively, δ is the charge
flipping threshold, hj is the Miller index of a reflection j, M is the set of observed reflections
and |Fj,obs| are their respective Fourier magnitudes. This scheme was reproduced from
Palatinus.11

2.2 Electrochemical impedance spectroscopy

The following section gives a short introduction to electrochemical impedance spectroscopy.
For more detailed information on the topic the reader is pointed to the book by Orazem
and Tribollet.14

Electrochemical impedance spectroscopy was used to assess the specific ionic conductivity
of a solid electrolyte at a given temperature. The conductivity is determined by measuring
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the impedance of the sample. The impedance is the complex electrical resistance a sample
induces on an alternating current (AC) flowing through it. It is determined by measur-
ing for instance the current response of a sample excited by a sinusoidal voltage of given
frequency f . The impedance is dependant on this frequency and describes not only the
relation between the voltage excitation and current response, but also a phase shift φ be-
tween these signals. Therefore, the impedance is typically expressed as a vector consisting
of a real component Z

′
and a complex component iZ

′′
(cf. Equ. 2.12 and 2.13).15

Ẑ =
Û

Î
= Z

′
+ iZ

′′
= |Z|eiφ = |Z|(cos(φ) + isin(φ)) (2.12)

, where:

|Z| =
√
Z ′2 + iZ ′′2 (2.13)

An electrochemical impedance spectrum can be obtain by exciting a sample by multiple
voltage signals of varying frequency. Whereas a low enough amplitude must be applied to
ensure linearity of the current response. The resulting spectrum can only be interpreted
in a meaningful and physical sense by comparing it to a chosen equivalent circuit model,
where each circuit element represents a physical phenomenon.16,17 This is typically done by
fitting the impedance spectrum of the equivalent circuit model to the experimental data,
utilizing established least-squares algorithms (e.g. Levenberg-Marquardt).

Figure 2.2: Exemplary Nyquist plot of a
(RC)-CPE element. fRC denotes the charac-
teristic frequency or inverse relaxation time
τ−1 of the (RC)-element.

The fitting function is obtained by combin-
ing the impedance of electrical components,
such as resistors (Z = R), capacitors (Z =
(i2πfC)−1) and inductors (Z = i2πfL),
where the resistance R, the capacitance C
and the inductance L are free parameters.
Capacitors and inductors induce a constant
phase shift of the current response of −90◦

and 90◦, respectively. However, inhomo-
geneities of the electrode surface, high sur-
face roughness or the overlapping of multi-
ple processes can reduce the apparent phase
angle. Therefore, an empirical circuit el-
ement, the constant phase element (CPE,
Z = (Q(i2πf)−α)−1), is utilized, introduc-
ing another fit parameter α, which can vary
from −1 ≤ α ≤ 1 and Q.18 This element be-
comes equal to a resistor, capacitor, induc-
tor or Warburg element, which describes
the impedance caused by infinite linear dif-
fusion, with values of α = 0, α = 1, α = −1
or α = 0.5, respectively. In this work, when
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a CPE was used, the corresponding influences to the impedance were exclusively capacitive
in nature. Therefore, α was restrained to be 0.5 ≤ α ≤ 1.
Being a complex number, the impedance is commonly depicted in a Nyquist or Argand plot.
Here, the imaginary part of the impedance is plotted against the real part and the excitation
frequency is only implied.19 Since solid electrolytes do not contribute inductively to the
impedance, the sign of the ordinate is typically flipped for convenience. Figure 2.2 shows an
exemplary Nyquist plot depicting a common EIS for a solid electrolyte. In this case, R1 is
interpreted as the resistance encountered by the moving ion during conduction. Its inverse
normalized by the geometric factors of the sample is therefore its specific conductivity σ.
The capacitive behaviour of the sample is expressed as a capacitance C1, which depends on
the dielectric constant of the sample. These two circuit elements in parallel ((RC)-element)
result in a semicircle in the Nyquist plot. If more than one (RC)-element is needed to fit
the experimental data, an estimation of the expected capacitances can help to assign the
observed processes. Table 2.1 gives expected ranges of capacitances for different conduction
processes.

Table 2.1: Possible interpretations of observed capacitance values given by Irvine et al.20

Capacitance [F] Responsible phenomenon
10−12 bulk
10−11 minor phase
10−11 − 10−8 grain boundary
10−10 − 10−9 bulk ferroelectric
10−9 − 10−7 surface layer
10−7 − 10−5 sample-electrode interface
10−4 electrochemical reaction

The expression for the effective capacitance of a CPE in series or parallel to a resistor
derived by Brug et al. is given in Equation 2.14:18,21

Ceff = Q
1
αR( 1

α
−1) (2.14)

Furthermore, for a solid electrolyte to be applicable in a battery it is important to determine
the contribution of the electronic conductivity to the total conductivity. Chapter A gives
a short introduction how the partial electronic conductivity is estimated.

2.3 Bond valence energy landscape calculations

Bond valence energy landscape (BVEL) calculations were performed with the 3DBVSMap-
per22 program available for the Materials Studio software-suite. The BVEL method
is based on the work of Adams and Rao, who introduced conversion terms to scale bond
valence sum (BVS) mismatch into energy and additionally introduced coulombic repulsion
terms.23 It was shown before that the paths of lowest BVS mismatch, i.e. pseudo-potential
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energy, in an ion conducting compound correlate well with the diffusion paths determined
by ab-initio molecular dynamics (AIMD) simulations and can therefore be used as a com-
putationally cheap way to gain fundamental understanding of the ion conduction mech-
anism.24,25 The BVEL in 3DBVSMapper is calculated according to Equation 2.15 and
2.16 by first removing all test ions, e.g. lithium ions, in a given crystal structure and
placing one test ion at all voxel points of the given unit cell.22 The number and position
of voxel points is defined by the desired resolution of the resulting map.

BV EL+/− =
N∑
j=1

(
mjD0{exp[α(Rmin − dj)]− 1}2 − 1

)
(2.15)

and for ions of equal charge:

BV EL+/+ =
N∑
j=1

{
ConvEV

mj

dj

|VTI ||Vj|
(nqn,TInqn,j)1/2

[
erfc

(
dj
ρ

)
− erfc

(
dcutoff
ρ

)]}
(2.16)

where dj is the distance to the jth ion of occupancy mj, N is the number of ions inside the
cut-off distance dcutoff (here: 8�A), D0, Rmin and α are empirical constants dependent on
the type of test ion and its jth neighbour, ConvEV is a conversion factor to eV , VTI/j is the
oxidation states and nqn,TI/j the quantum numbers of the test ion and its jth neighbour,
respectively, erfc is the complementary error function and ρ = 0.74(rTI + rj), where rTI
and rj are the covalent radii of the test ion and its jth neighbour, respectively.
Activation energies of ion conduction are subsequently calculated by finding the lowest en-
ergy of an infinitely connected path through the unit cell inside the BVEL map. Although,
3DBVSMapper removes all test ions during the calculation and therefore vastly overes-
timates these activation energies, Avdeev et al. could show that the activation energies
calculated with the BVEL method show a linear correlation to those obtained from AIMD
simulations for a large number of ion conducting compounds.26 A step-by-step description
of the data handling and the limitations of the calculation method are given in chapter B.
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3.1 Abstract

We report on the facile solid-state synthesis and characterization of Li7SiPS8, a new mem-
ber of the tetragonal LGPS (Li10GeP2S12)-type family of ultrafast Li+ solid electrolytes.
We analyze the structure, phase stability, as well as Li+ conductivity of tetragonal and or-
thorhombic LSiPS by pulsed field gradient NMR and impedance spectroscopy, which show
conductivities at RT of up to 2 mScm−1. While ranking tetragonal LiSiPS as an ultrafast
solid electrolyte, the observed conductivity is unexpectedly low compared to other mem-
bers of this solid solution system. Utilizing solid-state NMR, quantitative phase analysis,
and impedance spectroscopy we identify an amorphous thiophosphate side phase with low
Si content, which limits the intergrain conductivity and, hence, a potentially higher total
conductivity. This case study thus highlights the need for comprehensive structure analysis
of LGPS-type materials beyond the crystalline fractions to fully characterize the structure
- property relationships in these glass ceramic compounds.
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3.2 Introduction

All-solid-state lithium ion batteries (ASSLiBs) have been identified as promising candi-
dates for future mobile battery applications. This is due to inherent safety issues with
conventional lithium-ion battery systems utilizing liquid electrolytes and the promise of
a substantial gain in energy and power density as the application of ASSLiBs allows for
much more compact setups in combination with lithium metal anodes.1 The solid-state
electrolytes (SSEs) used in these battery systems need to fulfill several important require-
ments. High ionic and low electronic conductivity are key prerequisites, along with high
electrochemical and structural stability, as well as low production costs.2 Regarding con-
ductivity, some of the best solid state electrolytes are sulfides and were discovered just
recently.3–7 Their high conductivities as compared to most oxide SSEs is supposed to be
due to the high polarizability of the sulfide ion enabling fast lithium movement and, at
least for the thio-LISICON (lithium superionic conductor) family, a structure that is de-
rived from a strongly distorted hexagonal close packed sulfur sub-lattice featuring many
distorted face and edge sharing tetrahedral and octahedral voids, also facilitating lithium
hopping.8–10 Tetragonal Li10GeP2S12 (lithium thiogermanate thiophosphate, LGPS) is one
of the most promising thio-LISICON materials. It was first introduced by Mitsui et al. in
2011 and shown to exceed the conductivity values of the hitherto best crystalline lithium
ion conductors by one order of magnitude.7,11 The LGPS system can be described as a solid
solution Li11-xTt2-xP1+xS12 (LTtPS) with Tt = Si, Ge, Sn. For a solid solution of lithium
ortho tetrelates and phosphates a quasi-binary phase diagram can be established in the
sense of Li4TtS4 - Li3PS4. The respective system with Tt = Ge was investigated by Kanno
et al. showing that tetragonal LGPS undergoes a peritectic phase separation at tempera-
tures exceeding 550 ◦C (823 K).12 One of the products obtained by this decomposition is
the solid solution Li3+xP1-xGexS4 which crystallizes homeotypically to the parent phases
Li4GeS4 and Li3PS4 in the orthorhombic crystal system and exhibits a specific conductiv-
ity in the order of ∼ 1 mS cm−1.13 Theoretical studies by Ceder et al.14 for the tetragonal
LTtPS system predicted decreasing activation energies for the lithium ion diffusion process
and increasing ionic conductivity in the series Tt = Sn→Ge→Si, which is in accordance
with recent findings for the lithium diffusivity measured via NMR.5,15 However, the ionic
conductivity probed by electrochemical impedance spectroscopy (EIS) does not follow this
trend for the Li11−xSi2−xP1+xS12 compounds. Some works on this system noticed the pres-
ence of small amounts of orthorhombic Li3+xP1-xSixS4 as a side phase and and suggested
that this compound likely impedes the measured total ionic conductivity.8,16–18

The first tetragonal LGPS-type material containing Si instead of Ge was synthesized by
Kuhn et al. under high-pressure conditions as Li11Si2PS12 with a higher tetrel content.15

It crystallizes in the tetragonal space group P42/nmc (no. 137) with a = 8.6905(14) Å
and c = 12.5703(20) Å. The material showed the highest lithium ion diffusivity values
compared to other tetragonal LGPS like material known at the time. Kanno et al. added
two new members to the LSiPS family by conventional solid-state synthesis. The first
one, Li10.35Si1.35P1.65S12, is closely related to the LSiPS compound presented in this work,
the second one a chlorine-containing Li9.54Si1.74P1.44S11.7Cl0.3, is the best lithium ion con-
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ductor to date with a specific conductivity of 25 mS cm−1.4,8 However, LGPS-type ma-
terials containing Si, Ge, or Sn suffer from poor stability against metallic lithium due
to the formation of electrically conducting lithium tetrelides promoting the reduction of
the electrolyte material and ultimately short-circuiting the battery.19,20 Zeier et al. pro-
posed that utilizing glassy ceramic composites can be beneficial for the stability of these
solid state electrolytes.21 Yet, a glass phase with high impedance can also limit the per-
formance of such materials shown recently in NASICON (sodium superionic conductor)-
like Li1-xTi2-xScx (PO4)3.22 In this paper, we report on the facile solid-state synthesis of
Li7SiPS8, a new LGPS-like superionic conductor. It exhibits an overall ionic conductivity
of 2 mScm−1, which, while being fast in absolute terms, is unexpectedly low for this kind
of electrolyte material. We show that conductivity is strongly impeded by one or more
amorphous side phases remaining unrecognized in conventional powder X-ray analysis,
rendering this material a glassy ceramic rather than a (fully) crystalline SSE.

3.3 Experimental procedure

3.3.1 Synthesis

Tetragonal (tetra-) and orthorhombic (ortho-) Li7SiPS8 (LSiPS) were prepared by heating
Li2S (Alfa Aesar, 99.9%), Si (Alfa Aesar, 99.999%), red P (Merck, 99%) and S
(sublimed in vacuo) in stoichiometric amounts in a glassy carbon crucible sealed in a
quartz glass ampoule under vacuum to 1223 K for 2 h. Subsequently, the ampoule was
quenched in ice water and annealed for 5 d at 848, 823, 798, 773, or 748 K. Cooling rates
of the samples after annealing showed no significant influence on side-phase formation and
samples were therefore left in the oven after the end of the annealing program until the
temperature was below 373 K. The resulting products were moisture-sensitive red or slightly
yellow microcrystalline powders. All analytical procedures were therefore conducted in an
argon-filled glovebox or in argon-filled sealed containers.

3.3.2 Powder X-ray diffraction

Powder X-ray diffraction (PXRD) experiments were carried out using a Stoe STADI
P diffractometer (Mo-Kα1 or Cu-Kα1 radiation, Ge-(111) monochromator, Mythen 1 K
Detector) in Debye-Scherrer geometry. All samples were sealed in glass capillaries with a
diameter of 0.3 to 0.5 mm under argon. Subsequent Rietveld refinements were carried out
with the program Topas Academic v. 5.23 For determining phase purity and amorphous
content by quantitative phase analysis, ball-milled silicon (Alfa Aesar, 99.999%) powder
was added as an internal standard.
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3.3.3 Single crystal X-ray diffraction

Single crystals were grown by slow-cooling of LSiPS melts from 1173 K to 873 K with
10 K/h in a glassy carbon crucible sealed in a quartz glass ampoule under argon. Crystals
were then isolated under paraffin oil and sealed in glass capillaries under argon. Mea-
surements were carried out with a Stoe IPDS-II diffractometer using Mo-Kα radiation.
The structure solution and refinement were performed with the programs SHELXS97 and
SHELXL97, respectively.24

3.3.4 Solid-state NMR spectroscopy

Solid-state NMR spectra were measured on a Bruker Avance III instrument at a mag-
netic field of B0 = 9.4 T . Magic-angle spinning (MAS) experiments were performed in ZrO2

spinners at a spinning speed of 10 kHz using a Bruker 4 mm triple-channel probe. 29Si and
31P spectra were externally referenced to tetramethyl silane (Si(CH3)4, δiso = 0.0 ppm)
or 85 % phosphoric acid (H3PO4, δiso = 0.0 ppm), respectively. 7Li pulsed field gradient
(PFG) diffusion NMR experiments utilized a diff60 single gradient diffusion probe allowing
for pulsed field gradients g of up to 30 T m−1 and temperatures up to 150 ◦C. The experi-
ments used a stimulated echo pulse sequence.25 The diffusion coefficient D was obtained by
fitting the experimental echo attenuation curves S(g, δ,∆) by the Stejskal-Tanner equation:
S(g, δ,∆) = −γ2δ2g2D(∆ − δ

3
),26 where γ = 1.398 · 108 Hz T−1 is the 7Li gyromagnetic

ratio, δ is the duration of the pulse field gradient g, and ∆ is the time interval between
field gradient pulses defining the diffusion time. Measurements were conducted at gradient
strengths varying between 0.1 and 30 Tm−1, fixed δ = 1.0 ms, and ∆ varied between
10− 100 ms.

3.3.5 Electrochemical impedance spectroscopy (EIS)

Electrochemical impedance spectroscopy and galvanostatic polarization measurements were
performed with an Ivium compactstat.h (24 bit instrument) in a two-electrode setup using
a home-built impedance cell kept under argon atmosphere during all measurements. The
applied rms AC voltage was 10 mV. The analysis of the impedance spectra was carried
out with the RelaxIS software from rhd instruments. Before measuring, the samples were
ground thoroughly and compacted to a pellet of about 1 mm thickness and 5 mm diameter
by uniaxial cold pressing (500 MPa). For ortho-LSiPS a density of 94% and 88% for tetra-
LSiPS was obtained. For impedance spectroscopy, the pellets were sandwiched between
indium foil (Alfa Aesar, 0.127 mm thick, 99.99% (metals basis)) to enhance the contact
with the measuring cells. No reaction between In and the samples were observed. For
galvanostatic polarization measurements, the samples were sputtered on both sides with
Pt.
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3.3.6 Raman spectroscopy

Raman spectra were registered on a Jobin Yvon Typ V 010 labram single grating spec-
trometer, equipped with a double super razor edge filter and a Peltier-cooled CCD camera
(Jobin Yvon). The incident Laser wavelength was 632 nm. All samples were measured af-
ter the PXRD measurements and therefore sealed in the same glass capillaries as described
above.

3.3.7 Scanning electron microscopy and energy-dispersive X-ray
spectroscopy

Elemental composition was determined by energy-dispersive X-ray spectroscopy (EDX;
detector: Oxford Instruments Inca Energy) and an image of the morphology was
obtained using a Jeol JSM 6500 F scanning electron microscope (SEM; field emission
gun, acceleration voltage 20 kV).
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3.4 Results and discussion

3.4.1 X-ray diffraction

The Si-derivative of tetragonal LGPS was obtained by pre-reaction of the precursors by
melting of the samples, subsequent quenching and annealing, which was found to be key
to minimize the amount of crystalline side phases. To study the influence of annealing
temperature a series of samples was annealed at 25 K steps. All products of the annealing
series were investigated using powder X-ray diffraction (PXRD). Samples quenched from
1223 K exhibit the orthorhombic LGPS (ortho-LGPS) structure (cf. Fig. 3.2).13 Anneal-
ing temperatures exceeding 773 K are required to form tetragonal LGPS like Li7SiPS8

(tetra-LSiPS) which is confirmed by PXRD and subsequent Rietveld refinement (Fig. 3.1,
left; Fig. 3.3).7 Products annealed at 848 K and above show an increasing amount of
ortho-LSiPS. On the XRD level no other phases could be detected. Time-dependent high-
temperature PXRD measurements were conducted to study the phase transformation time
needed to form tetra-LSiPS from ortho-LSiPS at 823 K. A complete transformation is
visible after three hours (Fig. 3.1, right).
Single crystals grown from slow-cooling of LSiPS melts crystallize in the orthorhombic
crystal system with space group Pnma (Nr. 62) with a = 13.348(3) Å, b = 7.9703(16) Å
and c = 6.1343(12) Å. The compound can be regarded as a solid solution of lithium ortho-
thiophosphate and an ortho-thiosilicate. The topology of the crystal structure is similar
to the ones of β − Li3PS4 and Li4GeS4 regarding the PS3−

4 /SiS4−
4 anion arrangement.

However, the Lithium atom positions differ slightly.27,28 This formation of a solid solution of
Li4SiS4 and Li3PS4 was previously reported by Murayama et al., yet no lithium positions
were refined.29

Figure 3.1: textitleft: PXRD measurements of the obtained products at indicated tempera-
tures (radiation: Cu-Kα1); right : Time-dependent high temperature PXRD measurements
of quenched ortho-LSiPS, inset graph shows the mass fraction of tetra-LSiPS (black) and
ortho-LSiPS (red) plottet against time (radiation: Mo-Kα1, temperature: 823 K).
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The crystal structure of ortho-LSiPS shows one crystallographically independent P site
which is partially occupied by Si (50%) and tetrahedrally coordinated by four S atoms.
The mixed occupancy influences the P-S distances of 2.07 - 2.09 Å to be slightly larger
than that observed for β−Li3PS4 with 2.01 - 2.06 Å due to the larger cation radius of Si4+

(Si = 0.26 Å; P = 0.17 Å).30 The Lithium cations are located between the PS4 and SiS4

tetrahedra, occupying tetrahedral and octahedral voids [LiS4] and [LiS6] with Li-S distances
reasonable for their respective coordination sphere (cf. crystallographic information in SI).
All Lithium positions are partially occupied, most likely due to the close proximity of
these sites, giving rise to Coulombic repulsion. The topology of the crystal structure can
be described as a distorted hexagonal closest packing of S atoms with Li and P/Si filling
the tetrahedral voids and Li also filling half of the octahedral voids (cf. Fig. 3.2).

Figure 3.2: (a): Structure of ortho-LSiPS (Li7SiPS8) viewed along the c-axis. Li atoms are
omitted for better visibility. Black rectangles mark the unit cell, the red lines outline the
pseudo-hexagonal unit cell of the underlying hcp (hexagonal close packing) of S atoms; (b):
Pseudo-hexagonal unit cell depicted in red with all atoms. Not all coordination polyhedra
for Li are depicted for better visibility. Li-ellipsoids were drawn at 50% probability.
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Figure 3.3: Rietveld refinement of tetra-
LSiPS annealed at 823 K. The square root
of the intensity is given for better visibility.

Rietveld refinement of the sample annealed
at 823 K is shown in Fig. 3.3. Tetra-LSiPS
crystallizes in the tetragonal space group
P42/nmc (no. 137) with a = 8.6734(2) Å
and c = 12.5412(2) Å. Similar to ortho-
LSiPS this compound is also a solid so-
lution of lithium ortho-thiophosphate and
an ortho-thiosilicate. However, it is par-
tially ordered in respect to the PS4/SiS4

tetrahedra and is isotypic to tetragonal
Li7GePS8.6 The structure shows two crys-
tallographically distinct P sites, both tetra-
hedrally coordinated by four S atoms.
Shown by MAS NMR, the P1 (4d) site is
partially occupied by Si causing a larger P-S
distance of 2.11 - 2.12 Å than the P-S dis-
tances for the P2 (2b) site, which are very
similar to those observed in Li3PS4 with 2.02 Å. The different P-S distances suggest a
higher occupation by Si of the P1 site than observed in ortho-LSiPS and no mixed Si
occupation for the P2 site, as corroborated by 31P MAS NMR spectroscopy.

Figure 3.4: (a): Structure of tetra-LSiPS (Li7SiPS8) viewed along the c-axis. Black squares
mark the tetragonal primitive unit cell, the red square marks the underlying fcc (face-
centered cubic) unit cell; (b): Pseudo-cubic fcc unit cell marked by red lines.
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Table 3.1: Crystallographic data and information about the Rietveld analysis for tetra-
LSiPS tempered at 823 K. Standard deviations are given in parentheses.

