
Dissertation zur Erlangung des Doktorgrades 

der Fakultät für Chemie und Pharmazie 

der Ludwig-Maximilians-Universität München 

 

 

 

 

 

 

 

Mass spectrometric analysis of modified nucleotides in 

embryonic development and disease 

 

 

 

 

Sarah Schiffers 

aus 

Aachen 

 

 

 

2019 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

„We’re all part of the cosmic joke” 
- Miranda Bailey  



Erklärung 

Diese Dissertation wurde im Sinne von §7 der Promotionsordnung vom 28. November 2011 von Prof. 

Dr. Thomas Carell betreut. 

 

 

 

 

 

Eidesstattliche Versicherung 

Diese Dissertation wurde eigenständig und ohne unerlaubte Hilfe erarbeitet. 

 

München, den 04.07.2019 

 

Sarah Schiffers 

 

 

 

 

 

 

Dissertation eingereicht am: 08.07.2019 

1. Gutachter: Prof. Dr. Thomas Carell 

2. Gutachter: Dr. Stefanie Kellner 

Mündliche Prüfung am: 24.07.2019 

 



i 
 

Danksagung 

Zuallererst möchte ich meinem Doktorvater Prof. Dr. Thomas Carell danken, dafür dass er mir 

interessante Themen und alle Möglichkeiten zur Verfügung gestellt hat, die mich gefördert und 

gefordert haben. 

Des Weiteren bedanke ich mich herzlich bei meiner Zweitgutachterin Dr. Stefanie Kellner und meinem 

restlichen Prüfungskomitee für die Durchführung meiner Promotionsprüfung. 

Allen Festangestellten Markus Müller, Kerstin Kurz, Luis de la Osa de la Rosa und - zu Beginn meiner 

Dissertation - Kristof Hufnagel gebührt großer Dank für die Hilfe in Organisationsdingen, Vorbereitung 

des Massenspektrometers und allen Angelegenheiten in der Zellkultur. 

Mein größter Dank geht an Katharina Iwan. Sie war mir bereits während meiner Masterarbeit eine 

Mentorin, aber auch während meiner Dissertation hat sie mich stets mit Rat und Tat am 

Massenspektrometer unterstützt, mir neue Perspektiven aufgezeigt und mir auch auf persönlicher 

Ebene im Labor eine tolle Zeit ermöglicht. 

Natürlich möchte ich mich weiterhin bei all meinen Projektpartnern bedanken: Vielen Dank an meine 

externen Kooperationspartner Dr. Stylianos Michalakis, Dr. Alexandra-Viola Bohne, Prof. Dr. Jörg 

Nickelsen, Laura Bocci, Prof. Dr. Karsten Spiekermann, Dr. Binje Vick, Dr. Irmela Jeremias, Max Emperle 

und Prof. Dr. Albert Jeltsch. Charlotte Ebert und René Rahimoff danke ich dafür, dass sie mich in 

diversen Projekten mit Synthese unterstützt haben. Olesea Kosmatchev, Jessica Steinbacher und 

Thomas M. Wildenhof haben mir ihr MS-Wissen und ihre Projekte hinterlassen und anvertraut. Gut 

Ding will Weile haben! Alexander Schön und Ewelina Kaminska haben mir synthetisch und 

zellkulturtechnisch mit dem 6-Aza-Projekt geholfen. Franziska Traube danke ich dafür, dass sie mit 

Katharina Iwan und mir wochenlang im Konferenzzimmer über unserem Manuskript gebrütet hat und 

sich mit mir das cAzadC vorgenommen hat. Dr. Fabio Spada und Angie Kirchner waren mir immer eine 

große Hilfe in der Zellkultur, bei unserem Desaminierungsprojekt, der Basenexzisionsreparatur und 

nicht zuletzt im Literaturdschungel. Und last but not least, hat Eva Korytiaková mit mir die 

synthetischen Höhen und Tiefen der Derivatisierung durchgestanden und ist mir eine gute Freundin 

geworden. 

Ich will auch alle anderen Mitglieder der Carell-Gruppe nicht vergessen: Ihr alle habt mich in die Mensa 

begleitet, mir in der Kaffeeküche und im Computerraum gute Gesellschaft geleistet und wir haben 

viele witzige Momente auf Parties und Ausflügen erlebt. Wir hatten eine tolle Zeit und ich hoffe, dass 

wir noch lange Kontakt halten werden. 

Natürlich möchte ich auch in meinem privaten Umfeld einigen Personen danken: meinen Eltern Petra 

und Ulrich Schiffers, Brüdern Thomas, Florian und Christian Schiffers, sowie Großeltern Dr. Ansgar und 



ii 
 

Gisela Schiffers und Prof. Dr. Günter und Helene Dittrich. Euch gebührt ein spezieller Dank dafür, dass 

Ihr in mir naturwissenschaftliches Interesse geweckt habt und mich mein Leben lang begleitet und 

unterstützt habt bei allem, was ich erreichen wollte. 

Auch meinen Freunden aus Schulzeiten, Bachelor- und Masterzeiten danke ich sehr, dass sie mich in 

den verschiedenen Abschnitten meines Lebens begleitet haben und mir stets ein offenes Ohr und eine 

Schulter zum Anlehnen geboten haben. Hierbei möchte ich besonders Andrea und Brian erwähnen. 

Ohne Euch hätte ich so Vieles nicht geschafft und nicht den Optimismus und die nötige Selbstsicherheit 

gehabt, meinen Wünschen und Träumen zu folgen und mir auch mal ein paar Sekunden zum 

Abschalten zu nehmen. 

  



iii 
 

Content 

Danksagung .............................................................................................................................................. i 

Content .................................................................................................................................................... iii 

Zusammenfassung ................................................................................................................................... 2 

Summary ................................................................................................................................................. 5 

1. Introduction ..................................................................................................................................... 8 

1.1 Deoxyribonucleic acid ............................................................................................................. 8 

1.1.1 DNA repair mechanisms .................................................................................................. 8 

1.1.2 Epigenetics ..................................................................................................................... 10 

1.1.2.1 The role of m6dA and N4-methyl-dC .......................................................................... 11 

1.1.2.2 The role of m5dC ........................................................................................................ 13 

1.2 Modifications in ribonucleic acid .......................................................................................... 28 

2. Aim of the research ....................................................................................................................... 31 

3. Results and Discussion .................................................................................................................. 32 

3.1 Published results ................................................................................................................... 32 

3.1.1 Quantitative LC–MS Provides No Evidence for m6dA or m4dC in the Genome of Mouse 
 Embryonic Stem Cells and Tissues ................................................................................. 32 

3.1.2 Isotope-dilution mass spectrometry for exact quantification of noncanonical DNA 
 nucleosides .................................................................................................................... 37 

3.1.3 Chromatin-dependent allosteric regulation of DNMT3A activity by MeCP2 ................ 68 

3.1.4 Label-Free Quantification of 5-Azacytidines Directly in the Genome ........................... 82 

3.1.5 Influencing epigenetic information with a hydrolytically stable carbocyclic 5 aza-2'-
 deoxycytidine ................................................................................................................ 94 

3.2 Unpublished results ............................................................................................................. 103 

3.2.1 Investigation of the formation of m6dA in gDNA upon exogenous stimuli ................. 103 

3.2.1.1 Administration of free m6A to different cell lines ................................................... 103 

3.2.1.2 Transfection of m6A-containing RNA ....................................................................... 105 

3.2.1.3 Induction of differentiation of wt mESCs with all-trans retinoic acid ..................... 106 

3.2.1.4 Treatment of wt mESCs with Trichostatin A ........................................................... 113 

3.2.2 Investigation of active demethylation of m5dC via deamination ................................ 115 

3.2.2.1 Time course of labeling wt mESCs with [13C,D3]-methionine .................................. 118 

3.2.2.2 Investigation of TET TKO mESCs .............................................................................. 120 

3.2.2.3 Determination of the effect of soluble deaminases on formation of [13C,D3]-dT ... 121 

3.2.2.4 Investigation of DNMT3 enzymes in a deamination process .................................. 128 

3.2.2.5 Analysis of uni-parental mESCs for m5dC to dT transition ...................................... 132 

3.2.2.6 Evaluation of haploid APOBEC3A KO mESCs ........................................................... 133 

3.2.3 Investigation of the base excision repair pathway ...................................................... 134 

3.2.3.1 Global AP sites and β-elimination products in Tdg-/- and Smug1-/- cells ................. 134 



iv 
 

3.2.3.2 [13C5]-labeled AP sites and β-elimination products after administration of [13C9,N3]-
 dC on Tdg-/- cells ...................................................................................................... 135 

3.2.3.3 [13C5]-labeled AP sites and β-elimination products after administration of [13C5,15N2]-
 fdC on Smug1-/- cells ................................................................................................ 137 

3.2.3.4 Global AP sites and β-elimination products in Neil KO cells ................................... 137 

3.2.3.5 [13C5]-labeled AP sites and β-elimination products after administration of [13C9,N3]-
 dC or [13C9,N3]-C on Neil KO cells ............................................................................. 138 

3.2.3.6 Quantification of formylcytosine as a product of BER ............................................ 140 

3.2.4 Administration of azacytidine nucleoside analogues to study epigenetic processes . 143 

3.2.4.1 Investigation of epigenetic modification level changes upon administration of 
 Aza(d)C to different cell culture systems ................................................................ 143 

3.2.4.2 Investigation of deformylation via 6-Aza-2’-deoxycytidine derivatives .................. 159 

3.2.5 Analysis of modifications in RNA ................................................................................. 165 

3.2.5.1 i6A, ms2i6A, t6A ......................................................................................................... 165 

3.2.5.2 ms2A, ms2m6A, ms2t6A ............................................................................................. 166 

4. Outlook ........................................................................................................................................ 168 

5. Experimental ............................................................................................................................... 170 

5.1 Materials .............................................................................................................................. 170 

5.1.1 Devices ......................................................................................................................... 170 

5.1.2 Buffers, Media, Solutions ............................................................................................ 171 

5.2 Biochemical Methods .......................................................................................................... 171 

5.2.1 Methods for the investigation of m6dA as a modification in gDNA ............................ 171 

5.2.2 Methods for the analysis of active demethylation of m5dC via deamination ............. 174 

5.2.3 Methods for the analysis of base excision repair ........................................................ 175 

5.2.4 Methods for the Aza(d)C project ................................................................................. 176 

5.2.5 Methods for the investigation of cAzadC .................................................................... 177 

5.2.6 Methods for the analysis of 6-Aza-dC derivatives ....................................................... 177 

5.2.7 Methods for analysis of RNA in regards to their i6A, ms2i6A and t6A levels ................ 178 

6. Literature .......................................................................................................................................... I 

Appendix ................................................................................................................................................ XX 

List of abbreviations ........................................................................................................................... XXIV 

 

 



 

1 
 

Publications 

[1] T. M. Wildenhof, S. Schiffers, F. R. Traube, P. Mayer, T. Carell, Influencing epigenetic information 
with a hydrolytically stable carbocyclic 5 aza-2'-deoxycytidine., Angew. Chem. Int. Ed. 2019, DOI: 
10.1002/anie.201904794. 

[2] S. Schiffers#, T. M. Wildenhof#, K. Iwan, M. Stadlmeier, M. Müller, T. Carell, Label-Free 
Quantification of 5-Azacytidines Directly in the Genome., Helv. Chim. Acta 2019, 102, e1800229. 

[3] F. R. Traube#, S. Schiffers#, K. Iwan#, F. Spada, M. Müller, T. Carell, Isotope-dilution mass 
spectrometry for exact quantification of noncanonical DNA nucleosides., Nat. Protoc. 2018, 14, 283–
312. 

[4] A. Rajavelu, C. Lungu, M. Emperle, M. Dukatz, A. Brohm, J. Broche, I. Hanelt, E. Parsa, S. Schiffers, 
R. Karnik, A. Meissner, T. Carell, P. Rathert, R. Z. Jurkowska, A. Jeltsch., Chromatin-dependent allosteric 
regulation of DNMT3A activity by MeCP2., Nucleic Acids Res. 2018, 46, 17, 9044-9056. 

[5] S. Schiffers, C. Ebert, R. Rahimoff, O. Kosmatchev, J. Steinbacher, A.-V. Bohne, F. Spada, J. Nickelsen, 
M. Müller, T. Carell. Quantitative LC-MS Provides No Evidence for m6dA or m4dC in the Genome of 
Mouse Embryonic Stem Cells and Tissues., Angew. Chem. Int. Ed. 2017, 56, 11268–11271. 

 

#These authors contributed equally 

 

Conference Participation 

2018 – 26th Pasteur-Weizmann Symposium. Paris, France. 

2018 – SFB 1361 Evaluation. Mainz, Germany; poster presentation. 

2018 – 52nd ESBOC Symposium “Life and Death of Nucleic Acids”. Gregynog, Wales; poster presentation. 

2017 – ScienceRocks!. Munich, Germany; talk. 

2017 – 17th Symposium on Chemistry of Nucleic Acid Components. Krumlov, Czech Republic; poster 
presentation. 

2016 – SPP1784 PhD Meeting. Dortmund, Germany; poster presentation and short talk. 

  



 

2 
 

Zusammenfassung 

Diese Arbeit untersucht DNA und RNA Modifikationen und deren Bedeutung in der Epigenetik und der 

Entstehung von Krankheiten. In einem ersten Projekt lag die Aufklärung des Vorkommens unbekannter 

DNA Modifikationen im Vordergrund. Mithilfe einer neuen quantitativen massenspektrometrischen 

Methode konnte nachgewiesen werden, dass die Modifikationen N4-methyl-2‘-desoxycytidin (m4dC) 

nicht und N6-methyl-2‘-desoxyadenosin (m6dA) in murinen Stammzellen (mESCs) und Geweben 

maximal zu ein paar hundert Nukleotiden pro Genom vorkommen. Weiterhin wurde bestätigt, dass 

bakterielle Kontaminationen falsch-positive Quantifizierungen verursacht haben könnten, die 

aufgrund unpräziser Datenevaluation in mehreren Fachjournalen publiziert worden sind. Zusätzlich 

sollte aufgeklärt werden, ob eventuell vorhandenes m6dA durch enzymatische Methylierung der DNA-

Base zustande kommt, oder ob es alternative Quellen gibt. Hierzu wurden die m6dA und m6A 

Nukleoside ins Zellmedium gegeben, es wurde auch m6A-enthaltende RNA transfiziert, und die 

Differenzierung von mESCs wurde induziert. Ziel war es potenzielle endogene und exogene Ursachen 

und Quellen für m6dA in genomischer DNA zu evaluieren. Die Ergebnisse ergaben Hinweise darauf, 

dass die Entstehung von m6dA aus dem RNA-Baustein erfolgt, welcher infolge von RNA-Degradierung 

im Zytosol vorhanden ist. 

Ein weiterer Fokus dieser Arbeit lag auf der Erforschung einer aktiven Demethylierung des 5-Methyl-

2‘-desoxycytidins (m5dC) durch enzymatische Desaminierung, Deformylierung, sowie 

Basenexzisionsreparatur während der Embryonalentwicklung. Für die Untersuchung wurden in vivo 

Isotopenverfolgungsstudien durchgeführt, um Änderungen der Modifikationslevel in verschiedenen 

Zellen zu ermitteln. Als Grundlage für die Untersuchung aller biochemischen Experimente mussten 

geeignete massenspektrometrische Messmethoden entwickelt werden. 

Die Untersuchung eines Mechanismus für einen direkten C-C Bindungsbruch an 5-Formyl-

2‘-desoxycytidin erfolgte durch Applikation von 6-Aza-Nukleosid-Analoga der 2‘-Desoxycytidine. Durch 

das Stickstoff-Atom in der 6-Position sollte ein enzymatischer, nukleophiler Angriff blockiert sein. In 

der Tat wurde trotz Einbaus des gefütterten 6-Aza-5-formyl-2‘-desoxycytidins in die DNA kein 

unmodifiziertes 6-Aza-2‘-desoxycytidin beobachtet. Aufgrund des durch die hohe Zytotoxizität 

geringen Einbaus des Analogons kann jedoch nicht endgültig ausgeschlossen werden, dass die 

Eliminierung der Formylgruppe nicht doch einen nukleophilen Angriff an Position 6 erfordert. 

Die aktive Demethylierung über Basenexzisionsreparatur wurde auf zwei verschiedene Arten unter 

Zuhilfenahme von Hydroxylamin-basierten Derivatisierungsreagenzien untersucht. Zuerst wurde ein 

bereits bekanntes Protokoll zur Derivatisierung abasischer Stellen verwendet, um die Aktivität 

verschiedener Glykosylasen zu analysieren. Hierbei konnten keinerlei Hinweise auf eine Beteiligung 

der BER an der Prozessierung von Methylcytosinen festgestellt werden. Allerdings könnten aufgrund 
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einer schnellen Prozessierung der mutagenen DNA-Läsionen die Intermediate der BER unter dem 

Detektionslimit liegen. Aus diesem Grund stand die Entwicklung eines Derivatisierungsprotokolls im 

Vordergrund, welches das Reagenz statt mit der abasischen Stelle mit dem ausgeschnittenen 

Formylcytosin im löslichen Nukleosidpool reagieren lässt.  

Die Untersuchung einer potentiellen Desaminierungsreaktion auf der DNA-Ebene erfolgte durch 

metabolische Markierung des m5dC in embryonalen Stammzellen der Maus durch Zugabe von 

[13C,D3]-markiertem L-Methionin zum Zellmedium. Dieses Molekül kann als Vorstufe des 

methylübertragenden S-Adenosyl-L-Methionins [13C,D3]-markiertes m5dC generieren, dessen 

Desaminierung anschließend durch die Existenz von [13C,D3]-markiertem dT nachgewiesen werden 

kann. Da S-Adenosyl-L-Methionin nicht an der direkten Synthese von dT aus dU beteiligt ist, kann eine 

andere Entstehung dieser markierten Modifikation ausgeschlossen werden. Die Untersuchungen 

führten zur Detektion des [13C,D3]-markierten dT und somit zu einem Nachweis der Entstehung aus 

dem markierten m5dC, besonders während des Priming von embryonalen Stammzellen der Maus. Des 

Weiteren konnte festgestellt werden, dass in Abwesenheit von DNMT3b die Bildung des markierten 

dT reduziert ist und dass auch Komplementierung mit dem Enzym das Ursprungsniveau nicht 

wiederherstellen kann. Studien an einer Doppelknockout-Zelllinie der Desaminasen des löslichen 

Nukleosid-/Nukleotid-Pools zeigten, dass markiertes dT in verringerter Menge vorkommt. Die 

Ergebnisse bestätigen, dass der größte Teil der beobachteten Desaminierungen an durch Reparatur 

herausgeschnittenen m5dC Nukleosiden stattfindet. Diese Ereignisse stehen im Zusammenhang mit 

der Aktivität von DNMT3 Enzymen und könnten eine Form der lokalen Demethylierung darstellen. 

Entsprechende Genabschnitte, auf die dies zutrifft, stellen die Loci der genomischen Prägung dar. 

Untersuchungen an uni-parentalen Zellen konnten abschließend belegen, dass es zu einer 

verminderten Entstehung von markiertem dT kommt, wenn vererbbare differentielle 

Methylierungsmuster nicht vorhanden sind. 

In einem letzten Projekt wurde die Wirkung der Nukleosidanaloga 5-Azacytidin und 5-Aza-

2‘-desoxycytidin an embryonalen Stammzellen der Maus, sowie Zelllinien der akuten myeloiden 

Leukämie untersucht. Durch die Blockierung der 5-Position können Methyltransferasen kovalent 

gebunden werden, was eine globale Erniedrigung der DNA-Methylierung hervorruft. Es wurde eine 

neue Massenspektrometrie-basierte Methode entwickelt, die durch chemische Stabilisierung des 

Hydrolyse-empfindlichen Moleküls eine direkte und simultane Quantifizierung der Modifikation und 

der methylierten (2‘-Desoxy)cytidine in der DNA und RNA ermöglicht. Mithilfe dieser Analyse-Methode 

wurde herausgefunden, dass alle Methyltransferasen gleichermaßen empfindlich auf Azacytidine 

reagieren. Zuvor war postuliert worden, dass die Maintenance Methyltransferase DNMT1 besonders 

empfindlich auf Aza(d)C in der DNA reagieren würde. Zudem konnte gezeigt werden, dass die 

Sensitivität von Leukämiezellen gegenüber ribo- bzw. desoxyribo-Azacytidinen nicht mit deren 
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Einbauraten einhergeht, obwohl unterschiedliche Zelllinien klare Unterschiede im Aza(d)C Einbau 

aufwiesen. Auch die Reduktion der Methylierung scheint nicht proportional zum Einbau des Analogons. 

Scheinbar besitzen diese Substanzen eine komplexe Wirkung auf unterschiedliche Krebsarten, die sich 

mit einer direkten Wirkung auf die Methyltransferasen und entsprechende Reparaturmechanismen an 

der DNA alleine nicht erklären lässt. Die Applikation von 5-Azacytidin auf re-isolierte, von Patienten 

abgeleitete Xenotransplantat-Zellen gab des Weiteren zusätzliche Hinweise auf die komplexe, von 

Patient zu Patient unterschiedliche Wirkung des Therapeutikums. Die Analyse-Methode könnte eine 

schnelle und einfache Möglichkeit darstellen, um bei Untersuchungen in der Klinik eine Inkorporation 

des Analogons in die DNA und RNA zu belegen und den Effekt auf die Methylierungsgrade zu evaluieren. 

Dies könnte frühzeitig eine Identifikation einer Resistenz von Patienten gegenüber den Substanzen 

ermöglichen. Eine Anwendung von anderen Therapie-Optionen könnte so früher in Erwägung gezogen 

werden. Da Azacytidine sehr Hydrolyse-empfindlich sind und ein Teil ihrer Wirkung damit auf ihre 

akute Toxizität zurückzuführen ist, wurde zusätzlich ein carbozyklisches Derivat des 5-Aza-

2‘-desoxycytidins in Hinblick auf dessen Effekt auf die DNA-Methylierung untersucht. Das Derivat ist 

stabil gegenüber Hydrolyse und wird in großen Mengen in die DNA eingebaut, wo es eine Reduzierung 

von m5dC verursacht. Einbau und nachfolgende Effekte werden jedoch erst nach längerer 

Inkubationszeit und unter Zugabe des Moleküls in höherer Konzentration ersichtlich. Die Ergebnisse 

indizieren, dass DNA Methyltransferasen zwar vermutlich kovalent gebunden werden, aber das 

Molekül nicht leicht in die Zelle aufgenommen oder in das Triphosphat umgewandelt werden kann. 

Nichtsdestotrotz könnte die Stabilität des Moleküls eine geringere Mutagenität aufweisen, da das 

Nukleosid in der DNA nicht zerfällt und keine Strangbrüche erzeugt werden. Des Weiteren könnte die 

Stabilität eine lediglich einmalige Applikation des Therapeutikums pro Behandlungszyklus ermöglichen 

und letztlich zeitverzögert denselben Effekt auf DNA-Methylierung und Genaktivierung verursachen. 