Li7SiPS8

Crystal system tetragonal
Space group P42/nmc, (Nr. 137)
Lattice constants [Å] a = 8.6734(2)

c = 12.5412(2)
Volume [Å3] 943.44(6)
Formula units 4
Calculated density [gcm−3] 1.923(9)
Diffractometer Stoe STADI P, Debye-Scherrer geometry

Cu-Kα1 radiation, Ge-(111) monochromator
Temperature [K] 295
Absorption coefficient [mm−1] 14.794(1)
Refined 2θ region [◦] 8.0 - 90.0
Rexp 12.21%
Rp 9.49%
Rwp 12.21%
Correction absorption (geometric)
Number of independent parameters 41
Number of background parameters 6
GooF 1.001
RBragg 3.82%

This mixed occupancy of Si vs. P at the 4d site was not refined because of the similar
atomic scattering factors. The two sets of isolated PS3−

4 and SiS4−
4 anions are connected

by tetrahedrally and octahedrally coordinated Li+ cations. These are only partially occu-
pied with very small distances between the tetrahedrally coordinated Li atoms. The Li
occupancy factors were constrained to obtain charge neutrality. However, the composition
Li7SiPS8 was confirmed by EDX measurements (cf. SI table 9), and the smaller cell vol-
ume of this phase compared to Li11Si2PS12 is in accordance with the assumption of a lower
silicon content.15 Selected crystallographic data from the Rietveld refinement is shown in
Table 3.1 and additional information is given in the SI. The topology of the crystal struc-
ture of tetra-LSiPS can be described as a slightly distorted cubic structure (cf. Fig. 3.4).
Considering the two sets of differently sized PS4 tetrahedra, the structure is very similar
to the CaF2 structure-type with the smaller P2S4 tetrahedra building a face centered cu-
bic lattice and the bigger P1S4 tetrahedra occupying all tetrahedral voids. Considering
the completely different topologies of the crystal structures of ortho- and tetra-LSiPS a
phase transition from the low-temperature phase (tetra-LSiPS) to the high-temperature
phase (ortho-LSiPS) is supposed to be reconstructive. We assume this partial ordering
of the PS4/SiS4 tetrahedra and the reconstruction of the sulfur sublattice is the reason
for the high temperature and therefore high activation energy to form tetra-LSiPS from
ortho-LSiPS.
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Figure 3.5: left: 31P MAS NMR spectra of ortho- and tetra-LSiPS; right: 29Si MAS
NMR spectrum of tetra-LSiPS. Peaks were colored according to the respective phases
(orange: tetra-LSiPS, yellow: ortho-LSiPS, grey: amorphous) and labeled according to the
respective Wyckoff positions of the P atoms.

3.4.2 MAS NMR spectroscopy

Figure 3.5(left) shows the 31P MAS NMR spectra of tetra-LSiPS and ortho-LSiPS, which
also supports the silicon substitution on the 4d phosphorous site for tetra-LSiPS, similar to
other tetragonal LGPS-type compounds. In addition to PXRD, NMR spectroscopy reveals
detectable amounts of an unwanted phosphorus-containing side phase. A side phase with
a similar chemical shift was reported for tetra-LGPS and previously attributed by us to
small impurities of ortho-LGPS.6 ortho-LSiPS shows a single peak with a slightly different
chemical shift as compared to that of the observed side phase. However, the chemical
shift of the observed side phase is in good accordance with values given by Zeier et al.21

for orthorhombic β-Li3PS4. Further information on the composition of the unknown side
phase is obtained by 29Si MAS NMR. Assuming silicon substitution only on the 4d P site
in the majority phase tetra-LSiPS, as is known for other LGPS phases,15 only one peak in
the 29Si MAS NMR spectrum (Fig. 3.5, right) is expected. Yet a second peak is visible in
the spectrum, which is attributed to the side phase. We therefore identify the side phase
as a Si-doped ortho-thiophosphate with a local structure that is similar to β-Li3PS4. By
29Si MAS NMR spectroscopy it was determined that 3 atom% of the overall silicon in the
material is present in the side phase. Regarding the absence of Bragg reflections for this
second phase, we assume tetra-LSiPS crystals to be embedded in an amorphous matrix,
rendering this material a glass ceramic. The glass like appearance of the material in the
SEM (cf. SI figure 1) further corroborates this assumption. However, a thorough analysis
of the grains via electron microscopy was not possible due to severe damage when the
material is exposed to the electron beam.
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3.5 Quantitative phase analysis

The mass fraction of the amorphous side phase (Table 3.2) was calculated from signal
intensities in 31P MAS NMR spectra and Rietveld analysis with an internal standard
(Si) on all samples containing tetra-LSiPS (cf. SI). Relative signal intensities in MAS
NMR spectra were extracted by deconvolution of the measured spectra by pseudo Voigt
functions. The obtained relative intensities correspond to atomic percent of the overall
phosphorus content. Quantitative phase analysis by Rietveld refinement yields weight
percentage values for the respective crystalline phases, which is at first sight not comparable
with the results obtained from MAS NMR, since quantitative NMR yields information on
the relative elemental content and, hence, atom%. Since the exact composition of the
side phases is not known, a conversion to weight percent can be achieved by assuming
it to be a thio-ortho-phosphate, which is reasonable due to the observed chemical shift
and Si content being negligible. The mass fraction of the amorphous side phase(s) for
all samples containing tetra-LSiPS were below 10%. Considering the respective errors the
combined data of both methods reveal no discernible trend with the synthesis temperature.
However, by quantifying the mass fraction of all phases present in the samples, we suggest
the following formula of the side phase: Li3.2Si0.2P0.8S4. The fact that this amorphous phase
is only present after annealing and formation of tetra-LSiPS and does not share the same
stoichiometry with the crystalline phase could hint at a peritectic phase separation and
partial melting of the sample, similar to tetragonal LGPS,12 assuming that the amorphous
side phase constitutes the solidified melt. This melt could also play a role in the phase
transition of ortho-LSiPS to tetra-LSiPS by facilitating the crystallization of the tetragonal
phase.

Table 3.2: Phase composition of various LSiPS samples determined by powder X-Ray
diffraction with an internal standard (Si) and MAS NMR spectroscopy. The standard
deviation is given in parentheses
Synthesis w% w% w% w%

Temperature [K] tetra-LSiPS ortho-LSiPS amorphous (XRD) amorphous (NMR)

773 91.5(7)% - 8.5(7)% 7(2)%

798 94.4(6)% - 5.7(8)% 8(2)%

823 93(1)% - 7(1) % 9(2)%

848 49.9(6)% 42.1(6)% 8(1)% 5(2)%



46 3. A Lesson learned from NMR

3.5.1 Pulsed field gradient NMR

Figure 3.6: PFG NMR measurements of
tetra-LSiPS annealed at 823 K. Two different
diffusion times, defined by the time between
the gradient pulses ∆NMR were employed to
probe diffusion processes at shorter (10 ms)
and longer (100 ms) ranges.

Temperature-dependent pulsed field gradi-
ent (PFG) NMR spectroscopy was used
to determine 7Li diffusion coefficients and
activation energies for lithium diffusion in
LSiPS annealed at 823 K for 5 d. The
two datasets (Fig. 3.6) were measured
with the spacings between the gradient
pulses ∆NMR of 10 and 100 ms, yielding
shorter diffusion lengths at reduced diffu-
sion time. In a first approximation, the
probed diffusion length can be estimated
by calculating the isotropic diffusion radius:
rrms =

√
2Dtr

NMR∆NMR,31 resulting in val-
ues of the same order of magnitude (rrms ≈
200 nm) for both measurements at room
temperature. This hints at a fast diffusion
process confined in small domains. Tak-
ing into account that the crystalline phase
should exhibit the higher ionic conductiv-
ity,29 and considering the mean grain size
of a ground material is in the order of a few µm, we assume the isotropic diffusion radius
to be the mean crystallite size. The increased ion diffusivity and reduced activation energy
for shorter diffusion times hints at a mixed intra- and intergrain diffusion process which is
in agreement with our structural model of a highly ion conductive material embedded in a
less conductive amorphous matrix. Conductivity values at room temperature were calcu-
lated from PFG NMR (∆ = 10 ms) and Rietveld data with the Nernst-Einstein equation:

σNMR =
DtrNMRnz

2e2

kBT
, where σNMR is the conductivity derived from diffusion coefficients

Dtr
NMR determined by PFG NMR spectroscopy, n is the concentration of charge carriers, z

the charge of charge carriers, e the elementary charge, kB the Boltzmann constant and T
temperature. Assuming uncorrelated lithium motion and that the Li2 site does not con-
tribute to the conductivity mechanism at room temperature, which was discussed in several
earlier works for tetragonal LGPS,14,32–36 17 lithium atoms per unit cell are available, re-
sulting in a calculated conductivity value σNMR at room temperature of 5 ± 1 mS cm−1.
With a Haven ratio Dtr

NMR/D
σ = HR of 1 (Dtr

NMR: tracer diffusion coefficient from PFG
NMR, Dσ: conductivity diffusion coefficient, HR: Haven ratio), this value can be con-
sidered a lower limit for the diffusivity of the crystalline phase, since other LGPS-like
materials show a strongly correlated jump process of the cation sublattice and therefore
Haven ratios smaller than 1, which would imply an even higher charge diffusion coefficient
and therefore conductivity value.37 Additionally, the process probed by PFG NMR even at
short pulse spacings may be a mixed intra- and intergrain lithium diffusion which would
also imply that the obtained value can be even higher if the diffusion is still limited by



3.5 Quantitative phase analysis 47

grain-boundaries or side phases in the calculated radius of approximately 200 nm.

3.5.2 Electrochemical impedance spectroscopy (EIS)

Lithium-ion conductivities of ortho- and tetra-LSiPS were determined in a blocking-electrode
configuration by EIS in the frequency range between 1 MHz and 0.01 Hz. The impedance
spectra of low-temperature measurements were analyzed in terms of an equivalent circuit
analysis. DC galvanostatic polarization measurements indicate only a negligible amount of
electronic conductivity contributing to the overall conductivity for both phases (cf. SI fig-
ure 5). Thus, they can be treated as predominantly ionic conductors.

Figure 3.7: The low-temperature EIS of or-
tho-LSiPS shows two slightly depressed semi-
circles and was fit with the model given in the
inset.

In Figure 3.7, the complex impedance spec-
trum of ortho-LSiPS, measured at -60◦C,
exhibits two slightly depressed semicircles
at high- and mid-frequencies and a clear
polarization spike at low frequencies. The
spectrum was modeled with a serial con-
nection of two parallel arrangements of a
resistor (R) and a constant phase element
(CPE), representing the conductive and ca-
pacitive behavior of the solid ionic con-
ductor, respectively.38,39 The polarization
is modeled by an additional CPE.38,39 In
general, a CPE accounts for a dispersion
of relaxation times, caused by e.g. sur-
face roughness of the sample or electrodes,
or by non-uniform current distribution in
the sample.40 The impedance of this empir-
ical parameter is given by ZCPE = 1

Q(jω)α
.41

Where Q is the CPE’s admittance value, j is
√
−1, ω is the angular frequency and α is the

CPE’s exponential factor. If the CPE is connected in parallel to a resistance, an effective
capacitance Ceff can be calculated by the Brug formula Ceff = Q

1
αR( 1

α
−1).42,43 The high

frequency arc in Figure 3.7 (yellow) has a capacitance in the 10 pF range, thus probably
stemming from the bulk properties of the material.15,38 The bulk conductivity is calculated
as the inverse of the resistance R1, the total sample thickness (L) and the surface area of
the electrodes (A): σ = L

AR
.42,44 As shown in Figure 3.8b, the activation energy of the bulk

process is 0.29 eV. The mid-frequency arc (orange) has a similar activation energy and a
capacitance in the nF range, thus about three orders of magnitude higher than the grain
capacitance. This is typical for geometrical current constriction at grain-to-grain contacts
due to the moderate compactness of the sample of 94%.45 At room temperature, both
processes overlap and ortho-LSiPS exhibits a total ionic conductivity of 0.13 mS cm−1.
The total conductivity at room temperature and activation energy are comparable to the
findings of Murayama et al.29 for the solid solution series of Li4-xSi1-xPxS4 (x = 0− 0.8).
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Figure 3.8: (a) Low-temperature EIS of tetra-LSiPS modeled by four processes attributed
to grain boundary processes (R1C1, R2CPE2, and R3CPE3) and electrode polarization
(CPE4); (b) Arrhenius plot comparing of the total conductivity of R1+R2+R3 of tetra-
LSiPS yielding an activation energy of 0.27 eV with the respective activation energies
obtained by PFG NMR and of ortho-LSiPS.

The low-temperature spectrum of cold-pressed tetra-LSiPS in Figure 3.8 is much more
distorted than the spectrum of cold-pressed ortho-LSiPS. Sintering of the pellets was not
possible due to decomposition reactions as reported previously.15,16,18 The data were fit by
the model given in Figure 3.8 containing four different contributions. The capacitances
of the blue and red semicircles range from 0.2 to 0.7 nF, respectively. The capacitance of
the grey semicircle is higher by one order of magnitude (7 nF). Those values are in the
typical range for grain boundary processes.6,18,45 The resistances (R1, R2, R3) are all on
the same order of magnitude and the activation energies for the single processes in the
model are all very similar (0.25− 0.29 eV) with an activation energy of the total conduc-
tivity of 0.27 eV. Thus, a clear distinction of the bulk process from other contributions
is difficult. Such contributions for instance stem from (highly resistive) grain boundaries,
geometrical current constriction effects and the presence of a second ion conducting phase
that considerably complicates the analysis as reported for the presence of an orthorhombic
by-phase in Li10SiP2S12.18,40,45 Notably, no extremely high activation energy pointing to a
highly resistive grain boundary layer was observed. Besides, current constriction originat-
ing for example from a small contact area between the grains caused by low compactness
of the cold-pressed powder (about 88%), or by a less conductive second phase at the grain

boundary, could contribute to the spectrum. Derived from Rx
R1

=

√
αmax
α
−1

1+ 1
2

√
α

αmax

with Rx = R2

the average fraction of contacted area between the grains α is estimated to be about 14%
and with Rx = R3 only 6%.45 For comparison, assuming the low frequency semicircle in
ortho-LSiPS arises from current constriction effects, a much larger fraction of contact area
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of 56% is obtained. However, the compactness of ortho-LSiPS is similar to the compactness
of tetra-LSiPS. Thus, the small fraction of contact area in tetra-LSiPS suggests that the ion
transport is likely limited by an effect that significantly reduces the contact area between
the grains. This observation is in line with an ionic conductor that is embedded in a less
conducting amorphous matrix. For a more in-depth analysis a model with more precise
information about the complete microstructure of the glassy ceramic would be necessary.
Yet, cross section images by focused ion beam (FIB) and transmission electron microscopy
(TEM) could not be obtained for this material due to substantial beam damage during the
measurements.

At temperatures above 0 °C, only one semicircle can be observed for tetra-LSiPS (cf. SI
Fig. 7). The total ionic conductivity at room temperature of the new tetra-Li7SiPS8 is
about 2 mS cm−1 (cf. SI Figure 7). This is very similar to the conductivity of tetragonal
Li10SiP2S12

16,18 and distinctly higher than the conductivity of the orthorhombic phase with
0.13 mS cm−1. The activation energy of the total conductivity of 0.27 eV is on the same
order of magnitude as the activation energy obtained by PFG NMR (cf. Figure 3.8). The
activation energies of Li10SiP2S12 were between 0.20 eV16 and 0.30 eV,18 and thus again
similar to tetra-LSiPS. Unfortunately hitherto, tetragonal LGPS-like LSiPS compounds
except high pressure Li11Si2PS12

15 have not reached the high specific conductivity of more
than 10 mS cm−1 proposed by Ceder et al..14 while in tetragonal Li10SiP2S12

18 the presence
of the orthorhombic modification increases the impedance. This work suggests that in
tetra-LSiPS an amorphous side phase is at the heart of a higher than expected impedance
in this glass ceramic material.

3.6 Conclusion

We have introduced tetragonal Li7SiPS8 as a new member of the LGPS-type family of
superionic conductors. The material was obtained by solid-state synthesis at ambient
pressure. Using a combination of PXRD and NMR, we have shown that tetragonal Li7SiPS8

is a glass-ceramic rather than a fully crystalline material, since at least one amorphous
side phase is present at all explored temperatures. This side phase does not share the
same stoichiometry with the crystalline phase, suggesting a peritectic phase separation of
the tetragonal phase similar to tetragonal LGPS.12 Since tetragonal LGPS shows a higher
decomposition temperature, this would indicate that the silicon containing phase presented
here is less stable than the one with the heavier homologue Ge at elevated temperatures.
The fact that the amorphous side phase is very hard to detect suggests that it may be
ubiquitous in this family of compounds and also limit the performance of other LGPS-type
compounds. This calls for characterization of LGPS-like materials by methods which are
sensitive not only to crystalline phases, but also to amorphous fractions, such as solid-state
NMR spectroscopy.
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Chemical modification on
tetra-LSiPS

4.1 Aliovalent substitution in tetra-Li7+xSi1-xAlxPS8
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In this section the results of the aliovalent substitution attempts on tetra-LSiPS to form
Li7+xSi1-xAlxPS8 are presented. Substitution of Si+IV by Al+III is supposed to increase
the lithium content of the compound and therefore to increase charge carrier density and
decrease the activation energy of lithium hopping by providing a bigger more polarizable
anion. Both the increase in charge carrier density and the decrease in activation energy
should positively impact the ionic conductivity of this solid solution series (cf. chapter 1.3).
This assumption is also corroborated by ab initio molecular dynamics (AIMD) simulations
performed by Ceder et al., showing that a substitution of the tetrel atom in the tetragonal
LGPS structure by aluminum would both increase the ionic conductivity and decrease
the activation energy of the resulting compound.1 This work shows that a substitution
of silicon by aluminum in tetra-LSiPS can be achieved, however, only up to x = 0.15 in
Li7+xSi1-xAlxPS8 with retention of a homogenous phase. Furthermore, a decrease in total
conductivity from 2 · 10−3 S cm−1 to 4 · 10−4 S cm−1 was observed for samples with x ≥ 0.10
which is attributed to a compositional change of the amorphous side phase observed in
unsubstituted tetra-LSiPS (cf. chapter 3).

4.1.1 Experimental procedure

If not stated otherwise, the experimental procedures, sample and data handling was similar
as stated in chapter 3.
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Synthesis

Stoichiometric amounts of Li2S (Alfa Aesar, 99.9%), Si (Alfa Aesar, 99.999%), Al2S3

(Alfa Aesar, 99.9%), red P (Merck, 99%) and S (sublimed in vacuo) were thoroughly
ground in an agate mortar and filled in glassy carbon crucibles. The powder was compacted
by a steel rod, sealed in quartz glass ampoules under vacuum and heated to 950 °C at a
heating rate of 50 °C h−1. The ampoules were then quenched in ice water and annealed at
525 °C for five days. The resulting samples were extremely moisture sensitive orange to
yellow powders. All sample handling was performed in an argon filled glovebox.

Electrochemical Impedance Spectroscopy

For electrochemical impedance spectroscopy (EIS) measurements the samples were ground
thoroughly and compacted to a pellet of about 0.5 mm thickness and 5 mm diameter by
uniaxial cold pressing (500 MPa). For EIS, the pellets were put in between two indium foil
sheets (Alfa Aesar, 0.127 mm thick, 99.99%) to enhance the contact with the stainless
steel electrodes of the cells. No reaction between In and the samples was observed. EIS
measurements were performed with an Ivium compactstat.h (24 bit instrument) in a two-
electrode setup using a rhd Instruments Microcell HC cell stand loaded with rhd
Instruments TSC Battery cells performing measurements between 25 °C and −20 °C
inside a glovebox under argon atmosphere. The spectra were recorded in a frequency
range of 1 MHz - 0.1 Hz and an applied rms AC voltage of 10 mV. The analysis of the
impedance spectra was carried out with the RelaxIS3 software from rhd Instruments.
The linearity, stability and causality was checked by applying the Kramers-Kronig-relation
before fitting the data.

The measurement uncertainties arise from the error propagation of the uncertainties in
pellet thickness, area and in obtained resistance.

Solid-state Nuclear Magnetic Resonance Spectroscopy

Solid-state NMR spectra were measured on a Bruker Avance III 500 instrument at a
magnetic field of B0 = 11.74 T . Magic-angle spinning (MAS) experiments were performed
in zirconia spinners at a spinning speed of 10 kHz using a Bruker 4 mm triple-channel
probe. 27Al, 29Si and 31P spectra were referenced indirectly to 1H in 0.1% TMS at 0.00 ppm.

Bond Valence Energy Landscape Calculations

Bond valence energy landscape (BVEL) calculations were performed with the program
3Dbvsmapper.2 The cutoff distance was fixed to a maximum value of 8�A. The images
were created with VESTA.3
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Figure 4.1: a: Exemplary Rietveld refinement on the substitution series Li7+xSi1-xAlxPS8

with 0 ≤ x ≤ 0.2. Black and blue vertical lines depict reflection markers of tetra-LSiPS
and silicon respectively; b: Dependance of the lattice parameters a and c in tetragonal
Li7+xSi1-xAlxPS8 on the substitution ratio x obtained by Rietveld refinement with Si as an
internal standard.

4.1.2 Results and Discussion

Powder X-ray diffraction

Powder X-ray diffraction data reveal that samples with a substitution ratio of x = 0.2
show the appearance of additional side phases, mostly Li7PS6, which is accompanied by
a decrease in conductivity (cf. 4.1.2). It was expected that even higher substitution
ratios would give similar results as in the aliovalent substitution series Li10+xGe1-xAlxP2S12

performed by Amaresh et al.,4 who showed that higher substitution ratios give an increasing
amount of side phases decreasing the conductivity. Therefore, higher substitution ratios
than x = 0.2 were not studied.
However, the PXRDs of samples with x ≤ 0.15 show only reflections of tetra-LSiPS. Ri-
etveld refinements on these samples including silicon powder as an internal standard reveal
a linear dependence of the c lattice parameter on the substitution ratio x (Fig. 4.1). The
lattice parameter a however shows a rather erratic dependence hinting at a more complex
behaviour of the system than was observed for the substitution of silicon by aluminum in
Na4+xSi1-xAlxS4 (cf. chapter 5). Although, the dependence of the volume on the substi-
tution value x is not strictly linear and therefore not Vegard-like,5 the overall trend is an
increase in volume, hinting at a successful substitution.
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Nuclear magnetic resonance spectroscopy

Figure 4.2: 27Al MAS NMR spectrum of
Li7.1Si0.9Al0.1PS8.

To confirm the assumption of a successful sub-
stitution of silicon by aluminum, 27Al, 29Si and
31P MAS NMR spectra of a sample with x = 0.1
were measured. The appearance of only one sig-
nal in the 27Al spectrum with a chemical shift of
133 ppm suggest that the sample is single-phase
and is in good agreement with the data reported
in chapter 5, confirming a tetrahedral coordi-
nation of Al by sulfur (Fig. 4.2). Comparing
the 31P spectra (Fig. 4.3a) of Li7.1Si0.9Al0.1PS8

closely with spectra of the unsubstituted com-
pound shown in chapter 3 and A reveals some
minor differences. On the one hand, substitu-
tion of silicon by aluminum causes a compo-
sitional change in the amorphous side phase,
which is evident by a shift in the relative in-
tensities of the 31P signals observed for the amorphous phase (cf. A). And on the other
hand, a shift of all signals of the tetragonal phase by approximately −0.3 ppm can be
observed. A similar shift combined with a broadening of the signal can also be observed
in the 29Si spectrum of Li7.1Si0.9Al0.1PS8 compared to the unsubstituted tetra-LSiPS de-
picted in black or orange, respectively, in Figure 4.3b. Both the shift and broadening of
the signal are in accordance with the assumption of a successful substitution of Si by Al
in the crystalline compound.

Figure 4.3: a: Deconvoluted 31P MAS NMR spectra of Li7.1Si0.9Al0.1PS8 (black). The
red line denotes the overall fit, colored peaks denote signals of tetragonal Li7.1Si0.9Al0.1PS8

(orange) and amorphous side phases (gray), respectively. b: 29Si MAS NMR spectra of
unsubstituted tetra-LSiPS (orange) and Li7.1Si0.9Al0.1PS8 (black).
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The increased electron count and therefore increased shielding of the atoms stemming
from additional lithium being incorporated into the structure to maintain charge neutrality
causes a shift to lower ppm. This shift however is minute being an effect of the second
coordination sphere and the total increase in charge carriers is only around 2%. The
broadening can be explained by the increased static disorder and strain on the sulfur
lattice introduced by substitution, resulting in a broader distribution of local chemical
environments for the silicon atoms.

Electrochemical impedance spectroscopy

Electrochemical impedance spectroscopy (EIS) measurements were performed to access the
ionic conductivities and the respective activation energies of the samples with 0 ≤ x ≤ 0.15
in Li7+xSi1-xAlxPS8 (Fig. 4.4 and Fig. C.1). Regarding the obtained activation energies
no drastic change can be observed, suggesting the fundamental mechanism of ion hopping
of tetra-LSiPS does not change with substitution. Comparing the obtained data with the
data reported in chapter 3 it is obvious that within the measurement error a substitu-
tion of silicon by aluminum has no large effect on the total conductivity in tetragonal
Li7+xSi1-xAlxPS8. Higher substitution values (x ≥ 0.1) slightly reduce the conductivity to
approximately 4 · 10−4 S cm−1. This observation could be related to the small change in
the amorphous side phase, which was discussed above. Since the same limitation of the
ionic conductivity by the amorphous side phase that was observed for pristine tetra-LSiPS
should also affect the Al substituted samples, changes in the composition of the amorphous
side phase which impact its conductivity would also affect the total conductivity of the
samples.

Figure 4.4: a: Total room temperature conductivities of samples in the Li7+xSi1-xAlxPS8

(0 ≤ x ≤ 0.15) substitution series. b: Measured activation energies for ion conduction of
samples in the Li7+xSi1-xAlxPS8 (0 ≤ x ≤ 0.15) substitution series. Blue bars depict the
typical measurement error of unsubstituted tetra-LSiPS.



60 4. Chemical modification on tetra-LSiPS

To clarify if this assumption is correct one has to deconvolute the different contributions
to the measured total impedance. On LGPS-like compounds this was so far only achieved
by EIS below −100 °C, which will be conducted in further studies.

Bond valence energy landscape calculations

To assess the influence of partial substitution of silicon by aluminum on the crystalline
phase, BVEL calculations on the unsubstituted tetra-LSiPS and tetragonal Li7.1Si0.9Al0.1PS8

were performed using experimental data obtained by Rietveld refinement for the respective
compounds. Cross-sections through the BVEL map of the main lithium diffusion paths
parallel to c are depicted in Figure 4.5. Low energy sections (blue areas) coincide very well
with crystallographic lithium atom positions, which were therefore omitted from the figure
for clarity. The obtained diffusion paths for lithium (BVEL map cut-off level at -4.4 eV)
correspond to the calculated paths for isotypic tetragonal LGPS by Ceder et al..6 The BV
calculations on both compounds give very similar results as listed in Table 4.1. A slightly
lower activation energy of ion hopping for tetragonal Li7.1Si0.9Al0.1PS8 was obtained, be-
ing in line with the trend of decreased activation energy with increased lattice parameters
obtained by AIMD simulations by Ceder et al. for a series of LM PX compounds including
theoretical ’Li11AlP2S12’.1 The obtained difference of about 4 meV however, is well below
the margin of error achievable in EIS measurements. Since a decrease in activation en-
ergy and an increase in charge carrier concentration should result in an increase in bulk
conductivity of the tetragonal Li7+xSi1-xAlxPS8 phase, the decrease in total conductivity
measured by EIS with increasing x is therefore attributed to the change in composition of
the amorphous side phase observed by MAS NMR.

Table 4.1: Results of BVEL calculations performed on tetra-LSiPS and tetragonal
Li7.1Si0.9Al0.1PS8. The activation energy for ion migration is defined as Ea,BV = |Epath

min −
Epath
mig |.
Structure Ea,BV Epath

mig Epath
min Eglobal

min

tetra-Li7SiPS8 0.7113 eV -4.8010 eV -5.5123 eV -6.1325 eV

tetra-Li7.1Si0.9Al0.1PS8 0.7075 eV -4.7894 eV -5.4969 eV -6.1341 eV
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Figure 4.5: Comparison of the calculated BVEL maps for a: tetra-LSiPS and b: tetragonal
Li7.1Si0.9Al0.1PS8. [Si/P/Al−S4]-tetrahedra are depicted in blue, [P−S4]-tetrahedra are
depicted in gray, Si is depicted in blue, P in gray, Al in turquoise and S in yellow. Li atom
positions were omitted for clarity. The depicted BVEL isosurface (gray) cutoff energy is
-4.4 eV. Its cross sections parallel to the main diffusion paths in the ac-plane at y = 0.5
and y = 0.75 are colored dependent on the calculated BV energy from blue (-5.4 eV) to
red (-4.4 eV).
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4.1.3 Conclusion and Outlook

In this work we show the successful substitution of Si+IV by Al+III up to a substitution
ratio of x = 0.15 in tetragonal Li7+xSi1-xAlxPS8 by PXRD and subsequent Rietveld refine-
ment and MAS NMR spectroscopy. DFT calculations by Ceder et al. predict a decrease
in activation energy for lithium ion diffusion followed by an increase in conductivity in
aluminum containing tetragonal LGPS-like compounds.1 These findings are corroborated
by BVEL calculations performed on crystalline materials obtained in this work. However,
experimental data from EIS show little influence of the substitution ratio x on both the
total conductivity and the activation energy. Substitutional ratios of x = 0.10 and more
lead to a decrease in total conductivity from 2 · 10−3 S cm−1 to 4 · 10−4 S cm−1 which is
attributed to a change in composition of the amorphous side phase present in this class of
materials (cf. chapter 3) which further reduces the measured conductivities compared to
unsubstitutted tetra-LSiPS. However, subsequent studies including low-temperature EIS
measurements are needed to confirm this hypothesis. Furthermore, similar to the solid
solution series Na5-xAl1-xSixS4 (c.f. chapter 5) a substitution of silicon by aluminum should
increase the compounds stability against reduction at the Li anode. This and to what
extent the amorphous side phases influence the stabilities will be subject to further studies
on these materials.

Author Contributions

SH, AKH and BVL conceived and designed this study; SH, CaH and MP conducted the
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As was already briefly discussed in chapter 1.3.1, the fastest lithium ion solid electrolyte to
date was found by Kanno et al. with a composition of Li9.54Si1.74P1.44S11.7Cl0.3.7 This com-
pound was synthesized by mixing stoichiometric amounts of LiCl and the respective sulfides
by ball milling and forming the tetragonal LGPS-like crystalline material by annealing the
compound at 500 °C. By Rietveld analysis of neutron powder diffraction data the authors
determined a mixed occupation of the three atomic positions occupied by sulfur with 2 –
4 % Cl, which is in good agreement with the total composition. However, they also report
a lithium argyrodite (Li6PS5Cl) side phase in addition to the tetragonal LGPS-like phase
with a phase fraction of approximately 18 w%. This additional phase covers more than the
total mass fraction of chlorine in the compound. This observation in combination with the
fact that phosphorous chalcogen halogenides are very reactive and tend to decompose in
the presence of a Lewis-acid or at elevated temperatures,8,9 suggests that additional LiCl
reacts to the lithium-argyrodite at the given synthesis conditions. Therefore, a different
mechanism is proposed by which the high ionic conductivities of Li9.54Si1.74P1.44S11.7Cl0.3

could be explained:
It was shown in chapter 3 that the ionic conductivity of tetragonal LSiPS compounds
is impeded by an additional, hitherto undetected, amorphous side phase of approximate
composition Li3PS4. LiCl, in the presence of Li2S, could react with this side phase to form
the Li6PS5Cl observed by Kanno et al.. Since this lithium argyrodite phase exhibits a much
higher ionic conductivity than the amorphous side phase, the overall conductivity of this
phase mixture should increase, especially considering that silicon doping could increase
the conductivity of the argyrodite phase even more.10,11 A scheme of the overall proposed
reaction is given in Figure 4.6.

Figure 4.6: Scheme of the proposed reaction between the amorphous side phase (gray)
observed in tetra-LSiPS (orange) and additional Li2S and LiCl to form lithium argyrodite
side phase (blue), increasing the overall conductivity.
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4.2.1 Experimental procedure

Samples were similarly prepared, handled and measured as described in chapter 3. The
annealing temperature was set to 525 °C. To calculate the amount of additional Li2S
and LiCl (Alfa Aesar, 99%) different amounts of amorphous side phase of composition
Li3PS4 were assumed and weighed according to the reaction equation given in Figure 4.6.
Since the assumed weight percent of an amorphous phase is the common denominator to
describe the amount of additional Li2S and LiCl, it is chosen in the following to designate
specific samples.

4.2.2 Results and discussion

Powder X-ray diffraction

PXRD measurements and subsequent Rietveld refinements with an internal silicon stan-
dard were performed for all samples. These show (Fig. 4.7) the expected occurrence of
the lithium argyrodite phase with the addition of Li2S and LiCl. Samples with 8 assumed
weight percent amorphous Li3PS4 (8 awt%), which is an average value for tetra-LSiPS
samples (cf. chapter 3), shows a negligible amount of amorphous phase within the error
limits of the method. However, increasing amounts of ortho-LSiPS are present in samples
up to 8 awt% which is decreased at 15 awt% in combination with a dramatic increase in
the phase fraction of an additional amorphous side phase. Furthermore, the addition of
Li2S and LiCl is accompanied by a decrease in unit cell volume of the tetra-LSiPS phase
(Fig. 4.7b), hinting at a decrease in the Si:P-ratio, since the ionic radius of SiIV is big-
ger than that of P V . The Si:P-ratio is decisive for the stability of the tetragonal phase.
Preliminary experiments showed that at the given annealing temperature of 525 °C only
the composition Li7SiPS8 resulted in tetra-LSiPS being the only crystalline phase. Other
compositions between 1

3
≤ x ≤ 2

3
in Li3+xSixP1-xS4 resulted in additional ortho-LSiPS

with the given synthesis conditions. It can be assumed, that, similar to LGPS, the tetrel
to phosphorous ratio influences the temperature stability of the tetragonal phase result-
ing in a lower temperature needed for A decomposition of the tetragonal phase to the
orthorhombic,12 which could explain the occurrence of ortho-LSiPS in the given samples.

Electrochemical Impedance Spectroscopy

Temperature dependent EIS measurements were performed for all samples to assess their
total ionic conductivity and the respective activation energies. The obtained results are
depicted in Figure 4.8 and representative EIS spectra measured at −20 °C are given in
Figure C.2. Regarding total conductivity, no clear trend can be observed within the margin
of error. However, the sample with 15 awt% shows the highest total conductivity of
4 mS/cm. The activation energy for ion conduction extracted from the total conductivity
by addition of Li2S and LiCl is first slightly increased with 0.26 eV compared to the usually
obtained 0.22(3) eV for tetra-LSiPS, decreases however with increasing addition of Li2S
and LiCl to 0.17 eV . Both increase in total conductivity and decrease in activation energy



4.2 Impact of LiCl on the phase composition in tetra-LSiPS 65

Figure 4.7: Results from Rietveld refinements from tetra-LSiPS samples with different
amounts of additional Li2S and LiCl. a): Extracted phase fractions by quantitative phase
analysis with an internal silicon standard; b): Lattice parameters a and c of tetra-LSiPS.

cannot be sufficiently explained by the occurence of the Li-argyrodite Li6PS5Cl alone and
can also not just be correlated to the amount of amorphous side phase determined by
PXRD and subsequent Rietveld refinement. However, the disappearance and reappearance
of an amorphous phase with increasing Li2S and LiCl content suggests that the sample with
15 awt% shows a different amorphous secondary phase as usually observed for tetra-LSiPS.

MAS NMR spectroscopy

To validate the assumption of a change in the amorphous side phase by addition of Li2S
and LiCl a 31P MAS NMR spectrum was measured, deconvoluted and compared to the
spectrum of a pure tetra-LSiPS sample (Fig. 4.9). The measured 31P MAS NMR spectrum
shows four distinct peaks, which were attributed to crystalline tetra-LSiPS, ortho-LSiPS
and Li6PS5Cl or an amorphous phase. The signal for ortho-LSiPS shows a shift from
88 ppm to 90 ppm (cf. Chapter 3). Since, Rietveld refinement of the obtained PXRD data
with internal standard suggests that the amorphous phase shows a higher weight fraction
than the lithium argyrodite phase and Li6PS5Cl itself shows numerous broad signals be-
tween 81 and 85 ppm according to literature,13 the broad signal observed between 79 and
88 ppm is most likely caused by a broad distribution of amorphous lithium argyrodite like
phases and crystalline Li6PS5Cl which cannot be deconvoluted.

4.2.3 Conclusion and Outlook

In this preliminary work the impact of an addition of Li2S and LiCl on the phase com-
position and overall conductivity of tetra-LSiPS was studied. It could be shown that the
formation of an amorphous side phase, which usually impedes the predicted high conduc-
tivity of tetra-LSiPS, could be suppressed. However, the specific ionic conductivity does
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Figure 4.8: (a): Total conductivities and (b): activation energies for ion conduction of
samples with increasing Li2S and LiCl content. Blue bars depict the estimated deviation
for the specific ionic conductivity and activation energy for different tetra-LSiPS samples.
As a reference the respective values for the lithium argyrodite Li6PS5Cl are also depicted.

Figure 4.9: Deconvoluted 31P MAS NMR spectra of a sample with 15 awt% amorphous
Li3PS4 and a typical tetra-LSiPS sample. Deconvoluted peaks are color coded to their
respective phase. Orange represents crystalline tetra-LSiPS, yellow ortho-LSiPS, blue the
Li-argyrodite and gray an amorphous phase. The percentage of the respective integrated
areas is given for each peak. The envelope of the overall fit function is depicted in red.
Measured data is given as a black line.
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not change within the margin of error, which is most likely due to the emergence of other
additional side phases, like ortho-LSiPS, at increasing ratios of additional lithium sulfide
and chloride. Interestingly, by exceeding the assumed amount of Li2S and LiCl needed
to suppress the amorphous side phase, an approximate doubling in conductivity of the
resulting mixture is observed from 2 mS/cm for tetra-LSiPS to 4 mS/cm, combined with a
deacrease in activation energy for ion conduction to 0.17 eV . This change was attributed
to the formation of yet unidentified amorphous side phase, which either enables better
contact between the tetra-Li7SiPS8 grains or is a very fast ionic conductor itself, or both.
Further investigations will focus on the role of this secondary amorphous phase and the
influence of heavier halides such as bromine on this phase system.
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5.1 Abstract

The rational design of high performance sodium solid electrolytes is one of the key chal-
lenges in modern battery research. In this work, we identify new sodium ion conductors
in the substitution series Na5-xAl1-xSixS4 (0 ≤ x ≤ 1), which are entirely based on earth-
abundant elements. These compounds exhibit conductivities ranging from 1.64 · 10−7 S cm−1

for Na4SiS4 to 2.04 · 10−5 S cm−1 for Na8.5(AlS4)0.5(SiS4)1.5 (x = 0.75). We determined the
crystal structures of the Na+-ion conductors Na4SiS4 as well as hitherto unknown Na5AlS4

and Na9(AlS4)(SiS4). Na+-ion conduction pathways were calculated by bond valence en-
ergy landscape (BVEL) calculations for all new structures highlighting the influence of the
local coordination symmetry of sodium ions on the energy landscape within this family.
Our findings show that the interplay of charge carrier concentration and low site symmetry
of sodium ions can enhance the conductivity by several orders of magnitude.
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5.2 Introduction

In recent years, all-solid-state batteries (ASSB) have garnered attention as promising can-
didates for future battery applications in large scale mobility systems such as electric vehi-
cles.1–3 This is due to safety issues arising from liquid electrolytes applied in conventional
lithium-ion batteries. Implementing solid electrolytes is thought to provide a more stable
battery system, both thermally and mechanically. ASSBs can even pair this advantage with
improved energy density through the use of Li or Na metal anodes and bipolar stacking. In
prospect, the application of sodium containing materials produced from cheap and abun-
dant sources could effectively cut down costs of ASSBs, thus enabling large-scale energy
storage system solutions independent of limited lithium resources.4 One central component
of an ASSB is the solid electrolyte. To be applicable for battery systems, the implemented
solid electrolytes are required to show high ionic and low electronic conductivity, along
with high electrochemical and structural stability, as well as low production costs.5 Re-
garding conductivity, the group of sulfides includes some of the best solid electrolytes to
date. Especially thiophosphates, e.g. Li10GeP2S12 (LGPS), Li6PS5X (X = Cl, Br, I) and
Na3PS4, are promising materials due to their high ionic conductivities and soft mechanical
nature enabling cold pressing of the electrolyte instead of high temperature sintering.6–12

These high ionic conductivities compared to most oxide solid electrolytes are supposed to
stem from the high polarizability of the sulfide or thiophosphate anion lattice, facilitating
Li or Na ion hopping in the bulk.13,14 However, Zeier et. al. showed that a softer lattice
cannot only lower the migration barrier for charge carriers, but also affects the entropy of
migration, which can negatively influence the overall ionic conductivity.15,16 This ’softness’
of the lattice is commonly tuned by isovalent or aliovalent substitution to obtain materi-
als with even higher ionic conductivities. Isovalent substitution is typically employed to
introduce softer, more polarizable anions, and to widen diffusion pathways as was studied
recently for the solid electrolyte Na3PS4. In its ’cubic’ phase, Na3PS4 exhibits a room
temperature ionic conductivity of up to 4.6 · 10−4 S cm−1.17,18 By substitution of S with Se,
values up to 1.16 · 10−3 S cm−1 can be achieved for Na3PSe4.15,19,20 In addition to isovalent
substitution, aliovalent substitution can be used to not only alter the polarizability of the
lattice and influence the size of diffusion pathways, but also to tune the charge carrier
concentration. Similar to the LGPS system,3,6,11,12,21–27 tetrel elements were employed in
the Na3+xTxP1-xS4 (T = Si, Sn) system to increase the charge carrier density and increase
the overall ionic conductivity. The Sn-containing compounds are structurally very similar
to the LGPS-like Li10SnP2S12 and show conductivities of 4 · 10−5 S cm−1 for Na10SnP2S12

and the highest measured sodium ionic conductivity at room temperature for sulfides of
4 · 10−3 S cm−1 for Na11Sn2PS12.22,28,29 Aliovalent silicon substitution studies were also con-
ducted for the Na3PS4 phase achieving a maximum conductivity of 7.4 · 10−4 S cm−1 for a
glass ceramic of composition 94(Na3PS4) · 6(Na4SiS4).30 The authors showed the presence
of two ion conducting, hitherto unknown crystalline phases in this Na3+xSixP1-xS4 system
with formal compositions ’Na11Si2PS12’ and ’Na4SiS4’. However, no structural information
was given nor the reason for the large increase in conductivity of the amorphous ball-milled
product (σ = 10−5 S cm−1) compared to the crystalline products (σ = 10−7 S cm−1). In
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this work we expand the materials space of sodium thio-ortho-tetrelates and -trielates by
aliovalent substitution of Si in the aforementioned Na4SiS4 by Al, therefore increasing the
number of charge carriers and expanding the lattice by a larger cation with reduced charge
(r(Si4+

Tetr.) = 0.26�A, r(Al3+
Tetr.) = 0.39�A)31 to enhance sodium ion conductivity. We present

the crystal structures of Na5AlS4, Na4SiS4 and Na9(AlS4)(SiS4) and investigate their Na+-
ion migration pathways by bond valence energy landscape (BVEL) calculations. While
Na5AlS4 was mentioned by Brown et al. and Na4SiS4 was reported recently by Tanibata
et al., no crystallographic data have been reported as yet.30,32 In this work we map out
the ionic conductivity of the aliovalent substitution series Na5-xAl1-xSixS4 (0 ≤ x ≤ 1) and
show that the conductivities can be significantly enhanced by tuning the charge carrier or
defect concentration. Hereby, the more complex structure of Na8.5(AlS4)0.25(SiS4)0.75 shows
a flatter energy landscape and a jump to a higher conductivity by two orders of magnitude
(2.04 · 10−5 S cm−1) compared to the border phases Na4SiS4 and Na5AlS4.

5.3 Experimental Section

5.3.1 Synthesis

Stoichiometric amounts of Na2S (Alfa Aesar, 99%), Al2S3 (Alfa Aesar, 99%), Si
(ball milled, Alfa Aesar, 99.999%), and S (Grüssing, sublimed in vacuo) were used
as starting materials. An excess of 5wt% sulfur was added to the mixture to ensure an
oxidizing atmosphere during the reaction. Samples were prepared by thoroughly mixing
and grinding the starting materials in an agate mortar. The resulting fine powders were
transferred into glassy carbon crucibles, compacted and sealed under vacuum into quartz
glass ampoules. The ampoules were subsequently transferred into a tube furnace and
heated at 50 °C h−1 to 600 °C and annealed for 3 d. Subsequently, the furnace was turned off.
The ampoules were removed from the furnace when the temperature was below 100 °C and
transferred to a glovebox. Na5AlS4 and Na4SiS4 samples are off-white to yellow powders,
probably from excess sulfur. Na8.5(AlS4)0.25(SiS4)0.75 crystals were colorless cuboids of
about 200 µm diameter embedded in an orange amorphous material, presumably solidified
sodium polysulfide melt.

5.3.2 Powder X-ray Diffraction

From all samples powder X-ray diffractograms (PXRDs) were measured on a Stoe STADI
P diffractometer (Ge-(111) monochromator, Dectris Mythen 1 K detector) utilizing Mo-
Kα1 or Cu-Kα1 radiation in Debye-Scherrer geometry. All samples were sealed in glass
capillaries with diameters of 0.3 to 0.5 mm under argon atmosphere in a glovebox. Indexing
of PXRD data, structure solution by charge flipping and subsequent Rietveld refinements
were carried out with the program Topas Academic v. 5.33,34
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5.3.3 Single Crystal X-ray Diffraction

f Single crystals of Na8.5(AlS4)0.25(SiS4)0.75 were isolated under paraffin oil outside the
glovebox and sealed in glass capillaries under oil. Single crystal X-ray diffraction (SCXRD)
experiments were carried out with a Bruker D8 Quest diffractometer using Mo-Kα ra-
diation. Data handling, including a multi-scan absorption correction with the program
SADABS, was done utilizing the Bruker Apex 3 software package.35 The structure so-
lution and refinement were performed with the programs SHELXS97 and SHELXL97,
respectively.36

5.3.4 Solid-state Nuclear Magnetic Resonance Spectroscopy

Solid-state NMR spectra were measured on a Bruker Avance III 500 instrument at a
magnetic field of B0 = 11.74 T . Magic-angle spinning (MAS) experiments were performed
in zirconia spinners at a spinning speed of 10 kHz using a Bruker 4 mm triple-channel
probe. 27Al and 29Si spectra were referenced indirectly to 1H in 0.1% TMS at 0.00 ppm.