Dies würde für den Patienten eine angenehmere und für die Krankenkassen eine kosteneffizientere 

Therapie bedeuten.  
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Summary 

The research presented here analyzes DNA and RNA modifications and their role in epigenetics and 

disease formation. In the first project, I focused on the evaluation of the existence of unknown DNA 

modifications. Using a new mass spectrometry based quantitative method, we were able to uncover 

that N4-methyl-2’-deoxycytidine does not occur and N6-methyl-2’-deoxyadenosine might at maximum 

be present to a few hundred nucleotides per genome in mouse embryonic stem cells and tissues. 

Furthermore, we verified that bacterial contaminations can easily cause a false-positive quantification, 

which due to unprecise data evaluation had been published in multiple journals. Additionally, we 

wanted to investigate whether potentially occurring m6dA can form through enzymatic methylation of 

the DNA base, or if there are alternative causes and sources. To this end, we administered the m6dA 

and m6A nucleosides, transfected m6A-containing RNA and induced differentiation to evaluate 

potential stimulated endogenous and exogenous causes. Our results give evidence on the formation 

of m6dA from the RNA building block, which stems from cytosolic RNA degradation. 

A second part of this thesis investigated potential pathways for active demethylation of 5-methyl-

2’-deoxycytidine through enzymatic deamination, deformylation, as well as base excision repair during 

embryonic development. For this investigation, we conducted in vivo isotope tracing studies to 

determine changes in the modification levels of different cells. As a basis for the analysis of the 

biochemical experiments suitable mass spectrometric methods had to be developed. 

Investigation of a mechanism for a direct C-C bond cleaving reaction on 5-formyl-2’-deoxycytidine as 

part of active demethylation of m5dC was performed by administration of 6-aza nucleoside analogues 

of 2’-deoxycytidines. The nitrogen atom in the 6-position was supposed to block an enzymatic 

nucleophilic attack. Indeed, despite incorporation of the administered 6-aza-5-formyl-2’-deoxycytidine 

into DNA, no deformylated 6-aza-2’-deoxycytidine species was observed. Since however the levels of 

the supplemented nucleoside were rather low due to the high cytotoxicity of the analogue, we cannot 

fully exclude the possibility that elimination of the formyl group does not require attack on position 6. 

Active demethylation via base excision repair was investigated in two different ways utilizing 

hydroxylamine-based derivatization reagents. First, we applied a previously established protocol for 

the derivatization of abasic sites to analyze the function of various glycosylases. We could not find 

evidence for the involvement of base excision repair in processing of methylcytosines. Due to fast 

processing of the mutagenic DNA lesions intermediates of BER might be present below the limit of 

detection. Consequently, we started the development of a derivatization protocol that captures the 

excised formylcytosine from the soluble pool. 

Investigation of a potential deamination reaction on the DNA level was performed through labeling of 

5-methyl-2’-deoxycytidine (m5dC) in mouse embryonic stem cells by administration of [13C,D3]-labeled 
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L-methionine to the cell medium. This molecule as a precursor for the methyl donor S-adenosyl-

L-methionine can generate [13C,D3]-labeled m5dC, whose subsequent deamination can be proven by 

the existence of [13C,D3]-labeled dT. Since S-adenosyl-L-methionine is not involved in the synthesis of 

dT from dU, another source for the formation of this modified nucleoside can be excluded. Our results 

detected [13C,D3]-labeled dT especially during the priming of mouse embryonic stem cells, which 

proves its generation from labeled m5dC. Furthermore, we found out that in absence of DNMT3 the 

formation of the modification is reduced and that complementation with the enzyme cannot recover 

original values. Research on double knockout mESCs of the deaminases of the soluble 

nucleoside/nucleotide pool resulted in detection of reduced levels of labeled dT. These results confirm 

that the major part of the observed deamination happens on m5dC nucleosides that had been excised 

through DNA repair. These events correlate with the activity of DNMT3 enzymes and could cause local 

demethylation. Prime candidates for these loci are genomic imprints. Studies on uni-parental cell lines 

were able to prove a reduced formation of the modification, when parental-specific methylation 

patterns are not present disrupted. 

In a final project, the mode of action of the nucleoside analogues 5-azacytidine and 5-aza-

2’-deoxycytidine was analyzed in mESCs and cell lines of acute myeloid leukemia. Due to the blockage 

of the 5-position the methyltransferases can be bound covalently and induce global reduction of DNA 

methylation. We developed a new mass spectrometry-based method which enables direct and 

quantitative measurement of the modifications and methylated (2’-deoxy)cytidines in the DNA and 

RNA through chemical stabilization of the hydrolysis-sensitive molecule. Using this method, we found 

out that methyltransferases react equally sensitive towards ribo- and deoxyribo-azacytidines. 

Previously it was reported that the maintenance methyltransferase DNMT1 was more sensitive 

towards azacytidines in the DNA. Furthermore, the incorporation of the analogue into different cell 

lines of acute myeloid leukemia is diverse and does not represent the sensitivity of the cells towards 

the therapeutics. The reduction of the methylation is also not proportional to the incorporation of the 

analogues. We assume that the substances possess a complex effect on different cancer types that 

cannot be explained only by direct effects on methyltransferases and corresponding repair 

mechanisms. Administration of 5-azacytidine on re-isolated patient-derived xenograft cells gave 

additional evidence on the complex, patient-dependent effect of the therapeutic. We postulate that 

our analytical method offers a fast and simple possibility to determine the incorporation of the 

analogues into DNA and RNA and to evaluate their effect on methylation levels. This could enable 

timely identification of a resistance of the patient towards the substances. Application of different 

therapeutic strategies can therefore be considered earlier. 

Due to the low hydrolytic stability of azacytidines and the resulting acute toxicity, we furthermore 

investigated a carbocyclic derivative of 5-aza-2’-deoxycytidine in regards to its effect on DNA 
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methylation. The derivative is stable towards hydrolysis and is incorporated into DNA to high amounts, 

where it causes reduction of m5dC. Incorporation and subsequent effects are only observed after 

longer incubation times and administration of higher concentrations of the molecule. We propose 

covalent binding of the DNA methyltransferases, but reduced cell uptake or formation of the 

respective triphosphate. Nevertheless, we presume that the hydrolytic stability causes less 

mutagenicity due to decreased degradation in the DNA and therefore lesser occurrence of DNA strand 

breaks. Furthermore, the stability could enable single administration of the therapeutic per treatment 

cycle, which might be sufficient for the same, potentially time-lagged effect on DNA methylation. 

Administration of this nucleoside analogue would enable a less strenuous treatment for the patients.  
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1. Introduction 

1.1 Deoxyribonucleic acid 

The fate of an organism strongly depends on its composition - on not only what kind of cells it is 

comprised of, but rather what the cells contain and how they are regulated. As the storage material 

for every organism’s genetic information, deoxyribonucleic acid (DNA) is one of the major 

macromolecules in every cell. The DNA sequence usually remains the same throughout the whole 

lifetime of an organism, unless damage or specialized processes occur. People use the expression: “it’s 

written in his genes” thinking of the fact, that the DNA of a person plain in its sequence, and the kinds 

of genes it holds, determines the looks and behavior of the individual. What most people do not know 

is the fact that the sequence can be read and interpreted in a multitude of ways leading to different 

outcomes. Determination of how and why specific regulation of the gene expression occurs, is 

fundamental to understand developmental processes and to determine possible improvement options 

for disease states. 

DNA does not only consist of the canonical Watson-Crick bases, but depending on the organism and 

the condition it is in, it additionally contains modified nucleosides. These modifications can have 

several origins. Enzymatic processes can endogenously alter nucleotides to functionalize them for the 

recognition of special proteins. Since a cell is exposed to a multitude of environmental influences all 

the time, damage can and will occur multiple times a day and mutate the DNA. This contributes to 

genomic variation, and may result in beneficial, neutral, or harmful consequences for an organism. 

Well-established sources of genomic mutation are enzymatic editing events – processes that create 

immunogenic diversity[1] –, DNA replication errors, and environmental mutagens, such as certain 

chemicals,[2] light and ionizing radiation. Radiation leads to radical formation of small molecules, which 

can add to the DNA, e.g. Benzo[a]pyrene.[3] Absorption of UV light leads to the reaction of neighboring 

thymidines producing pyrimidone 6-4 pyrimidine photoproducts.[4] Other known DNA damage 

products are thymidine glycols[5] and 7,8-dihydro-8-oxoguanines (8-oxodG),[6] which form by oxidation. 

2’-Deoxyuridine (dU) is created by deamination,[7] or 1,N6-ethenoadenosine can form by lipid 

peroxidation.[8] 

1.1.1 DNA repair mechanisms 

The maintenance of the DNA’s composition is necessary to guarantee the production and survival of 

normally functioning cells. Therefore, various mechanisms have evolved to repair damages in the DNA. 

Bulky adducts can distort the DNA helix and are mostly processed by nucleotide excision repair (NER), 

releasing a 25-30 nucleotide long DNA strand. This process will lead to DNA strand breaks, which have 

to be repaired with an enormous effort to keep the DNA sequence unaltered. NER can be executed as 
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global genome repair (GGR), if the helix-distorting lesion is recognized specifically, or transcription-

coupled repair (TCR), if a lesion stalls an RNA polymerase on the transcribed strand. Subsequent 

common steps include dual incisions by structure-specific endonucleases together with NER-specific 

helicases releasing the DNA strand. Symmetric alterations can cause double strand breaks and have to 

be repaired by homologous recombination repair (HRR) or non-homologous end joining (NHEJ). The 

latter of the two can cause severe genetic mutations, because the excised DNA strand might be deleted 

or not replaced in the right way. 

Single nucleotide DNA lesions can be recognized by enzymes of the mismatch repair (MMR) or base 

excision repair (BER) pathway. Such lesions can be caused e.g. by oxidations, misincorporations or 

deaminations. Excision of the modified or incorrect base from the nucleotide is necessary for 

maintaining the integrity of the DNA. Enzymatic deglycosylation reactions cleave the N-glycosidic bond, 

release the base and leave an apurinic/apyrimidinic (abasic, AP) site. To date, eleven glycosylases have 

been discovered in mammals to work on a variety of DNA modifications. Substrate recognition involves 

rotation of DNA bases out of the DNA helix into a specific binding pocket with the catalytic active site.[9] 

The cleavage of the N-glycosidic bond involves nucleophilic attack and acid-base catalysis. Some of the 

glycosylases are monofunctional with only one glycosylase activity using water to hydrolyze the 

bond.[10] Bifunctional glycosylases additionally exhibit AP lyase activity, where they use a lysine amino 

group to form a Schiff-base with the 2’-deoxyribose[11-12] directly. Subsequent proton transfer reactions 

involving the excised base cleave the DNA strand at the 3’-phosphate.[13-14] Glycosylases have a high 

affinity for the AP sites they generate.[15-19] The tight binding and steric hindrance of BER enzymes 

blocks the glycosylase activity on the counter strand and reduces the probability of double strand 

breaks in symmetrical CpGs.[20] AP sites can also form spontaneously by hydrolysis. In yeast, AP sites 

mainly stem from misincorporated 2’-deoxyuridine during replication[21] and were shown to be 

repaired partly by NER.[22] After their generation, the AP sites[23-25] need to be processed further. Since 

AP sites do not distort the DNA helix, but can stall RNA polymerases, their repair is mediated by 

TC-NER.[26-27] Translesion synthesis at AP sites can lead to mutations, because the polymerases 

predominantly incorporate dA in the position of the lesion.[28] The most effective repair pathway for 

processing of AP sites is direct excision of the free 2’-deoxyribose (see Figure 1).  



Introduction 
 

10 
 

 

Figure 1: Graphic overview over the enzymatic reactions involved in base excision repair. Taken from Carter et 
al.[29] 

First, an AP endonuclease (APE 1 and 2), in mice and humans mostly APE1,[30] cleaves the DNA 

phosphodiester bond at the 5’-end of the lesion[31] leaving a 5’-deoxyribose phosphate (5’-dRP). If AP 

lyases nick the sugar phosphate backbone, cleavage on the 3’-side of the AP site is also possible.[32] For 

insertion of a new nucleotide, a DNA polymerase needs a 3’-OH and a 5’-phosphate on the strand 

break. DNA polymerase β (Polβ) possesses an intrinsic 5’-dRPase activity[33-34] to generate the 

5’-phosphate, but other polymerases need additional enzymes to process the ends e.g. polynucleotide 

5'-hydroxyl-kinase (PNK). To finally close the strand break DNA ligases are necessary, which fuse the 

newly incorporated nucleotide with the other end of the strand. A recent publication reports the 

existence of a so-called BERosome,[35-36] in which all reactions take place in an orchestrated fashion. 

X-ray repair complementing defective repair in Chinese hamster cells 1 (XRCC1) is an interactor with 

many components of the BER pathway: it is involved in deglycosylation reactions with Nei-like DNA 

glycosylases (NEILs),[37-38] it interacts with APE1, PNK[39] and possibly other end-cleaning enzymes[40] 

and is associated with Polβ[41] and DNA ligase (Lig IIIα).[42] Therefore, it is regarded as a scaffolding and 

potentially recruiting protein for the BER proteins. 

1.1.2 Epigenetics 

C. H. WADDINGTON[43] first observed differential cell fates in 1942. He postulated that mechanisms take 

places, which cannot be explained just with interpretation of genes and termed this “epigenesis” from 
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the Greek word “epi”, which translates to “on top of”. Later-on, this lead to an establishment of the 

term “epigenetics”, which describes the dynamic information layer, that exists in addition to the DNA 

sequence. Now it is well-known, that regulation of gene expression is essential for modulation of 

biological pathways in the cell. One regulatory mechanism involves installation of modified nucleotides, 

like 5-methyl-2’-deoxycytidine (m5dC)[44] or 5-hydroxymethyl-dC (hmdC)[45] by specialized enzymes 

(‘writers’). Detection of these modifications by other proteins (‘readers’) can subsequently induce or 

suppress a biological reaction. When their effect needs to be reversed, specific enzymes (‘erasers’) can 

finally remove the modifications. 

 

1.1.2.1 The role of m6dA and N4-methyl-dC 

In prokaryotes, a common modification is methylation of dC in the N4-position. The so-called 

N4-methyl-dC[46-47] (m4dC) is highly abundant e.g. in Synechocystis. Its function has, however, so far 

only been investigated in Helicobacter pylori, where it was shown to regulate transcription and 

pathogenesis.[48] Another very abundant modification in prokaryotes is N6-methyl-2’-deoxyadenosine 

(m6dA).[46] This modification is an important component of the restriction/modification system in 

bacteria to defend against bacteriophage invasion.[49] In detail, the methylation of the host cell DNA 

functions as protection against cleavage by restriction endonucleases. This enables selective 

degradation of invasive unmethylated genomic material. The modification is furthermore involved in 

regulation of DNA replication, repair and transcriptional control in prokaryotes. 

In addition, m6dA was also reported to occur in various unicellular eukaryotes, e.g. Trypanosoma 

cruzi,[50] the ciliates Tetrahymena pyriformis[51-52] and thermophila,[53-56] and many other uni- and 

multicellular organisms.[52, 57-61] In Tetrahymena thermophila, exclusive association of the modification 

with RNA Polymerase II transcribed genes was described.[62] Furthermore, several groups report that 

it occurs in the linker DNA,[63-65] e.g. of H2A.Z-containing nucleosomes,[62] where it might direct the 

positioning of the nucleosomes.[66] The methyltransferase responsible for generation of m6dA in 

Tetrahymena was found to be Tamt-1.[66] In Blepharisma japonicum[67] reduction of the modification 

was correlated with gene activation. In Chlamydomonas reinhardtii, the modification might function 

as a mark of active transcription start sites.[60] 

Additionally, the nucleotide was reported to occur in traces in higher eukaryotes like Aedes 

albopictus,[68] and in adult rats.[69] For a long time, however, the existence of m4dC and m6dA in higher 

eukaryotes had not been proven[70] and with less than one m6dA in one million nucleotides[71] even 

been attributed to bacterial contaminations. Recent investigations of different groups that established 

sensitive protocols, however, claim detection of m6dA in Caenorhabditis elegans,[72] Drosophila 

melanogaster,[73] Xenopus laevis[74] and even human[75] and murine cells and tissues[74, 76] (see Figure 2). 



Introduction 
 

12 
 

 

Figure 2: Schematic overview over occurrence and functions of m6dA in various organisms. Adapted and modified 
from Parashar et al.[77] 

For some organisms, like C. elegans,[72] even the existence of a methyltransferase DAMT-1 and a 

demethylase NMAD-1 were described. The research suggests a potential crosstalk between the 

modification and the histone 3 lysine 4 dimethyl demethylase Spr-5, which affects inheritance of 

infertility. These findings sparked even greater interest in the research community and led more 

groups to investigate different organisms for the existence of m6dA. Single molecule real time (SMRT) 

sequencing by Liang et al.[78] subsequently reported widespread occurrence of the modification in the 

Arabidopsis thaliana genome, mostly in gene bodies and not in intergenic regions.[78] The researchers 

furthermore claim, that m6dA is associated with actively expressed genes and that it shows dynamics 

during development.[78] In the Oryza sativa genomes, m6dA was reported to be involved in gene 

expression, plant development and stress response.[79] The increased occurrence of the modification 

due to mitochondrial stress was furthermore reported for C. elegans,[80] confirming the results from 

Greer et al.[72] Similarly, m6dA was reported to be found in M. musculus brain[81] upon environmental 

restraining stress, and to be altered in the serotonin receptor Htr2a gene promoter upon early-life 

stress in rat.[82] The elevated levels of m6dA were claimed to correspond with gene repression. In pig 
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and zebrafish,[83] the modification was associated with early embryogenesis. Even in humans, the 

methyltransferase N6-adenine specific DNA methyltransferase 1 (N6AMT1)[84] and the demethylase 

non-heme FeII/α-ketoglutarate dependent dioxygenase ALKBH1[76, 85] have recently been suggested to 

install and remove m6dA in cells and were associated with cancer formation.[84, 86] A potential role for 

the modification in humans was furthermore reported in correlation with fat mass and obesity 

associated protein (FTO) and Diabetes Mellitus Type II,[87] and in systemic lupus erythematosus.[88] 

Additionally, m6dA was discovered to be a more abundant modification in the DNA of mitochondria, 

where it was suggested to be recognized by single-stranded DNA-binding protein 1 (SSBP1), a 

replication factor associated with the heavy strand of mitochondrial DNA (mtDNA). This finding could 

correlate m6dA with the regulation of mtDNA replication.[89] Most recently, even an oxidized derivative 

of the modification -N6-hydroxylmethyl-adenine - was reported, that might be installed by ALKBH1 and 

is thought to be associated with lung carcinoma.[90] 

Despite the recent findings, it is still under debate, whether m6dA exists and has a function in 

eukaryotes. In 2006, a sensitive HPLC-MS method did not detect m6dA in mouse tissues or human 

mtDNA and determined the maximum possible amount of the modification to less than one m6dA in 

one million nucleotides.[71] This finding was challenged by researchers, who claimed to have found the 

modification in the range of 0.0001-0.1% of dA in mESC or human cells.[74, 76, 87] Several groups[91-92] 

subsequently investigated the robustness of the described methods for the quantification of m6dA in 

different organisms. Lentini et al.[92] report overestimations of the nucleoside because IgG-based 

antibodies often possess binding affinities towards short tandem repeat DNA motifs, that do not 

contain modified nucleosides and immunoprecipitation data analysis is performed without 

appropriate controls. The researchers additionally found substantial amounts of reads in the 

respective sequencing data sets that stem from bacterial contaminations. O’Brown et al.[91] 

furthermore uncovered biased UHPLC-MS data analysis due to nucleoside contaminations in 

commercially available nucleases and artefact levels that stem from bacterial contamination in DNA 

preparations.[91] They however still report a detection of the nucleoside in preparations from mice that 

were raised without germs or microbiome. As a conclusion, trace analysis of nucleosides is a 

challenging task that requires careful sample preparation with adequate controls and cautious data 

analysis to exclude impurities from other sources or to identify artefacts. 

 

1.1.2.2 The role of m5dC 

The most frequent modification in DNA of higher eukaryotes is methylation on dC and it is essential 

for mammalian development.[44] The underlying reason is stable transcriptional silencing,[93] which 

affects genome stability, X chromosome inactivation, genomic imprinting, and the silencing of 

retrotransposons.[94-96] Methylated dC (m5dC) is well-studied in vertebrate DNA and occurs widespread 
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in palindromic CpG dinucleotides.[97] In somatic cells, accumulated CpGs, so-called CpG islands, are 

however usually unmethylated.[98] A study comparing human somatic and pluripotent embryonic stem 

cell (ESC) lines found global dC methylation levels of 4.25 and 5.83%, respectively, of which 99.8 and 

75.5% occur at CpG sites.[99] Furthermore, relatively high abundance of m5dC in non-CpG context has 

been reported in mouse oocytes,[100] pluripotent ESCs[99, 101-102] and mature neurons.[103] 

The modification is installed by DNA methyltransferases (DNMT1, 3a and 3b).[104-105] The underlying 

enzymatic reaction for the methylation is covalent binding of the enzyme to the base in the C6-position 

and transfer of a methyl group from SAM under acid-base catalysis. DNMT3a and b are so called de 

novo methyltransferases,[105] establishing methylation on completely unmethylated DNA regions. They 

preferentially associate with the tightly condensed heterochromatin surrounding the central 

connection points of the sister chromatids (pericentromeric heterochromatin).[106] In comparison, 

DNMT1 is a maintenance methyltransferase, which installs methyl groups in hemimethylated regions. 

Therefore, it localizes to replication foci during S phase,[107-108] where the newly synthesized strand is 

first unmethylated distinguishing it from the parental strand. The hemimethylated sites are recognized 

by Ubiquitin-like PHD and RING finger domain-containing protein 1 (UHRF1), which then recruits 

DNMT1 to methylate the daughter strand. In certain circumstances, DNMT1 can also methylate de 

novo, if the other enzymes are not present and vice versa.[109-110] A fourth member of the family, 

DNMT3l, does not have any catalytic activity, but was shown to increase the binding of the methyl 

donor S-adenosyl-L-methionine (SAM) to the shortened DNMT3a isoform DNMT3a2. Furthermore, it 

plays an important role in the development of the sexual reproduction system, the germ line.[111-113]  

If the levels of m5dC are altered unspecifically, developmental processes are impaired and cancer can 

occur.[114-116] The m5dC nucleotide is considered epigenetic, because its occurrence in promoter regions 

silences the associated genes,[104] and removal of the modification can reactivate the gene expression 

(see Figure 3). 
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Figure 3: Schematic overview over the establishment and function of m5dC in DNA. Taken from Agrawal et al.[117] 

 

1.1.2.2.1 Induction of passive demethylation in cancer treatment 

Methylation of dC in DNA, forming the epigenetic base m5dC, is an important mechanism for silencing 

the expression of genes.[93] Cancers have gene-specific increases in methylation (hypermethylation) 

and global undermethylation (hypomethylation).[114, 118] Furthermore, hypermethylation of CpG 

islands[119] can lead to cancer formation, because normally expressed genes, e.g. tumor suppressor 

genes, get repressed.[98] Examples for these are serine protein inhibitors (SERPINs) involved in gastric 

cancer.[120] But hypomethylation of CpG islands of oncogenes involved in breast and ovarian cancer can 

also lead to cancer formation.[121] It has been shown, that in acute myeloid leukemia (AML) and 

myelodysplastic syndromes (MDS) a great number of genes are hypermethylated.[122-124] Since the 

absence of maintenance methylation leads to loss of methylation patterns through dilution during 

replication, targeting of maintenance methylation in leukemia by administration of specific drugs is a 

common treatment strategy. 