5.3.5 Differential Scanning Calorimetry

For differential scanning calorimetry (DSC) measurement samples were sealed in small
quartz ampoules (5 mm outer diameter, 10 – 15 mm length) under argon. To improve
heat-flow the quartz ampoules were put in Pt-crucibles (6 mm diameter, 10 mm height).
Measurements were then carried out using a Netzsch STA 449 F5 Jupiter with an Argon
flow of 40 mL min−1 in a temperature range between room temperature and 900 °C and
heating/cooling rates between 1 and 10 K min−1. Data handling was performed with the
Netzsch Proteus software package.

5.3.6 Energy Dispersive X-Ray Analysis

Elemental composition was determined by energy-dispersive X-ray spectroscopy (EDX;
detector: Oxford Instruments Inca Energy) and an image of the morphology was
obtained using a Jeol JSM 6500 F scanning electron microscope (SEM; field emission
gun, acceleration voltage 20 kV).

5.3.7 Bond Valence Energy Landscape Calculations

Bond valence energy landscape (BVEL) calculations were performed with the program
3Dbvsmapper.37 The BV method calculates the bond valence sum (BVS) for a tested
ion at each voxel grid point of a three-dimensional mesh in a unit cell. For a sodium
ion at its equilibrium site relative to the other ions in the structure (often equal to the
crystallographic site of the sodium ion) the bond valence sum should be equal to its oxida-
tion state (+1). Deviations of the BVS display possible migration pathways for the tested
ion.38 For a detailed description of the method see the SI. Here, the BVEL method uses
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soft-bond-valence parameters and additional (penalty) terms to account for Coulombic at-
traction/repulsion terms.39 The cutoff distance was fixed to a maximum value of 8�A. The
images were created with VESTA.40

5.3.8 Electrochemical Impedance Spectroscopy

Electrochemical impedance spectroscopy and galvanostatic polarization measurements were
performed with an Ivium compactstat.h (24 bit instrument) in a two-electrode setup us-
ing a rhd Instruments Microcell HC cell stand loaded with rhd Instruments TSC
Battery cells performing measurements between 25 °C and 75 °C inside the glovebox under
argon atmosphere. The spectra were recorded in a frequency range of 1 MHz - 0.1 Hz and
an applied rms AC voltage between 30 mV and 100 mV. The analysis of the impedance
spectra was carried out with the RelaxIS3 software from rhd Instruments. The linearity,
stability and causality was checked by applying the Kramers-Kronig-relation before fitting
the data. Before measuring, the samples were ground thoroughly and compacted to a pellet
of about 0.5 mm thickness and 5 mm diameter by uniaxial cold pressing (500 MPa). The ob-
tained densities of the pellets were between 76-91% with an error of 6% (cf. Table S13). For
impedance spectroscopy, the pellets were sandwiched between indium foil (Alfa Aesar,
0.127 mm thick, 99.99%) to enhance the contact with the stainless steel electrodes of the
cells. No reaction between In and the samples was observed. Every sample was measured
twice, and for each sample several temperature cycles were conducted. The measurement
uncertainties arise from the error propagation of the uncertainties in pellet thickness, area
and in obtained resistance. For the galvanostatic polarization measurements stainless steel
electrodes were used.
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5.4 Results and Discussion

5.4.1 X-Ray Diffraction

From all samples in the Na5-xAl1-xSixS4 (0 ≤ x ≤ 1) aliovalent substitution series PXRDs
were measured to study the crystallinity and phase composition (additional crystallo-
graphic data for all structures are given in the supplementary information). Figure 5.1B
shows that no complete solid solution is formed. Instead, three separate phases crystallize
as a function of the degree of substitution x.

Figure 5.1: (a): Normalized volume of the observed crystalline phases obtained by Ri-
etveld refinement displayed against substitution value x ; error bars represent 3σ and the
red lines are a guide to the eye to illustrate the Vegard-like dependence on x. (b): PXRDs
(Mo-Kα1 radiation) of all samples in the Na5-xAl1-xSixS4 (0 ≤ x ≤ 1) substitution series.

This is consistent with the fact that the pseudo-binary border phases Na5AlS4 and Na4SiS4

do not crystallize isotypically as shown below. Regarding the volume of the respective crys-
talline phases depicted in Figure 5.1A, a Vegard-like dependence on the substitution value
x for all phases can be observed and therefore partial miscibility within the respective
phases can be assumed.41

Crystal Structure of Na5AlS4.

Since no suitable single crystals were obtained, the crystal structure of Na5AlS4 was deter-
mined using powder X-ray data. The PXRD of Na5AlS4 was indexed in the orthorhombic
space group Pbca (No. 61) with a = 12.0130(12)�A, b = 7.052 63(7)�A and c = 21.5605(2)�A.
The structure was solved by charge-flipping implemented in Topas Academic v.5 and re-
fined with the Rietveld algorithm (Figure 5.2A). The structure is depicted in Figure 5.2.
The compound crystallizes in the Na5FeO4 structure type and is composed of isolated
[AlS4]-tetrahedra and distorted [NaS4]-tetrahedra and [NaS6]-octahedra.42 The packing of
the Al3+ atoms and therefore the packing of the (AlS4)5– -anions can be regarded as a
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slightly distorted α-uranium packing as was stated for isotypic Rb5GaO4.43 The BVEL
calculations (cf. below) show that most likely the Na2 atom does not take part in the
sodium ion conduction and can therefore be considered as being part of the lattice. Hence,
the lattice can be regarded as hexagonally packed infinite chains of face-sharing [Na2S6]-
octahedra connected via a common face to [AlS4]-tetrahedra which alternate back and
forth along a (Figure 5.2C).

Figure 5.2: (a): Rietveld refinement of Na5AlS4 (x = 0) measured using Cu-Kα1 radiation;
black dots depict the measured data, red lines the Rietveld fit, gray lines the difference
plot and black lines the respective reflection positions. (b): [AlS4]-tetrahedral sublattice
in Na5AlS4 viewed along a. (c): Perspective view of the [AlS4]-tetrahedral and [Na2S6]
octrahedral arrangement parallel to b. (d): Complete Na5AlS4 structure with [AlS4]-
tetrahedral arrangement viewed along b; maroon curved lines represent sodium ion diffusion
pathways determined by BVEL calculations.



78 5. Finding the right blend

Crystal Structure of Na4SiS4.

The structure of Na4SiS4 was also determined from PXRD data. The diffractogram
was indexed in the orthorhombic space group P212121 (No. 19) with a = 13.6765(3)�A,
b = 8.7839(2)�A and c = 6.889 40(15)�A, solved using charge-flipping and refined by Ri-
etveld refinement (Figure 5.3A). The structure is comprised of isolated [SiS4]-tetrahedra
which are edge- and corner-sharing to distorted [NaS6]-octahedra (5+1 coordination, cf. be-
low). The sulfur atom arrangement constitutes a distorted hexagonal close packing (hcp).
Therefore, the structure can be regarded as a hcp of S2– -anions with Si4+ and Na+ filling
1
8

tetrahedral and all octahedral voids, respectively. This highlights the similarity of this
compound’s structure with the thio-LiSICON family.5 However, this structure model does
not account for the weak reflection at 2Θ ≈ 5◦, marked in Figure 5.3a. It stems from an
elongation of the a-axis by a factor of three (i3 transition) to a = 41.0301(7)�A and an
ordering of sodium atoms Na10, Na11 and Na12 to form [NaS5]-pyramids in a one-up-two-
down-pattern, leading to the superstructure shown in Figure 5.3.

Figure 5.3: (a):Rietveld refinement of Na4SiS4 (x = 1) measured using Mo-Kα1 radiation,
the super-structure reflection is marked by an asterisk; black dots depict the measured
data, red lines the Rietveld fit, gray lines the difference plot and black lines the respective
reflection positions. (b): Na4SiS4 crystal structure parallel to c; (c): Na4SiS4 structure
viewed along a; (d): [SiS4]-tetrahedra (blue) and [NaS5]-pyramidal (red) arrangement
viewed parallel to c, showing the [NaS5]-pyramids in a one-up-two-down-pattern; maroon
curved lines represent sodium ion diffusion pathways determined by BVEL calculations.

Crystal structure of Na9(AlS4)(SiS4).

The double salt Na10-2x (AlS4)2-2x (SiS4)2x could be obtained in a compositional range of
0.5 ≤ x ≤ 0.75. Samples with x = 0.75 yielded suitable crystals for SCXRD measurements,
presumably because a poly-sulfide melt serves as a solvent for the compound at tempera-
tures exceeding 300 °C as shown by thermal analysis (cf. Figure S3). Na8.5(AlS4)0.5(SiS4)1.5

(x = 0.75) crystallizes in the monoclinic space group Cc (No. 9), with a = 17.5673(6)�A,
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b = 13.5408(5)�A, c = 14.2543(5)�A, and β = 93.3683(13)°. Its crystal structure is com-
prised of isolated [Al/SiS4]-tetrahedra, and distorted tetrahedrally, trigonal-bipyramidally,
square-pyramidally or octahedrally coordinated [NaS4]-, [NaS5]-, or [NaS6]-units (Fig-
ure 5.4, Figure S1). Additionally, the anion sublattice shows pseudo-inversion symmetry,
which is broken by the sodium cations. Since BVEL calculations show that Na13 requires
the highest energy to take part in ion migration (cf. below), it can be considered as part of
the lattice. Therefore, the topology of the structure can be described as a distorted hexag-
onal packing of rods comprised of [Na13S6] corner-sharing to four [Al/SiS4]-tetrahedra and
interconnected by two corner-sharing [Al/SiS4]-tetrahedra parallel to c (Figure 5.4A). In
contrast, for Na cations Na4, Na12, Na15 and Na18 (cf. Table S8) not taking part in the
lattice, large anisotropic displacement parameters are found (see Table S9 and Figure S1).
They occupy positions best described as two half-filled face-sharing [NaS4]-tetrahedra con-
stituting an unresolved split position, which therefore explains the elongated shapes. The
occupancy of Si vs. Al was not refined because of the similar atomic form factors of both el-
ements, yet the Si/Al ratio was confirmed to be 3/1 by EDX measurements (cf. Table S11).

Figure 5.4: (a): [Si/AlS4]-tetrahedral and [Na13S6]-octahedral arrangement viewed along
c and infinite [Si/AlS4]-[Na13S6]-rods viewed parallel to a. (b): Na9(AlS4)(SiS4) crystal
structure viewed along b; blue polyhedra depict [Si/AlS4]-tetrahedra, orange polyhedra
depict [Na13S6]-octahedra, red, dark red and yellow atoms depict Na, and blue atoms
depict Si/Al; ellipsoids were drawn at 80% probability. (c): Deconvoluted 27Al MAS
NMR spectrum of Na9(AlS4)(SiS4) (x = 0.5); purple line shows the overall fit, colored
dashed lines represent the contributing pseudo-Voigt peaks, relative intensities are given
with their respective standard deviation in parentheses. (d):29Si MAS NMR spectrum of
Na9(AlS4)(SiS4); colored dotted lines show a tentative signal distribution.
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The mean Al/Si–S-distances (cf. Table S10) of all four atomic sites of 2.147(3)�A (Si1S4),
2.165(3)�A (Si2S4), 2.166(3)�A (Si3S4), and 2.160(3)�A (Si4S4) are in between the distance
expected for tetrahedrally coordinated Si4+–S of 2.10�A and Al3+–S of 2.23�A.31 This sug-
gests that all Al/Si sites are occupied by silicon and aluminum with Si1 having a slightly
higher Si/Al ratio than the other three sites. Since the single crystal was obtained from a
sample with x = 0.75, the occupancy of sodium atoms was expected to be less than one
to maintain charge neutrality. Therefore, the occupancy of all sodium atoms was freely
refined (cf. Table S8) insofar as their occupancy factor was significantly (≥ 3σ) lower than
one, yielding a total number of sodium atoms per unit cell of 66.9(2), which is in good
agreement with the nominal value of 68.

5.4.2 NMR spectroscopy

To verify the assumption of a mixed occupancy of all four atomic Al/Si sites in the com-
pound Na9(AlS4)(SiS4), 27Al and 29Si magic-angle spinning (MAS) NMR spectra were
collected (Figure 5.4C, D). Both spectra show two clearly separated peaks with noticeable
shoulders, especially in the 29Si spectrum. Although four signals in each spectrum are
expected due to the four crystallographically independent Al/Si sites, the occurrence of
only two peaks in each spectrum is in good agreement with the crystal structure by taking
into account that the [Al/SiS4] sub-lattice shows pseudo-inversion symmetry and therefore
the chemical shifts of the respective nuclei should be very similar (or accidentally equal),
resulting in two sets of two overlapping signals, which is apparent in the 29Si spectrum
and, to a lesser extent, also in the 27Al spectrum. Additionally, the appearance of shoul-
ders in the spectra suggests slightly different Si/Al occupancies for the atomic sites with
pseudo-inversion symmetry, which is also corroborated by the mean Al/Si – S distances
from SCXRD data.

5.4.3 Bond Valence Energy Landscape Calculations

BVEL calculations were performed in order to elucidate the minimum energy trajec-
tories of the sodium ions and their dimensionalities in the three structures Na5AlS4,
Na9(AlS4)(SiS4), and Na4SiS4. The bond valence approach was proven to be a valid starting
point for discussing ion migration pathways in crystalline (ionic) solid electrolytes and elec-
trode materials. The method provides reasonable pathways, comparable to those obtained
by density functional theory (DFT) or molecular dynamics (MD) simulations.44,45 During
ion migration (here Na+) from one equilibrium site Nai (often a crystallographic site) to
an adjacent site Naj, sodium surpasses one (or multiple) transition state(s). Meta-stable
sites along the path are considered to be interstitial sites for sodium ions. In this work,
we denote the calculated global minimum energy Eglobal

min , the minimum energy within the
infinitely connected pathway Epath

min and the energy at which a infinitely connected pathway
is formed Epath

mig . The energy required for overcoming the ion migration barrier height ∆ is

calculated by ∆E = |Epath
min −E

path
mig |. Subscript abbreviations denote the dimensionality of

the pathway. Keeping in mind, that these calculated barrier heights for ion migration are
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overestimated, due to not taking lattice relaxations and coulombic repulsion of Na+–Na+

into account, the BV method provides elucidating insights into probable ion migration
pathways in a new structure.

BVEL calculations for Na5AlS4.

In Figure 5.5 the result of the BVEL calculation of Na5AlS4 is depicted. To better de-
cipher the individual, spatially distinct components of the overall Na ion trajectory, we
introduce sections A and B in Figure 5.5A, and separately discuss each section. In section
A tetrahedrally coordinated Na1 form a 2D-like conduction pathway in the ac plane. Two
adjacent [Na1S4] tetrahedra are connected via shared faces of an [�S6]-octahedron, creat-
ing a dumbbell-like conduction network between two Na1 sites as shown in Figure 5.5C.
Unoccupied tetrahedral sites (see Figure 5.5C) loosely connect the Na1–Na1 dumbbells.
Each of these dumbbells is connected to two Na3, which are residing in peninsular-like side
pockets.

Figure 5.5: (a): Na5AlS4 crystal structure viewed along b direction. Bond valence energy
landscape at isoenergy value of −2.40 eV (Eglobal

min = −3.71 eV, Epath
min = −3.43 eV, Epath

mig =
−2.58 eV,∆E3D = 0.83 eV). The unit cell is divided along the crystallographic c direction
into alternating sections A and B. (b): Na5AlS4 unit cell with sections A and B. (c):
Section A (c = 0.9 − 1.1) viewed along b and c. (d): Section B (c = 0.6 − 0.9) viewed
along b and c.
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Section B comprises a two-dimensional network composed of larger areas of low sodium
ion bond valence energy (expanded isosurface) connected via unoccupied tetrahedral sites.
These rectangular shaped areas, residing inside an octahedral cavity created by six sulfide
ions (red octahedron, Figure 5.5D), display regions in which sodium can migrate freely
without passing through high energy bottlenecks. This region is visible at low bond va-
lence isoenergy of −3.0 eV in Figure S4 in the SI. Na4 resides in one of the corners of the
expanded isosurface, thus creating a [Na4S6] coordination polyhedron. The [Na4S6] octa-
hedra are connected via unoccupied tetrahedral sites forming a percolating network. The
infinite [AlS4]-[NaS6] chains obstruct ion conduction along the crystallographic c direction,
but allow connection of both sections A and B at the gap between two chains as depicted
with the maroon colored curved lines in Figure 5.2C, D forming a zig-zag pattern along c
and a two-dimensional pattern in the ab plane. Consequently, despite its more dominant
2D conduction pathways in ab plane, Na5AlS4 is expected to be a three-dimensional ion
conductor.

BVEL calculations for Na4SiS4.

For simplification, the orthorhombic structure with a shorter a axis in Figure S5 instead of
the superstructure of Na4SiS4 in Figure 5.3 was used to calculate the bond valence energy
landscape for Na4SiS4. This does not lead to an appreciably different BVEL outcome,
since the superstructure is a result of sodium atom ordering. The anionic lattice remains
the same in both structure models. Figure 5.6 depicts the structure of Na4SiS4 together
with bond valence energy surfaces of different isoenergy values.

Figure 5.6: Crystal structure of Na4SiS4 (simplified model without superstructure) with
sodium atoms drawn in red and sulfur atoms drawn in yellow. Bond valence energy
landscape at isoenergy values of (a): −2.40 eV and (b): −1.80 eV are drawn in gray
(Eglobal

min = −3.73 eV, Epath
min = −3.73 eV, Epath

mig = −2.68 eV,∆E2D = 1.05 eV). Red arrows
depict sodium ion diffusion pathways. Numbers denote crystallographic sodium sites.
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A more detailed illustration of the evolution of BVE isosurfaces can be found in Figure S5.
As depicted in Figure 5.6, Na4 occupies a distorted square pyramid. Two base-sharing
pyramids form a larger octahedron with Na4 preferentially occupying one half of the oc-
tahedron. In a short range, hopping through the common base of two adjacent square
pyramids is energetically facile for Na4. For long-range diffusion, Na4 can hop via a tetra-
hedral site spanned by two [Na4S6] units into an expanded region of low bond valence
energy (up or down along b). Na3 resides close to one of the [Na4S6] unit’s corners. De-
spite being connected to this low energy site as well, Na1 and Na2 have to pass a bottleneck
when diffusing to this site. Therefore, mainly Na4 and Na3 form a quasi-one-dimensional,
channel-like structure in b direction. At slightly higher bond valence energies tetrahedral
sites between Na4-Na1 and Na4-Na2 are accessible through small bottlenecks (see Fig-
ure 5.6B, gray isosurface marked with red ellipses). The resulting network percolates the
unit cell in all crystallographic directions, resulting in 3D ion migration at higher energies
(∆3D ≈ 1.6 eV).

BVEL calculations for Na9(AlS4)(SiS4).

Compared to Na5AlS5 and Na4SiS4, the double salt Na9(AlS4)(SiS4) is structurally more
complex, since it features 18 sodium sites hosted in mostly distorted coordination poly-
hedra. Only Na13 resides in a rather ordered [Na13S6]-octahedron, which is bridged in c
direction by corner-sharing [AlS4]5– /[SiS4]4– -tetrahedra (cf. Figure 5.7 and Figure 5.4).
In terms of conduction pathways, the sodium ions in Na9(AlS4)(SiS4) can be divided into
isolated and migrating sodium ions. Migrating sodium ions, depicted as red spheres in Fig-
ure 5.7, reside inside the calculated BVEL network at isoenergy Epath

mig . Most of the sodium
ions contributing to the three-dimensional conduction are mainly square-pyramidally coor-
dinated, but also trigonal bipyramidal, tetrahedral or octahedral coordinated. Presumably,
the low local coordination symmetry of those sodium ions and the therefore asymmetric
charge distribution leads to less coulombic attraction facilitating ion hopping.

Figure 5.7: Crystal structure of Na9(AlS4)(SiS4) along (a): a and (b): c direction. The
bond valence energy landscape at isoenergy value of −2.60 eV is drawn in gray (Eglobal

min =
−4.02 eV, Epath

min = −3.86 eV, Epath
mig = −2.64 eV, ∆E3D = 1.22 eV).
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However, the either trigonal bipyramidally (Na4,7), tetrahedrally (Na14) or octahedrally
(Na13) coordinated sodium ions are not connected to the conduction network at Epath

mig and
thus are considered to be members of the rigid framework (cf. Figure S6). At noticeably
higher energy all sodium ions but Na13 connect to a large, expanded network. Summariz-
ing, at Epath

mig a very flat three-dimensional isoenergy surface with only a few bottle necks
occupies a large volume fraction of the unit cell. Compared to Na5AlS4 and Na4SiS4, in
terms of conduction pathways, the sodium ions in Na9(AlS4)(SiS4) are expected to show
higher mobility due to higher versatility in the sodium ion coordination and the resulting
flatter potential energy surface for sodium ion migration.

5.4.4 Electrochemical Impedance Spectroscopy

Electrochemical impedance spectroscopy in the temperature range 25 – 75 °C was conducted
on cold pressed samples of all members in the series Na5-xAl1-xSixS4 with (0 ≤ x ≤ 1).
As depicted in Figure 5.8, they show averaged sodium ion conductivities ranging from
1.64 · 10−7 S cm−1 for Na4SiS4 up to 2.04 · 10−5 S cm−1 for Na8.5(AlS4)0.5(SiS4)1.5. Galvano-
static polarization measurements (cf. Figure S7) confirm the mainly ion conducting nature
of the materials with transference numbers of about 0.9998, thus being suitable as solid
electrolyte in a battery. The conductivities in Figure 5.8 represent the total conductivities
of the samples, modelled by a capacitor or constant phase element (CPE) and a resis-
tance (R) in parallel. Where necessary, a second R-CPE-element was added, and in each
spectrum the polarization of ions at the interface of the blocking electrode was modelled
by a CPE. Exemplary impedance spectra and equivalent circuits of each sample as well
as the respective capacitances and ideality factors (α) are given in the SI in Figure S8
and Table S12. The effective capacitances (Ceff) were calculated by the Brug formula46

Ceff−−(R(CPE))1/α/R. The best conducting sample Na8.5(AlS4)0.5(SiS4)1.5 shows only one
semicircle with a capacitance of about 2 · 10−10 F. The capacitances of the high frequency
semicircle of all other samples are of the same order of magnitude, suggesting the same
underlying processes. According to literature, the capacitance of 1 · 10−10 F corresponds
to grain boundary contributions.47 Thus, the high frequency arc contains the information
about the bulk and grain boundaries, but the exact bulk contributions can not be decon-
voluted. In some spectra a second semicircle at lower frequencies with capacitances of
about 8 · 10−8 F− 6 · 10−7 F is present. The activation energies of this process, calculated
according to σ = σ0/T ·e−Ea/kBT (with σ0 being the prefactor, Ea the activation energy, kB
the Boltzmann constant and T the temperature), are higher than the activation energies
obtained from the high frequency semicircles (cf. Table S14 and Table S15). Consequently,
this semicircle may stem from an inhomogeneity in composition or an additional resistive
layer on the surface.47,48 Interestingly, the low frequency semicircle is absent for the best
conducting sample Na8.5(AlS4)0.5(SiS4)1.5 pointing to an easier handling of this material.
To avoid a mingling of processes, only the data from the high frequency semicircle is ap-
plied for discussing the trends in activation energy and prefactor in the following. A plot
only including conductivities calculated from the high frequency semicircles is given in
Figure S9. It exhibits the same trend as in Figure 5.8 with Na8.5(AlS4)0.5(SiS4)1.5 being
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the best conducting member of the series.