MDS comprise various kinds of cancers, in which maturation and development of blood cells in the 

bone marrow is impaired.[125] Patients show symptoms of tiredness, shortness of breath, easy bruising 

and bleeding and increased risk of infection. Some types may develop into AML,[125] which is a 

malignant cancer characterized by clonal proliferation[126-128] of myeloid progenitor cells that build up 

in the bone marrow and blood,[129] and therefore development of cytopenia. It occurs mostly in elderly 
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patients[130] with an average on-set of 67 years, and males are more often affected than females. AML 

patients show the same symptoms as patients with MDS.[129] If it is not treated, AML shows rapid 

progression and is typically fatal within weeks or months.[129] The disease comprises various subtypes, 

for which the outcomes and treatments may vary.[129] The typical treatment is chemotherapy aimed at 

inducing remission. Next treatment options are additional chemotherapy, radiation therapy or a stem 

cell transplant.[128-129] Genetic mutation analysis can help determine the probability of survival and 

guide the therapy.[128] 

Two of the pharmaceuticals in use for treatment of AML and MDS are 5-azacytidine (Azacitidine, AzaC) 

and the corresponding DNA analogue 5-aza-2’-deoxycytidine (Decitabine, AzadC),[131-134] because they 

are known to lower the levels of m5dC in cells.[134] In addition, treatment with AzadC or AzaC causes 

various other changes in cells, including activation of silent genes,[135-136] decondensation of 

chromatin,[137] and alteration of DNA replication timing.[138] AzaC was furthermore shown to induce 

apoptotic cell death.[139-141] Clinical usage of AzadC is mostly at low doses.[142] The two compounds do 

not necessarily show the same clinical results. Depending on the cancer type the drug is administered 

to, the two azacytidine analogues show different resistance profiles.[143] For the DNA analogue, it has 

for example been shown, that the dCTP pyrophosphatase 1 (DCTPP1) and dUTPase enzymes are 

involved in therapeutic effects, because the deaminated AzadUMP might inhibit thymidylate synthase 

(TS).[144] Nevertheless, both compounds create a hypomethylated state, in which silenced tumor 

suppressor genes become re-activated.[145-146] Their mechanism of action is complex and not yet fully 

understood. Both compounds are incorporated into DNA[147-148] as dC analogues, where they form a 

covalent inhibitory adduct with the DNMTs[149] according to the mechanism shown in Scheme 1. 

Methylation of C5 involves addition of a helper nucleophile to the C6-position, followed by 

electrophilic methylation with SAM and final elimination of the helper nucleophile. Due to the 

presence of a nitrogen atom at position C5 in AzaC/AzadC, this last elimination step is blocked, which 

leads to irreversible inhibition of the DNA methyltransferases DNMT1 and DNMT3a/b.[150-153] 

Scheme 1: Proposed mechanism of action of 5-Aza-(2’-deoxy)-cytidine. The blue components are part of the 
active site of the methyltransferases. The active part of the SAM cofactor is depicted in red. 
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Both compounds are rather unstable with half-life times between 3.5 – 21 h depending on conditions, 

because addition of water to the N5-C6 double bond can compromise the ring structure and hydrolyze 

the base (see Scheme 2).[154-155] 

 

Scheme 2: Depiction of the main hydrolysis pathway of AzadC and AzaC. 

This hydrolysis makes the analysis of their mode of action difficult.[156-157] Determination of the extent 

of Aza(d)C integration into DNA is particularly challenging. Feeding of radioactive AzaC/AzadC for 

quantitation is only of limited use,[158] because one cannot distinguish degraded from intact material. 

Several groups[159-160] including our own[161] developed methods for chemically stabilizing the 

azacytidines in DNA and RNA by hydrogenation with NaBH4 and thereby reduction of the double bond 

between N5 and C6. 

Cells also contain another DNMT family member, DNMT2, which is known to act on cytidine in RNA.[162] 

In addition, the NOL1/NOP2/sun domain (NSUN) enzyme family has been discovered to methylate 

cytidines in RNA. In particular, it was shown that NSUN2[163] and NSUN6[164] mainly methylate cytidines 

in tRNA, whereas NSUN4[165] acts on rRNA. Since the DNMTs acting on DNA are known to be affected 

by Aza(d)C, another possible mechanism of action for AzaC is trapping of the DNMT2 enzyme after 

incorporation of the nucleoside into RNA. Recently it has been shown by Aimiuwu et al.,[166] that AzaC 

affects the ribonucleotide reductase (RNR), because incorporation of the nucleoside into the mRNA of 

the RRM2-subunit of this enzyme leads to attenuated mRNA stability. 

Resistances towards azacytidines 

Hepatotropic cancers have never shown strong effects upon azacytidine treatment. The underlying 

reason for this resistance is increased expression of cytidine deaminase (CDA) in liver cells, which 

deaminates the drugs to unreactive (d)U nucleosides.[167] The major known mechanism of resistance 

to cytidine nucleoside analogues results from lack of incorporation into DNA[168] for example through 

deoxycytidine kinase (DCK) deficiency as shown in vitro, and was reported to be related to in vivo 

resistance in some patients[168-169] and in a rat model.[170] AzaC, however, does not need DCK. Its 

incorporation is dependent on uridine-cytidine kinase (UCK).[171] Indeed, a recent study has shown that 

some patients can respond to AzadC after showing clinical resistance to AzaC.[172] Qin et al.[143] report, 

that resistance towards AzadC differs depending on the cell line, but the most resistant cells showed a 

combination of low expression of DCK, high expression of human equilibrative nucleoside transporter-1 
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and -2 (hENT-1, -2), as well as high expression of CDA. Transfection of wt DCK can restore the sensitivity 

in HL60 cells. Furthermore, they observed that AzadC-treatment induced histone H2A.X 

phosphorylation, a marker of double strand DNA breaks, and increased the rate of homologous 

recombination repair, which might give rise to loss of heterozygosity of DCK and resistance to AzadC. 

Interestingly, resistance to AzadC was, in contrast to previous predictions,[151] unrelated[143] to DNMT 

levels and long interspersed element (LINE) methylation, a marker of global DNA methylation. 

Previously, increased resistance towards AzadC was described in Dnmt1-/- mESCs.[151] A different 

group[173] found out, that naïve Dnmt1-/-, as well as Dnmt3a-/- and Dnmt3b-/- mESCs were slightly more 

resistant (about 4-fold) against AzadC than wt cells, but Dnmt3a-/-/Dnmt3b-/- double knockout mESCs 

show strongly increased (200-fold) resistance towards AzadC compared to wt and DNMT single 

knockout cell lines. They furthermore report significantly decreased apoptosis in Dnmt3a-/-/Dnmt3b-/- 

double knockout mESCs and therefore a role of these de novo methyltransferases in induction of 

apoptosis upon treatment with AzadC. Differentiating mESCs show hypersensitivity towards AzadC and 

increased apoptosis, which might be caused by the higher expression of DNMT3a and DNMT3b due to 

epigenetic reprogramming. Overall, clinical outcome of azacytidine treatment depends on various 

factors and analysis of genetic variables and protein expression, and the extent of azacytidine 

incorporation could enable early identification of suitable treatment options. 

1.1.2.2.2 Active demethylation of m5dC 

Dynamics of the dC modification levels have been described in embryogenesis of mice. Sexual 

reproduction involves the inheritance of two genome copies, one each from a pair of parental 

organisms. In higher eukaryotes, this process takes place when one sperm cell enters an oocyte. After 

this event, the zygote contains the genetic information of both parents and becomes the origin of all 

cells of the developing organism. Although embryonic development entails progression through a 

seamless sequence of events, for ease of description distinct stages are usually identified by a snapshot 

view of the process, with some notable differences between evolutionary distant mammalian species 

(see Figure 4). In mice,[174] the first three cell divisions are symmetrical giving the two-cell, four-cell and 

eight-cell embryo. This then gets compacted to form the early eight-cell morula. In this period of 

embryonic development, all cells have high developmental potential and can give rise to all cell types 

that are present in the final organism. This capability to differentiate into all of the three primary germ 

cell layers as well as extraembryonic tissues is called naïve pluripotency. Subsequent asymmetric cell 

divisions form the 16-cell morula and the 32-cell morula, in which the cells are starting to segregate 

into different lineages. Thereby, they progressively lose the ability to develop into specific tissues, 

undergoing changes that prepare them for the development of the mesoderm, ectoderm and 

endoderm. The cells are ,primed’ pluripotent and the priming procedure involves e.g. establishment 
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of DNA methylation and changes in histone modification patterns. Further asymmetric cell divisions 

will finally develop the early blastocyst that matures to the late blastocyst by losing the zona pelucida. 

This stage of the embryo is able to implant into the uterus. The cells of the mouse post-implantation 

epiblast are fully primed at around day 7.5 after fertilization (embryonic day, E) and have lost the 

potential to generate cells of the germ line. 

 

Figure 4: Comparison of the mouse and the human embryonal development. A) Depiction of the mouse 
blastocyst formation, B) depiction of the human blastocyst development. Taken from Sozen et al.[174] 1 
ZGA: zygotic genome activation, EGA: embryonic genome activation, E/d: embryonic day; white cell: 
undifferentiated, yellow: OCT4-expressing ICM precursor, red: GATA6-expressing ICM precursor, blue: NANOG-
expressing EPI precursor, light blue: CDX2-expressing TE precursor, light red: partially CDX2-expressing cell, light 
yellow: partially OCT-4 expressing cell; ICM: inner cell mass; OCT-4, GATA6, NANOG, CDX2: pluripotency marker 
proteins. 

To date, it is not fully investigated how level changes occur. Since the DNA was found to contain 

hmdC,[45, 175-176] 5-formyl-dC (fdC)[177-178] and 5-carboxy-dC (cadC),[178] those modifications are proposed 

to be intermediates of a demethylation process.[179] They can be generated by Ten-eleven translocation 

(TET) enzymes, which utilize α-ketoglutarate, oxygen and FeII to oxidize m5dC.[178, 180] The modification 

hmdC is dynamically regulated during differentiation of mouse (m)ESCs[181] and involved in their 

transcriptional regulation.[182] Specific functions of fdC and cadC are not yet fully elucidated, but they 

were implicated to have impact on the structure of the DNA helix[183] and the transcription rate.[184] For 

fdC, stable,[185] or at least semi-stable levels[186] in DNA have been described and it is specifically 

                                                           
1 Reprinted from Developmental Biology, 395/1, Berna Sozen, Alp Can, Necdet Demir, Cell fate regulation 
during preimplantation development: A view of adhesion-linked molecular interactions, 73-83, Copyright 2014, 
with permission from Elsevier. 

https://www.sciencedirect.com/science/article/pii/S0012160614004199?via%3Dihub#!
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enriched in enhancer and intragenic regions in mESCs.[187] For hmdC, it has furthermore been 

discovered, that it occurs to high levels[176, 188] in the brain, where it has specific functions.[189-190] It 

comprises 0.6% of nucleotides in Purkinje and 0.2% in granule cells.[176]  

The paternal DNA in mice rapidly loses m5dC after zygote formation by TET-mediated oxidation[191-193] 

and the loss is not mediated by Thymidine DNA Glycosylase (TDG),[194] whereas the maternal DNA 

methylation gets passively diluted by replicative DNA synthesis.[195] Some methylation on the DNA of 

the zygote does, however, not disappear. Specific proteins encoded by the PGC7/Stella gene were 

discovered to protect methylated regions from demethylating events.[196] Methylation in these areas 

is necessary for normal embryogenesis and the protective proteins are expressed between fertilization 

and the two-cell stage.[196-198] Furthermore, starting at embryonic day 6.5 after fertilization (E6.5) of 

the mouse embryogenesis, a second erasure of global methylation takes place in PGCs in two waves 

(see Figure 5). First, maintenance and de novo methylation are disabled by depletion of recruiting and 

targeting enzymes. In early PGCs, CpG island methylation is comparable to that of the epiblast and 

other somatic tissues, but not like the oocyte, the ICM or other cells of the preimplantation embryo.[199-

200] To establish full developmental potential in gametes, a second wave of demethylation occurs 

around E11.5 additionally affecting imprinted loci, genes in the X chromosome and germ line specific 

genes. 

 

Figure 5: Schematic overview of the correlations between CpG methylation, culturing conditions of mESCs, and 
the embryonic development of the mouse. Taken from Lee et al.[201] 

In the paternal genome of mouse zygotes, elongator protein complex 3 (ELP3) was furthermore 

identified to be necessary for demethylation.[202] This protein could theoretically attack the methyl 

group of m5dC directly via its Fe-S radical SAM domain and therefore conduct C-C bond cleavage. In 

vitro studies show, that some DNA methyltransferases are also capable of removing methyl groups,[203] 
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hydroxymethyl groups[204] and even carboxyl groups[205] in a C-C bond cleaving mechanism in absence 

of SAM. A decarboxylation reaction was additionally reported in mESCs.[206] Active demethylation 

through NER involving growth arrest and DNA damage 45 (GADD45) and Xeroderma pigmentosum 

complementation group G (XPG) was found in Xenopus[207] and was controversially discussed,[208] but 

later confirmed to act in locus specific demethylation.[209-220] In addition, GADD45 was shown to 

facilitate active demethylation through deamination[221] or oxidation via TET1 and TDG.[222-223] In plants, 

where no TET enzymes are found, active demethylation by direct base excision of 5-methylcytosine 

was reported.[224-225] However, in mammals, homologues of the responsible proteins do not exist. 

Involvement of BER in removal of m5dC through its deaminated and oxidized species was furthermore 

reported in PGCs,[226] but for acute and global demethylation, e.g. to reactivate silenced genes, BER is 

not suitable and other mechanisms are likely (see Figure 6):  

a) passive demethylation by dilution of the modification during replication, 

b) active demethylation by  

I) direct excision of the methyl group by C-C bond cleavage (due to the strong covalent bond 

between two carbons is it rather unlikely, although ELP3 might use an Fe-S radical 

mechanism[202]), 

II) direct excision of methylcytosine (confirmed in plants,[224] but there are no protein 

homologues in mammals), 

III) oxidation of the methyl group to hmdC, fdC or cadC and reestablishment of dC by C-C bond 

cleavage via dehydroxymethylation, deformylation[179] or decarboxylation,[206] 

IV) oxidation of the methyl group to hmdC, fdC or cadC and excision of the base in MMR, BER[180, 

227] with further processing of the formed AP site, NER or combinations thereof,[228] 

V) deamination of the 4-amino group of the dC derivatives and excision/processing of the 

newly-formed dU derivatives.[229-231] 

It is likely that most of these pathways can and will take place in various organisms or tissues, but might 

be gene-specific or depending on the developmental status of the organism. 
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Figure 6: Overview over the possible pathways for formation and erasure of 2’-deoxycytidine derivatives. 

 

Glycosylases involved in the removal of cytosine derivatives 

As described in section 1.1.1, BER is a process to remove unwanted DNA modifications utilizing 

glycosylases. Their role in removing enzymatic products of m5dC as a means for epigenetics has 

however not been fully elucidated. One glycosylase known to act on a broad variety of substrates that 

can be generated from m5dC is TDG. It was first described to detect dT:dG mismatches and counteract 

the mutagenic effect of spontaneous m5dC deamination.[232] The major function of TDG lies in excision 

of fdC and cadC[180, 227, 233] and it is therefore involved in active demethylation of m5dC through these 

oxidized species. TDG can furthermore process 5-hydroxymethyl-dU (hmdU)[230-231] and 5-formyl-dU 

(fdU)[234-235] opposite of dG. TDG was furthermore reported to be the glycosylase whose ablation leads 

to the most severe phenotype in mice and therefore to be essential for embryonic development in 

mouse.[231, 236] This importance of the enzyme lies not in global early zygotic demethylation,[194] but 

rather site-specific TET-TDG directed demethylation[237-240] exhibiting tissue-specific patterns.[187] Later, 

excision of m5dC in hemi-methylated DNA was also described in vitro.[241] The m5dC glycosylase activity 

was then associated with the related mismatch-specific DNA N-glycosylase Methyl-CpG-binding 

domain protein 4 (MBD4). Nevertheless, the activity was still considered weak and therefore doubted 

to occur in vivo.[230, 242-244] TDG and MBD4 both process various dG-mispaired base lesions, e.g. thymine 

and uracil.[245-246] MBD4 was also shown to act on fdU.[234] Since MBD4 excises dT, that stems from 
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deamination of m5dC, it might be involved in active demethylation processes, although depletion of 

the enzyme only leads to moderate increase in dC --> dT transversion mutations and no developmental 

defects.[247-248] MBD4 interacts with MutL homologue 1 (MLH1), a protein of the post-replicative MMR 

system.[249-250] 

Three different NEIL enzymes form another class of glycosylases working on oxidized dC species. Of 

these, 1 and 2 express glycosylase activity on oxidized pyrimidines,[251-253] but also on 8-oxodG in DNA 

bubble structures,[254] whereas NEIL3 shows no activity towards 8-oxodG.[255] Neil1 gene inactivation in 

mice exhibits a phenotype similar to metabolic syndrome and increased damage of mitochondrial 

DNA.[256] NEIL enzymes possess an additional AP lyase function in excising the DNA strand 5’ and 3’ to 

the nucleoside and can therefore perform β- and δ-elimination reactions on the sugar.[257] The 

3‘-phosphate then gets processed by PNK.[37-38] NEIL enzymes are thought to release other glycosylases 

from the AP sites they generate and to be necessary for the formation of a so-called BERosome,[35-36] 

in which all reactions of the BER process can take place in an orchestrated fashion. There is a complex 

relationship between TDG and the NEIL1 and 2 enzymes. The NEILs can partially compensate for loss 

of TDG, but they show no binding affinity and activity towards fdC or cadC in vitro.[258-259] The NEIL 

enzymes were shown to be involved in substrate turnover of TDG,[259] like APE1,[16, 260] releasing the 

glycosylase from the tight binding to the AP site and processing it with β,δ-elimination.[261] Redundancy 

of the functions of NEIL1 and 2 with those of APE1 could explain the unexpectedly mild effects of APE1 

knockdown on fdC and cadC in HeLa cell extracts and cultured cells, as well as Xenopus embryos.[259] 

In mice, spontaneous deamination of dC to dU is processed mostly by the uracil DNA glycosylases 

(UNG)[262-263] 1 and 2. UNG1 is the mitochondrial isoform protecting mitochondrial DNA from 

mutagenesis.[263] Alternative promoter usage and splicing generates the UNG2 isoform, which is 

located in the nucleus, where it acts on genomic DNA.[263] Additionally, spontaneous deamination to 

dU is processed by single-strand selective monofunctional uracil DNA glycosylase (SMUG1).[264] In 

humans, SMUG1 was also found to be a back-up enzyme in addition to hUNG2.[265] Nuclear UNG2 is 

targeted to DNA synthesis sites by proliferating cell nuclear antigen (PCNA) and replication protein A 

(RPA), where it excises misincorporated dU.[266] SMUG1 can furthermore process hmdU,[229, 267-269] 

which is a product of deamination of hmdC or TET-oxidation of dT, as well as further oxidized species 

like fdU.[229, 270-272] The enzyme acts preferred on ssDNA,[264] but seems to act also on dsDNA in 

humans.[265] The origin of dU lesions determines its mutagenic potential. If dU derivatives stem from 

TET-mediated oxidation, they can still be read as dT analogues and base pair with dA, but if they 

originate from deamination events on dC derivatives,[273] a XdU:dG mismatch will be generated, which 

is more efficiently processed than XdU:dA mismatches.[7] Transversion mutations of dA --> dC and 

dT --> dG are elevated when AP endonucleases are disrupted and they additionally depend on 

expression levels of UNG. Furthermore, these mutations occur frequently with high cellular dU 
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triphosphate (dUTP) levels, which can be counteracted with overexpression of dUTP 

pyrophosphatase.[22] An isotope tracing study in mESCs[274] shows that hmdU appears only labeled, 

when dT and not m5dC is labeled, suggesting a formation of hmdU through oxidation of dT. This 

explains a correlation between hmdU and hmdC in mice reported by Alsøe et al.,[7] since both 

modifications are affected by TET activity. SMUG1 also exhibits higher activity in the brain in 

comparison with other organs.[7] 

Deamination 

Active demethylation is expected to not only happen via an oxidative pathway, but might potentially 

take place through enzymatic deamination of m5dC to dT and further processing of this nucleotide by 

a repair mechanism. Deaminases transform (d)C to (d)U by replacement of the exocyclic amino group 

with a hydroxyl group. There are two types of cytidine deaminases in the soluble pool. CDA[275] acts on 

nucleosides (C or dC), whereas deoxycytidylate deaminase (DCTD) is active on the nucleotide 

2’-deoxycytidine monophosphate (dCMP). DCTD is a zinc dependent enzyme, which can be 

allosterically activated through binding of dCTP and inhibited by dTTP.[276] Human CDA is a tetrameric 

enzyme of 15 kDa per subunit.[277] Investigation of those two enzymes in leukemic cells revealed that 

upon feeding of radioactively labeled m5dC only labeled dT, not labeled m5dC was found in the 

genome.[278-279] The observation that only labeled dT, but no m5dC gets incorporated might be caused 

by the substrate specificity of nucleoside monophosphate kinase, which is not active on m5dC 

monophosphate.[280] The incorporation was analyzed in knockout conditions and revealed, that labeled 

dT was only found, when the CDA/thymidine kinase (TK), but not the DCTD/TK pathway was functional. 

Another study also reported incorporation of tritiated m5dC in Chinese hamster ovary cells with low 

m5dCMP deaminase activity.[281] Deamination of m5dC is therefore considered to take place on the 

nucleoside level. Some cancer cell lines overexpress CDA, which causes increased levels of mutagenic 

dU species upon treatment with hmdC and fdC.[282] This observation poses a potential targeting 

strategy for resistant cancers. Decreased CDA levels have been implicated in Bloom Syndrome, a 

disease with chromosome instability, because elevated dC and dCTP pools inhibit the DNA repair 

enzyme PAR polymerase-1 (PARP-1).[283-285] In yeast, knockout of the DCTD homologue Dcd1 leads to 

elevated dCTP and decreased dTTP pools and replication fork stalling and collapse.[286] Therefore, 

ablation of the soluble pool deaminases seems to have similar effects between different species. 

In DNA, the 24 kDa activation-induced cytidine deaminase (AID, AICDA) can convert dC to dU.[287] This 

is a desired process for the generation of antibody diversity through: 

I) Somatic Hypermutation (SHM)[1] – minimal mutation of antibody genes generating a library 

of antibody variants with diverse affinity for a particular antigens. 
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II) Class Switch Recombination (CSR)[1] - B cells change the expression of their immunoglobulin 

(Ig). 

III) Immunoglobulin gene Conversion (IGC)[288] - exchange of antibody genes by homologous 

recombination. 

The molecular basis for the generation of antibodies is DNA editing. After replication, it leads to 

formation of a dT:dA basepair in place of dC:dG due to the recognition of dU as dT. Especially dCs in 

the WRCY context (W=adenosine or thymidine, R=purine, C=cytidine, Y=pyrimidine) were shown to be 

edited. Cytidine deaminases possess a typical His/Cys-X-Glu-X25-31-Pro-Cys-X2-4-Cys motif.[289-290] 

Another class of cytidine deaminases is the apolipoprotein B mRNA editing enzyme, catalytic 

polypeptide-like (APOBEC) family, which is evolutionarily conserved. These enzymes perform mRNA 

C-to-U editing, which generates protein diversity, and deamination on DNA. The zinc dependent 

catalytic domain of APOBEC like proteins is located in the N-terminus, while the C-terminus contains a 

pseudocatalytic domain that is not present in the family members 3A, C and H. Some APOBEC3 

enzymes demonstrate antiviral activities[291-293] and misregulation of these enzymes is a major source 

of mutation in numerous cancer types.[291, 294] APOBEC3 enzymes furthermore act on ssDNA,[295-296] with 

at least three bases 5’, of which the closest is dT, and one base 3’ of the dC.[297] A deaminase activity 

of AID and APOBEC1 on m5dC has previously been reported in DNA in vitro,[298] but so far there is no 

evidence for the activity in vivo. Of all family members, the APOBEC3A enzyme has most often been 

shown to act as a DNA cytidine deaminase that converts m5dC to dT.[299-301] AID and APOBEC were 

however shown to deaminate hmdC to hmdU in vivo,[231, 302] but not in vitro.[303-304] Direct action of 

deaminases on m5dC or other cytidine derivatives in the DNA is therefore not fully investigated and 

might pose an alternative mechanism for their repair. 

 

1.1.2.2.3 Genomic Imprinting 

Diploid organisms can exhibit expression of genes from one allele, while the other one is silenced. This 

mono-allelic expression can differ between tissues or cells at different developmental stages. Certain 

genes are differentially expressed depending on the origin of an inherited allele – from the mother, 

maternal, or from the father, paternal. This phenomenon is termed genomic imprinting. The imprinted 

genes are necessary to establish normal embryogenesis and postnatal development. Embryos 

developed with only two maternal alleles, so-called parthenogenotes (gynogenotes), or two paternal 

alleles, so-called androgenotes, are not viable and die shortly after implantation.[305-306] 

First evidence for genomic imprinting came from chromosome mapping studies, a process to 

determine the location of a certain gene. In more detail, the researchers duplicated the genes of 

interest and noticed that some genes had different outcomes, when they originated from one allele or 
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the other. Discovery of the maternally expressed imprinted genes insulin-like growth factor receptor 2 

(Igfr2),[307] the paternally expressed imprinted gene insulin-like growth factor 2 (Igf2)[308-309] and the 

maternally expressed imprinted H19 gene[310] finally confirmed these observations. 

Underlying cause for differential gene expression is DNA methylation. Differentially methylated 

regions (DMRs) are first established in the germ line. DMRs comprise certain genes that are always 

methylated in the haploid maternal germ line, while other genes are only methylated in the paternal 

germ line. Those gametic DMRs (gDMRs) represent inherited DNA methylation and are installed by 

DNMT3 enzymes.[311-312] They furthermore depend strongly on DNMT3l[313-314] and stay present 

throughout the life-time of the organism. Only in primordial germ cells (PGCs) the DNA gets globally 

demethylated including all imprinted methylation.[200] The gDMRs are subsequently reestablished 

during gametogenesis.[201] Methylation at gDMRs is essential for the formation of further methylation 

patterns, so-called somatic DMRs (sDMRs), at the implantation stage. Recent investigations report 

dynamics of sDMRs during tissue development and different cell-types of the adult mouse brain.[315] 

Furthermore, DNMT1 is essential for maintenance of DMRs in somatic cells.[316-317] 

The imprinted H19 gene comprises an unusually long noncoding RNA (lncRNA), which was shown to 

cluster close to the Igf2 gene. This finding lead to the hypothesis, that imprinted genes occur in clusters 

and was the key discovery for understanding the mechanism controlling genomic imprinting in 

mammals. To date about 150 different imprinted genes have been identified in mice, of which most 

cluster into 16 well defined regions.[318] Each cluster contains one gametic DMR, which functions as 

imprinting control region (ICR) that determines the expression state of the somatic DMRs of the cluster. 

The activation or silencing of those genes can be conducted in cis, utilizing so far not fully elucidated 

regulatory mechanisms including DNA methylation, histone modifications and ncRNA. Maternally 

methylated ICRs are well understood, occur all within genes and comprise promoters. Additionally, 

they often possess an antisense, cis-acting ncRNA domain, whose removal will result in bi-allelic 

expression of normally mono-allelically expressed genes.[319] The ncRNA is therefore considered as an 

essential element for the repression of paternally inherited genes. Paternally methylated gDMRs 

comprise fewer CpGs than maternally methylated ones.[320] Furthermore, they are intergenic and do 

not possess specific features in regards to promoters, but the respective cluster can also contain ncRNA. 

Two different imprinted gene clusters regulated by maternally imprinted or paternally imprinted 

ncRNA are depicted in Figure 7. The Dlk1-Dio3 locus is one of few imprinted domains that are 

controlled by a paternally methylated ICR both in cis[321] and trans.[322-323] 
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Figure 7: Genome organizations of two different imprinted mouse clusters. A) Illustration of the paternally 
imprinted Dlk1-Dio3 domain cluster containing the Rtl1as ncRNA. B) Depiction of the maternally imprinted Snrpn 
cluster. Taken from Sanli et al.[324] (https://doi.org/10.1016/j.biocel.2015.04.004). 

Imprinted genes are very susceptible to loss-of-function or epimutations because of their mono-allelic 

nature. Therefore, loss-of-imprinting (LOI) can have mild to severe effects including abnormalities of 

the development, behavior or organ function, as well as cancer.[44] In humans, several diseases and 

malignancies have been attributed to LOI.[325-326] One example is the Prader-Willi syndrome (PWS), a 

disease that is caused by partial (65-75% of cases) or complete deletion of the paternal chromosome 

15 and replacement with a second copy of the maternal chromosome (20-30% of cases) or aberrant 

methylation in the ICR (1-3%).[327] Several imprinted genes are responsible for this effect, but as a major 

factor the absence of a small nucleolar organizing RNA gene, SNORD116, was identified.[327] Ablation, 

mutation or imprinting defects of the maternal genes of the same chromosomal region are the causes 

for a disease called Angelman syndrome (AS), because maternal expression and paternal imprinting of 

the UBE3A gene encoding E3 ubiquitin ligase is lost.[328] Duplication of this region has been associated 

with autistic spectrum disorder, found in >1-2% of cases. 

The Silver-Russell syndrome (SRS) is caused partly by aberrant expression of imprinted genes on 

chromosome 7. Additionally, the imprinted expression of the H19 and Igf2 genes can be disrupted due 

to maternal duplication of chromosome 11, and the respective ICRs were shown to be hypomethylated 

in 40-60% of cases. Genetically opposite to SRS is the Beckwith-Wiedemann syndrome (BWS).[329] It has 

been reported, that there is a higher incidence for BWS and AS after in vitro fertilization.[330-332] 
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1.2 Modifications in ribonucleic acid 

Not only DNA contains modifications. Ribonucleic acid (RNA) is an even more modified macromolecule. 

To date, more than 100 modifications have been discovered with a big variety from small methyl 

groups to large glycosylations. The modifications are thought to be necessary for establishing the right 

secondary structure and stability of the RNA to enable their unique features. Although modifications 

on DNA are rare to occur on adenosines (see section 1.1.2.1), one of the more abundant modifications 

in RNA is m6A. This modification is involved in many processes concerning messenger RNA (mRNA). It 

was also found to be a reversible modification with the corresponding ‘writers’ methyltransferase-like 

(METTL)-3 and -14[333-334] and ‘erasers’, the two demethylases FTO[335-336] and ALKBH5,[337] as well as 

various ‘readers’ – the YTH domain family[338] enzymes. In comparison, the homologue of the most 

important DNA modification m5dC, namely m5C, is one of the less abundant modifications, although it 

is installed by various enzymes[162-165] and was also shown to be oxidized by the TET enzymes to hmC, 

fC and caC.[339-340] Additionally, oxidation of m5C to hmC and fC in tRNA can be performed by 

ALKBH1.[341]  

RNA furthermore contains hypermodified nucleosides, which carry modifications that require multiple 

steps of biosynthesis, like 2-methylthio-N6-isopentenyl-adenosine (ms2i6A) and 2-methylthio-

N6-threonylcarbamoyl-adenosine (ms2t6A) (see Figure 8). 

 

Figure 8: Overview over the structure of some of the hypermodified bases in RNA. Upper row i6A and t6A, lower 
row ms2i6A and ms2t6A. 

The modification N6-isopentenyl-adenosine (i6A) was first discovered in tRNA by H. G. ZACHAU in the 

year 1966.[342] Both isopentenylated modifications are very prominent in prokaryotic tRNA[343] and are 

especially abundant in tRNA that decode codons with U as the first base. They are usually located in 

position 37, right next to the anticodon, where they are responsible for proofreading of the codon-
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anticodon interaction.[344-345] This effect is especially strong for ms2i6A, since it can interact with the 

base opposite of A36 and increase binding of the tRNA to mRNA and the ribosome in the A-, P- and E-

site.[346-347] Therefore, wobble base pairing in the 5’-region is impaired,[345] since the rather weak 

interaction between A in the anticodon and U in the codon gets increased. This effect is caused mainly 

by the isopentenyl moiety, but is supported by stacking of the thiomethyl group to the base pair.[348] 

Furthermore, mismatch bonds of the third base of the codon are enhanced, which enable different 

base pairing in the wobble position.[346] 

In E. coli, i6A is generated by a tRNA dimethylallyltransferase, from now on called MiaA.[349] It transfers 

the isopentenyl group from dimethyl allyl diphosphate (DMAPP) to the N6-atom of adenosine,[350] 

releasing pyrophosphate (PPi) (see Figure 9). In a next step, the tRNA methylthiotransferase (MiaB) 

can synthesize ms2i6A by thiolation, and subsequently methylation, of the 2-position of adenosine 

using a SAM-dependent radical mechanism. 

 

Figure 9: Reaction scheme for the biosynthesis of i6A and ms2i6A; DMAPP: dimethylallylpyrophosphate, PPi: 
pyrophosphate, Fe: iron, Cys: cysteine; taken and adapted from Connolly et al.[351] 

As the human homologue of MiaA, tRNA isopentenyltransferase 1 (TRIT1) was identified.[352] It 

synthesizes i6A specifically in A37 of cytosolic and mitochondrial tRNA.[352] The enzyme is thought to 

have a tumor-suppressing function in human cells.[353] In yeast, the modification is installed by the 

MiaA homologue Mod5[354] and its absence in position A37 reduces translation efficiency and 

fidelity.[355] As a homologue of MiaB, the cyclin-dependent kinase 5 regulatory subunit associated 

protein 1 (CDK5RAP1) was discovered in humans, which generates ms2i6A specifically in mitochondrial 

tRNA, but also in nuclear and mitochondrial RNA.[356-357] CDK5RAP1 is described as repressor of cyclin-

dependent kinase 5 (CDK5).[357] Without CDK5RAP1, the mitochondrial protein synthesis is significantly 

impaired and knockout mice show strong respiratory defects, e.g. myopathy and cardiac 

dysfunction.[358] In the same publication, a higher sensitivity towards oxidative stress is described for 

patients with mitochondrial diseases, in which thiomethylated tRNA are not generated. The group of 

Zhigao Li[359] discovered that knockdown of CDK5RAP1 through RNA interference in the human cancer 

cell line MCF-7 leads to cell cycle arrest in the G2/M-phase, apoptosis and generation of reactive 

oxygen species (ROS). This suggests a new therapy option for cancer through the ROS/JNK signal 
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transduction pathway. CDK5RAP1 is furthermore suspected to be involved in the formation of the skin 

disease vitiligo.[360] 

Like the isopentenylated bases, N6-threonyl-carbamoyl-adenosine (t6A) and its derivatives are 

universally conserved and often found in position A37 of tRNAs, especially in those responsible for 

ANN codons.[361-366] The bulky side chain also stabilizes the anticodon loop structure by strengthening 

π-π stacking with adjacent bases. The underlying cause for this phenomenon is intramolecular 

hydrogen bonding that aligns the atoms in a planar ring. Subsequently, base pairing with U33 is 

prevented,[367] and tRNA binding to the A-site codon and translocation[368] gets enhanced, thereby 

helping to maintain the efficiency and accuracy of translation. t6A37 also plays critical roles in 

aminoacylation of tRNA[369] and prevention of leaky scanning of initiation codons and read-through of 

stop codons.[370] In mammalian mitochondria, t6A37 is present in mitochondrial (mt-)tRNAs for 

Ser(AGY), Thr, Asn, Ile, and Lys.[371] To date, however, the biogenesis and functional role of t6A37 in 

mammalian mt-tRNAs have not been elucidated. Thiomethylation of t6A is generated by CDK5 

regulatory subunit associated protein 1-like 1 (CDKAL1).[372] The Cdkal1 gene has been identified as a 

susceptibility gene for type II diabetes, since it is associated with reduced β-cell function and insulin 

release.[373] 
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2. Aim of the research 

To date several modifications were found on DNA nucleotides and their role has not yet fully been 

elucidated. This research is conducted to discover potentially new modifications and investigate their 

role for the organism. To this end, mass spectrometric method development and corresponding data 

analysis, as well as biochemical methods were supposed to be applied. A special focus was planned to 

be acute myeloid leukemia. This disease is frequently treated with a nucleoside analogue, 5-Aza-

(2’-deoxy)cytidine, which is incorporated into the DNA and RNA and interferes with the respective 

methyltransferases. Analysis of modification levels in a standardized protocol could help unravel all 

mechanisms of function for this drug. Application of the technique with patient samples was supposed 

to show the effectiveness of the treatment in order to give faster evidence of a resistance and 

therefore earlier identification of better therapy options. 

A second focus was put on the investigation of active demethylation of m5dC in mouse embryonic stem 

cells. Current literature describes oxidized derivatives of the nucleoside as intermediates in the major 

pathway for demethylation. Therefore, we planned to analyze a putative C-C bond cleaving 

deformylation mechanism as a non-harmful alternative to DNA repair mechanisms. Base excision 

repair, for example, first cleaves the base moiety of the nucleotide and leaves abasic sites and 

β-elimination products. Subsequently, the repair enzymes perform incisions in the DNA backbone. As 

a second potential pathway for the reestablishment of dC in place of m5dC, we wanted to investigate 

formylcytosine as a product of the base excision repair. This small molecule, like the other products of 

base excision repair, does not allow direct quantification due to lack of a labile bond. To this end, 

extraction and derivatization strategies were planned to be tested and optimized. Finally, this thesis 

had the aim to uncover the role of deamination on m5dC to dT as another alternative removal pathway 

leading to reintroduction of dC into the DNA. 
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3. Results and Discussion 

3.1 Published results 

3.1.1 Quantitative LC–MS Provides No Evidence for m6dA or m4dC in the Genome of Mouse 

Embryonic Stem Cells and Tissues 

Sarah Schiffers, Charlotte Ebert, René Rahimoff, Olesea Kosmatchev, Jessica Steinbacher, Alexandra-

Viola Bohne, Fabio Spada, Stylianos Michalakis, Jörg Nickelsen, Markus Müller and Thomas Carell 

 

Prologue 

After publication of various controversial articles about the existence of m6dA in vertebrate DNA, the 

sensitive evaluation of this modification was essential. In this project, we investigated the existence of 

m6dA and m4dC in murine cell culture and tissues. To this end, a triple quadrupole method was 

developed and gDNA was extracted from murine cells and tissues. Although the established method 

was verified using gDNA of organisms known to contain the nucleotides of interest, both modifications 

were not detected in any of the murine material. This result challenges previous findings, which 

showed low levels of m6dA in murine and human samples. Our data that m6dA does not exist is 

supported by Lentini et al. [92] and O’Brown et al.[91] In these two publications, it has been reported that 

and biased data analysis due to unspecificity of antibodies and artefacts in the LC-MS analysis from 

bacterial contamination led to overestimations of the m6dA levels in higher eukaryotes. 
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Abstract: Until recently, it was believed that the genomes of
higher organisms contain, in addition to the four canonical
DNA bases, only 5-methyl-dC (m5dC) as a modified base to
control epigenetic processes. In recent years, this view has
changed dramatically with the discovery of 5-hydroxymethyl-
dC (hmdC), 5-formyl-dC (fdC), and 5-carboxy-dC (cadC) in
DNA from stem cells and brain tissue. N6-methyldeoxyadeno-
sine (m6dA) is the most recent base reported to be present in the
genome of various eukaryotic organisms. This base, together
with N4-methyldeoxycytidine (m4dC), was first reported to be
a component of bacterial genomes. In this work, we inves-
tigated the levels and distribution of these potentially epigeneti-
cally relevant DNA bases by using a novel ultrasensitive
UHPLC–MS method. We further report quantitative data for
m5dC, hmdC, fdC, and cadC, but we were unable to detect
either m4dC or m6dA in DNA isolated from mouse embryonic
stem cells or brain and liver tissue, which calls into question
their epigenetic relevance.

The genetic material of living organisms is constructed from
the four canonical nucleobases dA, dC, dG, and dT, which
establish the sequence information that, in multicellular
organisms, is stored in the nucleus of every cell (Figure 1).
In addition to the canonical bases, the methylated dC base 5-
methyldeoxycytidine (m5dC) is frequently found.[1] The
presence or absence of this base in specific promoter seg-
ments determines whether the gene is actively transcribed or
silenced.[1] The cell-type-specific distribution of m5dC thus
determines the identity of a given cell. Recently, 5-hydrox-
ymethyldeoxycytidine (hmdC) was found as a sixth base of

the genetic system[2,3] and in 2011, 5-formyldeoxycytidine
(fdC)[4, 5] and 5-carboxydeoxycytidine (cadC)[5, 6] were also
discovered, particularly in DNA isolated from stem cells, but
also in brain DNA. It is currently believed that fdC and cadC
are intermediates in an active demethylation process that
allows cells to change the methylation pattern and hence the
activity state of specific genes.[7,8] For fdC, separate epigenetic
functions are also envisaged.[9]

While the genomes of bacteria are known to also contain
N4-methyldeoxycytidine (m4dC)[10] and N6-methyldeoxyade-
nosine (m6dA),[11] attempts to detect these bases in the DNA
of higher organisms have failed until recently.[12–15] m6dA has
now been found in algae (0.4 mol% m6dA/A),[12] fruit flies
(0.001%-0.07% m6dA/A),[14] and C. elegans (0.01 %-0.4%
m6dA/A),[13] and its presence has even been reported in the
DNA of vertebrates (0.00009 % in X. laevis[16] and 0.00019–
0.003 % of dA in murine cells and tissue[17]). These discov-
eries, especially concerning the DNA of vertebrates, have
spurred a worldwide research interest in unraveling the
function of these new bases in human genomic DNA.[18–20]

In this study, we developed an ultrasensitive triple
quadrupole mass spectrometry (QQQ-MS) method, which
in combination with ultra-high-pressure chromatography
(UHPLC) enables m4dC and m6dA to be searched for and
quantified in parallel to the more established new epigenetic
DNA marks m5dC, hmdC, fdC and cadC.

Figure 1. Depiction of the four canonical DNA bases and the epige-
netic DNA marks m5dC, hmdC, fdC, and cadC, as well as the bases
m6dA and m4dC together with the synthesized isotopologues.
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For the quantitative measurements, we first chemically
synthesized the two isotopologues of m6dA and m4dC shown
in Figure 1 as internal standards for the analytical method.
The prepared compounds D3-m

6dA and 15N2-m
4dC are three

and two mass units heavier, respectively, than the natural
bases. Despite these molecular-weight differences, they have
identical properties during the UHPL chromatography step
so that they strictly coelute with their natural counterparts,
thus allowing them to enter the mass spectrometer at exactly
the same time as the internal standards. The availability of
these isotopologues makes the method highly reliable and
strictly quantitative. The syntheses of the two compounds,
together with all analytical data, are given in the Supporting
Information.

We first benchmarked our study with an investigation of
genomic DNA isolated from the unicellular green algae
Chlamydomonas reinhardtii and the cyanobacterium Syne-
chocystis. In both cases, DNA was isolated after cell lysis using
a standard method (see the Supporting Information). The
isolated DNA was subsequently digested with a mixture of
three commercially available digestion enzymes (Nuclease
S1, Antarctic Phosphatase, and Snake Venom Phosphodies-
terase; see the Supporting Information). We next added the
isotope-labelled standards D3-m

6dA and 15N2-m
4dC to the

obtained digestion mixture and performed UHPLC-QQQ
analysis. For the mass spectrometry detection, we selected
fragmentation of the glycosidic bond as the indicative and
hence recorded mass transition. This is m/z = 266.12!150.08
for m6dA and m/z = 269.14!153.10 for its isotopologue D3-
m6dA. For m4dC, we also used fragmentation of the glycosidic
bond, which gives a mass transition of m/z = 242.11!126.07
for the natural compound m4dC and m/z = 244.11!128.07 for
its isotopologue 15N2-m

4dC (Figure 2 A).
We next modified the reported UHPLC-QQQ method[10]

for the simultaneous quantification of m4dC and m6dA,
together with the other epigenetically relevant bases m5dC,
hmdC, fdC, and cadC. To this end, the UHPLC gradient was
fine-tuned to enable full separation of all six compounds.
Finally, we measured precise calibration curves for all of the
compounds (see Figures S1 and S2 in the Supporting Infor-
mation). This subsequently allowed exact quantification of all
of the discussed epigenetic DNA marks in a given sample
(Figure 2B–D).