Figure 5.8: (a): Sodium ion conductivity in the phase system Na5-xAl1-xSixS4 with (0 ≤
x ≤ 1) as a function of the substitution factor x (visualized by dashed line). In the range
of x = 0.50 – 0.75, where the material crystallizes in the Na9(AlS4)(SiS4)-structure, the
highest average conductivity of 2.04 · 10−5 S cm−1 was observed. The unsubstituted phases
Na5AlS4 and Na4SiS4 show a significantly lower ionic conductivity of 1.64 · 10−7 S cm−1-
1.77 · 10−7 S cm−1, respectively. The error bars include the standard deviation of the sample
and the error of the measurement of about 8%. (b): Temperature dependent sodium
ion conductivities calculated from R1 of all phases for a selection of measurements (all
parameters for these particular measurements are given in Table S12 and Table S13).
The different colors indicate the different crystal structures: Na5AlS4-structure (blue),
Na9(AlS4)(SiS4)-structure (black) and Na4SiS4-structure (red)

5.4.5 Discussion

Taking a closer look at Figure 5.8 and S9 reveals the strong influence of the number of
charge carriers on the conductivity of each material. Going from the poor ionic conductor
Na5AlS4 along the isotypic phases up to x = 0.25, the substitution of Al3+ with Si4+

introduces sodium vacancies, which increases the conductivity. On the other end of the
series, Na4SiS4 shows a σNa in line with findings from.30 Here, the amount of sodium ions
is increased in the form of interstitials by substitution with Al3+. The BVEL analysis
suggests an occupation of tetrahedral sites between Na4-Na1 and Na4-Na2 as interstitial
positions for the sodium ions (cf. Figure 5.6). This would be consistent with more efficient
3D ion migration in the structure and overall facilitation of the ion transport.
In the range of x = 0.50− 0.75, where the Na9(AlS4)(SiS4)-structure is stable, the highest
conductivities are found. The topology of Na9(AlS4)(SiS4) does not resemble the one of
Na4SiS4 but shows similarities to Na5AlS4 with a distorted hexagonal packing of [Al/SiS4]-
[Na2S6]-chains. The structure features (migrating) Na ions whose highly distorted coordi-
nation polyhedra are connected to other sodium sites mostly via faces and edges, which
facilitates ion hopping and approximates 3D diffusion.49 In this sense, the double salt
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Na9(AlS4)(SiS4) thus shows similarities to the well known tetragonal LGPS-phase which
shows exceptionally high ionic conductivity that is in part attributable to the low energy
barrier for lithium diffusion between face-sharing [LiS4]-tetrahedra.25,50 Additionally, the
BVEL analysis of Na9(AlS4)(SiS4) indicates a similar situation to the frustrated energy
landscape leading to superionic diffusion in LiTi2(PS4)3:51 The sodium coordination envi-
ronments are more diverse and the coordination polyhedra more distorted in the double salt
Na9(AlS4)(SiS4) compared to the border phases of the substitution series Na5-xAl1-xSixS4.
This low local coordination symmetry of sodium and connection of its coordination poly-
hedra lead to a flat energy landscape for sodium cations in Na9(AlS4)(SiS4), which is
beneficial for ion transport.

By further exchanging [AlS4]5− anions by [SiS4]4− anions in Na9(AlS4)(SiS4), sodium
vacancies are introduced. Within the series Na5-x (AlS4)1-x (SiS4)x the value x = 0.75
(Na8.5(AlS4)0.5(SiS4)1.5) constitutes the optimum for the observed ionic conductivity of
2.04 · 10−5 S cm−1 and the lowest activation energy in the series of 0.30 eV as shown in
Table S15, reflecting the flattening of the energy landscape proposed by the BVEL calcula-
tions. For all other members of the series the activation energies are rather similar within
their standard deviation, at around 0.35 – 0.40 eV (cf. Figure S10). Besides, the prefactors
σ0 of the best conducting members of the series exceed the prefactors of the end mem-
bers by one to two orders of magnitude (cf. Table S13), although the activation energy
is lowered (cf. Figure S10). The prefactor takes into account the charge carrier density
of mobile ions, the entropy of migration, the jump distance and the attempt frequency,
among others. Recently, Kraft et al. systematically increased the lattice softness in a series
of ionic conductors and noted that a decrease in activation energy is accompanied by a
decrease in prefactor, which is in line with the Meyer-Nedel-rule.16 Accordingly, in cases
where this rule applies, possible conductivity improvements via lattice softness engineering
are inherently limited. However,51 showed for LiTi2(PS4)3 that the highly distorted coor-
dination polyhedra of lithium lead to a frustrated energy landscape, lowering the energy
barrier, but increasing the prefactor due to longer jump distances and a higher entropy
for the transition state. In Na8.5(AlS4)0.5(SiS4)1.5 a similar influence on the prefactor as in
LiTi2(PS4)3 can be inferred due to the flattening of the energy landscape by the highly dis-
torted sodium coordination polyhedra. However, the high prefactor for the sample x = 0.95
compared to the composition with the highest conductivity at x = 0.75 could hint to an
even more complicated situation in this series of compounds, necessitating further studies
on the complex interplay between structural factors and the energetics of ion transport in
these systems.

Performance-wise, Na8.5(AlS4)0.5(SiS4)1.5 with an ionic conductivity of 2.04 · 10−5 S cm−1

and an activation energy of 0.30 eV is comparable to compounds such as Na10SnP2S12,28

silicon substituted Na3PS4,30 and HT−NaSi2P3.52 As can be concluded from the absence of
additional resistances at lower frequencies, this material presumably shows an advantageous
microstructure or pressing behavior. Furthermore, the smaller electron affinities of Al3+

and Si4+ may result in increased electrochemical stability at low potentials compared to
thiophosphates such as Na3PS4, which will be the subject of future studies.
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5.5 Conclusion

We have presented the crystal structures and Na ion conductivities in the novel substitution
series Na5-xAl1-xSixS4 with (0 ≤ x ≤ 1), containing exclusively low-cost, earth-abundant
and lightweight elements. For the best conducting compound Na8.5(AlS4)0.5(SiS4)1.5 (x =
0.75), a relatively high sodium ion conductivity of 2.04 · 10−5 S cm−1 at room temperature
with an activation energy of 0.30 eV was found, putting this material on par with typical
sodium solid electrolytes such as silicon substituted Na3PS4

30 and Na10SnP2S12.28 Our anal-
ysis of impedance and BVEL data for the substitution series Na5-xAl1-xSixS4 (0 ≤ x ≤ 1)
unveils probable sodium ion migration paths and highlights the enhancement of the con-
ductivity by the low local coordination symmetry of the sodium ions flattening out the po-
tential energy landscape and the increase of sodium ion vacancies in Na8.5(AlS4)0.5(SiS4)1.5.
Concluding, the right blend of the cations Al3+ and Si4+ entails an optimized structure as
well as optimal amount of charge carriers for fast sodium ion conduction.
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Chapter 6

Summary and Outlook

The scope of this work was to find, characterize and optimize new sulfide based lithium
and sodium ion conductors utilizing earth abundant main group elements, to expand the
field of low-cost solid electrolyte materials.

In chapter 3 two new compounds, tetragonal and orthorhombic Li7SiPS8, were presented.
The latter crystallizes homeotypically to the pseudo-binary border phases β–Li3PS4 and
Li4SiS4 showing a distorted hcp of sulfur atoms with the cations occupying the tetrahedral
and octahedral voids and therefore falls into the class of LISICON materials. It exhibits a
total ionic conductivity of 1.3 · 10−4 S cm−1 with an activation energy of 0.29 eV . Tetrag-
onal Li7SiPS8 on the other hand exhibits a total conductivity of 2 · 10−3 S cm−1 with an
activation energy of 0.27 eV . It crystallizes homeotypically to the well known superionic
conductor LGPS (Li10GeP2S12) and shows a phase transformation to the orthorhombic
modification at temperatures exceeding 550 °C. While being a fast ion conductor in abso-
lute terms, the total conductivity of tetragonal Li7SiPS8 is unexpectedly low considering
not only the theoretical studies by Ceder et al.1 but also the diffusivity measurements
performed in this work. Using a combination of electrochemical impedance spectroscopy,
powder X-ray diffraction (PXRD) and different solid-state NMR techniques, it could be
shown that tetragonal Li7SiPS8, although appearing phase pure in PXRD, is a glassy
ceramic. The additional amorphous phases of proposed composition Li3.2Si0.2P0.8S4 signif-
icantly impede the total ionic conductivity. The bulk conductivity of tetragonal Li7SiPS8

was determined by pulsed field gradient solid-state NMR to be at least 5 · 10−3 S cm−1 not
considering correlation effects. These should however, assuming typical Haven ratios for
other LGPS-like compounds, increase its conductivity well beyond 10−2 S cm−1.

Furthermore, as described in chapter 4.1, it was possible to substitute silicon by aluminum
in tetragonal Li7SiPS8, resulting in the partial solid solution series Li7+xSi1-xAlxPS8 with
0 ≤ x ≤ 0.15. Although this substitution increases the charge carrier concentration
and size of the lithium diffusion channels and should therefore increase the conductivity,
a marginal decrease of the total conductivity can be observed. This observation was at-
tributed to a change in the composition of the amorphous side phases described above. It
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is therefore of utmost importance to understand the reason why these amorphous phases
form and how their formation can be suppressed to further improve this very promising
solid electrolyte.
In this regard, first investigations, described in chapter 4.2, showed that upon addition of
lithium chloride and lithium sulfide the formation of the amorphous side phases can almost
completely be inhibited by forming lithium argyrodite Li7+x-yP1-xSixS6-yCly. However,
although the amorphous side phase is removed, no dramatic increase in conductivity was
observed. This was attributed to the formation of additional, less conductive orthorhombic
Li7-xSi1-xPxS8. However, further addition of LiCl and Li2S leads to the formation of another
amorphous Li argyrodite-like phase, increasing the conductivity of the resulting mixture
to 4 · 10−3 S cm−1 with an activation energy of 0.17 eV .
The optimization of tetragonal Li7SiPS8 by tuning its microstructure using lithium chloride
and sulfide to form lithium argyrodites is very promising. Further studies should also
include heavier halides due to their increased polarizability, which typically decreases the
activation energy for ion conduction. Additionally, investigation to inhibit the formation
of amorphous side phases could lead to very promising solid electrolyte materials. For an
application of the new solid electrolytes, further research should include evaluation of the
electrochemical stability against typical cathode materials and lithium metal, followed by
full cell assemblies to determine their long-term performance in a battery.

In chapter 5 the solid solution series Na5-xSi1-xAlxS4 with (0 ≤ x ≤ 1) was introduced.
These solid sodium electrolytes crystallize in three new crystal structures and exhibit ionic
conductivities ranging from 2 · 10−7 S cm−1 (Ea = 0.35 eV ) for the pseudo-binary bor-
der phases Na5AlS4 and Na4SiS4 to 2 · 10−5 S cm−1 (Ea = 0.30 eV ) for the double salt
Na8.5(AlS4)0.5(SiS4)1.5. Na4SiS4 can be described as a hcp of sulfur with silicon occupying
tetrahedral and sodium octahedral voids, showing its close relation to the LISICON fam-
ily. Since Na5AlS4 crystallizes isotypic to Na5FeO4 and therefore shows a different sulfur
packing, it is unsurprising that only partial miscibility of the two pseudo-binary border
phases exists, which however substantially increases their ionic conductivity through the
introduction of sodium vacancies or the occupation of sodium interstitial sites, respec-
tively. The double salt Na10-2x(AlS4)2-2x(SiS4)2x resulting from higher degrees of substitu-
tion (0.5 ≤ x ≤ 0.75) crystallizes in its own structure type and shows the highest total
sodium ion conductivity in this substitution series. Utilizing bond valence energy landscape
calculations probable sodium ion migration paths for all three structures were identified.
These calculations revealed a flattened energy landscape for sodium ions in the double salt
compared to the pseudo-binary border phases caused by the low local coordination sym-
metry of sodium ions. This does not only decrease the activation energy for ion migration
but also affects the entropy of migration, ultimately increasing the ionic conductivity of
the double salt.
Further studies on these materials should focus on the introduction of defects by e.g. ball
milling. Increasing the defect concentration could be beneficial for the total ion conduc-
tivity of these materials, especially for Na8.5(AlS4)0.5(SiS4)1.5, as was already shown for
Na4SiS4.2 Since the presented materials could act as a model system to study the com-
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bined effect of substitution by a less electronegative element and structural change on the
stability against sodium metal in sulfides, electrochemical stability investigations on this
substitution series should be performed.

Putting the findings of this work in a bigger picture, the materials discussed in this work
follow the established trend of increasing total ionic conductivity and decreasing activation
energy for ion conduction due to the softening of the anion lattice. Sulfide based isolated
tetrahedral anions have proven to be beneficial for achieving high ionic conductivities.
In this sense, thio-phosphates are the most promising due to the high covalency of the
P-S bond. This assumption is also confirmed by the findings in this work by tetragonal
Li7SiPS8 competing with state-of-the-art lithium solid electrolytes. Additionally, this work
highlights the importance of microstructure on conductivity especially the presence of an
amorphous side phase. Thiophosphates in particular tend to form glassy ceramics which is
often overlooked. This work lays the foundation for a tuning of the microstructure, which is
indispensable for achieving outstanding performance of solid electrolytes. However, this is
not the only influencing factor for achieving high ionic conductivity. In this sense, this work
points to static disorder of the anion sublattice that can be found in certain double salts
as being beneficial for flattening out the energy landscape, similar to tetragonal LGPS
and lithium argyrodites. Furthermore, the results on the sodium electrolytes show the
influence of the local site symmetry of alkali cations on the energy landscape and the
entropy of migration, enhancing the ion conductivity. These high ionic conductivities are
essential for fast charging of emerging all-solid-state batteries, bringing us one step closer
to a solely renewable energy based society.
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A.1 Crystallographic Data

Table A.1: Crystallographic information and data for the structure solution and refinement
of orthorhombic Li7SiPS8 on the basis of single crystal data. Standard deviation values
are given in parentheses

Li7SiPS8

Crystal system orthorhombic
Space group Pnma, (Nr. 62)
Lattice parameters a = 13.348(3) Å

b = 7.970(2) Å
c = 6.1343(12) Å

V [Å3] 652.6(2)
Formula units, Z 2
Calculated density [gcm−3] 1.853
Diffractometer STOE IPDS-II, MoKα radiation

graphite monochromator
Temperature [K] 295
Absorption coefficient [mm−1] 1.530
ϑ-range [◦] 3.66-31.64
Indexing range -19 ≤ h ≤ 19,

-11 ≤ k ≤ 11,
-8 ≤ l ≤ 9

Observed reflections 7121
Independent reflections 1165
Independent reflections (I ≥ 2σ(I)) 945
Rint 3.36%
Rσ 2.28%
F(000) 356
Corrections Lorentz, polarization, absorption
Absorption correction multi scan
Structure solution direct, SHELXS973

Structure refinement Least-Squares on F 2, SHELXL973

Parameters 73
GooF 0.883
R values for reflections with I ≥ 2σ(I)) R1 = 2.37%, wR2 = 4.84%
R values (all data) R1 = 3.83%, wR2 = 5.24%

Residual electron density [e−/Å3] 0.304/-0.261
Extinction coefficient 0.0049(11)
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Table A.2: Fractional atomic coordinates4 in standardized setting4 and equivalent isotropic
displacement parameters [Å2] of orthorhombic Li7SiPS8. The equivalent isotropic displace-
ment parameters is defined as 1

3
times the trace of the anisotropic displacement parameter.

Standard deviations are given in parantheses
Atom Occupation Wyckoff x y z Uequiv

factor position

Li1 0.433(11) 8d 0.0072(8) 0.5384(11) 0.0539(14) 0.051(3)

Li2 0.263(14) 8d 0.1661(10) 0.005(2) 0.192(3) 0.047(5)

Li3 0.764(13) 8d 0.1707(3) 0.0274(6) 0.3754(10) 0.043(2)

S1 1 8d 0.34585(3) 0.03271(5) 0.27451(6) 0.02551(10)

S2 1 4c 0.06088(4) 1/4 0.23174(9) 0.02143(11)

Li4 0.24(3) 4c 0.071(2) 1/4 0.809(5) 0.037(7)

Li5 0.34(3) 4c 0.0869(14) 1/4 0.655(5) 0.054(8)

S3 1 4c 0.40241(4) 1/4 0.51834(8) 0.02517(13)

P1 0.50 4c 0.41261(4) 1/4 0.15554(8) 0.01657(11)

Si1 0.50 4c 0.41261(4) 1/4 0.15554(8) 0.01657(11)

Table A.3: Anisotropic displacement parameters [Å2] of orthorhombic Li7SiPS8. Uij is
defined as Uij = exp{−2π2[U11(ha∗)2 + ... + 2U21hka

∗b∗]}. Standard deviations are given
in parantheses
Atom U11 U22 U33 U23 U13 U12

Li1 0.045(5) 0.058(6) 0.050(6) 0.028(4) -0.003(5) 0.011(4)

Li2 0.049(8) 0.027(6) 0.065(13) -0.009(6) -0.010(7) -0.001(5)

Li3 0.031(2) 0.041(2) 0.057(4) -0.016(2) -0.007(2) -0.001(2)

S1 0.0233(2) 0.0248(2) 0.0285(2) 0.00506(13) -0.00020(14) -0.00423(12)

S2 0.0196(2) 0.0202(2) 0.0245(2) 0 -0.0019(2) 0

Li3 0.033(10) 0.041(10) 0.04(2) 0 0.006(8) 0

Li4 0.050(10) 0.036(8) 0.08(2) 0 0.032(10) 0

S3 0.0352(3) 0.0230(2) 0.0173(2) 0 -0.0039(2) 0

P1 0.0171(2) 0.0168(2) 0.0158(2) 0 -0.0013(2) 0

Si1 0.0171(2) 0.0168(2) 0.0158(2) 0 -0.0013(2) 0
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Table A.4: Interatomic distances in orthorhombic
Li7SiPS8

(i : x, -y+1
2
, z; ii : -x, y+1

2
, -z+2; iii : -x, -y, -z+2; iv : -x,

-y, -z+1; v : -x, y+1
2
, -z+1; vi : x-1

2
, y, -z+3

2
; vii : x+1

2
, y,

-z+3
2
; viii : -x+1

2
, -y, z-1

2
; ix : x, -y-1

2
, z; x : -x, y-1

2
, -z+1;

xi : -x, y-1
2
, -z+2; xii : -x+1

2
, -y, z+1

2
)

Atom1 Atom2 distance [Å] Atom1 Atom2 distance [Å]

S1 Si1 2.0964(8) S3 2.504(6)iv

Li5 2.419(13)i Li3 2.71(2)iv

Li5 2.419(13) Li5 2.93(2)viii

Li1 2.465(4)i Li2 2.988(11)
Li1 2.465(4) Si1 3.013(4)iv

Li2 2.596(9)ii P1 3.013(4)iv

Li2 2.596(9)iii Li4 3.46(3)iv

Li4 2.60(3)iii Li2 Li2 0.92(2)iii

Li3 2.62(3)iv Li4 2.16(2)
Li2 2.644(9)i Li5 2.31(2)
Li2 2.644(9) S1 2.596(9)iii

Si1 S2 2.0730(8) S3 2.605(10)iii

S3 2.0799(5) S2 2.633(9)iv

S3 2.0799(5)i Li3 2.76(3)
Li3 3.01(2)iv Li5 2.77(2)iii

Li1 3.013(4)iv Li4 2.88(2)iii

Li1 3.013(4)v Li3 Li4 0.97(3)
Li2 3.156(8)ii S2 2.47(2)iv

Li2 3.156(8)iii S3 2.533(8)ix

Li2 3.171(8)i S1 2.62(3)iv

Li2 3.171(8) Li1 2.71(2)x

S3 Li1 2.419(4)vi Li1 2.71(2)iv

Li5 2.462(14)vi Li2 2.76(3)ix

Li2 2.463(10) Si1 3.01(2)iv

Li1 2.504(6)iv P1 3.01(2)iv

Li4 2.520(9) Li2 3.52(2)iii

Li3 2.533(8) Li4 Li2 2.16(2)ix

Li5 2.58(2)iii S2 2.38(2)iv

Li2 2.605(10)iii S3 2.520(9)ix

S2 Li5 2.358(12)iv S1 2.60(3)iii

Li5 2.358(12)v Li2 2.88(2)iii

Li4 2.38(2)iv Li2 2.88(2)xi

Li1 2.442(5)iv Li5 3.31(3)iii

Continued on next page
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Continuation of table A.4

Atom1 Atom2 distance [Å] Atom1 Atom2 distance [Å]

Li1 2.442(5)v Li5 3.31(3)xi

Li3 2.47(2)iv Li1 3.46(3)x

Li2 2.633(9)iv Li5 S2 2.358(12)iv

Li2 2.633(9)v S3 2.462(14)vii

Li1 Li5 1.14(2) S3 2.58(2)iii

S3 2.419(4)vii Li2 2.77(2)iii

S2 2.442(5)iv Li1 2.93(2)xii

Li4 3.31(3)iii
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Table A.5: Fractional atomic coordinates and equivalent isotropic displacement parameters
for tetra-Li7SiPS8 from Rietveld refinement. Standard deviations for refined parameters
are given in parentheses.
Atom occupation Wyckoff x y z Beq

factor position

Li1 0.50(3) 16h 0.249(4) 0.2663(4) 0.192(3) 7(2)

Li2 0.90(4) 4d 0 1/2 0.939(3) 6(2)

Li3 0.85(7) 8f 0.239(3) =x 0 20(4)

Li4 0.65(5) 4c 0 0 0.250(3) 1(2)

Si1 0.75 4d 0 1/2 0.6914(4) 0.68(12)

P1 0.25 4d 0 1/2 0.6914(4) 0.68(12)

P2 1 2b 0 0 1/2 1.1(2)

S1 1 8g 0 0.1901(3) 0.4069(3) 2.12(8)

S2 1 8g 0 0.2979(3) 0.0976(3) 0.96(8)

S3 1 8g 0 0.6977(4) 0.7912(2) 1.09(8)
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Table A.6: Interatomic distances in tetragonal Li7SiPS8

(i : -x+1
2
, -y+1

2
, -z+1

2
; ii : -y+1, -x, -z+1; iii : y-1

2
, -x+1

2
,

z-1
2
; iv : -y+1

2
, -x+1

2
, z-1

2
; v : x, -y+1, z; vi : x, y, z+1; vii :

x, -y+1, z+1; viii : -y+1
2
, -x+1

2
, z+1

2
; ix : y-1

2
, -x+1

2
, z+1

2
;

x : -y, -x+1, -z+1; xi : -x, y, z+1; xii : y, -x+1, -z+1; xiii :
y, x, -z; xiv : y, -x, -z; xv : x, y, z-1; xvi : x, -y, z; xvii : y-1,
-x, -z+1; xviii : x-1

2
, -y+1

2
, -z+1

2
; xix : -x+1

2
, y-1

2
, -z+1

2
;

xx : x-1
2
, y-1

2
, -z+1

2
; xxi : y-1

2
, x+1

2
, z+1

2
; xxii : -y+1

2
, x+1

2
,

z+1
2
; xxiii : -y, -x, -z+1; xxiv : y, -x, -z+1; xxv : y-1

2
, x-1

2
,

z+1
2
; xxvi : -x, y, z;)

Atom1 Atom2 distance [Å] Atom1 Atom2 distance [Å]

Li1 Li1 1.46(8)i Li1 2.96(3)xxi

S3 2.37(3)ii Li1 2.96(3)xxii

S3 2.41(4)iii Li1 2.96(3)ix

Li3 2.43(4) Li2 3.09(4)
S2 2.48(3) Li2 3.18(4)iv

S1 2.54(3)i P1 Si1 0.00000
P1 2.96(3)iv S2 2.110(4)viii

Si1 2.96(3)iv S2 2.110(4)ix

Li4 3.06(3)i S3 2.123(4)v

Li2 S3 2.52(3) S3 2.123(4)
S3 2.52(3)v Li1 2.96(3)viii

S2 2.66(3)vi Li1 2.96(3)xxi

S2 2.66(3)vii Li1 2.96(3)xxii

S1 2.717(7)viii Li1 2.96(3)ix

S1 2.717(7)ix Li2 3.09(4)
P1 3.09(4) Li2 3.18(4)iv

Si1 3.09(4) P2 S1 2.021(3)
Li3 3.166(10)vi S1 2.021(3)xxiii

Li3 3.166(10)x S1 2.021(3)xxiv

Li3 3.166(10)xi S1 2.021(3)xvi

Li3 3.166(10)xii Li4 3.14(3)
P1 3.18(4)viii Li4 3.14(3)xxiii

Si1 3.18(4)viii Li3 3.20(3)xix

Li3 Li1 2.43(4)xiii Li3 3.20(3)ix

Li1 2.43(4) Li3 3.20(3)i

S2 2.46(2) Li3 3.20(3)xxv

S2 2.46(2)xiv S1 P2 2.021(3)
S1 2.62(2)iv Li1 2.54(3)i

S1 2.62(2)i Li1 2.54(3)xviii

Continued on next page
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Continuation of table A.6

Atom1 Atom2 distance [Å] Atom1 Atom2 distance [Å]

Li2 3.166(10)ii Li4 2.57(3)
Li2 3.166(10)xv Li3 2.62(2)ix

P2 3.20(3)i Li3 2.62(2)i

Li4 S1 2.57(3)xvi Li2 2.717(7)iv

S1 2.57(3) S2 Si1 2.110(4)iv

S3 2.672(8)ii P1 2.110(4)iv

S3 2.672(8)xvii Li3 2.46(2)
Li1 3.06(3)xviii Li3 2.46(2)xxvi

Li1 3.06(3)xix Li1 2.48(3)xxvi

Li1 3.06(3)xx Li1 2.48(3)
Li1 3.06(3)i Li2 2.66(3)xv

P2 3.14(3) S3 P1 2.123(4)
Si1 P1 0.00000 Si1 2.123(4)

S2 2.110(4)viii Li1 2.37(3)x

S2 2.110(4)ix Li1 2.37(3)xii

S3 2.123(4)v Li1 2.41(4)xxii

S3 2.123(4) Li1 2.41(4)xxi

Li1 2.96(3)viii Li2 2.52(3)
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A.2 Energy-dispersive X-ray Analysis

Results of elemental analysis with energy-dispersive X-ray (EDX) spectroscopy for tetra-
LSiPS samples are given in table A.7. The data show a slightly higher silicon content than
is expected from the targeted stoichiometry. The observed sulfur content of the samples
is systematically too low due to hydrolysis reactions during the sample transfer into the
SEM.