Since m4dC and m6dA are well known in bacteria, we first
analysed the cyanobacterium Synechocystis (PCC6803), and
we indeed found both bases (Figure 2 B). The base m6dA was
detected at a level of 8.4 X 10@3 per dN and for m4dC we
measured a value of 5.9 X 10@3 per dN. The constitutional
isomer m5dC and all other dC-derived epigenetic DNA marks
were detectable, but were not quantified in this experiment.

Next, we analyzed two different strains of Chlamydomo-
nas reinhardtii (CC-3491 and wt 7d +), in which m6dA has just
recently been discovered,[12] and the levels of m6dA were
determined to be 8.4 X 10@4 per dN for CC-3491 and 6.9 X 10@4

per dN for wt 7d + (Figure 2C). This corresponds to about
3000 m6dA bases per Chlamydomonas genome (genome size
1.2 X 108), which at 0.7% of the dA is a relatively high
number. In both strains, m4dC was not detected, thus showing
that this base is unlikely to be a component of the genetic

material of Chlamydomonas. This is interesting because
Synechocystis is considered a relative of the chloroplasts
present in Chlamydomonas.

With these positive results in hand, we extended our study
to mouse embryonic stem cells (ESCs; wt J1, Figure 2D).
m6dA in particular was recently reported to occur as an
epigenetically relevant DNA mark in mouse ESCs (mESC
cell line wt TT2).[17] When performing the measurements, we
turned the mass spectrometer to maximum sensitivity. But
even in this mode, we were unable to detect a signal for m6dA
within the detection limits of our system Table S2. In contrast,
the other epigenetically relevant bases hmdC, fdC, cadC, and
even the oxidative lesion 8-oxodG, which we also quantified
in parallel, were clearly detectable. The 8-oxodG level was
4.8 X 10@5 per dN. The rare and difficult to detect cadC was
clearly seen even at levels of only 9.0 X 10@8 per dN. For m6dA,
in contrast, a signal did not appear. We also re-measured wt
TT2 cells as described and still did not detect m6dA over
background levels (see Figure S4).[17] To obtain unequivocal
proof that m6dA is not present in stem cells, we added 13CD3-
methionine to the mESC culture. Methionine provides the
methyl group for the biosynthesis of m6dA. With 13CD3-
methionine, this would lead to an m/z-shift of + 4. We tuned
the mass spectrometer to the new m/z-transition and again
were unable to see any signal for 13CD3-m

6dA (Figure S8).
We subsequently turned our attention to adult mouse

tissue and analysed DNA isolated from liver and whole brain

Figure 2. A) Fragmentation patterns of m4dC and m6dA. B–D) Quanti-
tative data of the bases m4dC and m6dA in Synechocystis (B), Chlamy-
domonas (C) and of these bases and the other epigenetic DNA marks
hmdC, fdC, cadC, and m5dC in mouse embryonic stem cells (D).

Angewandte
ChemieCommunications

11269Angew. Chem. Int. Ed. 2017, 56, 11268 –11271 T 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.org

http://www.angewandte.org


(Figure S3) using our UHPLC-QQQ method. Figure 3 shows
the data obtained from mouse liver. The middle column
shows the data we obtained for hmdC. The already reported
D2-

15N2-hmdC standard elutes at a retention time of 2.25 min

and shows the expected fragmentation of the glycosidic bond,
providing the fragmentation signature m/z = 262.12!146.07,
which allowed assignment of the signal. The naturally
occurring hmdC is detected at exactly the same retention
time with a mass transition of m/z = 258.11!142.06, thus
unequivocally demonstrating the presence of hmdC in murine
liver DNA. Regarding the different monomethylated dC
compounds m5dC and m4dC (left column), the epigenetic
DNA mark m5dC is clearly detected at a retention time of
3.2 min, but for m4dC with a retention time of 3.5 min, there is
obviously no signal present.

The m6dA data are highly interesting (Figure 3 right
column). While the D3-m

6dA standard was clearly detectable
at a retention time of 10.1 min, the unlabelled m6dA provided
a very weak signal. We then performed a control experiment

to determine the limit of detection
and investigated the digestion so-
lution alone, which contains all of
the commercial enzymes but no
isolated DNA (red chromato-
gram). A weak signal for m6dA
was again detectable at a retention
time of 10.1 min. After subtracting
this background signal (red) from
the measured chromatogram
(blue), we obtained the black line
showing that the original signal at
10.1 min is purely caused by back-
ground derived from the enzyme
mixture. Here it is important to
note that most of these proteins
are recombinant proteins obtained
from bacterial expression systems
and bacterial DNA contains plenty
of m6dA. To support the evidence
that m6dA is not present in verte-
brate DNA, we performed the
same experiment with HeLa cells
and also observed no signal for
m6dA (Figure 3B).

We then determined our limit
of detection for m6dA to be 3.5 X
10@7 per dN, which corresponds to
170 m6dA bases per murine
genome. This is a very small
number and demonstrates the
excellent sensitivity of our
method. It shows that the maxi-
mum number of m6dA that could
be theoretically present and would
not be detectable by our method is
less than 170 m6dA bases per
genome, which led us to conclude
that m6dA is likely not epigeneti-
cally relevant but rather formed as
a DNA lesion, perhaps by mis-
guided methyltransferases. Spiking
tests with synthetic nucleoside and

DNA from Chlamydomonas nevertheless confirmed the
sensitivity of the method, since the input amount equalled
the found amount (see Figure S6).

To find a potential source for m6dA in mESC DNA that
could explain previous sequencing data,[17] we thought that
m6dA-containing bacterial DNA that gets degraded could
provide the m6dA nucleoside, which then might get incorpo-
rated into mESC DNA. This is indeed a possibility. When we
added the m6dA nucleoside to a mESCs culture, we indeed
saw incorporation of some m6dA into the genome (Fig-
ure S7).

Figure 3. A) Chromatograms of the mass signal of mouse liver DNA. UHPLC-QQQ data obtained for
m5dC and m4dC (left), hmdC (middle), and m6dA (right, blue line) and their corresponding isotopic
standards are shown. Additionally, for m6dA, the chromatogram for the digest blank is shown (red
line) and a computed baseline (black line), which was determined by subtracting the digest blank
from the sample. B) A chromatogram of the mass signal from UHPLC-QQQ data obtained for m6dA
in DNA from HeLa cells.

Angewandte
ChemieCommunications

11270 www.angewandte.org T 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Angew. Chem. Int. Ed. 2017, 56, 11268 –11271

http://www.angewandte.org


We also cannot fully exclude the possibility that the
presence of few m6dA bases, at levels below our detection
limit, could have a biological function. In addition, it is
possible that at certain stages of organismal development,
certain methyltransferases are activated that may induce high
m6dA levels at specific time points that may have escaped our
detection.[18] Our data, however, show clearly that the
maximum possible levels of m6dA in the analysed organisms
and mESCs under normal conditions are far lower than so far
believed.
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Isotope-dilution mass spectrometry for exact
quantification of noncanonical DNA nucleosides
Franziska R. Traube 1,2, Sarah Schiffers1,2, Katharina Iwan 1,2, Stefanie Kellner1, Fabio Spada1,
Markus Müller 1 and Thomas Carell 1*

DNA contains not only canonical nucleotides but also a variety of modifications of the bases. In particular, cytosine and
adenine are frequently modified. Determination of the exact quantity of these noncanonical bases can contribute to the
characterization of the state of a biological system, e.g., determination of disease or developmental processes, and is
therefore extremely important. Here, we present a workflow that includes detailed description of critical sample
preparation steps and important aspects of mass spectrometry analysis and validation. In this protocol, extraction and
digestion of DNA by an optimized spin-column and enzyme–based method are described. Isotopically labeled standards
are added in the course of DNA digestion, which allows exact quantification by isotope dilution mass spectrometry. To
overcome the major bottleneck of such analyses, we developed a short (~14-min-per-sample) ultra-HPLC (UHPLC) and
triple quadrupole mass spectrometric (QQQ-MS) method. Easy calculation of the modification abundance in the genome is
possible with the provided evaluation sheets. Compared to alternative methods, the quantification procedure presented
here allows rapid, ultrasensitive (low femtomole range) and highly reproducible quantification of different nucleosides in
parallel. Including sample preparation and evaluation, quantification of DNA modifications can be achieved in less than a
week.

Introduction

In addition to the canonical nucleotides, both DNA and RNA contain a variety of modifications of
the bases. In the DNA of vertebrates, for example, modified cytidines such as 5-methyl-2′-deox-
ycytidine (m5dC), 5-hydroxymethyl-dC (hm5dC)1,2, 5-formyl-dC (f5dC)3,4 and 5-carboxy-dC
(ca5dC)4,5 have been discovered. It is well established that m5dC and hm5dC are particularly epi-
genetically relevant6,7. The levels of hm5dC are often altered by several orders of magnitude in tumor
tissues, and this has been shown to correlate with the aggressiveness of tumors8–10. In stem cells, f5dC
and ca5dC were detected at substantial levels3,4 and their abundance changes during differentia-
tion11,12. Both f5dC13 and ca5dC are thought to be involved in a process of active demethylation.
Whether f5dC has additional distinct epigenetic functions is unclear14–18 and, for ca5dC, no such
function has yet been found. Neither f5dC nor ca5dC has yet been explored in regard to potential level
changes in response to disease states. In bacteria, two major modifications are N4-methyl-dC
(m4dC)19 and N6-methyl-2′-deoxyadenosine (m6dA)20. The latter is a well-studied modification with
extreme importance in host defense mechanisms21. m4dC has not been found in vertebrate DNA, and
conflicting results have been found for research into the presence of m6dA in vertebrate DNA22–26.

In addition to these noncanonical bases that are actively generated for partially unknown pur-
poses, genomic DNA (gDNA) contains modified bases that are generated as DNA lesions. In par-
ticular, oxidative DNA lesions such as 8-oxo-7,8-dihydro-deoxyguanosine (8oxodG) can easily
form27, and, again, the levels of such base lesions can correlate with diseases28. Measurement of
8oxodG has proven to be particularly difficult, because its amounts can easily be overestimated
because of additional oxidation during sample preparation or when bringing it into the gas phase in
the mass spectrometer (gas chromatography MS)29.

Determination of the exact amount of all noncanonical DNA nucleosides (epigenetic nucleosides
or DNA lesions) is consequently an important task and requires a fast, ultrasensitive and highly
reproducible approach.

1Center for Integrated Protein Science Munich (CiPSM), Department of Chemistry, Ludwig-Maximilians–Universität München, Munich, Germany.
2These authors contributed equally: Franziska R. Traube, Sarah Schiffers, Katharina Iwan. *e-mail: thomas.carell@lmu.de
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Here, we present a detailed workflow for the quantification of noncanonical nucleosides. It
includes DNA extraction from cell culture or tissues, total enzymatic digestion of the DNA, and
ultrasensitive quantification of the obtained nucleosides via UHPLC and QQQ-MS (UHPLC-QQQ-
MS) (Fig. 1). The major advantage of UHPLC-QQQ-MS is its capability of chemically determining
the true identity of the modified nucleoside and its exact abundance in a relatively short time frame.
Furthermore, the application of the multiple reaction monitoring (MRM) mode enables simultaneous
fragmentation of different precursor ions into one or multiple fragment ions and their subsequent
detection30. The fundament of the method is the isotope dilution technique, in which stable iso-
topologs of the nucleosides of interest are added to the specimen (spiking) as internal standards. This
analytic approach results in highly reproducible parallel quantification of modified DNA nucleosides
in only ~14 min per sample and makes this method the ideal choice when sequence resolution is not
required and sufficient sample material is available.
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Fig. 1 | Procedure overview. General workflow for rapid DNA extraction, digestion and ultrasensitive quantification
of the obtained nucleosides via UHPLC-QQQ-MS. T, deoxythymidine.
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Development of the protocol
Quantification of very abundant DNA modifications, such as m5dC in vertebrates, has been possible
for decades without the need for ultrasensitive quantification methods31. Owing to their abundance,
small quantification errors do not affect interpretation of the data. However, accurate quantification
of DNA nucleosides can be challenging when the modification is very rare. Contaminations at the cell
culture level or during tissue dissection are a particular problem if they go unnoticed. These con-
taminations include bacteria and fungi, which often carry DNA modifications that might be rare or
not present in mammals and can have a substantial effect on the resulting values. Therefore, the
biological material that is investigated must be carefully tested for the presence of such con-
taminations. With respect to the investigation of DNA lesions, it must be noted that lesions are also
formed during DNA isolation, for example, by releasing reactive oxygen species in the course of cell
lysis. Most problematic are unspecific oxidations and deaminations. To overcome these problems,
addition of butylated hydroxytoluene (BHT) and deferoxamine (DFOA) during isolation is essential.
BHT is a radical scavenger that prevents DNA from being oxidized, and DFOA inhibits deaminases
during the isolation process11,32.

The biggest challenge of exact quantification is the generation of correct calibration curves. Mass
spectrometry is a highly sensitive, but inherently not quantitative, method. The signal intensity
reflects not only the amount of a molecule of interest (MOI) in the specimen, but also its ionizability,
which is, in complex mixtures, strongly affected by other co-eluting molecules. To correlate the signal
intensity with the exact amount of the MOI, calibration curves are essential. In principle, there are
two different procedures for quantifying the amount of an MOI. One can use either external or
internal calibration. Both approaches depend on the availability of the MOI in weighable quantities
from, e.g., chemical synthesis. For external calibration, a serial dilution of the synthetic MOI is
measured before analysis of the samples. Here, it is important to use the same buffer and the same LC
column, and to perform the calibration on the same day, ideally once before the sample measurement,
once after the sample set and, in the case of many samples, once during the sample worklist. This is
important in order to counteract differences in instrument performance. The advantage of the
external method is that it requires only the pure MOI as the standard. However, it also has many
disadvantages. For best reproducibility, at least five different dilutions are measured as technical
triplicates, which increases the measurement time substantially. Although this extensive calibration
effort reduces errors from instrument performance fluctuations, it cannot overcome quantification
errors stemming from matrix effects.

Matrix effects are mainly caused by salts, solvents and other undefined components within the
sample33. It must be noted that a biological sample, e.g., gDNA, is much more complex than a
solution of pure, synthetically generated nucleosides and that this complexity impacts the mea-
surement. The matrix of the samples or the pressure on the column may furthermore lead to shifts in
retention time (RT) of the MOI, so that a reliable statement on identification of the MOI may be
infeasible as well. The sample matrix may also affect the signal intensity of the MOI: certain
nucleosides suffer from ion suppression, which occurs when high amounts of interfering ions are
present that may co-elute with the MOI and therefore compete for charge and space in the mass
spectrometry device33,34. Taken together, it is not predictable whether a certain MOI can be reliably
quantified using external calibration. Therefore, the gold standard in MS quantification is internal
calibration, whereby a specific amount (n*) of a reference molecule is added to the sample and used as
an internal standard at all times.

Our group utilizes the isotope dilution technique, in which the reference compound is an iso-
topolog of the MOI (designated MOI*)13,26,35–44. This molecule has very similar chromatographic and
fragmentation properties as compared to the MOI, and as such it elutes ideally with an identical RT.
The isotopes of choice should be 13carbon (13C) and 15nitrogen (15N), because no RT shifting is
observed with 12C/13C and 14N/15N substitutions. By contrast, replacing hydrogen (H) atoms with
deuterium (D) atoms in the MOI* affects the physicochemical properties of the molecules45,46. This
leads to an observable shift in RTs, and, more importantly, the acid–base properties and thus the
ionizing efficiency are affected in the MOI* as compared to the MOI.

The chosen MOI* is then used as an internal standard to reference and identify the correct peak of
the MOI in the chromatogram. As such, it is essential to achieve accurate quantification. Calibration
curves based on internal standards have the advantage that they can be used for multiple mea-
surements on different days, because they are independent of the instrument performance on a
specific occasion.
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Applications of the method
The described protocol for DNA isolation is optimized for cell culture and vertebrate tissues. Isolation
of DNA from other organisms, especially from those consisting of cells with cell walls, require harsher
conditions. Once the DNA is isolated, our protocol can be applied to any kind of sample and the
robust method reported here provides reliable quantification data. In addition, the method is highly
sensitive, which enables quantification of nucleosides in the low femtomole and even attomole range,
as described in the following section. Thereby, depending on the amount of DNA available for the
measurements and the genome size of the organism of interest, even the determination of nucleosides
that are very rare (a couple hundred nucleosides per genome) is possible. With this specificity, one
can reliably demonstrate the presence of a modification in a genome26 and determine even small
changes of its abundance in response to disease progression43. Furthermore, the effects of stress
factors, as well as those of cellular differentiation and mutation/knock-down of involved proteins, can
be measured. Such biological conditions influence the biological pathways that lead to the formation
or removal of noncanonical nucleosides in the genome13,44.

Comparison with other methods
The workflow described here involves isolation and total digestion of gDNA with subsequent (par-
allel) analysis and quantification of nucleosides of interest, even in complex mixtures. This method
provides robust and highly reproducible data in a fast manner due to the utilization of stable
isotopologs as internal standards. The analysis time for parallel quantification of nucleosides routinely
takes <15 min.

DNA digestion can be performed in a variety of ways, depending on the research focus. The
method described here is optimized toward native DNA modifications, and other protocols that
require harsh conditions or reactive substances will not be discussed in detail in this section. A
comparative summary is nevertheless provided in Supplementary Table 1. For the optimized
digestion of DNA adducts, see Liu et al.47.

Antibody-based methods, such as dot blots, often represent the method of choice for nucleoside
analysis when no detector-based system is available. These methods always depend on the specificity
and binding affinity of the antibody. Antibodies have the major disadvantage that they often show
cross reactivity, particularly between RNA and DNA bases24, and it was recently shown that IgG
antibodies have an intrinsic affinity for short DNA repeats48. This might obscure the obtained data.
Our method is a combination of two different analytical techniques, (i) separation of analytes with an
LC device and (ii) detection of these analytes with a detector, and it can distinguish between DNA
and RNA nucleosides. In general, LC can be accomplished by applying HPLC or UHPLC. The
following detection of the eluting MOI is achieved by using a UV detector, a fluorescence detector
(FLD), an electrochemical detector or an MS device.

Chromatographic separation
Separation of the nucleosides of interest can be done by either reversed-phase HPLC or UHPLC. Both
methods can apply either isocratic or binary gradient elution. Binary gradients usually shorten the
analysis time, and the resolution is similar to that for isocratic elution. Gradient elution requires more
regular maintenance, and the accuracy of the peak area and peak height is often questionable, which
could impede reliable quantification49,50. This does not apply to our isotope dilution method, as a
variation in size or shape of the peak will also affect the corresponding isotopologs and is therefore
taken into account. On the chromatographic side, the generally high polarity of nucleosides requires
the use of reversed-phase C8 or C18 columns to achieve good separation. Recently, hydrophilic
interaction chromatography (HILIC) columns were alternatively used for separation of nucleosides51.
The most recent developments regarding the high-throughput analysis of nucleosides is the appli-
cation of UHPLC. The UHPLC columns have smaller particle size (typically ≤2 µm, in comparison
with >4 µm for HPLC), and they are shorter and have a smaller inner diameter (50–150 mm length,
<2.5-mm diameter for UHPLC as compared to 150–250 mm length, 4.6-mm diameter for HPLC). As
such, they provide superior separation in a short time (~15 min for UHPLC as compared to ~45 min
for HPLC). Most importantly, these columns give extremely narrow and sharp peaks that are essential
to achieving the highest possible sensitivity. In comparison to ordinary HPLC, this UHPLC technique
has lower solvent consumption due to low flow rates <0.5 mL/min. With less solvent, analytes are also
more concentrated after elution and can be more easily vaporized and ionized, which is a major
advantage for the subsequent MS measurement. In principle, the injection volumes should be in the
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range between 1 and 10 µL; otherwise, this will impair efficient separation. As a rule of thumb, 10% of
the flow rate should be used as the maximum injection volume. In our system, the flow rate is 0.35
mL/min, which allows for a maximum injection volume of 35 µL. However, the presented system was
found to accept injection volumes up to 40 µL without loss of chromatographic resolution.

Detectors
Previously established methods for detection use, for example, the combination of reversed-phase
HPLC and a UV detector. A UV detector is often the detector of choice, because the resulting peak
area, and therefore the amount of a nucleoside, depends only on its extinction coefficient. UV-based
quantification entails no matrix effects. Determination of the amount of each nucleoside can therefore
be reliably accomplished by applying external calibration curves. One disadvantage is that baseline
separation of the nucleosides of interest is critical. Moreover, UV detection suffers from lower
sensitivity as compared to the MS- and fluorescence-based methods, which is reflected in the limits of
quantification (here, lower limit of quantification (LLOQ)) of ~0.3–1.4 pmol. Correspondingly, the
limits of detection (LOD) are typically not <0.08–0.42 pmol per nucleoside52. The absolute numbers
depend on the type of nucleoside.

Higher sensitivity can be achieved when an LC device is coupled to an FLD. This combination
results, for example, in an LOD for deoxyguanosine (dG) of 0.24 pmol53. Because most nucleosides
do not show strong enough autofluorescence, however, they must be derivatized for fluorescence
detection. For example, phenylglyoxal can be used to modify guanine-containing compounds53.
m5dC can be converted into the corresponding fluorescent 3,N4-etheno-5-methyl-2′-deoxycytidine
(εm5C). These compounds can then be quantified by reversed-phase HPLC-FLD with a typical LOD
of 0.02 pmol54. One major disadvantage of this method is that derivatization chemistry is never
quantitative (never 100% efficient). This leads to an underestimation of the abundance of the MOI
and may distort the resulting data.

For detection and quantification of a rare MOI, an MS detector with higher sensitivity compared
to UV and FLD is required. To analyze the MOI, it must be brought into the gas phase and be ionized
so that it can enter the vacuum of the mass spectrometer. This critical step is achieved in the ion
source, and it is the first critical parameter that must be optimized for high sensitivity. Next, efficient
fragmentation and detection of the specific fragments must be achieved. Our MS device is equipped
with an ESI source, which is perfectly suited to the evaporation and ionization of nucleosides and
nucleotides. ESI is considered to be a mild ionization source that applies relatively low energy. This
results in less in-source fragmentation of the MOI in comparison to those of electron ionization and
chemical ionization, and therefore less loss of signal intensity due to a broad distribution of fragment
ions55. Furthermore, this technique provides the highest possible flow rate to the following interface,
e.g., the mass analyzer56. This is essential for maximal sensitivity.

We use QQQ mass spectrometers for our analyses because they have the highest sensitivity among
the available mass analyzers. Time-of-flight (ToF) analyzers57, ion-trap analyzers58,59 or hybrid
analyzers60, which are a combination of different mass analyzers, can also be used in this protocol.
Compared to ToF and ion-trap mass detectors, the QQQ detector has high sensitivity but low
resolution. This means a QQQ mass spectrometer cannot distinguish between ions that differ in <1
AMU. However, high resolution is not necessary for quantification of known compounds for which
synthetic standards are available.