Table A.7: EDX measurements on tetra-LSiPS. All data are given in relative atom%
Measurement Si P S

M1 11.0 9.9 79.1
M2 11.2 9.6 79.3
M3 11.3 10.1 78.6
M4 11.2 10.1 78.8
M5 10.7 10.5 78.9
M6 12.1 10.3 77.7
average: 11.2 10.1 78.7
stand. dev.: 0.5 0.3 0.6
calculated: 10 10 80
mean error: 1.2 0.1 1.3
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A.3 Scanning Electron Microscopy

A scanning electron microscopy image of tetra-LSiPS is shown in figure A.1. The material
is not stable under long illumination with the electron beam.

Figure A.1: SEM image of tetra-LSiPS with an acceleration voltage of 20.0 kV showing a
morphology resembling a glassy matrix with embedded crystallites.
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A.4 Quantitative phase analysis

For converting P atom percent obtained from deconvolution of 31P MAS NMR spectra
to weight percent of the amorphous side phase, two assumptions were made. First, its
composition was assumed to be Li3PS4, which is reasonable in light of the chemical shift
and the low silicon content of this phase. The second assumption is that the total mo-
lar mass of all phases is equal to the target phase Li7SiPS8: w%(amorphous,NMR) =

atom%(Pamorphous,NMR) · M(Li3PS4)
M(Li7SiPS8)

. The thereby introduced absolute error is estimated

to be around 2%.

Figure A.2: 31P MAS NMR spectra and peak deconvolutions for all samples containing
tetra-LSiPS. Relative intensity values were extracted from peak areas and are given in the
respective images as percentage values.
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Figure A.3: Rietveld fits for all samples containing tetra-LSiPS. Black reflection markers
indicate peak positions of the internal standard Si, blue markers of tetra-LSiPS and green
markers of ortho-LSiPS. The square root of the intensity is shown for better visibility of
all phases.
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A.5 Raman spectroscopy

Raman spectroscopy was performed on tetra-LSiPS and ortho-LSiPS samples (Fig. A.4).
The resulting spectrum of tetra-LSiPS is typical for a tetra-LGPS like material.5 A shift
of the symmetric SiS4 ‘breathing’ vibration in contrast to the SnS4 vibration to higher
wave-numbers is notable, which is expected to be around 400 cm−1 due to the stronger
covalent bonding and the lower mass of Si.6,7 Raman spectroscopy was intended to reveal
characteristic vibrational bands of the amorphous side phase. Yet, no distinct vibrational
bands can be assigned to this phase. Only the broad PS4 vibrational band could originate
from this observed second phase, hinting at thio-orthophosphate anions being the main
component of the amorphous side phase. This assumption would also be in accordance
with the proposed composition of this phase.

Table A.8: Observed Raman modes of tetra-LSiPS compared with vibrational modes of
tetragonal LGPS-like Li10SnP2S12 and orthorhombic β-Li3PS4. All values are given in
wavenumbers cm−1

vib. Mode ν̄(Li-S) ν̄(Li-S) ν̄(P-S) ν̄(Sn-S) ν̄(Si-S) ν̄(P-S) ν̄(P-S) ν̄(P-S) ν̄(P-S)

tetra-LSiPS 140 w 195 m, br 291 m, br - 403 s 424 s 443 s 521 w, br 590 w
Li10SnP2S12[5] 128 w 168 m, br 276 m, br 345 s - 416 s 427 s 548 w 570 w, br
ortho-LSiPS 176 m 198 m, br 254 m, br* - 422 s 422 s - 545 w, br 590 w
β-Li3PS4[8, 9] - - 270 m, br - - 418 s - 550 w 570 w, br
*exhibits a shoulder at about 270 cm−1

Figure A.4: Raman spectra of tetra-LSiPS (black) and ortho-LSiPS (red).
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A.6 Estimation of the electronic contribution to the

conductivity

To determine the electronic contribution to the conductivity, DC galvanostatic polarization
measurements with ion-blocking electrodes (Platinum metal) were conducted. A current
of 5 nA was applied for at least 14 h (each data point was collected in an interval of 0.1 s).
As visible in Figure S2, even after such a long time the samples did not reach a steady
state, and the estimation of the electronic conductivity represents only an upper limit.
According to Maier10 the processes in an ionic and electronic conducting sample between
two ion blocking electrodes can be usefully approximated with the equivalent circuit model
shown in Figure A.5 as parallel arrangement of electronic Reon and ionic resistance Rion

with the bulk capacitor Cbulk and the ion-blocking capacitor Cblock in series with an RC
element representing grain boundary processes (GB).

Figure A.5: Equivalent circuit model of an ionic and electronic conducting sample with a
grain boundary process between two ion blocking electrodes.

After a long time of current flow (all capacitors are charged) the saturation voltage Ue
is obtained which can be assigned to the sum of the electronic resistance and the grain
boundary resistance (Ue = Ueon +UGB)). As the bulk ionic conductivity of the compounds
is not known and only the grain boundary conductivity was measured by EIS, the following
approximations were assumed in order to calculate an electronic transference number te as
defined in equation A.1. For ortho-LSiPS the grain boundary resistance is about 6000 Ω,
equivalent to a voltage of 2.98 · 10−5 V . In comparison to the voltage resulting from the
electronic resistance (0.878 V ) UGB is negligible, thus following Ue + UGB ≈ Ue. For
the ionic conductivity (σion) in equation A.1, the grain boundary conductivity was used
(σGB = 0.13 mScm−1) as the real bulk ionic conductivity should be even higher. Therefore,
this is a cautious approximation of the electronic transference number. For tetra-LSiPS
the same reasoning was applied with a σGB of 2 mScm−1. In general, for a good ionic
conductor, the electronic transference number is ideally close to zero.

te =
σeon

σeon + σion
(A.1)
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Figure A.6: a) and b) DC galvanostatic polarization measurements of ortho- and tetra-
LSiPS performend at 298 K with blocking electrodes Pt|LSiPS|Pt

. c) and d) Voltage as function of the square root of time according to equation A.2.

By the DC measurements shown in Figure A.6 an upper limit of te of 10−5 for ortho-LSiPS
and 10−6 for tetra-LSiPS was estimated. This in accordance with the transference num-
bers of other known fast Li+-ion conductors.11,12 Another way of estimating the electronic
conductivity is to plot the voltage as function of the square root of time and to estimate
σeon according to formula A.2 from the slope of the linear region.10–12 Equation A.2 for the
transient describing the semi-infinite chemical diffusion holds for t < τ δ (τ δ is in general
the characteristic chemical diffusion time and here the lower limit of τ δ the time of applied
current). I is the applied current (5 nA), L the diffusion length (thickness of the sample
of about 1 mm) and σ is the total conductivity, approximated as σ ≈ σion. The upper
limit of the electronic conductivity of about 10−9 Scm−1 obtained with this method is in
accordance to the considerations above and results in the same te.

U − UGB =
IL

σ
+
σion
σ

IL

σeon

4

pi3/2

√
t

τ δ
(A.2)
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A.7 Comparison of different fitting models for the

impedance spectrum of tetra-LSiPS at -80◦C

In Figure A.7 a fit with a single R1-CPE1 element plus a CPE2 in series (model #1), a fit
with two R-CPE elements plus a CPE2 (model #2) in series and a fit with one RC, two
R-CPE elements and a CPE for the polarization in series (model #3) are displayed. The
fit of model #1 is apparently worse in comparison to model #2 and #3, and especially
in the low frequency region the deviations are significant. Model #2 and #3 fit the data
over the whole frequency range very well and the total quality of the fit expressed in
terms of the sum of squares of regression decreases from the simple model to the more
advanced model (model #1: 0.23, model #2: 0.056 and model #3: 0.024). Moreover, the
extrapolated room temperature conductivity of model #3 with 1.5±2 mS/cm matches the
measured ionic conductivity of 2 mS/cm best (model #1: 1.13±2 mS/cm and model #2:
0.90±5 mS/cm). Therefore, even Model #2 does not sufficiently describe the situation.
It must be noted that the large capacitances (expected capacitance of the bulk of a non
ferroelectric material is in the pF range) of model #3 show that the bulk process cannot
be deconvoluted from the spectrum even if that many circuit elements are included. The
impedance is completely dominated by the grain boundary phenomena and the amorphous
side phase. Using a model with even more parameters does not improve the quality of the
fit and only leads to highly correlated parameters.

Figure A.7: Comparison of three different models of the impedance spectrum of tetra-LSiPS
at -80 ◦C showing that model #3 fits the data best.
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A.8 Room-temperature EIS measurements of tetra-

LSiPS

Figure A.8: Room-temperature impedance spectrum of tetra-LSiPS showing a total resis-
tance of about 180 Ω resulting in an ionic conductivity of 2 mScm−1.
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B.1 Crystallographic data for Na5AlS4

Table B.1: Crystallographic data and information for the structure solution and refine-
ment from powder X-ray diffraction data for Na5AlS4. Standard deviations are given in
parentheses. These data were deposited in the Cambridge Crystallographic Data Centre
and were given the deposition number CCDC 1980422.

Na5AlS4

crystal system orthorhombic

space group Pbca, (Nr. 61)

lattice params. a 12.01930(12) Å

b 7.05236(7) Å

c 21.5605(2) Å

V [Å3] 1827.56(3)

Z 8

calc. density [gcm−3] 1.96398(3)

diffractometer STOE STADI P, CuKα1-radiation

Debye-Scherrer geometry

temperature [K] 295

absorption coefficient [mm−1] 12.1231(2)

refined 2ϑ region [◦] 3 – 90

Rexp 6.054

Rp 5.187

Rwp 6.604

Goof 1.091

RBragg 1.949

number of refined params. 60

number of background params. 12
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Table B.2: Standardized fractional atomic coordinates4 and isotropic displacement param-
eters [Å2] for Na5AlS4. Standard deviations are given in parentheses.

Atom occupation- Wyckoff- x y z Biso
factor position

S1 1 8c 0.3713(4) 0.2046(6) 0.9571(3) 2.58(15)

S2 1 8c 0.4477(3) 0.8520(5) 0.3783(3) 2.50(12)

S3 1 8c 0.1402(3) 0.2426(6) 0.6222(4) 3.29(12)

S4 1 8c 0.6317(4) 0.7610(6) 0.2113(3) 3.4(2)

Al1 1 8c 0.0399(3) 0.8312(5) 0.8737(3) 2.70(14)

Na1 1 8c 0.3521(5) 0.9080(9) 0.5013(3) 3.8(2)

Na2 1 8c 0.2869(4) 0.5531(8) 0.3658(3) 3.6(2)

Na3 1 8c 0.5579(6) 0.5658(9) 0.4332(3) 4.6(2)

Na4 1 8c 0.5863(5) 0.3809(10) 0.2501(3) 4.3(2)

Na5 1 8c 0.8373(5) 0.1078(9) 0.8294(3) 2.9(2)
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Table B.3: Interatomic distances in Na5AlS4. Standard
deviations are given in parentheses.
i: -x+1

2
, y-1

2
, z; ii: -x+1, y-1

2
, -z+3

2
; iii: x, -y+1

2
, z+1

2
; iv:

x, -y+3
2
, z+1

2
; v: -x+1

2
, -y+1, z+1

2
; vi: -x+1

2
, -y+2, z-1

2
;

vii: -x+1, y+1
2
, -z+1

2
; viii: -x+3

2
, -y+1, z-1

2
; ix: -x+1

2
,

y+1
2
, z; x: -x, y-1

2
, -z+3

2
; xi: x-1

2
, -y+1

2
, -z+1; xii: x-1

2
, y,

-z+3
2
; xiii: -x+1, y+1

2
, -z+3

2
; xiv: x+1

2
, -y+3

2
, -z+1; xv:

x+1
2
, y, -z+1

2
; xvi: x-1

2
, -y+3

2
, -z+1; xvii: -x+1

2
, -y+2,

z+1
2
; xviii: -x, y+1

2
, -z+3

2
; xix: x, -y+3

2
, z-1

2
; xx: -x+1

2
,

-y+1, z-1
2
; xxi: -x+1, y-1

2
, -z+1

2
; xxii: x, -y+1

2
, z-1

2
; xxiii:

x-1
2
, y, -z+1

2
; xxiv: x+1

2
, -y+1

2
, -z+1; xxv: -x+3

2
, -y+1,

z+1
2
; xxvi: x+1

2
, y, -z+3

2

Atom1 Atom2 distance [Å] Atom1 Atom2 distance [Å]

S1 Al1 2.274(8)i S2 2.241(5)xvii

Na3 2.696(8)ii S3 2.255(6)xviii

Na2 2.864(8)iii S1 2.274(8)ix

Na1 2.902(8)iv Na2 3.084(7)iv

Na1 2.958(8)v Na1 S3 2.857(10)ix

Na3 2.989(8)iii S1 2.902(8)xix

S2 Al1 2.241(5)vi S2 2.918(8)
Na3 2.689(8) S1 2.958(8)xx

Na4 2.804(9)vii Na2 S4 2.822(8)xxi

Na5 2.805(7)viii S1 2.864(8)xxii

Na2 2.873(7) S2 2.873(7)
Na1 2.918(8) S4 2.898(8)xxiii

Na2 3.168(6)ix Al1 3.084(7)xix

S3 Al1 2.255(6)x S2 3.168(6)i

Na3 2.672(8)xi Na3 S3 2.672(8)xxiv

Na5 2.757(7)xii S2 2.689(8)
Na5 2.792(8)xiii S1 2.696(8)xiii

Na1 2.857(10)i S1 2.989(8)xxii

Na4 2.961(10)xi Na4 S2 2.804(9)xxi

S4 Al1 2.236(9)xiv S4 2.861(8)
Na5 2.736(8)viii S4 2.876(8)xxi

Na2 2.822(8)vii S3 2.961(10)xxiv

Na4 2.861(8) Na5 S4 2.736(8)xxv

Na4 2.876(8)vii S3 2.757(7)xxvi

Na2 2.898(8)xv S3 2.792(8)ii

Al1 S4 2.236(9)xvi S2 2.805(7)xxv
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B.2 Crystallographic data for Na4SiS4

Table B.4: Crystallographic data and information for the structure solution and refine-
ment from powder X-ray diffraction data for Na4SiS4. Standard deviations are given in
parentheses. These data were deposited in the Cambridge Crystallographic Data Centre
and were given the deposition number CCDC 1980423.

Na4SiS4

crystal system orthorhombic

space group P212121, (Nr. 19)

lattice params. a 41.0301(7) Å

b 8.78409(14) Å

c 6.88962(12) Å

V [Å3] 2483.10(7)

Z 12

calc. density [gcm−3] 1.99260(6)

diffractometer STOE STADI P, MoKα1-radiation

Debye-Scherrer geometry

temperature [K] 295

absorption coefficient [mm−1] 1.42581(4)

refined 2ϑ region [◦] 2 – 50

Rexp 5.390

Rp 4.127

Rwp 5.377

Goof 0.998

RBragg 1.825

number of refined params. 109

number of background params. 10
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Table B.5: Standardized fractional atomic coordinates4 and isotropic displacement param-
eters [Å2] for Na4SiS4. Standard deviations are given in parentheses.

Atom occupation- Wyckoff- x y z Biso
factor position

S1 1 4a 0.0315(5) 0.056(3) 0.908(3) 0.8(2)

S2 1 4a 0.3654(5) 0.065(3) 0.904(3) 0.8(2)

S3 1 4a 0.6993(5) 0.051(3) 0.907(3) 0.8(2)

S4 1 4a 0.0621(5) 0.758(3) 0.436(3) 1.54(10)

S5 1 4a 0.3963(5) 0.748(3) 0.447(3) 1.54(10)

S6 1 4a 0.7289(5) 0.752(3) 0.430(3) 1.54(10)

S7 1 4a 0.1346(5) 0.548(3) 0.422(4) 1.5(2)

S8 1 4a 0.4662(5) 0.537(3) 0.434(3) 1.5(2)

S9 1 4a 0.8019(5) 0.548(3) 0.408(3) 1.5(2)

S10 1 4a 0.2185(4) 0.249(3) 0.669(3) 1.37(10)

S11 1 4a 0.5436(4) 0.247(3) 0.662(3) 1.37(10)

S12 1 4a 0.8813(5) 0.246(3) 0.667(4) 1.37(10)

Si1 1 4a 0.2216(6) 0.246(4) 0.962(3) 1.58(10)

Si2 1 4a 0.5555(6) 0.248(4) 0.973(4) 1.58(10)

Si3 1 4a 0.8868(5) 0.245(4) 0.980(3) 1.58(10)

Na1 1 4a 0.2394(6) 0.048(4) 0.386(5) 2.0(3)

Na2 1 4a 0.5763(7) 0.045(4) 0.406(5) 2.0(3)

Na3 1 4a 0.9051(6) 0.056(4) 0.408(4) 2.0(3)

Na4 1 4a 0.2435(6) 0.443(4) 0.381(5) 0.9(3)

Na5 1 4a 0.5760(6) 0.452(4) 0.384(5) 0.9(3)

Na6 1 4a 0.9166(5) 0.433(3) 0.379(3) 0.9(3)

Na7 1 4a 0.1518(7) 0.241(5) 0.256(5) 3.2(2)

Na8 1 4a 0.4840(7) 0.242(5) 0.244(5) 3.2(2)

Na9 1 4a 0.8199(7) 0.241(5) 0.255(5) 3.2(2)

Na10 1 4a -0.0079(6) 1.036(4) 0.235(4) 3.4(2)

Na11 1 4a 0.3330(9) 1.011(5) 0.238(7) 3.4(2)

Na12 1 4a 0.6706(8) 0.979(4) 0.270(6) 3.4(2)



B.2 Crystallographic data for Na4SiS4 121

Table B.6: Interatomic distances in Na4SiS4. Standard
deviations are given in parentheses.
i: x-1

2
, -y+1

2
, -z+2; ii: x-1

2
, -y+1

2
, -z+1; iii: x, y-1, z+1;

iv: -x+1, y-1
2
, -z+3

2
; v: -x+1

2
, -y, z+1

2
; vi: x+1

2
, -y+1

2
,

-z+2; vii: x+1
2
, -y+1

2
, -z+1; viii: -x+3

2
, -y, z+1

2
; ix: -

x+1, y+1
2
, -z+3

2
; x: -x+1, y+1

2
, -z+1

2
; xi: -x+1

2
, -y+1,

z+1
2
; xii: x-1

2
, -y+3

2
, -z+1; xiii: -x, y-1

2
, -z+1

2
; xiv: -x+3

2
,

-y+1, z+1
2
; xv: x+1

2
, -y+3

2
, -z+1; xvi: -x+1, y-1

2
, -z+1

2
;

xvii: -x+1
2
, -y, z-1

2
; xviii: -x+3

2
, -y, z-1

2
; xix: -x+1

2
, -y+1,

z-1
2
; xx: -x+3

2
, -y+1, z-1

2
; xxi: x, y+1, z-1; xxii: -x, y+1

2
,

-z+1
2
;

Atom1 Atom2 distance [Å] Atom1 Atom2 distance [Å]

S1 Si2 2.15(4)i Si2 S5 2.05(3)iv

Na5 2.72(4)ii S1 2.15(4)vi

Na10 2.78(4)iii S8 2.15(4)iv

Na6 2.80(3)iv S11 2.20(3)
Na8 2.83(4)ii Na6 3.10(4)xiv

Na8 2.92(5)v Na3 3.15(5)viii

S2 Si3 2.05(4)i Si3 S2 2.05(4)vi

Na11 2.70(5)iii S7 2.06(4)iv

Na9 2.76(4)ii S12 2.17(3)
Na6 2.87(3)ii S4 2.18(3)iv

Na7 2.96(5)v Na2 3.01(4)viii

Na5 2.98(4)iv Na5 3.14(5)xiv

S3 Si1 2.19(4)vi Na1 S9 2.64(4)xvi

Na4 2.69(4)vii S10 2.77(4)
Na12 2.84(4)iii S6 2.95(5)ii

Na9 2.88(5)viii S9 3.05(4)ii

Na7 2.89(4)vii Si1 3.08(5)xvii

Na4 2.92(3)iv S6 3.11(4)xvi

S4 Si3 2.18(3)ix Na2 S7 2.80(4)vii

Na6 2.80(3)x S11 2.84(4)
Na8 2.84(4)xi S8 2.92(4)xvi

Na5 2.89(4)xii S4 2.93(4)vii

Na2 2.93(4)ii Si3 3.01(4)xviii

Na10 3.18(4)xiii Na3 S12 2.63(4)
S5 Si2 2.05(3)ix S7 2.80(4)xvi

Na3 2.88(4)ii S8 2.85(3)vii

Na7 2.90(4)xi S5 2.88(4)vii

Na5 3.11(4)x Si2 3.15(5)xviii

Continued on next page
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Continued from table B.6

Atom1 Atom2 distance [Å] Atom1 Atom2 distance [Å]

Na6 3.16(4)xii Na4 S3 2.69(4)ii

S6 Si1 2.16(3)ix S10 2.81(4)
Na1 2.95(5)vii S3 2.92(3)ix

Na4 2.95(4)x S6 2.95(4)xvi

Na9 3.01(4)xiv S6 3.04(4)xii

Na4 3.04(4)xv Si1 3.13(5)xix

Na1 3.11(4)x Na5 S1 2.72(4)vii

S7 Si3 2.06(4)ix S4 2.89(4)xv

Na12 2.60(4)xii S11 2.95(4)
Na2 2.80(4)ii S2 2.98(4)ix

Na3 2.80(4)x S5 3.11(4)xvi

Na9 2.80(4)x Si3 3.14(5)xx

Na7 3.01(5) Na6 S4 2.80(3)xvi

S8 Si2 2.15(4)ix S1 2.80(3)ix

Na10 2.60(4)xv S2 2.87(3)vii

Na3 2.85(3)ii S12 2.95(3)
Na2 2.92(4)x Si2 3.10(4)xx

Na8 2.99(4) S5 3.16(4)xv

Na8 2.99(4)x Na7 S9 2.79(4)xvi

S9 Si1 2.18(4)ix S3 2.89(4)ii

Na1 2.64(4)x S5 2.90(4)xix

Na7 2.79(4)x S2 2.96(5)xvii

Na11 2.80(5)xv S7 3.01(5)
Na9 2.98(5) Na8 S1 2.83(4)vii

Na1 3.05(4)vii S4 2.84(4)xix

S10 Si1 2.02(3) S1 2.92(5)xvii

Na1 2.77(4) S8 2.99(4)
Na4 2.81(4) S8 2.99(4)xvi

Na12 3.13(4)xii Na9 S2 2.76(4)vii

Na11 3.14(5)xi S7 2.80(4)xvi

S11 Si2 2.20(3) S3 2.88(5)xviii

Na2 2.84(4) S9 2.98(5)
Na10 2.92(4)xi S6 3.01(4)xx

Na10 2.94(4)xv Na10 S8 2.60(4)xii

Na5 2.95(4) S1 2.78(4)xxi

S12 Si3 2.17(3) S11 2.92(4)xix

Na3 2.63(4) S11 2.94(4)xii

Na6 2.95(3) S4 3.18(4)xxii

Na11 2.98(5)xv Na11 S2 2.70(5)xxi

Continued on next page
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Continued from table B.6

Atom1 Atom2 distance [Å] Atom1 Atom2 distance [Å]

Na12 2.99(4)xiv S9 2.80(5)xii

Si1 S10 2.02(3) S12 2.98(5)xii

S6 2.16(3)iv S10 3.14(5)xix

S9 2.18(4)iv Na12 S7 2.60(4)xv

S3 2.19(4)i S3 2.84(4)xxi

Na1 3.08(5)v S12 2.99(4)xx

Na4 3.13(5)xi S10 3.13(4)xv
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B.3 Crystallographic data for Na8.5(AlS4)0.5(SiS4)1.5

Table B.7: Crystallographic data and information for the structure solution and refinement
from powder X-ray diffraction data for Na8.5(AlS4)0.5(SiS4)1.5. Standard deviations are
given in parentheses. These data were deposited in the Cambridge Crystallographic Data
Centre and were given the deposition number CCDC 1980426.

Na16.76(6)(AlS4)(SiS4)3

crystal system monoclinic
space group Cc, (Nr. 9)
lattice params. a 17.5673(6) Å

b 13.5408(5) Å
c 14.2543(5) Å
β 93.3683(13)◦

V [Å3] 3384.9(2)
Z 8
calculated density [gcm−3] 1.982
diffractometer Bruker D8 Quest (microfocus),

MoKα-radiation, Göbel mirror optics
temperature [K] 295
absorption coefficient [mm−1] 1.382
ϑ-range [◦] 2.32 – 27.50
indexing range -22 ≤ h ≤ 22,

-17 ≤ k ≤ 17,
-18 ≤ l ≤ 18

number of measured reflexions 66764
number of independent reflexions 7778
number of independent reflexions (I ≥
2σ(I))

6660

Rint 0.0532
Rσ 0.0302
F(000) 1984
corrections Lorentz-, polarization-, absorption-effects
absorption correction multi-scan (SADABS)13

structure solution direct methods, SHELXS973

structure refinement least-squares on F 2, SHELXL973

number of free params. 350
Goof 1.040
R values (reflexions satisfying I ≥ 2σ(I)) R1 = 0.0348, wR2 = 0.0814
R values (all data) R1 = 0.0448, wR2 = 0.0863

residual electron density [e−/Å−3] 0.625/-0.499
twin law (-1 0 0, 0 -1 0, 0 0 -1)
batch scale factor 0.46
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Table B.8: Standardized fractional atomic coordinates4 and equivalent isotropic displace-
ment parameters [Å2] for Na8.5(AlS4)0.5(SiS4)1.5. Standard deviations are given in paren-
theses.
Atom occupation- Wyckoff- x y z Uequiv.

factor position

Na1 1 4a 0.0000(2) 0.0160(3) 0.0160(3) 0.0403(8)
Na2 1 4a 0.0079(2) 0.2210(4) 0.2467(3) 0.0558(11)
S1 1 4a 0.04013(12) 0.0236(2) 0.31978(15) 0.0379(5)
S2 1 4a 0.04982(12) 0.2071(2) 0.05134(14) 0.0389(5)
Na3 1 4a 0.0627(2) 0.2428(3) 0.4983(4) 0.0610(12)
S3 1 4a 0.07158(13) 0.4809(2) 0.24654(15) 0.0352(5)
Na4 1 4a 0.1121(3) 0.0854(3) 0.6894(2) 0.0776(14)
S4 1 4a 0.14462(12) 0.5680(2) 0.03750(13) 0.0360(5)
Si1 1 4a 0.15165(12) 0.07480(14) 0.36658(15) 0.0250(4)
Si2 1 4a 0.15633(12) 0.57514(15) 0.19140(14) 0.0255(4)
Na5 0.895(8) 4a 0.1588(2) 0.3388(3) 0.1468(2) 0.0488(10)
S5 1 4a 0.16361(13) 0.0715(2) 0.51778(14) 0.0450(6)
S6 1 4a 0.16354(13) 0.2241(2) 0.3200(2) 0.0492(6)
Na6 0.805(14) 4a 0.2040(3) 0.1103(4) 0.1413(3) 0.067(2)
Na7 0.823(7) 4a 0.2062(2) 0.4083(2) 0.3655(2) 0.0318(8)
S7 1 4a 0.23822(13) 0.0183(2) 0.8137(2) 0.0394(5)
Na8 1 4a 0.2465(2) 0.2575(3) 0.5632(3) 0.0551(10)
S8 1 4a 0.25849(12) 0.2932(2) 0.00555(15) 0.0384(5)
S9 1 4a 0.26822(12) 0.5230(2) 0.23772(15) 0.0409(5)
Na9 1 4a 0.3017(2) 0.7230(4) 0.3090(3) 0.0563(11)
Na10 1 4a 0.3087(2) 0.4838(3) 0.0561(2) 0.0400(8)
Na11 0.848(7) 4a 0.3162(2) 0.1925(3) 0.3152(2) 0.0421(10)
Na12 1 4a 0.3179(2) 0.0119(4) 0.4977(3) 0.0756(15)
S10 1 4a 0.36523(10) 0.35601(14) 0.44868(12) 0.0274(4)
S11 1 4a 0.36644(13) 0.11952(15) 0.13820(14) 0.0355(5)
Si3 1 4a 0.37248(11) 0.24120(15) 0.04104(14) 0.0251(4)
S12 1 4a 0.38285(11) 0.19002(15) 0.63956(13) 0.0315(4)
Na13 1 4a 0.4038(3) 0.03996(10) 0.7780(4) 0.0429(3)
Na14 0.931(5) 4a 0.4046(3) 0.43673(10) 0.2774(3) 0.0344(5)
S13 1 4a 0.42616(11) 0.8087(2) 0.41727(14) 0.0355(5)
Si4 1 4a 0.43545(11) 0.24254(14) 0.51666(13) 0.0200(4)
S14 1 4a 0.44125(12) 0.11958(15) 0.41900(13) 0.0336(4)
S15 1 4a 0.44322(10) 0.35692(15) 0.10912(12) 0.0280(4)
Na15 0.934(8) 4a 0.4911(2) 0.0193(4) 0.0547(4) 0.070(2)
Na16 1 4a 0.4949(2) 0.1838(3) 0.2455(2) 0.0511(9)
Na17 0.498(12) 4a 0.6027(3) 0.1125(4) 0.4185(4) 0.029(2)
S16 1 4a 0.64521(14) 0.2255(2) 0.2408(2) 0.0464(6)
Na18 1 4a 0.6571(3) 0.3469(3) 0.4219(3) 0.101(2)
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Table B.9: Anisotropic displacement coefficients [Å2] for Na8.5(AlS4)0.5(SiS4)1.5. Uij is
defined by: Uij = exp−2π2[U11(ha∗)2 + ...+ 2U21hka

∗b∗]. Standard deviations are given
in parentheses.
Atom U11 U22 U33 U23 U13 U12

Na1 0.041(2) 0.038(2) 0.043(2) 0.0120(15) 0.009(2) 0.000(2)
Na2 0.039(2) 0.086(3) 0.041(2) 0.011(2) -0.003(2) 0.012(2)
S1 0.0258(12) 0.0487(12) 0.0387(11) -0.0098(9) -0.0018(9) -0.0132(9)
S2 0.0284(11) 0.0524(13) 0.0350(10) -0.0109(10) -0.0057(9) 0.0035(10)
Na3 0.030(2) 0.053(2) 0.100(3) 0.011(2) -0.001(2) 0.001(2)
S3 0.0316(12) 0.0352(10) 0.0392(11) -0.0022(8) 0.0046(8) -0.0031(9)
Na4 0.119(3) 0.087(3) 0.0269(15) 0.0142(15) 0.008(2) -0.040(2)
S4 0.0289(10) 0.0538(12) 0.0249(9) 0.0074(8) -0.0008(7) 0.0046(9)
Si1 0.0206(10) 0.0213(9) 0.0330(10) -0.0008(8) 0.0009(8) -0.0006(8)
Si2 0.0203(10) 0.0303(11) 0.0260(9) 0.0073(8) 0.0013(8) 0.0007(8)
Na5 0.047(2) 0.074(2) 0.0256(12) -0.0047(12) 0.0054(11) -0.0092(15)
S5 0.0284(11) 0.076(2) 0.0312(10) -0.0177(10) 0.0022(8) -0.0026(11)
S6 0.0266(11) 0.0288(10) 0.091(2) 0.0030(11) -0.0079(11) 0.0033(8)
Na6 0.065(4) 0.086(4) 0.050(3) -0.018(2) 0.006(2) 0.010(3)
Na7 0.0388(14) 0.0251(13) 0.032(2) -0.0004(11) 0.0026(11) 0.0020(11)
S7 0.0337(12) 0.0322(10) 0.0539(13) -0.0034(9) 0.0157(10) -0.0032(9)
Na8 0.033(2) 0.062(3) 0.070(2) 0.018(2) 0.00(2) 0.012(2)
S8 0.0236(11) 0.0520(13) 0.0390(11) -0.0186(10) -0.0022(8) 0.0085(9)
S9 0.0276(12) 0.0585(14) 0.0365(11) 0.0045(10) 0.0017(9) 0.0085(10)
Na9 0.039(2) 0.093(3) 0.036(2) 0.003(2) -0.0061(15) -0.026(2)
Na10 0.035(2) 0.040(2) 0.045(2) 0.0006(15) 0.003(2) 0.005(2)
Na11 0.027(2) 0.058(2) 0.040(2) -0.0115(15) -0.0123(13) 0.0148(15)
Na12 0.033(2) 0.125(4) 0.069(2) 0.063(2) -0.002(2) 0.001(2)
S10 0.0272(10) 0.0257(9) 0.0289(9) -0.0001(7) -0.0013(7) 0.0009(7)
S11 0.0433(13) 0.0315(10) 0.0313(10) 0.0022(8) -0.0002(9) -0.0068(9)
Si3 0.0210(10) 0.0280(10) 0.0261(9) -0.0030(8) 0.0008(8) -0.0011(9)
S12 0.0267(10) 0.0409(10) 0.0273(8) 0.0101(8) 0.0049(7) -0.0030(8)
Na13 0.0519(8) 0.0342(7) 0.0429(7) 0.001(2) 0.0052(6) 0.008(2)
Na14 0.0247(7) 0.0494(9) 0.0287(7) 0.000(2) -0.0015(5) -0.002(2)
S13 0.0248(10) 0.0508(12) 0.0307(9) 0.0101(9) -0.0009(7) 0.0016(9)
Si4 0.0194(10) 0.0236(9) 0.0168(8) 0.0016(7) 0.0001(7) 0.0010(8)
S14 0.0388(12) 0.0319(10) 0.0302(10) -0.0038(8) 0.0037(8) 0.0041(8)
S15 0.0256(10) 0.0310(9) 0.0272(9) -0.0072(7) -0.0016(7) -0.0052(8)
Na15 0.026(2) 0.074(3) 0.108(4) -0.053(2) -0.007(2) -0.001(2)
Na16 0.042(2) 0.049(2) 0.065(2) -0.0140(15) 0.0269(15) -0.0106(13)
Na17 0.031(3) 0.027(3) 0.029(3) 0.002(2) 0.004(2) 0.014(2)
S16 0.0368(13) 0.0221(9) 0.079(2) -0.0110(10) -0.0073(11) 0.0018(8)
Na18 0.105(3) 0.056(2) 0.151(4) 0.057(2) 0.085(3) 0.032(2)
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Table B.10: Interatomic distances in
Na8.5(AlS4)0.5(SiS4)1.5. Standard deviations are given in
parentheses.
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2
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Atom1 Atom2 distance [Å] Atom1 Atom2 distance [Å]

Na1 S1 2.756(4)i Na10 2.808(4)
S2 2.815(4) Na18 2.818(5)iii

S15 2.870(4)ii Na9 2.954(4)viii

S10 2.990(4)iii Na17 3.203(6)iii

S5 3.105(4)i S9 Na14 2.696(5)
Si4 3.474(4)iii Na10 2.775(4)
Na4 3.526(5)i Na9 2.939(5)
Na10 3.528(2)ii Na9 S13 2.848(4)
Na14 3.557(5)iii S16 2.862(5)vii

Na18 3.559(5)iii S8 2.954(4)v

Na3 3.674(5)i S12 3.108(4)viii

Na6 4.205(6) Si3 3.498(4)v

Na2 S12 2.866(4)iii Na18 3.513(6)vii

S6 2.869(4) Na8 3.590(5)viii

S1 2.912(5) Na13 3.716(5)viii

S2 2.929(4) Na2 3.779(2)ix

S13 3.129(5)ii Na17 4.188(7)vii

Na5 3.470(6) Na10 S10 2.866(4)viii

Si4 3.483(4)iii S15 2.984(4)
Na3 3.670(6) Si3 3.482(4)
Na13 3.756(6)iii Na7 3.490(5)viii

Na9 3.779(2)ii Na1 3.528(2)ix

Na6 4.121(7) Na14 3.546(5)
S1 Si1 2.147(3) Na8 3.672(5)viii

Na14 2.692(5)ii Na17 4.220(6)iii

Na4 2.739(4)i Na11 S14 2.758(4)
Na1 2.756(4)iv S11 2.895(4)

S2 Si4 2.151(3)iii S10 3.012(4)
Na18 2.811(4)iii S7 3.165(5)i

Na5 2.896(4) Na16 3.350(2)
Na6 3.208(6) Si4 3.520(4)
Na17 3.259(6)iii Na13 3.557(5)i

Continued on next page
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Continued from table B.10

Atom1 Atom2 distance [Å] Atom1 Atom2 distance [Å]

Na3 S13 2.750(4)ii Na12 3.570(5)
S5 2.922(5) Na12 S11 2.775(4)iv

S4 2.975(5)v S14 2.892(5)
S15 3.020(5)vi S7 2.928(5)i

S6 3.192(5) Na15 3.130(2)iv

Na8 3.311(2) S12 3.307(6)
Si1 3.389(5) Na6 3.378(6)iv

Si3 3.439(4)vi Na13 3.624(7)i

Na4 3.527(6) Na18 3.712(7)ii

Na15 3.567(7)vi S10 Si4 2.164(3)
Na1 3.674(5)iv Na14 2.799(5)

S3 Si2 2.145(3) Na10 2.866(4)v

Na5 2.886(4) Na1 2.990(4)x

Na7 2.994(4) S11 Si3 2.159(3)
Na13 3.020(6)iii Na12 2.775(4)i

Na15 3.049(6)vii Na16 2.790(4)
Na17 3.053(6)vii Na15 2.890(5)
Na16 3.060(4)vii Na13 2.985(4)i

Na4 S5 2.665(4) Si3 S13 2.158(3)viii

S16 2.717(5)vi S15 2.191(3)
S1 2.739(4)iv Na3 3.439(4)xi

S7 2.901(5) Na9 3.498(4)viii

Na6 3.199(7)iv S12 Si4 2.149(3)
S15 3.212(5)vi Na13 2.841(4)
Si1 3.370(4)iv Na2 2.866(4)x

Na18 3.485(6)vi Na9 3.108(4)v

Na1 3.526(5)iv Na13 S13 2.864(4)v

Na8 3.840(6) S11 2.985(4)iv

Na16 3.851(6)vi S14 2.998(4)iv

S4 Si2 2.193(3) S3 3.020(6)x

Na7 2.756(4)viii Na16 3.471(4)iv

Na15 2.802(5)vii Na11 3.557(5)iv

Na8 2.974(5)viii Na12 3.624(7)iv

Na3 2.975(5)viii Na15 3.700(8)iv

Na17 3.040(6)iii Na9 3.716(5)v

Na10 3.095(4) Na2 3.756(6)x

Si1 S6 2.143(3) Na14 S1 2.692(5)ix

S7 2.146(3)i S15 2.752(5)
S5 2.154(3) Na1 3.557(5)x

Continued on next page
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Continued from table B.10

Atom1 Atom2 distance [Å] Atom1 Atom2 distance [Å]

Na18 3.185(4)ii Na16 3.813(4)
Na4 3.370(4)i Na4 3.934(7)xi

Na11 3.418(5) S13 Si3 2.158(3)v

Na6 3.426(5) Na3 2.750(4)ix

Na12 3.480(4) Na13 2.864(4)viii

Si2 S9 2.155(3) Na2 3.129(5)ix

S16 2.167(3)vii Na15 3.209(6)v

Na5 3.264(5) Si4 S2 2.151(3)x

Na16 3.325(4)vii S14 2.176(3)
Na8 3.365(5)viii Na1 3.474(4)x

Na7 3.431(4) Na2 3.483(4)x

Na17 3.461(5)vii S14 Na15 2.801(4)iv

Na15 3.483(5)vii Na16 2.835(4)
Na5 S8 2.814(4) Na17 2.838(6)

S6 2.913(4) Na13 2.998(4)i

Na6 3.196(7) S15 Na1 2.870(4)ix

Na7 3.316(4) Na3 3.020(5)xi

S9 3.363(5) Na16 3.145(4)
Na17 3.408(6)iii Na4 3.212(5)xi

Na10 3.586(5) Na15 S14 2.801(4)i

Na15 3.991(6)vii S4 2.802(5)xii

S5 Na12 2.859(5) S3 3.049(6)xii

Na8 2.961(5) Na12 3.130(2)i

Na6 3.085(6)iv S13 3.209(6)viii

Na1 3.105(4)iv Na17 3.354(7)i

Na18 3.333(5)ii Si2 3.483(5)xii

S6 Na7 2.673(4) Na16 3.513(5)
Na11 2.721(4) Na3 3.567(7)xi

Na6 3.095(6) Na13 3.700(8)i

Na6 S11 2.859(6) Na5 3.991(6)xii

S7 3.044(6)i Na16 S16 2.705(4)
S5 3.085(6)i S3 3.060(4)xii

Na4 3.199(7)i Na17 3.171(6)
Na18 3.238(7)iii Si2 3.325(4)xii

Na11 3.270(6) Na13 3.471(4)i

S8 3.318(6) Na4 3.851(6)xi

Na12 3.378(6)i Na17 S4 3.040(6)x

Na7 S9 2.674(4) S3 3.053(6)xii

S4 2.756(4)v S16 3.088(6)
Continued on next page
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Continued from table B.10

Atom1 Atom2 distance [Å] Atom1 Atom2 distance [Å]

S10 3.053(4) S8 3.203(6)x

Na17 3.418(5)vii S2 3.259(6)x

Na10 3.490(5)v Na18 3.315(7)
Na8 3.518(5) Na15 3.354(7)iv

Na11 3.599(5) Na5 3.408(6)x

Na14 3.793(6) Na7 3.418(5)xii

S7 Si1 2.146(3)iv Si2 3.461(5)xii

Na18 2.828(4)vi S16 Si2 2.167(3)xii

Na12 2.928(5)iv Na4 2.717(5)xi

Na13 2.997(6) Na9 2.862(5)xii

Na6 3.044(6)iv Na18 3.058(6)
Na11 3.165(5)iv Na8 3.187(5)xi

Na8 S12 2.730(4) Na18 S2 2.811(4)x

S4 2.974(5)v S8 2.818(5)x

S10 3.032(4) S7 2.828(4)xi

S16 3.187(5)vi Si1 3.185(4)ix

Si2 3.365(5)v Na6 3.238(7)x

Si4 3.429(4) S5 3.333(5)ix

Na9 3.590(5)v Na4 3.485(6)xi

Na10 3.672(5)v Na9 3.513(6)xii

Na12 3.694(7) Na1 3.559(5)x

S8 Si3 2.155(3) Na12 3.712(7)ix
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Figure B.1: Sodium ion coordination in Na8.5(AlS4)0.5(SiS4)1.5. Na–S-distances are given
in �A. Sodium atoms are depicted in orange, sulfur atoms in yellow. Ellipsoids are drawn
at 80% probability.
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B.4 Thermal analysis

Due to the occurrence of crystalline side phases in Na5AlS4 samples, the synthesis condi-
tions had to be optimized. Therefore, DSC measurements were done for the pseudo-binary
border phases Na4SiS4 and Na5AlS4. Both compounds were synthesized in small (6 mm
diameter) sealed carbon coated quartz ampoules at 600 °C suited for DSC measurements
and annealed for 3 h. The subsequent DSC measurements are depicted in figure B.2. Both
compounds show broad endothermic signals during heating at 608 °C (Na4SiS4) and 722 °C
(Na5AlS4), respectively, which are attributed to a complicated multi-step melting process
of the materials. In the case of Na5AlS4, this is presumed to be a decomposition reaction
which also takes place at lower temperatures, albeit at a slower rate, since samples syn-
thesized at 650 °C and above showing increasing amounts of an unknown crystalline side
phase. This decomposition behaviour, at least to crystalline side phases, was not observed
for Na4SiS4. However, the maximum synthesis temperatures were chosen to be below the
onset of melting of Na4SiS4 at 600 °C, which was suitable for all products.