The greatest advantage of the QQQ mass detector is the possibility of monitoring multiple mass/
nucleoside signals in the MRM mode, e.g., examination of fragmentation of the precursor ion and
observation of the resulting product ion simultaneously, within a fraction of a second. The first
quadrupole can be programmed to rapidly switch between monitoring molecules of various specific
m/z values. The selected MOI ions are then fragmented in the second quadrupole, which represents
the collision cell. Subsequently, the third quadrupole can be stepped to different m/z values to identify
a specific fragment ion generated from the MOI in the collision cell. The detector ascertains the
analytes, and the signal is enhanced by an electron multiplier. This technique improves the detection
limits of analytes because only the m/z values from the molecules of interest are recorded, instead of
scanning across the whole mass spectrum55.

The method presented here is a combination of a UHPLC device coupled to a UV detector and a
QQQ analyzer. The less sensitive UV detector is used to quantify the highly abundant canonical
nucleosides, whereas the quantification of the less abundant noncanonical nucleosides is achieved by
the QQQ detector. Applying this method leads to LLOQs in the femtomole range or lower for
nucleosides of interest and enables the determination of their quantities in the genome.
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Experimental design
Our protocol covers all steps to establish the whole procedure from the beginning, when neither
expertise nor the material for quantification of DNA nucleosides is available. For development of a
quantification method, several machine parameters must be determined, apart from the m/z values
for the precursor and product ion of the MOIs and MOI*s.

The Procedure provides detailed steps for two methods:
(i) Quantification of the so-called epigenetic DNA modifications (m5dC, hm5dC, f5dC and ca5dC), as

well as a common DNA lesion (8oxodG), with highest sensitivity toward the less abundant
modifications. This method uses a C8 column and a water/MeCN solvent system (Supplementary
Tables 2 and 3).

(ii) Quantification of further DNA modifications (m4dC and m6dA) known from bacteria, in which
they are highly abundant. For investigation of their existence in higher organisms, in which their
abundance is expected to be low, the use of a C18 column enables the detection and distinction of
m4dC and m5dC. Furthermore, applying a water/MeOH solvent system provides the highest
sensitivity for the detection of m6dA. This method is used in two variations with adjusted collision
energies (CEs) (sensitive and insensitive) for m6dA to enable quantification of the modification in
organisms with low or high abundance, respectively, without reaching limitations for other
important components of quantification, e.g., the LLOQ of canonical nucleosides (Supplementary
Tables 4 and 5).

A compilation of linear equations is given in Supplementary Tables 2 and 4; these can be applied
only to the respective solvent systems and columns (in Supplementary Table 2, water/MeCN on a C8
column; in Supplementary Table 4, water/MeOH on a C18 column). For m4dC, two linear equations
are given because they span two ranges (big = values in the pmol range; small = values in the low
fmol range), and for m6dA, two linear equations are shown for the different CEs (sensitive and
insensitive), thereby resulting in two respective ranges.

If you want to measure all the nucleosides given in Supplementary Tables 2 and 4 at once, new
calibration curves are necessary for the modifications with the different solvent system. In this case,
we recommend sticking to the water/MeOH system with a C18 column.

If identical equipment and methods are used, it is possible to use the calibration curves provided in
Supplementary Tables 2 and 4.

Internal calibration
We recommend internal calibration with a stable isotopolog MOI* as a reference for the MOI. This
MOI* is spiked into the DNA sample. If several MOIs must be quantified in parallel, a mixture of the
required MOIs* is spiked into the sample in the form of a spiking mixture. This mixture contains not
only the needed MOIs* but also the digestion enzymes, and it is added to all samples of one
experiment. At best, the MOI* should be at least two atom units heavier than the MOI to allow a clear
MS-based differentiation between the MOI* and the naturally occurring MOI. Natural 13C has an
abundance of 1%. Thus, any molecule with 10 C atoms, such as m5dC, will have a 10% chance to
carry at least one 13C atom and a 1% chance to carry two 13C atoms. The presence of these natural
[+1] and [+2] isotopologs limits the sensitivity, especially for highly abundant MOIs. Therefore,
a mass difference between the MOI and the MOI* of three or more units is recommended for
high fidelity.

The mass spectrometer is set to monitor the nucleoside signals of the MOI and the MOI*, which
will be displayed in two separate chromatograms: one for the MOI signal and one for the MOI*
signal. Integration of the peak areas for MOI and MOI* gives areas A and A*. To calculate the amount
of the MOI from A and A*, calibration curves are required. These calibration curves are generated
before the measurement by mixing the MOI and its MOI* at different ratios, in which the amount of
the MOI (n) is stepwise diluted by a factor of two, while the amount of MOI* (n*) is kept constant.

The ratios of A/A* and n/n* correlate in a linear manner. This allows the use of the following
linear equation:

A
A� ¼ m ´

n½pmol�
n�½pmol� þ t:

For the determination of the slope m and the y-intercept t of the calibration curve, the afore-
mentioned ratios for n/n* are measured in technical triplicates, and the resulting ratio of A/A* is
plotted against n/n*. The standard deviation for each data point must not exceed 20%, and the
accuracy must be between 80 and 120%.
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The lowest amount that meets the requirements for the standard deviation and accuracy deter-
mines the LLOQ. The same criteria regarding standard deviation and accuracy apply for the highest
amount, which is therefore defined as the upper limit of quantification.

Once these prerequisites are met, the specific amount of the MOI (n) can be calculated using the
following equation:

n½pmol� ¼
A
A� � t

m
´ n�½pmol�:

If the calibration curve meets those requirements, it is considered reliable, independent of the
machine performance, as long as the components are the same. The specific parameters for each
compound, e.g., collision energy and cell accelerator voltage, must be set identically for the MOI and
the MOI*. This saves measurement time and secures high fidelity. In addition, RT shifts can be
accepted if the internal standard shows the same shift.

However, if the MOI and the MOI* do not co-elute, it must be assumed that one of the signals is
not caused by either the MOI or MOI*. In particular, in complex mixtures, it may be generated by an
unknown analyte that shows the same mass signal. In general, RT differences that are, for example,
caused by the isotope difference between the MOI and the MOI*, are tolerated when they fall within a
2.5% limit. In particular, when deuterium is used as a source of labeling, slightly shifted RTs are
common because of diverging binding strengths. Still, the MOI and MOI* must meet the above
criterion. If the deviation is >2.5%, the apparent peak is not the peak of the MOI61. Whether the 2.5%
limit is exceeded can be calculated with the following equation:

j RTMOI½min� � RTMOI�½min� j
RTMOI�½min� ´ 100%

!

� 2:5%:

The limit of detection
The LLOQ does not equal the lower LOD, which is important for evaluation of the data. Even if the
LLOQ criterion is fulfilled, the sample data may not meet the LOD criterion when the signal-to-noise
ratio (SNR) is too low. The LODtheoretical is set at an SNR of 3 for the pure MOI in water. But
analyzing MOIs in biological samples demands harsher constraints because of matrix effects.
Therefore, the LODpractical is defined as the SNR of 3 of the MOI in a biological sample. To determine
the LODpractical in a biological sample, we always evaluate so-called digestion blanks (in our protocol,
samples 1-3) for each measurement. The digestion blanks contain the spiking mixture, but no DNA.
For the digestion blanks, we analyze A (in this case, ideally A = 0) at the respective RTs of each MOI
and A* of each MOI* of the spiking mixture. Therefore, the LODpractical relates to the background
signal of the spiking mixture in the digestion blanks. It can be calculated in two different ways:
(i) One can calculate the LODpractical as the mean of the ratio A/A* for the digestion blanks multiplied

by the factor of 3.
(ii) One can calculate the LODpractical as the mean of A for the digestion blanks multiplied by the

factor of 3.
Both definitions can be used for further data evaluation. Method (ii) is even stricter than method

(i). However, it is important to choose one method consistently. Applying this LODpractical value will
prevent the emergence of false-positive data and is therefore highly recommended. Only the ratios of
A/A* (method (i)) or the areas A (method (ii)) of the subsequent samples that exceed this LODpractical

represent true peaks. Ratios of A/A* that exceed the LLOQ determined by the calibration curve, but
not the LODpractical, might be false-positive hits and therefore have to be excluded from further
analysis. To overcome this problem in future experiments, we recommend the use of more DNA.

Calibration curves
A calibration curve spans a specific concentration range of at least five data points, in which the curve
is linear. The limitations of this so-called dynamic range become problematic if an experiment
contains samples in which the abundance of the MOI varies by several orders of magnitude. In this
case, a single calibration curve might be insufficient if it does not cover the resulting intensities of
signals. Then a second calibration curve with a different range is needed. The two resulting calibration
curves will ideally cover the lowest and highest concentrations of the MOI in the specimen. To
achieve consistent quantification results across multiple biological samples, it is important to use a
single calibration curve for the whole dataset. It may, for example, occur that a knock-out cell line
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cannot be quantified with the same calibration curve as its corresponding wild type, because the
amount of the MOI in the latter exceeds the values in the knockout by a factor of ten or more. For
this biological question, a combination of different calibration curves might seem a valid solution, but
it is not recommended. It is better to adjust the amount of DNA by dilution, so that the total amount
of the MOI in both samples falls within the same range and hence a single calibration curve can be
applied. It is also important that the concentrations of the spiked-in MOI*s are in the range of the
expected concentrations of the MOI. If dilution of the DNA is not applicable, one can prepare two
different spiking mixtures to meet the requirements of a single calibration curve; one with a higher
amount of MOI*, which is added to the biological samples when a higher amount of MOI is expected
and one with a lower amount of MOI* for the corresponding sample with a low abundance of MOI.
In the subsequent evaluation of the data, the respective amount of MOI* (n*) must be adjusted.

For handling samples with unknown and potentially strongly deviating MOI content, we
recommend generating a calibration curve, in which you start with an amount n that is more than
four times greater than n* and dilute this amount n by a factor of three instead of two. We used this
procedure successfully in some cases, but for certain modifications, the smaller dilution factor
resulted in a better calibration curve.

Evaluation of UHPLC–MS/MS data
The provided Excel sheet (Supplementary Methods 1 and 2) includes all functions that are needed for
evaluating the data. It allows calculation of the ratio of A/A* and thereby the unknown amount n of
the MOI with the following equation, where m represents the slope and t is the y-intercept. This
equation is unique for each MOI and only valid within its concentration ranges.

A
A� ¼ m ´

n½pmol�
n�½pmol� þ t;

n½pmol� ¼
A
A� � t

m
´ n�½pmol�:

Note that in this protocol an injection volume of 39 µL is applied. This was chosen because it is the
largest amount that can be injected without a loss of chromatographic resolution. The amount of the
MOI (pmol/sample), e.g., in 50 µL of digestion mixture, is calculated by multiplication of the upper
equation by (50/39 µL). The complete calculation is described in the following equation:

n½pmol� ¼
A
A� � t

m
´ n�½pmol� ´ 50 μL

39 μL
:

If <39 µL is injected, this value must be adjusted in the provided Excel sheet (Supplementary
Methods 1 and 2). This additional calculation will provide comparable data for your technical and
later biological replicates. The injection volume is automatically recorded in the QQQ quantitative
analysis program.

In the case that the GC content of the DNA is known, division of the amount of MOI (in pmol) by
the amount of dG (in pmol) will provide the term ‘MOI per dG’. For example, for mouse gDNA,
further multiplication by 0.21 (adjusting for the 42% GC value of mouse gDNA62) will yield the term
‘MOI per dN’, which is mainly used for presenting quantification data.

n MOIð Þ pmol½ �
n dGð Þ pmol½ � ¼ MOI=dG;

MOI=dG ´ 0:21 ¼ MOI=dN:

In the case that the GC content is unknown, the amounts of dA, dC, dG and thymidine (T) must
be determined using UV detection, and the amount of MOI divided by the amount of Σ(dA, dC, dG,
T) will directly provide the term ‘MOI per dN’.

If one is interested in the derivatives of dC, namely m5dC, hm5dC, f5dC and ca5dC, it is important
to perform additional calculations because these modifications are measured in the MS mode,
whereas canonical dC is measured in the UV mode. The combination of UV- and MS-derived data
often results in summed values for the total amounts of all dC derivatives (dC, m5dC, hm5dC, f5dC,
and ca5dC and/or dC*) that deviate from the dG content, which is quantified by UV detection.
Therefore, the expected exact 1:1 ratio of ΣxdC/dG is almost never reached. Nevertheless, the
amounts of dC and xdC derivatives can be expressed relative to the amount of dG, but a corrective
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factor is needed. To this end, the amount of each dC derivative is divided by the amount of dG.
Multiplying by 100 results in the percentage of every dC derivative. Summarizing these percentages
will lead to a total percentage as a corrective factor (%dCtotal). Dividing the measured %xdC by this
factor will provide the term ‘MOI/dG’. For mouse gDNA, further multiplication by 0.21 will lead to
the desired term ‘MOI/dN’.

dC½pmol�=dG½pmol� ´ 100 ¼ %dC;

m5dC½pmol�=dG½pmol� ´ 100 ¼ %m5dC;

hm5dC½pmol�=dG½pmol� ´ 100 ¼ %hm5dC;

¼
P

%dC; %m5dC; %hm5dC; :::
� � ¼%dCtotal:

%dC=%dCtotal ¼ dC=dGcorrect;

%m5dC=%dCtotal ¼m5dC=dGcorrect
;

%hm5dC=%dC
total ¼ hm5dC=dG

correct
;

¼
m5dC=dGcorrect ´ 0:21¼m5dC=dN;

hm5dC=dG
correct ´ 0:21¼ hm5dC=dN;

¼

The values of each MOI per sample can be presented as the mean and standard deviation of a
technical triplicate. Combination of at least three biological replicates, e.g., their means, leads to
reliable data.

Level of expertise needed to implement the protocol
A trained technician, graduate student or postdoctoral researcher can perform all the steps from DNA
isolation to DNA digestion and sample preparation. For working with a UHPLC-QQQ-MS system, at
least basic knowledge of how to use the machine is required. Core facilities for MS measurements
typically operate the LC–MS/MS instrument and perform the standard LC-MS/MS analysis, but it is
recommended to use a facility focused on small molecules, with a dedicated instrument and experi-
enced personnel to avoid contamination with distinct analytes that would impair sensitivity. If this
facility is unavailable on-site, the DNA samples can also be shipped to a respective facility on dry ice.
But any researcher with an interest in nucleoside research can generate and evaluate data when he or
she uses the provided material. Nevertheless, the problems addressed in the Troubleshooting section
require a more profound knowledge of the mass spectrometer, so adapting the provided method to
different nucleosides of interest or mastering upcoming challenges calls for a well-trained researcher.

Limitations
The high sensitivity of a triple quadrupole mass spectrometer originates from the selection for the
specific mass signals of the molecules of interest by disregarding other potential contents of the
analysis mixture. Before analysis of a sample of interest, it is therefore critical to define all nucleosides
that are to be quantified. Molecules that were not considered in the method are not monitored, and
their data can therefore not be extracted retrospectively.

The development of measurement protocols for new molecules requires optimization of the
LC-based separation part, adjustment of MS parameters such as the optimal collision energy and
validation of the nucleoside signal of the MOI. Furthermore, quantification with internal standards
requires the availability of suitable isotopologs with a Δm/z of at least 2, preferably more. If such an
isotopolog is not available commercially, the corresponding molecule must be synthesized chemically
or metabolically63,64 or one needs a collaborator who can provide it.

Because the origin of the naturally occurring nucleosides is DNA, the extraction and digestion
efficiency are critical. Extracting DNA from cell culture usually leads to high yields and can typically
also be scaled up. DNA isolation from tissues, however, is more demanding and may not provide a
sufficient amount of DNA to detect a modification with low abundance. In this case, it might be
necessary to combine several biological samples. The isolation of DNA from only a few cells and
subsequent quantification of modified nucleosides has been reported65, but it is not routinely possible.
At the other extreme, excessive amounts of DNA and corresponding nucleosides can result in
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so-called matrix effects, which can suppress the signal of a nucleoside. It is therefore required to
determine the optimal amount of DNA to be analyzed to obtain the best signal. The reported method
provides global quantitative data; sequence information is not available.

The whole method depends on the quality of the input material, as the origin of the resulting
DNA, and the respective nucleosides, cannot be determined at a later stage. Contaminations, e.g.,
from a bacterial or fungal source during cell culture work or from the microbiome of a higher
organism, might lead to false-positive results for certain modified nucleosides. In addition, the
abundance of modifications may vary substantially during cell differentiation or in response to stress.
Therefore, the timing of the cell culture work, e.g., harvesting time points, is very important to
obtaining reliable values for the biological replicates.

There are also some challenges when performing the measurements, as not every rare nucleoside
of interest can be quantified with every setup. Sometimes it may not be possible to measure all
nucleosides with the same setup and conditions. If no further optimization is possible, one needs to
process the sample with two different methods, but this of course requires increased instrument time
and it also requires more material. For nucleosides that are quantified using the UV trace (dC and
dG), it is critical that the peaks be baseline separated. For MS analysis, chromatographic separation of
nucleosides is mostly not necessary because of the separation in the mass spectrometer according to
their unique m/z values and fragmentation patterns. Only when analyzing samples that might contain
isomers, e.g., m5dC and m4dC, which have identical precursor and product ions, chromatographic
separation becomes necessary in order to clearly determine the identity of the detected signal.

To further increase the sensitivity and the number of MS data points, it is beneficial to subdivide
the table of analytes into several segments according to their RTs. In each time segment, only certain
nucleosides are monitored, which increases the dwell time for each analyte and thus the strength of
the signal. The price of this increased MS sensitivity is that, depending on chromatographic per-
formance, the RTs of the nucleosides might change, and then these nucleosides may escape their time
segment. Then the corresponding data of the analyte in the time segment are irretrievably lost.

Materials

Biological materials
● Cell line: cell lines of various sorts, as well as animal tissues, have worked well in our experience.
Specifically, we have performed this protocol using iNGN cells66 (hPSCreg no. HVRDi004-B-1);
HEK293T cells (ATCC, cat. no. CRL-3216); mES wild-type cell line J1 (ref. 67); and mouse cerebellum
from a C57-BL6/J wild-type genetic background, provided by S. Michalakis (Department of Pharmacy,
Ludwig-Maximilians–Universität München). ! CAUTION The cell lines used in your research should
be regularly checked to ensure they are authentic and are not infected with mycoplasma.
! CAUTION Ensure sterile work in order to avoid cross-contamination of the extracted tissue with
bacteria or other organisms from the environment. ! CAUTION All animal experiments must be
performed according to the relevant guidelines and regulations and must be approved by your
institutional animal care and use committee.

Reagents
● 2-Mercaptoethanol (βME, CAS no. 60-24-2; Sigma-Aldrich, cat. no. M3148-25mL)
! CAUTION 2-Mercaptoethanol is toxic, so avoid exposure.

● Acetonitrile (MeCN, 99.95% (vol/vol), LC–MS grade; Roth, cat. no. AE70.2) c CRITICAL Sensitivity of
the mass spectrometer might vary when a different supplier is used. Check new suppliers carefully.

● Antarctic phosphatase (New England Biolabs, cat. no. M0289L)
● BHT (CAS no. 128-37-0; Sigma-Aldrich, cat. no. B1378-100G) c CRITICAL To keep background
oxidation at a minimum, it is recommended to store BHT powder under vacuum.

● Benzonase nuclease, 10 KU (VWR, cat. no. 70746-3)
● Blood & Cell Culture DNA Midi Kit (Qiagen, cat. no. 13343)
● Degradase Plus (Zymo Research, cat. no. E2021)
● DFOA (Sigma-Aldrich, CAS 138-14-7, cat. no. D9533-1G)
● Dimethyl sulfoxide (DMSO, CAS no. 67-68-5; Acros, cat. no. 327182500)
● DNA pre-wash buffer (Zymo Research, cat. no. D3004-5)
● Dulbecco’s PBS without MgCl2, CaCl2 (DPBS; sterile filtered, suitable for cell culture; Sigma-Aldrich,
cat. no. D8537-500 mL)

● EDTA disodium salt (NA2[EDTA]; CAS no. 6381-92-6; VWR, cat. no. 33600.267)
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● Formic acid (CAS no. 64-18-6; Fluka Honeywell Chemicals, cat. no. 94318-50 mL-F) ! CAUTION
Formic acid is highly corrosive and can lead to severe burns when inhaled. Use only in a fume hood or
in a highly ventilated area and protect your skin and eyes carefully.

● gDNA wash buffer (Zymo Research, cat. no. D3004-2)
● Genomic lysis buffer (Zymo Research, cat. no. D3004-1) c CRITICAL Do not add βME in advance.
● Glycerol (CAS no. 56-81-5; Roth, cat. no. 3783.2)
● Magnesium chloride hexahydrate (MgCl2·H2O, CAS no. 7786-30-3; Merck, cat. no. M8266-100g)
● Methanol (MeOH; 99.9% (vol/vol), LC–MS grade VWR, cat. no. HONC34966-1L) ! CAUTION
Methanol is toxic, so avoid exposure. c CRITICAL Mass sensitivity might vary when a different
supplier is used. Check new suppliers carefully.

● Nuclease S1 from Aspergillus oryzae (Merck, cat. no. N5661-50 KU) c CRITICAL Stock solution
should be stored at −20 °C and kept on ice while making aliquots for usage.

● Parafilm M (4 × 125 inches, clear; Bemis, cat. no. 52858-000)
● Phosphodiesterase I from Crotalus adamanteus venom (Abnova, cat. no. P5263)
● PicoGreen dsDNA Assay Kit (Thermo Fisher Scientific, cat. no. P7589)
● Buffer RLT (Qiagen, cat. no. 79216)
● RNase A (100 mg/mL, 7,000 U/mL; Qiagen, cat. no. 19101)
● Sodium chloride (NaCl; CAS no. 77-86-1; Bernd Kraft, cat. no. 10724344)
● Tetrahydrouridine (THU; CAS no. 18771-50-1; Merck Millipore, cat. no. 584222)
● Tris(hydroxymethyl)aminomethane (Tris base; CAS no. 77-86-1; Fisher Scientific, cat. no. BP152-5)
● Water, LC–MS grade (Honeywell, cat no. 39253-1L) c CRITICAL Mass sensitivity might vary when a
different supplier is used. Check new suppliers carefully.

● Zinc sulfate (ZnSO , CAS no. 7446-20-0; Grüssing, cat. no. 14039)

Nucleosides
● 2′-Deoxyadenosine (dA) (Carbosynth, cat. no. ND04011, CAS 16373-93-6)
● 2′-Deoxycytidine (dC) (Carbosynth, cat. no. ND06286, CAS 951-77-9)
● 2′-Deoxyguanosine (dG) (Carbosynth, cat. no. ND06306, CAS 961-07-9)
● Thymidine (T) (Carbosynth, cat. no. NT02592, CAS 50-89-5)
● 5′-Methyl-2′-deoxycytidine (m5dC) (Carbosynth, cat. no. ND06242, CAS 838-07-3)
● 5′-Hydroxymethyl-2′-deoxycytidine (hm5dC) (Carbosynth, cat. no. NH15898, CAS 7226-77-9)
● 5′-Formyl-2′-deoxycytidine (f5dC) (Carbosynth, cat. no. ND63556, CAS 137017-45-9)
● 5′-Carboxy-2′-deoxycytidine (ca5dC) (Carbosynth, cat. no. ND158446, CAS 46003-72-9)
● 8-Oxo-7,8-dihydro-deoxyguanosine (8oxodG) (Carbosynth, cat. no. ND06344, CAS 88847-89-6)
● 15N5-8oxodG (Cambridge Isotope Laboratories, cat. no. NLM-67 15-0, CAS NA)
● D3-m5dC (synthesis described in ref. 36)
● 15N2-hm5dC (synthesis described in ref. 41)
● 15N2-f5dC (synthesis described in ref. 41)
● 15N2-ca5dC (synthesis described in ref. 41)
● N4-methyl-2′-deoxycytidine (m4dC) (synthesis described in ref. 26)
● 15N2-m4dC (synthesis described in ref. 26)
● N6-methyl-2′-deoxyadenosine (m6dA) (synthesis described in ref. 26)
● D3-m6dA (synthesis described in ref. 26)

Equipment
● Stainless-steel beads (5 mm; Qiagen, cat. no. 69989)
● Syringe filter (0.2-µm cellulose acetate; VWR, cat. no. 514-0061)
● Snap ring cap 11 mm tr. (natural rubber/TEF, 60°, 1.0 mm, HPLC vial cap; VWR cat. no. 548-0014)
● Snap ring micro-vial (0.3 mL, polypropylene, 32 × 11.6 mm, transparent, HPLC vial; VWR, cat. no.
548-0120) c CRITICAL If using different HPLC vials, they must have a volume-reducing insert.

● Poroshell 120 SB C8 column (2.7 μm, 2.1 × 150 mm; Agilent Technologies, cat. no. 683775-906)
● Poroshell 120 SB-C18 column (2.7 μm, 2.1 × 150 mm; Agilent Technologies, cat. no. 683775-902)
● PCR plate (skirted, 96-well, 0.2 mL; VWR, cat. no. 732-3225)
● Falcon tubes (15 mL; VWR, cat. no. 188271)
● Falcon tubes (50 mL; VWR, cat. no. 227161)
● AcroPrep Advance 96-well, 350-µL, 0.2-µm Supor short-tip natural polypropylene plates (Pall, cat. no.
518-0022)
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● Centrifuge tubes (0.5 mL; Eppendorf, cat. no. 211-2140)
● Centrifuge tubes (1.5 mL; Eppendorf, cat. no. 211-2130)
● Centrifuge tubes (2.0 mL; Eppendorf, cat. no. 211-2120)
● −20 °C Freezer (e.g., Bosch, model no. GSN58AW45)
● −80 °C Freezer (e.g., Eppendorf, Innova U725, model no. U9440-0002)
● 0.5- to 10-µL, 2- to 20-µL, 10- to 100-µL, 20- to 200-µL, and 100- to 1,000-µL pipettes (Eppendorf)
● 4 °C Refrigerator (e.g., Liebherr, model no. LCv 4010)
● 37 °C Heat block (Eppendorf, ThermoMixer Comfort model, device, cat. no. 5382000015, plus top,
cat. no. 5360000011)

● MM400 bead mill (Retsch, cat. no. 20.745.0001)
● Refrigerated benchtop microcentrifuge (e.g., Centrifuge 5424R; Eppendorf, cat. no. 5404000014)
● Refrigerated swinging-bucket rotor centrifuge (Centrifuge 5810R; Eppendorf, cat. no. 5811000428 with
A-4-81 rotor and holders for MTP plates)

● Microscale (e.g., Sartorius, cat. no. RC 210 P)
● Ultrapure water system (e.g., arium pro DI; Sartorius Stedim Biotech, cat. no. H2OPRO-DI-B)
● UV/Vis spectrophotometer (NanoDrop; NanoDrop Technologies, cat. no. ND-1000)
● Triple quadrupole LC/MS system with iFunnel technology (Agilent Technologies, model no. 6490)
● UHPLC system (Agilent Technologies, model no. 1290 Infinity II LC)
● Vortex mixer (Scientific Industries, model no. Vortex-Genie 2)
● Zymo-Spin IIC-XL column (Zymo Research, cat. no. C1102)

Software
● Microsoft Office Excel 2016 (Microsoft, https://products.office.com/en-us/compare-all-microsoft-
office-products?activetab=tab%3aprimaryr1)

● OriginPro 2016G b.9.3.226 (https://www.originlab.com/2016)

Reagent setup

c CRITICAL Deionized water is used for all solutions, unless otherwise indicated. c CRITICAL For the
gDNA isolation, work at room temperature (23 °C) all the time. Some buffers and solutions will freeze at
4 °C. c CRITICAL For each procedure using stock solutions, let all nucleoside and salt dilutions thaw
and equilibrate at room temperature and vortex them vigorously (for at least 1 min).

c CRITICAL Perform all pipetting steps with well-calibrated pipettes.

Internal standard mastermix
To make the internal standard (ISTD) mastermix, add 58.0 µL of D3-m

5dC (m5dC*, concentration (c)
= 264.1 µM), 90.0 µL of D2,

15N2-hm
5dC (hm5dC*, c = 25.5 µM), 90.0 µL of 15N2-f

5dC (f5dC*,
c = 0.152 µM), 120.0 µL of 15N2-ca

5dC (ca5dC*, c = 0.108 µM), 180.0 µL of 15N5-8oxodG (8oxodG*,
c = 0.181 µM). Sum the real volume and bring the volume to 900.1 µL by adding water. Vortex
rigorously for 1 min. The prepared ISTD mastermix, which is sufficient for 300 measurements, can
be stored at −20 °C for up to 1 year, and multiple thawing and freezing cycles are acceptable.

c CRITICAL To ensure accurate preparation of the ISTD mastermix, the added volume after each
pipetting step is controlled by using microscales. For each MOI*, a deviation in weight of ±5% is
tolerated. If the deviation is >−5%, one could add the required volume of the MOI*, but if the deviation is
>5%, the sample must be discarded. c CRITICAL If you are interested in MOIs other than those listed in
the ISTD mastermix, e.g., m6dA or m4dC, the MOI*s in the ISTD mastermix can be adjusted accordingly.

1,000× BHT
Prepare a 200 mM stock solution of BHT (1,000× BHT) in DMSO. Make 50-µL aliquots and store
them at −80 °C for up to 3 years. 1,000× BHT can be thawed and refrozen up to three times but must
be refrozen as soon as possible, and multiple freeze–thaw cycles should be avoided. Before use, the
1,000× BHT must be diluted 1:10 to make it soluble in water (100× BHT). Combine 1 equiv. of
1,000× BHT with 3 equiv. of DMSO and vortex briefly. Add 6 equiv. of H2O dropwise and vortex
thoroughly between drops to make sure that the BHT does not precipitate. 100× BHT should be a
clear solution at the end. If the solution is turbid, vortex longer. If too much BHT has already
precipitated, discard the dilution and prepare a new 100× BHT dilution from the 1,000× BHT stock.
100× BHT must be prepared immediately before use. c CRITICAL Do not refreeze or store the
100× BHT; instead prepare it fresh each time before the isolation.
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1,000× DFOA
Prepare a 200 mM stock solution of DFOA (1,000× DFOA) in degassed water. Make 20-µL aliquots
and store them at −80 °C for up to 3 years. c CRITICAL 1,000× DFOA should not be refrozen.

c CRITICAL When DFOA is dissolved in water, the final volume increases. Therefore, dissolve DFOA in
only 80% of the calculated amount of degassed water, measure the volume afterward and add the
missing volume at the end.

Lysis buffer
If the option to isolate RNA and total protein (denatured) is desirable, use Buffer RLT as the base lysis
buffer. If only isolation of gDNA is required, use genomic lysis buffer (already contains RNase)
instead. The yield of gDNA will be slightly higher if you use genomic lysis buffer. To 1 equiv. of base
lysis buffer, add 0.01 equiv. of βME (14.3 mM final concentration), 0.002 equiv. of 1,000× DFOA
(400 µM final concentration) and 0.02 equiv. of 100× BHT (400 µM final concentration). For
example, to 1 mL of base lysis buffer, add 10 µL of βME, 2 µL of 1,000× DFOA and 20 µL of 100×
BHT. The ready-to-use lysis buffer is referred to as Buffer RLT+ or genomic lysis buffer+, respec-
tively. These buffers without βME, BHT and DFOA can be stored at room temperature until the
expiration date given by the manufacturer. The buffers supplemented with βME, BHT and DFOA
must be prepared immediately before use and cannot be stored. c CRITICAL If you are interested in
any kind of deamination, you should consider adding a broadband deamination inhibitor such as
tetrahydrouridine (THU).

RNase wash buffer
To 1 equiv. of genomic lysis buffer, add 0.002–0.01 equiv. of RNase A (0.2–1 mg/mL final con-
centration), 0.002 equiv. of 1,000× DFOA (400 µM final concentration) and 0.02 equiv. of 100× BHT
(400 µM final concentration). The amount of RNase A to be added can be adjusted according to the
RNA content of the cells. If cells are known to contain a high amount of total RNA, we recommend
using 0.01 equiv. of RNase A, but 0.002 equiv. is sufficient in most cases. For example, to 1 mL of
genomic lysis buffer, add 2–10 µL of RNase A, 2 µL of 1,000× DFOA and 20 µL of 100× BHT. RNase
wash buffer must be prepared immediately before use and cannot be stored. c CRITICAL If you are
interested in any kind of deamination, you should consider adding a broadband deamination inhibitor
such as THU.

Washing of stainless-steel beads
To wash the beads, shake them in a soap and water mix for 10 min and rinse them with plenty of
water to remove all the remaining soap. Wash them once with acetone and twice in pure ethanol. If
necessary, sonicate between washes. Let the beads dry in an oven and let them equilibrate to room
temperature before use. The washed beads should be protected from dust and can be stored at room
temperature for an infinte amount of time without further washing.

Phosphodiesterase I buffer
Phosphodiesterase I buffer is 5.5 mM Tris (pH 8.9), 5.5 mM NaCl, 0.7 mMMgCl2·H2O, 50% (vol/vol)
glycerol and 50% (vol/vol) water. The buffer can be stored at −20 °C for long-term storage (up to
5 years) and should be filtered with a syringe filter (0.2-µm cellulose acetate) before use.

c CRITICAL Sodium (Na+) adducts form easily, and these can potentially distort the data (the mass of
the MOI-Na+ adduct is not selected). In addition, an abundance of ions in the mass device could
enhance matrix effects. However, for this application, Na+ cannot be avoided and, in our experience,
does not cause any problems.

Snake venom phosphodiesterase I
Use a syringe filter (0.2-µm cellulose acetate) to filter 10 mL of phosphodiesterase I buffer. Add 1 mL
of this sterile buffer to the phosphodiesterase I pellet and dissolve it by slowly inverting the vessel
(enzyme concentration = 100 U/mL). If the enzyme does not dissolve, vortex briefly. Make 100-µL
aliquots and store them at −20 °C until usage for up to 1 year.

ZnSO4 stock solution
Prepare a 4 mM solution of ZnSO4 in water. The stock solution can be stored at −20 °C for up to
1 year.
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EDTA stock solution
Prepare a 1 mM solution of Na2[EDTA] in water (pH 8.0). The stock solution can be stored at
−20 °C for up to 1 year. c CRITICAL Na+ is critical for sensitivity in mass spectrometry; however, for
this application, Na+ cannot be avoided and, in our experience, does not cause any problems.

Nuclease S1 solution
Dilute the stock nuclease S1 (100,000 U/mL) to a concentration of 18,400 U/mL for usage. Mix this
dilution by pipetting up and down. For example, add 20.4 µL of water to 4.6 µL of nuclease S1.
Nuclease S1 solution must be prepared immediately before use and cannot be stored.

c CRITICAL Pipette the enzyme very slowly because of its high viscosity, which is due to its glycerol-
containing storage buffer. The nuclease S1 stock solution should be stored for only a few minutes on ice
until dilution. Prepare freshly diluted nuclease S1 for each DNA digestion and prepare at least 1 µL more
than needed for the mastermix 1.

Mastermix 1
For each sample to be digested, you need 7.5 µL of mastermix 1. Per 7.5 µL of mastermix 1, add the
calculated amount of water, ZnSO4 stock solution to a final amount of 3.6 nmol, nuclease S1 solution
to a resulting amount of 18.4 U, antarctic phosphatase to a resulting amount of 5 U and specific
amounts of labeled internal standards (pH 6.0) (add the reagents in the specified order). See the
provided Excel Sheet (Supplementary Methods 3) for details. c CRITICAL The amount of enzyme can
be adjusted according to the amount of DNA you want to digest. It is possible to digest at least 10 µg of
DNA per sample using this mastermix. Mastermix 1 must be freshly prepared for each digestion and
should be stored on ice only for a few minutes before usage. c CRITICAL If you are interested in any
kind of deamination, you should consider adding a broadband deamination inhibitor such as THU. This
will ensure that any detected deaminated nucleosides are native and not produced due to the digestion
conditions, as deaminases are often contaminations of commercially available nucleases.

Mastermix 2
For each sample to digest, you need 7.5 µL of mastermix 2. Per 7.5 µL of mastermix 2, add the
calculated amount of water, EDTA stock solution to a final amount of 3.9 nmol and snake venom
phosphodiesterase to a resulting amount of 0.15 U (add in the specified order). See the provided Excel
Sheet (Supplementary Methods 3) for details. c CRITICAL The enzyme concentrations can be adjusted
according to the amount of DNA you want to digest. It is possible to digest at least 10 µg DNA per
sample using this mastermix. Mastermix 2 must be freshly prepared for each digestion and should be
stored on ice for only a few minutes before usage.

Procedure

General procedure for dissolution and dilution of nucleosides ● Timing 30 min
1 Dissolve a small amount (typically 1-2 mg in 1,000 µL) of each desired nucleoside (natural and

isotopically labeled) in a 1.5-mL centrifuge tube in water.
2 Measure the absorption of the solution at the respective wavelength for the maximum absorption of

the nucleoside on a photometer.

c CRITICAL STEP The extinction coefficient must be known for the respective nucleoside (see
Supplementary Table 6 for the extinction coefficients of m5dC, m4dC, hm5dC, f5dC, ca5dC
and m6dA). If it is unknown, use microscales (Box 1) instead. When using a photometer, make sure
that your absorption is within the linear range.

3 Determine the concentration c of the nucleoside using the Beer–Lambert law:

c ¼ Eλ
ελ ´ d

with wavelength-dependent extinction Eλ, wavelength-dependent extinction coefficient ελ and path
length d.

4 Dilute the nucleoside with water to the desired concentration.

c CRITICAL STEP Very accurate pipettes are needed. Always use the pipette with the smallest margin
of error. If you cannot ensure that your pipettes are accurate, use calibrated microscales (Box 1).

j PAUSE POINT The dissolved nucleoside can be stored at −20 °C for up to 1 year. If you want to
store it longer, we recommend storing it at −80 °C.
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Preparation of ISTD mastermix ● Timing 1-1.5 h
c CRITICAL Very accurate pipettes are needed. Always use the pipette with the smallest margin of error.

If you cannot ensure that your pipettes are accurate, use calibrated microscales.
5 Thaw all labeled nucleosides needed for the ISTD mastermix for at least 30 min at room

temperature, vortex rigorously and spin down (5,000g, room temperature, 3 s).

c CRITICAL STEP If the concentrations of the labeled nucleosides do not match the concentration
needed for the ISTD mastermix, dilute them further (or if the concentration is too low, repeat Steps
1-4 for the desired nucleoside).

6 Prepare the ISTD mastermix.

c CRITICAL STEP If your ISTD mastermix deviates from the one given in the ‘Reagent setup’ section,
consider adjusting the solvent, column and method for the UHPLC–MS/MS in Steps 7 and 8.

j PAUSE POINT If the ISTD mastermix is not evaluated at once, store it at −20 °C for up to 1 year.

Preparation for UHPLC–MS/MS and performance of sensitivity checks ● Timing 1-1.5 h

c CRITICAL From now on, the procedure is described for the epigenetic modifications and the provided
acquisition method (Supplementary Methods 4) must be applied. For the modifications m4dC and
m6dA, use MeOH as solvent B, the Poroshell 120 SB C18 as a column and the acquisition methods for
m4dC- and m6dA-sensitive mode (Supplementary Methods 5) or m4dC- and m6dA-insensitive mode
(Supplementary Methods 6).
7 Set up the UHPLC–MS/MS system by installing the Poroshell 120 SB C8 column and preparing new

buffers for LC. Therefore, add 75 µL of formic acid to a full 1.0-L bottle of MS-grade water (solvent
A) and 187.5 µL of formic acid to a full 2.5-L bottle of MS-grade acetonitrile (solvent B).
(Alternatively, if solvent B is MeOH, use a full 1.0-L bottle of MS-grade MeOH and add 75 µL of
formic acid.)

8 Attach the bottles to the UHPLC system (solvent A to port A, solvent B to port B) and purge at 50%
A/50% (vol/vol) B for 5 min with a flow of 5 mL/min. To provide reproducible separation efficiency,
the columns must be equilibrated. Therefore, you need to perform 20 chromatographic runs using
the method for epigenetic modifications (Table 1) without injection for new columns and three runs
before measurement of the first sample per set. The flowrate is 0.35 mL/min, the pressure is 600 bar,
the temperature of the column oven of the UHPLC is 35 °C and the gas temperature is 80 °C. The
UV detector monitors an absorption signal at the 260-nm wavelength. (Alternatively, if the method
for m6dA and m4dC is used, see Supplementary Table 7. The temperature of the column oven of the
UHPLC is 30 °C; flowrate, pressure and gas temperature are not changed.)

9 If this is the first ever produced ISTD mastermix, add 12 µL to an HPLC vial and analyze it three
times, each with an injection volume of 3 µL. Evaluate the ISTD mastermix according to Steps 49–53
and Steps 55 and 56. If a previous ISTD mastermix is available, add 12 µL of the previous one and
12 µL of the new one each to separate HPLC vials. Measure both three times, alternating with an
injection volume of 3 µL, and evaluate the respective data. Determine the resulting areas for each
labeled nucleoside, calculate the mean of this technical triplicate and evaluate the deviation of the
mean as a percentage between the previous ISTD mastermix and the new one.

c CRITICAL STEP The deviation of the resulting areas must be smaller than 5% for each labeled
nucleoside in order for this ISTD mastermix to qualify for exact quantification.

10 For the sensitivity check, add a few microliters (3 + 3 × n µL, n = number of performance checks)
of the ISTD mastermix to an HPLC vial.

11 Measure 3 µL of the ISTD mastermix with the provided measuring method, integrate the areas of
each labeled nucleoside and compare the areas of the labeled nucleosides and the corresponding
SNRs from this measurement with those of the measurements from Step 9.
? TROUBLESHOOTING

Box 1 | Use of microscales for dilution of nucleosides ● Timing 15–30 min

1 Use microscales to weigh small amounts of the natural nucleoside and the isotopically labeled nucleoside into
separate tared 1.5-mL centrifuge tubes.

2 Add an appropriate amount of water to each tube and weigh the tube again.
3 Calculate the respective concentrations.
4 If your stock solution is too concentrated and you want to dilute it further, calculate the necessary volume of

water and use microscales to control the addition until the desired concentration is reached.
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Calculation of calibration curves ● Timing 1 d
12 Decide which molar range the calibration curve should span; the calibration curve will consist of 11

different data points (levels, L) with serial 1:2 dilutions of the natural nucleoside while the amount
of the labeled nucleoside is kept constant. Note that the highest data point should contain about
four times more of the natural nucleoside (MOI) as compated to the isotopically labeled nucleoside
(MOI*) and consider this in the next step. Example: if an amount of 500 fmol of the MOI is
expected, span the calibration curve from ~10 fmol to ~10 pmol (Table 2).

13 Calculate which volumes (in µL) of the stock solutions (natural and labeled) equal the amount of
substance for the highest point of the calibration curve. Example: The calibration curve should span
10 fmol to 10 pmol; thus the highest data point for MOI is 10 pmol. If the concentration of the
stock solution for MOI is 5 µM (5 pmol/µL), a volume of 2 µL of stock solution is needed for the
highest data point. If the concentration of the stock solution for MOI* is 0.62 µM, a volume of 4 µL
of stock solution is needed in this case to obtain 2.48 pmol (~1/4 of 10 pmol) of MOI* (Table 3).

14 Vortex all nucleoside solutions vigorously (for at least 1 min).
15 Prepare the dilution mix and the Calmix with amounts as calculated in Table 3.
16 Prepare eleven 1.5-mL centrifuge tubes and label them from L1 to L11. Add 100 µL of the dilution

mix to each of the tubes L1–L10.
17 Add 100 µL each of the Calmix to L10 and L11. Set L11 aside and vortex L10 vigorously (for at least

1 min).
18 Make a serial dilution as shown in Fig. 2.

Table 2 | Example of a dilution series from ~10 pmol to ~10 fmol with the corresponding calibration
levels L11–1

L11 L10 L9 L8 L7 L6 L5 L4 L3 L2 L1

n(MOI) [pmol] 10 5 2.5 1.25 0.625 0.313 0.156 0.078 0.039 0.020 0.010

n(MOI*) [pmol] 2.48 2.48 2.48 2.48 2.48 2.48 2.48 2.48 2.48 2.48 2.48

n/n* 4.037 2.018 1.009 0.505 0.252 0.126 0.063 0.032 0.016 0.008 0.004

Table 3 | Example for setting up the dilution mix and the calibration mix (Calmix)

Dilution mix Calmix

Calc. for the highest data point (µL) Factor Vol (µL) Factor Vol (µL)

MOI 2 — — 8 16

MOI* 4 37 148 8 32

Water 925 184

Total volume 1,073 232

Table 1 | UHPLC gradient elution table for the method for epigenetic modifications

Time (min) Solvent A (%) Solvent B (%)

1 0.00 100.0 0.0

2 4.00 96.5 3.5

3 6.90 95.0 5.0

4 7.20 20.0 80.0

5 10.50 20.0 80.0

6 11.30 100.0 0.0

7 14.00 100.0 0.0
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19 Transfer the contents of each tube to an HPLC vial and close the vial with an HPLC vial cap. The
injection volume for one measurement is 29 µL. L1 contains the lowest concentration and is
therefore the first vial to be measured. Proceed then with measuring L2-11 in their respective order.
After measuring each level once, insert a blank measurement into the sample queue without
injection. Then repeat the procedure twice, starting from L1 to produce a technical triplicate.