200 300 400 500 600 700 800
Temperature /°C

D
SC

 / 
a.

u.

Onset: 478.1 °C

Onset: 722.3 °C

Onset: 684.1 °C

Onset: 608.4 °C

 exo
Na4SiS4

Na5AlS4

Figure B.2: DSC measurement of Na4SiS4 and Na5AlS4; green and blue lines represent
the heating and cooling ramps of Na4SiS4, respectively, measured at 5 Kmin−1, black and
red lines represent the heating and cooling ramps of Na5AlS4, respectively, measured at
2 Kmin−1.

In addition, we were interested why the only sample showing big single crystals (d ≈
200 µm) was with x = 75% for Na5−xAl1−xSixS4. Therefore, the synthesis conditions
were mimicked by heating the precursors to 600 °C for 3 h directly in the DSC machine
and measuring the thermal signals during subsequent cooling. The DSC curve (cf. Fig.
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B.3) shows two distinct exothermic signals at 542 °C and 299 °C. The first signal probably
corresponds to the crystallization of Na8.5(AlS4)0.5(SiS4)1.5 from the melt and the latter is
in good accordance with the melting point of sodium tetrasulfide (Na2S4, m.p.=300 °C).14

The signal’s broad nature also suggests the presence of sodium polysulfides with higher
chain lengths. This polysulfide melt could be beneficial for crystal growth by acting as a
solvent for the targeted phase Na8.5(AlS4)0.5(SiS4)1.5. Since there are no indications of
crystalline polysulfides in the PXRD or isolated sodium and sulfur rich areas in SEM/EDX
measurements, we suppose that the polysulfide melt forms from unreacted Na2S and excess
S during the reaction and gets gradually consumed with progressing reaction time.

150 200 250 300 350 400 450 500 550
Temperature /°C
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Onset: 299.1 °C

 exo

Na8.5(AlS4)0.5(SiS4)1.5

Figure B.3: DSC measurement of Na5−xAl1−xSixS4, x = 75%; the measurement corre-
sponds to the cooling of the sample at a rate of 5 Kmin−1 after annealing it at 600 °C for
3 h.
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B.5 Electron microscopy

Since the Al/Si occupancy for the single crystal data of Na8.5Al0.5Si1.5S8 (x = 0.75) could
not be refined because of the similar atomic form factors of the two elements, EDX spec-
troscopy was used to determine the composition. Table B.11 shows the normalized results,
averages, the respective standard deviations for O, Na, Al, Si and S, as well as SEM micro-
graphs depicting the positions on the sample. From the SEM micrographs and the values
for oxygen it is evident that the sample was partially hydrolyzed on the surface by being
in contact with air although exposure time was less than 30 s. While the values for Na and
S are systematically too low and show a large spread supposedly due to hydrolysis and the
strongly hygroscopic behavior of the sample, Al/Si ratios are within a small error margin
and show a slightly lower Al/Si ratio as expected from the weighted precursors, which is
in good accordance with the data obtained from SCXRD.
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Table B.11: Results of EDX measurements for Na8.5Al0.5Si1.5S8 (x = 0.75) in atom%
normalized to the sum of Al and Si being 4. SEM micrographs depict the positions on the
sample.
Position O Na Al Si S

SHA089 1 4.693 15.884 0.998 3.002 11.717
SHA089 2 8.492 12.860 1.076 2.924 11.379
SHA089 3 10.782 12.075 0.722 3.278 17.440
SHA089 4 8.844 15.756 0.928 3.072 15.796
SHA089 5 7.596 13.464 1.022 2.978 12.397
SHA089 6 12.085 14.975 0.730 3.270 18.945
SHA089 7 7.760 12.525 1.070 2.930 10.467
SHA089 8 6.326 14.372 0.915 3.085 10.921
SHA089 9 18.805 14.123 0.832 3.168 11.439
SHA089 10 8.225 13.775 0.857 3.143 12.760
SHA089 11 5.089 14.522 0.881 3.119 11.512
SHA089 12 7.019 13.404 0.985 3.015 11.388
SHA089 13 6.663 10.975 1.025 2.975 10.186
SHA089 14 6.982 11.258 0.974 3.026 9.481
SHA089 15 8.892 12.715 1.012 2.988 12.023
SHA089 16 2.589 15.593 0.902 3.098 11.485
average 8 14 0.9 3.1 12
std. deviation 4 2 0.1 0.1 3
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B.5.1 BVEL calculations

Description of BVEL calculations

In this section we describe the general procedure of calculating bond valence sums and
bond valence energy landscapes using the program 3Dbvsmapper. We also discuss the
limitations of this method.
In practice, the program 3DBVSMAPPER executes the following procedure:
(i) Removal of all atoms of low occupancy (SOF < 0.05).
(ii) Removal of the tested ion (here Na+).
(iii) Creation of equal size voxel points across the unit cell (here: 0.2�A).
(iv) Calculation of the BVEL at each point in real space.
(v) Analysis of the volumetric data: calculation of the global minimum energy Eglobal

min , the
minimum energy within the infinitely connected pathway Epath

min and the energy Epath
mig , at

which a infinitely connected pathway is formed.
(vi) Generation of a periodic grid file (*.grd).

The output file of *.grd extension can be used as a volumetric data input for VESTA.15

Although the BV approach used in this work provides quite accurate insights into ion
migration pathways in possible crystalline solid ion conductors, some factors are not con-
sidered in this method. In DFT and molecular dynamics calculations the relaxation of the
anionic lattice during ion migration through a bottleneck is usually considered. This relax-
ation, however, is lowering the potential energy of the transition sate and therefore lowering
Emig, compared to the energy of the transition state calculated by the BV approach. Ad-
ditionally, coulombic repulsion of Na+–Na+ is not included in this model, since all tested
ions are removed from the structure before calculation. This can lead to underestimating
the energy at real space points of higher test ion probability (e.g. along the conduction
pathway), since the BV calculated energy landscape mimics a migration network for one
test ion per unit cell. This is less important for materials with low concentrations of the mi-
grating ion but plays a more crucial role in materials with high mobile ion concentrations.
Pathways might be clogged by repulsion of ions with the same charge, may they be of the
same or different kind, thus increasing Emig. Additionally, the BV method is restricted
to mostly ionic compounds, excluding compounds with a more covalent bonding charac-
ter and metals. Despite these methodological drawbacks, calculated bond valence energy
landscapes provide fast and computationally cheap access for investigating ion migration
pathways in crystalline (ionic) solids.
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B.5.2 BVEL calculations of Na5AlS4

Figure B.4: Crystal structure of Na5AlS4 with Na atoms drawn in red (migrating ions)
and orange (isolated ions), Al atoms drawn in blue and sulfur atoms depicted in yellow.
Bond valence energy landscape at different isoenergy values are drawn in grey.
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B.5.3 BVEL calculations of Na4SiS4

Figure B.5: Crystal structure of Na4SiS4 with Na atoms drawn in red, Si atoms drawn in
blue and sulfur depicted in yellow. Bond valence energy landscape at different isoenergy
values are drawn in grey.
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B.5.4 BVEL calculations of Na9(AlS4)(SiS4)

Figure B.6: Crystal structure of Na9(AlS4)(SiS4) with Na atoms drawn in red (migrating
ions) and orange (isolated ions). Bond valence energy landscape at different isoenergy
values are drawn in grey.



140 B. Supporting Information for ”Finding the right blend”

B.6 Electrochemical characterization

B.6.1 Galvanostatic polarization measurements

A transference number tion of 0.9998 of an representative sample (Na5-xAl1-xSixS4 with x
= 0.05 ) was determined by direct current galvanostatic polarization measurements using
blocking-electrodes (stain less steel). The material is thus a mainly ionic conductor.10,16

Figure B.7: Galvanostatic polarization measurement of Na5−xAl1−xSixS4 with x = 0.05
with a current of 0.5 nA shows an electronic conductivity of 6x10−11S cm−1 and a trans-
ference number of 0.9998. The material is clearly a mainly ionic conducting material.
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Table B.12: Ionic conductivities calculated from R1 and RTot (=R1+R2) and the re-
spective capacitances of representative measurements shown in Figure B.8 at 25 °C of
Na5-xAl1-xSixS4 with (0 ≤ x ≤ 1). The electrode area was 0.20 cm2 and the thickness of
the pellets in the range of 0.35-0.75 mm.
x σR1 σRTot Ceff1 CPE1 α1 Ceff2 CPE2 α2

/ S cm−1 / S cm−1 / F / F

0.00 4.27E-7 1.52E-7 2.26E-10 3.11E-10 0.96 1.75E-8 8.46E-8 0.59

0.025 3.72E-7 2.18E-7 1.86E-10 3.15E-10 0.94 2.35E-8 1.54E-7 0.59

0.05 6.41E-7 2.86E-7 1.96E-10 2.77E-10 0.96 2.02E-8 1.63E-7 0.50

0.10 4.81E-7 1.27E-7 2.19E-10 5.55E-10 0.90 3.44E-7 6.29E-7 0.42

0.25 1.82E-6 5.47E-7 2.22E-10 - - 2.48E-8 8.48E-8 0.76

0.50 5.19E-6 2.76E-6 2.06E-10 - - 5.11E-8 4.53E-7 0.63

0.625 7.14E-6 - 2.41E-10 3.63E-10 0.97 - - -

0.75 2.78E-5 - 1.86E-10 - - - - -

0.90 2.31E-6 1.46E-6 2.00E-10 - - 4.56E-8 1.53E-7 0.78

0.95 5.83E-6 7.64E-7 2.75E-10 - - 2.81E-8 1.59E-7 0.67

1.00 2.85E-7 - 1.58E-10 - - - - -

Table B.13: Pellet density of Na5-xAl1-xSixS4 with (0 ≤ x ≤ 1) samples shown in Figure B.8
and their activation energies with prefactor σ0 averaged over several temperature cycles.

x pellet Ea(R1) standard σ0 / KS cm−1 standard

density / eV deviation (Ea) deviation (σ0)

0.00 0.87 0.35 0.01 118 39

0.025 0.81 0.36 0.02 154 99

0.05 0.91 0.37 0.01 288 74

0.10 0.86 0.35 0.01 116 26

0.25 0.80 0.37 0.003 1059 154

0.50 0.87 0.35 0.01 1106 278

0.625 0.87 0.36 0.01 2954 681

0.75 0.88 0.31 0.001 1684 59

0.90 0.88 0.34 0.01 394 86

0.95 0.80 0.40 0.01 4389 1603

1.00 0.76 0.36 0.01 78 24
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Figure B.8: For each member of the series Na5-xAl1-xSixS4 with (0 ≤ x ≤ 1) a rep-
resentative impedance spectrum with fit and equivalent circuit model at 25 °C is given.
The according values for conductivity, capacitance, activation energy and the prefactor are
given in TableB.12 and TableB.13. For x=0.625,0.75and1.00 the inclusion of a low fre-
quency semicircle into the model leads to overfitting. Thus, the best fitting model consists
only of one RC- or RCPE-element in series to an CPE.



B.7 Electrochemical impedance spectroscopy 143

Table B.14: Ionic conductivity data calculated from RTot and averaged over all samples
measured for each member of the series Na5-xAl1-xSixS4 with (0 ≤ x ≤ 1) at 25 °C. The
activation energies σ(RTot) were averaged over all samples and several temperature cycles
for each sample. The electrode area was 0.20 cm2 and the thickness of the pellet in the
range of 0.35-0.75 mm.
x σRTot / Scm−1 Standard deviation and error Ea(R2) / eV Standard deviation

0.00 1.68E-07 1.91E-08 0.38 0.09

0.025 2.01E-07 1.35E-08 0.50 0.04

0.05 2.63E-07 3.35E-08 0.42 0.04

0.10 1.31E-07 3.22E-08 0.46 0.04

0.25 7.49E-07 5.04E-07 0.39 0.04

0.50 1.81E-06 3.63E-07 0.37 0.08

0.625 - - - -

0.75 - - - -

0.90 8.93E-07 3.34E-07 0.36 0.04

0.95 5.46E-07 8.57E-08 0.63 0.03

1.00 - - - -

Table B.15: Ionic conductivity data calculated from R1 and averaged over all samples
measured for each member of the series Na5-xAl1-xSixS4 with (0 ≤ x ≤ 1) at 25 °C. The
activation energies σ(R1) were averaged over all samples and several temperature cycles
for each sample. The electrode area was 0.20 cm2 and the thickness of the pellet in the
range of 0.35-0.75 mm.
x σR1 / Scm−1 Standard deviation and error Ea / eV Standard deviation

0.00 3.20E-07 3.12E-08 0.35 0.01

0.025 3.07E-07 3.65E-08 0.39 0.02

0.05 6.42E-07 8.99E-08 0.37 0.02

0.10 1.29E-06 8.20E-08 0.37 0.01

0.25 2.06E-06 1.38E-07 0.38 0.01

0.50 7.04E-06 4.23E-07 0.36 0.01

0.625 6.44E-06 2.69E-07 0.33 0.02

0.75 2.04E-05 1.32E-06 0.31 0.01

0.90 1.89E-06 2.04E-07 0.33 0.01

0.95 4.49E-06 1.16E-06 0.37 0.01

1.00 1.64E-07 4.64E-08 0.38 0.01
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Figure B.9: Ionic conductivities calculated exclusively from the resistance of the high
frequency semicircle (R1) excluding resistive processes occurring for some member of in
Na5-xAl1-xSixS4 with (0 ≤ x ≤ 1). The error bars denote the error and the standard
deviation of the values.
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B.7.1 Activation Energies

Figure B.10: The measured activation energies range from 0.30-0.38 eV for the whole
substitution range of Na5-xAl1-xSixS4 with (0 ≤ x ≤ 1). The lowest activation energy can
be found in the double salt at x=0.75. The error bars denote the error and the standard
deviation of the values.
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Appendix C

Additional supporting information

C.1 Additional data for Chapter 1

Table C.1: Total ionic conductivities at room temperature and the respective activation
energies for selected lithium solid electrolytes. This data was used to create Figure 1.3.

Solid electrolyte Composition Total Li ion Ea Reference
conductivity (RT) /meV
/mS cm−1

LSiPSCl Li9.54Si1.74P1.44S11.7Cl0.3 25 238 [17]
LGPS Li10GeP2S12 12 249 [18]
LSnPS Li10SnP2S12 5.5 259 [19]
LLZO Li7La3Zr2O12 0.24 310 [20]
LPS Li3PS4 0.16 356 [21]
LSiPSO Li9.42Si1.02P2.1S9.96O2.04 0.11 238 [22]
LLTO Li0.34La0.56TiO3 0.07 420 [23]
LiPON0.46 Li2.98PO3.30N0.46 3.3 · 10−3 540 [24]
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C.2 Additional data for Chapter 4.1

C.2.1 Electrochemical impedance data

Figure C.1: Representative Nyquist plot of electrochemical impedance spectra measured
at −70 °C of Li7+xSi1-xAlxPS8 (x = 15%). Black dots depict the measured data, red lines
represent the fit of the equivalent circuit model depicted in the insets.
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C.2.2 Crystallographic data

Table C.2: Crystallographic data and information on the Rietveld refinement from powder
X-ray diffraction data for Li7.05Si0.95Al0.05PS8 using Si as an internal standard. Standard
deviations are given in parentheses.

Li7.05Si0.95Al0.05PS8

crystal system tetragonal

space group P42/nmc, (Nr. 137)

lattice params. a 8.68153(15) Å

c 12.5543(4) Å

V [Å3] 946.21(4)

Z 4

calc. density [gcm−3] 1.90471(9)

diffractometer STOE STADI P, CuKα1-radiation

Debye-Scherrer geometry

temperature [K] 295

absorption coefficient [mm−1] 14.749(7)

refined 2ϑ region [◦] 10 – 93

Rexp 14.361

Rp 10.196

Rwp 13.104

Goof 0.912

RBragg 3.367

number of refined params. 38

number of background params. 12
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Table C.3: Crystallographic data and information on the Rietveld refinement from powder
X-ray diffraction data for Li7.1Si0.9Al0.1PS8 using Si as an internal standard. Standard
deviations are given in parentheses.

Li7.1Si0.9Al0.1PS8

crystal system tetragonal

space group P42/nmc, (Nr. 137)

lattice params. a 8.67954(15) Å

c 12.5613(4) Å

V [Å3] 946.30(4)

Z 4

calc. density [gcm−3] 1.90490(8)

diffractometer STOE STADI P, CuKα1-radiation

Debye-Scherrer geometry

temperature [K] 295

absorption coefficient [mm−1] 14.111(4)

refined 2ϑ region [◦] 10 – 93

Rexp 15.278

Rp 10.684

Rwp 14.042

Goof 0.919

RBragg 3.387

number of refined params. 38

number of background params. 12
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Table C.4: Crystallographic data and information on the Rietveld refinement from powder
X-ray diffraction data for Li7.15Si0.85Al0.15PS8 using Si as an internal standard. Standard
deviations are given in parentheses.

Li7.15Si0.85Al0.15PS8

crystal system tetragonal

space group P42/nmc, (Nr. 137)

lattice params. a 8.6864(2) Å

c 12.5658(4) Å

V [Å3] 948.15(5)

Z 4

calc. density [gcm−3] 1.90099(8)

diffractometer STOE STADI P, CuKα1-radiation

Debye-Scherrer geometry

temperature [K] 295

absorption coefficient [mm−1] 14.7201(7)

refined 2ϑ region [◦] 10 – 93

Rexp 14.777

Rp 10.804

Rwp 13.999

Goof 0.947

RBragg 3.233

number of refined params. 38

number of background params. 12
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Table C.5: Crystallographic data and information on the Rietveld refinement from powder
X-ray diffraction data for Li7.2Si0.8Al0.2PS8 using Si as an internal standard. Standard
deviations are given in parentheses.

Li7.2Si0.8Al0.2PS8

crystal system tetragonal

space group P42/nmc, (Nr. 137)

lattice params. a 8.68059(15) Å

c 12.5679(4) Å

V [Å3] 947.02(4)

Z 4

calc. density [gcm−3] 1.90326(8)

diffractometer STOE STADI P, CuKα1-radiation

Debye-Scherrer geometry

temperature [K] 295

absorption coefficient [mm−1] 14.7376(6)

refined 2ϑ region [◦] 10 – 93

Rexp 15.707

Rp 11.218

Rwp 14.564

Goof 0.927

RBragg 3.944

number of refined params. 44

number of background params. 12
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C.3 Additional data for Chapter 4.2

C.3.1 Electrochemical impedance data

Figure C.2: Representative Nyquist plots of electrochemical impedance spectra measured
at −20 °C of (a): a sample with 8 awt% amorphous and (b): 15 awt% amorphous. Black
dots depict the measured data, red lines represent the fit of the equivalent circuit model
depicted in the insets.
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C.3.2 Crystallographic data

Table C.6: Crystallographic data and information on the Rietveld refinement from powder
X-ray diffraction data for a LSiPSCl sample, assuming 2.5 wt% amorphous content, using
Si as an internal standard. The phase content of the internal standard was omitted and
the given data scaled accordingly. Standard deviations are given in parentheses.

2.5 wt% assumed amorphous

diffractometer STOE STADI P, MoKα1-radiation
Debye-Scherrer geometry

temperature [K] 295
absorption coefficient [mm−1] 15.233(3)
refined 2ϑ region [◦] 4 – 56
Rexp 8.824
Rp 6.195
Rwp 8.165
Goof 0.925
number of refined params. 47
number of background params. 12
Phase / weight% tetra-LSiPS 88.5(8) wt%
space group P42/nmc, (Nr. 137)
lattice params. a 8.6880(2) Å

c 12.5477(4) Å
V [Å3] 947.14(5)
RBragg 2.599
Phase / weight% ortho-LSiPS 4.5(4) wt%
space group Pnma, (Nr. 62)
lattice params. a 13.49(2) Å

b 7.889(11) Å
c 6.125(9) Å

V [Å3] 652(2)
RBragg 1.881
Phase / weight% Li6PS5Cl 3.0(3) wt%
space group F43m, (Nr. 216)
lattice params. a 9.875(6) Å
V [Å3] 962(2)
RBragg 1.983
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Table C.7: Crystallographic data and information on the Rietveld refinement from powder
X-ray diffraction data for a LSiPSCl sample, assuming 8 wt% amorphous content, using
Si as an internal standard. The phase content of the internal standard was omitted and
the given data scaled accordingly. Standard deviations are given in parentheses.

8 wt% assumed amorphous

diffractometer STOE STADI P, MoKα1-radiation

Debye-Scherrer geometry

temperature [K] 295

absorption coefficient [mm−1] 1.5249(3)

refined 2ϑ region [◦] 4 – 56

Rexp 3.716

Rp 4.845

Rwp 6.237

Goof 1.678

number of refined params. 47

number of background params. 12

Phase / weight% tetra-LSiPS 65.7(5) wt%

space group P42/nmc, (Nr. 137)

lattice params. a 8.68400(14) Å

c 12.5498(3) Å

V [Å3] 946.40(4)

RBragg 3.309

Phase / weight% ortho-LSiPS 18.6(2) wt%

space group Pnma, (Nr. 62)

lattice params. a 13.562(2) Å

b 7.8358(13) Å

c 6.1268(5) Å

V [Å3] 651.0(2)

RBragg 3.747

Phase / weight% Li6PS5Cl 14.2(2) wt%

space group F43m, (Nr. 216)

lattice params. a 9.8729(6) Å

V [Å3] 962.3(2)

RBragg 4.099
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Table C.8: Crystallographic data and information on the Rietveld refinement from powder
X-ray diffraction data for a LSiPSCl sample, assuming 15 wt% amorphous content, using
Si as an internal standard. The phase content of the internal standard was omitted and
the given data scaled accordingly. Standard deviations are given in parentheses.

15 wt% assumed amorphous

diffractometer STOE STADI P, MoKα1-radiation

Debye-Scherrer geometry

temperature [K] 295

absorption coefficient [mm−1] 15.8731(15)

refined 2ϑ region [◦] 4 – 56

Rexp 8.462

Rp 7.178

Rwp 9.377

Goof 1.108

number of refined params. 45

number of background params. 12

Phase / weight% tetra-LSiPS 51.5(6) wt%

space group P42/nmc, (Nr. 137)

lattice params. a 8.6813(3) Å

c 12.5444(6) Å

V [Å3] 945.43(7)

RBragg 3.424

Phase / weight% ortho-LSiPS 7.8(3) wt%

space group Pnma, (Nr. 62)

lattice params. a 13.551(5) Å

b 7.842(3) Å

c 6.128(2) Å

V [Å3] 651.2(4)

RBragg 3.417

Phase / weight% Li6PS5Cl 13.4(3) wt%

space group F43m, (Nr. 216)

lattice params. a 9.8501(6) Å

V [Å3] 955.7(2)

RBragg 6.171
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