20 For the evaluation, apply Steps 49–53 and 55, integrate the peaks for the MOI (A) and the MOI*
(A*) and transfer the values for A and A* to an Excel sheet, then calculate A/A* for each data point.
In three additional columns, record the amounts for MOI and MOI* and the respective n/n* values
(Table 4).

21 Calculate the mean, the standard deviation and the standard deviation as percentages (%s.d.) for the
A/A* values of all data points from the technical replicates. If the %s.d. exceeds 20%, the data point
is not valid and must be excluded, if it is the highest or lowest data point. Invalid data points in
between render the whole calibration curve invalid.

22 Plot the values for the mean of A/A* value against the respective n/n* and perform a linear
regression of the data points using Origin or similar calculation software. Record the values for
m and t.

23 Perform an accuracy check (backfit) by inserting the value of n/n* into the calculated linear
equation and calculating the A/A* value of every single calibration level. Then determine the
percentage of the calculated A/A* value in comparison to the intended A/A* value. The resulting
percentage provides the accuracy of the linear equation and should not be <80% or >120%.

24 If the accuracy check fails, remove the highest or lowest data point and repeat Steps 22 and 23
with only the remaining data points. Repeat this step until only data points with sufficient
accuracy make up the linear equation. A valid linear equation must consist of at least five
consecutive levels.

Dilution
mix

MOI* 

Calmix
MOI/MOI* 

L11 L10 L9 L8 L7 L6 L5 L4 L3 L2 L1

100 µL each
100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL 100 µL

100 µL each

Fig. 2 | Calibration curve preparation. Pipetting scheme for generating a calibration curve of MOI and MOI* with a
fixed specific amount of MOI*. L, level.

Table 4 | Example of evaluation of a calibration curve for m4dC

Calibration level n/n* A(m4dC) A*(15N2-m
4dC) A/A* Replicate no.

L1 0.004 4,797 1,745,218 0.003 1

L2 0.008 7,214 1,737,978 0.004

— — — — —

L1 0.004 5,094 1,611,819 0.003 2

L2 0.008 6,145 1,658,872 0.004

— — — — —

L1 0.004 4,728 1,689,815 0.003 3

L2 0.008 6,595 1,680,195 0.004

— — — — —
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Isolation of gDNA ● Timing 1.5-3 h
25 Before lysing the cells, wash them once with DPBS and remove all DPBS before proceeding.

c CRITICAL STEP If the cells are loosely adherent and will be washed away with DPBS, they can be
directly lysed after removing the medium. However, this will lower the yield of isolated gDNA.

c CRITICAL STEP Make sure that the cultures are not contaminated with mycoplasma or other
microorganisms, as this may substantially alter the abundance of certain DNA modifications (Fig. 3).

26 Add ~200-300 µL of lysis buffer per 106 cells. For a typical six-well plate with 75% confluent mouse
embryonic stem cells (mESCs; 5–8 × 10−6 cells, depending on specific culture conditions), use
1.6 mL of lysis buffer per well. Pipette up and down several times to reduce lysate viscosity and
ensure homogeneity. For lysing tissue samples, add ~1.5 mL of lysis buffer to 50 mg of tissue.
Transfer the lysate to 2-mL centrifuge tubes.

c CRITICAL STEP We recommend direct lysis in the tissue culture vessel because it is convenient
and, in direct comparison tests, we have experienced increased quantities of oxidative lesions after
harvesting by trypsinization. However, if oxidative lesions are not a major concern, cells can be
harvested and further processed, for example, for counting or flow-cytometric analysis, before being
lysed as a pellet. Whenever possible, lyse samples before freezing, as the highly chaotropic lysis buffer
will inactivate all enzymatic processes. If not avoidable, add lysis buffer directly to frozen cell pellets
or frozen soft tissue in very small pieces without letting them thaw. To ensure quick and complete
lysis, vortex immediately and thoroughly until no pellet/tissue fragments are visible. Before lysing
larger or harder frozen tissue samples, pulverize them using pestle, mortar and liquid nitrogen to
prevent them from thawing.

c CRITICAL STEP The amount of lysis buffer affects the efficiency of gDNA isolation. Bead milling
or sonication is used to further homogenize the lysate and shear the gDNA. If the concentration of
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DNA in the lysate is too high (high viscosity), DNA shearing and the final yield of DNA will be
reduced because of inefficient elution from the spin column.

j PAUSE POINT Lysate can be stored at −80 °C for up to 5 years. Frozen lysate can be thawed at
room temperature before further processing.

27 Add one stainless-steel bead per tube. Further homogenize/shear DNA in the bead mill for 1 min at
30 Hz. For tissue samples, first apply 30 Hz for 1 min and then apply an additional 20 Hz for 4 min.

c CRITICAL STEP Sonication can also be used for homogenization/DNA shearing. However, we
detected increased quantities of abasic sites using this method. If no bead mill or sonicator is
available, it is also possible to skip Step 27 and continue directly with Step 29. In this case, use larger
volumes of lysis buffer instead and vortex more extensively to provide sufficient DNA shearing,
which is important to allow efficient elution from the spin column at the end.
? TROUBLESHOOTING

28 Centrifuge for 5 min at 21,000g at 23 °C to remove the foam (denatured proteins). If there is no
foam, the lysis did not work or the number of cells in the tube was very low. If you expect low cell
numbers, we highly recommend proceeding directly with Step 29.

29 Load the lysate onto a Zymo-Spin IIC-XL spin column and centrifuge for 1 min at 10,000g at 23 °C.
Up to 800 µL of lysate can be loaded at once. If your volume is larger, load several times. If the cells
were lysed with Buffer RLT+, the flow-through fraction contains total RNA and denatured proteins,
which can be isolated subsequently. In the case of lysis with genomic lysis buffer+, the RNA is
already degraded, but the proteins can still be precipitated for subsequent analysis. If desirable, the
flow-through can be stored at −80 °C for up to 5 years.

30 Add 400 µL of RNase wash buffer to each spin column and incubate for 10–15 min to make sure that
the residual RNA is degraded. After incubation, centrifuge for 2 min at 10,000g at 23 °C, using a new
collection tube.

c CRITICAL STEP The amount of RNA varies greatly from cell type to cell type. RNA impurities can be
separated from DNA modifications in the UHPLC–MS/MS analysis. However, it is difficult to estimate
the amount of isolated gDNA if the sample is contaminated with a substantial amount of RNA.
? TROUBLESHOOTING

31 From now on, either discard the flow-through by pipetting it out of the collection tube or use a new
collection tube for each step.

c CRITICAL STEP Take care when removing the collecting tubes of the centrifuge. The flow-
through should neither touch the end of the spin column nor become trapped between the spin
column and the collection tube, as this might lead to alcohol or salt contaminations in the eluate
that will massively impair the subsequent UHPLC–MS/MS analysis.

32 Add 400 µL of DNA pre-wash buffer per spin column and centrifuge for 1 min at 10,000g at 23 °C.
Discard the flow-through.
? TROUBLESHOOTING

33 Add 600 µL of gDNA wash buffer per spin column and centrifuge for 1 min at 10,000g at 23 °C.
Discard the flow-through and repeat this step at least once.
? TROUBLESHOOTING

34 Put the column into a new collection tube and centrifuge for 1 min at 10,000g at 23 °C to remove all
the wash buffer.

35 To elute, set the spin column into a new 1.5-mL centrifuge tube, add 50–150 µL of water
supplemented with 0.001 equiv. of 100× BHT directly to the matrix of the column and incubate for
10 min. Centrifuge for 2 min at 10,000g at 23 °C.

36 Measure the gDNA concentration with a photometer. The optical density (OD)260/OD280 ratio should
be between 1.85 and 1.90, and the OD260/OD230 ratio should be >2, ideally between 2.3 and 2.5.

c CRITICAL STEP If a sample is contaminated with RNA, the OD260/OD280 ratio is often >1.9. If
the OD260/OD230 ratio is too low, the sample probably contains salt impurities. High concentrations
of BHT can also result in a low OD260/OD230 ratio, but they do not impair the UHPLC–MS/MS
analysis. Note: If the amount of RNA impedes determination of DNA content, PicoGreen can be
used to clearly determine the content of double-stranded DNA.
? TROUBLESHOOTING

j PAUSE POINT Isolated gDNA can be kept at −80 °C for an infinite amount of time. For short-
time storage, −20 °C (1–7 d) or even 4 °C (up to 1 d) is suitable. If you freeze your isolated gDNA,
thaw your samples on ice before starting the DNA digestion steps. After thawing, vortex the
samples thoroughly before use and do a quick spin (5,000g, 23 °C, 5 s) in order to collect the
solution at the bottom.
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DNA digestion ● Timing 7 h or overnight
37 Create a digestion sheet (Supplementary Methods 3) to easily calculate the required volume of DNA

and water per sample. Each DNA sample should be processed from now on as a technical triplicate.
Your sheet starts with samples 1–3 as digestion blanks, which contain no DNA, but to which
mastermixes 1 and 2 will be added. For all the other samples, DNA and water should have a total
volume of 35 µL (Table 5). Number the samples consecutively, as these will help you to identify
your samples afterwards.

c CRITICAL STEP The volume of DNA must not exceed 35 µL per sample.
38 Start with the calculated volume of water, and add the DNA according to the digestion sheet.

c CRITICAL STEP Use fresh water for each digestion. Autoclaved water or water that has been
stored for a long time might contain dust or additional contaminations that could impair the
digestion or the measurements.

c CRITICAL STEP If this is the first digestion of your DNA sample and/or you are interested in a
new DNA modification, you should consider testing your digestion protocol (Box 2). This may help
to determine the appropriate addition of labeled nucleosides, e.g., spiking and the proper amount of
DNA in general for fulfilling the requirements of the calibration curves.

39 Create a pipetting scheme for your mastermixes 1 and 2, using our provided Excel template
(Supplementary Methods 3). Calculate the number of DNA samples (Step 37) you want to digest
and add three samples more as spares.

c CRITICAL STEP Instead of following the two-step digestion protocol, which was designed to give
an optimal SNR in the MS, you can use Degradase Plus from Zymo Research, which requires only
one digestion step. See Box 3 for details.

Table 5 | Example of calculating the amount of gDNA and water for the DNA digestion

Sample ID c (ng/µL) m (µg) V (H2O) (µL) V (DNA) (µL) Sample no.

1_Blank 1 — — 35.0 0 1

2_Blank 2 2

3_Blank 3 3

4_1.DNA_1 444.61 10.0 12.5 22.5 4

5_1.DNA_2 5

6_1.DNA_3 6

7_2.DNA_1 405.34 10.0 10.3 24.7 7

8_2.DNA_2 8

9_2.DNA_3 9

V, volume.

Box 2 | Testing digestion conditions for an unknown sample ● Timing 8 h

1 Produce a single technical replicate, instead of a technical triplicate as described in Step 37, by digesting
1–5 µg of DNA. Then continue with Step 38.

2 Check if all requirements of the protocol are fulfilled:
(i) Complete digestion of DNA,
(ii) All MOIs and MOI*s are detectable,
(iii) All MOIs can be evaluated with the existing calibration curves.

If there are problems with (i), your sample contains impurities (e.g., salt) or shows an unfavorable pH. See the
Troubleshooting section (incomplete digestion).
If there are problems with (ii):

Neither the MOI nor the corresponding MOI* is detectable: see the Troubleshooting section (peak shifting).

Only the MOI*, but not the corresponding MOI, is detectable: increase the amount of DNA and check the pH.

If there are problems with (iii): first, try to adjust the amount of DNA and/or the amount of MOI*. If this does not
solve the problem, generate a new calibration curve.
? TROUBLESHOOTING
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40 Prepare mastermix 1, then add 7.5 µL of it to each sample and incubate for 3 h at 37 °C.
41 Before the incubation time for Step 40 runs out, start preparing mastermix 2.
42 Add 7.5 µL of mastermix 2 to each sample and incubate for 3 h at 37 °C.

c CRITICAL STEP If >5 µg of DNA/sample is digested, incubate overnight at 37 °C.

j PAUSE POINT Samples can be stored at 4 °C (overnight) or at −20 °C for long-term (up to
5 years) storage.

Sample preparation for UHPLC–MS/MS analysis ● Timing 1 h
43 Tape an AcroPrep Advance 96-well Supor plate (0.2 µm) to a skirted 96-well PCR plate.
44 After the digestion, pipette the full 50 µL of digestion mixture for each sample into a separate well

of the assembled filtration plate.
45 Cover the filtration plate with Parafilm M and secure it with tape.

c CRITICAL STEP Water should not enter the plate from an external source, but the Parafilm M
should not seal the plate airtight.

46 Centrifuge the filtration plate, using a plate rotor for 35 min at 3,220g at 4 °C.
? TROUBLESHOOTING

47 Transfer 43 µL of the filtered digestion mixture to an HPLC vial and close the vial with an HPLC
vial cap. If the volume of the filtered digestion mixture is <43 µL, note which volume is transferred
to the vial.

c CRITICAL STEP The unused wells of the filtration plate can be used for later filtrations. For
storage, seal the filtration plate, which is taped to the 96-well PCR tube plate, with Parafilm M and
store it at room temperature for an infinite amount of time.

48 For each sample from Step 47, inject 39 µL of sample into the UHPLC–MS/MS system when the
machine is ready. Record the signal of the MOIs with the relevant method for your MOIs
(Supplementary Methods 4 for epigenetic modifications or Supplementary Methods 5 for m6dA-
and m4dC-sensitive or Supplementary Methods 6 for m6dA- and m4dC-insensitive). For details
about the measurement methods, see Table 1 and Supplementary Tables 3, 5 and 7.

c CRITICAL STEP Inject 3 µL less than the transferred volume, if the transferred volume is <43 µL.
? TROUBLESHOOTING

Evaluation ● Timing 20 min–1.5 h
49 Create a new folder called ‘QuantResults’ in the folder with the measured data.
50 Open the program QQQ Quantitative Analysis and click on ‘File’ > ‘New Batch’ and label the batch

according to your experiment name/number.
51 Import all samples of interest.
52 Set up a method for analysis. Click on ‘Method’ > ‘New’ > ‘New Method’ under ‘Acquired MRM

Data’ > ‘Select a sample which was measured with this method’ > ‘Method Setup Tasks’ > ‘MRM
Compound Setup’. Add UV, UV-dG and UV-dC as new compounds in the table (right-click on the
table). Set the time segment ‘TS’ to ‘3’ and the ‘Type’ to ‘Target’. Enter the appropriate RT in the
‘RT setup’. For UV, set it to 6 min with a ‘Left RT Delta’ of 6 min and a ‘Right RT Delta’ of 6 min.
Go next to ‘ISTD Setup’. In the ‘ISTD conc.‘ column, add ‘1’ for the ISTD concentration, make a
tick in the ‘ISTD Flag’ column for each ISTD and select the appropriate ISTD for each target in the
‘ISTD Compound Name’ column. Finally, select ‘Advanced Tasks’ > ‘2D Compound Setup’ and
then select ‘VWD’ for the compounds UV, UV-dC and UV-dG. Click on ‘Validate’ to ensure that

Box 3 | DNA digestion with Degradase Plus (replaces Steps 39–42) ● Timing 5 h

1 Create a pipetting scheme for the Degradase mastermix using our provided Excel template for Degradase
digestion (see the tabs for ‘Degradase digestion’ in Supplementary Methods 3). Calculate the number of DNA
samples and add at least one more sample as a spare.

2 Prepare the Degradase mastermix, add 15.0 µL to each sample and incubate for 4 h at 37 °C.
When using Degradase Plus, adjust the enzyme concentration if >5 µg of DNA/sample must be digested
(Supplementary Methods 3). The additional use of benzonase is required for residual RNA content within your
DNA sample. The enzyme mixture in Degradase Plus cannot digest RNA. If benzonase is not used, this will lead
to an overpressure in the LC device due to residual undigested RNA, and subsequent clogging of the column.
However, there is no need to add the enzyme benzonase in the case of digestion of pure DNA, e.g., synthetic
DNA oligonucleotides.
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your method does not have any errors. If errors or warnings occur, the program will tell you where
the problem is.

c CRITICAL STEP The protocol described here uses the provided Excel sheets (Supplementary
Methods 1 and 2) for quantification. Therefore, the concentration that you define in the ‘ISTD
conc.’ column is not relevant.

53 Click on ‘Exit’ and let the program analyze your batch.
54 Select at first for the compound ‘UV’: click on ‘manual integration’ and start with the integration of

dG (RT ~5.3 min for method with buffer B: MeCN or ~8.3 min for method with buffer B: MeOH)
for all samples. Click in the table, then select ‘File’ > ‘Export’ > ‘Export Table’ (this will open an
Excel sheet, which should be saved as ‘dG’). Continue with the integration of the dC Peak (RT
~1.9 min for method with buffer B: MeCN or ~1.8 min for method with buffer B: MeOH).

c CRITICAL STEP In the case that you also need dA (RT ~7.3 min for method with buffer B: MeCN
or ~9.1 min for method with buffer B: MeOH) and T (RT ~5.5 min for method with buffer B:
MeCN or ~8.8 min for method with buffer B: MeOH), additionally integrate those peaks.

c CRITICAL STEP The digestion blanks should not show any peaks for dA, dC, dG or T in the UV
trace. If you see any peaks at the anticipated RT, your blanks are probably contaminated with DNA,
and the whole measurement is invalid. Peaks at different RTs, not overlapping with dA, dC, dG and
T, in the UV trace of the digestion blank are impurities or small molecules from the digestion mix
(e.g., DFOA) that can be ignored (Fig. 4). RNA impurities in the DNA samples should not overlap
with dA, dC, dG and T peaks either.

55 In the Batch table, select the first compound measured in the Signal type MS. The upper row shows
the peak for the natural nucleoside (MOI), e.g., the one defined as Target and the lower row shows
the peak for the labeled standard (MOI*), e.g., the one defined as ISTD (Fig. 5). Integrate both peaks
the same way. This is very important for the reliability of the method. Export the Batch table. This
will create an Excel sheet automatically, which you should label according to the MOI.

c CRITICAL STEP Carefully integrate the peaks of your digestion blanks, e.g., samples 1-3, even if
they do not contain any DNA. These samples will serve as your negative control and will reveal the
limits of quantification and detection; see Experimental setup.

56 Repeat this procedure for all nucleosides (MOI) of interest (Fig. 6).
? TROUBLESHOOTING

57 Use the provided Excel sheet (Supplementary Methods 1 or 2) for the evaluation of your data. For
this, you need to copy the values of the peak areas (for A (MOI) and A* (MOI*)) resulting from the
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PROTOCOL NATURE PROTOCOLS

304 NATURE PROTOCOLS | VOL 14 | JANUARY 2019 | 283–312 |www.nature.com/nprot

www.nature.com/nprot


integration of Steps 54–56 from the created Excel sheet into the evaluation Excel sheet
(Supplementary Methods 1 or 2).

c CRITICAL STEP Before processing the data, you must calculate the LOD of every single MOI by
analyzing the SNR. Furthermore, the ratios of A/A* and thereby the amount n of the MOI need to
meet the requirements of the corresponding calibration curve. Valid data that are consistent with
these conditions can be processed further and will provide the amount of the MOI in pmol within
one sample, more specifically within the volume of injection (39 µL). If you did not inject 39 µL for
the measurement of a sample, you need to adjust this value in the provided Excel sheet for this
sample. This additional calculation will provide comparable data for your technical and later
biological replicates. The injection volume can be looked up with the QQQ Quantitative Analysis
program.
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Troubleshooting

Troubleshooting advice can be found in Table 6.

Table 6 | Troubleshooting table

Step Problem/Observation Possible reason Solution

11 The sensitivity of the mass spectrometer is
too low: The sensitivity check for the ISTD
mastermix shows substantially smaller
peaks than in previous measurements

(i) Dirty ionization source
(ii) Old buffers
(iii) Old column
(iv) Molecule insoluble (pH variation)

(i) Clean ionization source
(ii) Exchange buffers
(iii) Exchange column
(iv) Check and adjust pH
(v) Check sensitivity between (i)–(iv)

11, 32, 33
and 56;
Box 2

Peak shifting: The peak of interest occurs at
a different retention time

(i) Impurities (e.g., salt)
(ii) pH variation
(iii) Column batch shows different
properties

(i) Wash samples more rigorously during DNA
isolation
(ii) Check pH regularly
(iii) Adjust time segments, if modifications
escape

11, 46
and 56

Peak splitting: The chromatogram for a
modification shows an unexpected number
of signals; usually one is at the expected
retention time and a second one elutes at
an earlier retention time. The two signals
might be connected

(i) The filtration was not successful
(ii) The inlet filter is clogged
(iii) The nucleoside was only partially
charged during the chromatography and
is therefore eluting at two different time
points

(i) Optimize the filtration step
(ii) Use guard columns or inlet filters
(iii) Check the pH of the sample

11 and 56 Peak broadening (i) Amounts of modification are too high
(ii) Not enough data points in peak(s)
(iii) Poor performance of the column

(i) Try setting ‘MS1 resolution’ or ‘MS2
resolution’ to ‘enhanced’ in the method
(ii) Decrease dwell time to receive more
cycles per second
(iii) Test a new column

Two molecules cannot be baseline-
separated: The signal for the MOI shows at
least a shoulder or a clear second
maximum

(i) Similar retention time due to physical
properties of the molecule (often in the
UV trace, but also possible with MS
analysis; e.g., in isomers)
(ii) Altered performance of the column,
which is possible after change of the
column batch

(i) Switch the machine setup by testing a
different column or different buffer system
(ii) Adjust column temperature and check
whether molecules with the same mass signal
still elute in the same order

27 and
36

Low yield of DNA: Yield of DNA after
isolation is lower than expected

(i) Insufficient DNA shearing
(ii) Spin column did not bind DNA
(iii) Spin column was overloaded
(iv) Insufficient DNA elution from
column

(i) Use more lysis buffer
(ii) Test a different batch of spin columns
(iii) Distribute the lysate on more spin
columns
(iv) Increase the volume for elution or elute
twice
(i,iv) Use the Blood & Cell Culture DNA Midi
Kit from Qiagen (anion-exchange columns
allow elution of larger gDNA fragments than
spin columns)

30, 36
and 56

Too much RNA in DNA preparation: (i) The
ratios of the absorption at 260 nm and 280
nm are >2
(ii) The UV chromatogram shows
additional peaks

(i) Cell line contains higher amounts of
RNA
(ii) The amount or performance of the
RNase was insufficient

Adjust the amount of RNase during the DNA
isolation and increase the incubation time

36 Low DNA concentration: DNA volume for
digestion exceeds 35 µL

Elution volume too high Precipitate DNA (Supplementary Methods 7)
and re-dissolve in a smaller volume

48, Box 2 The pressure of the column increases
during one sample set: Between samples of
the same dataset, an increase in the column
pressure is observed

(i) Incomplete digestion
(ii) Salt impurities

(i) Exchange the inlet filter
(ii) Add runs without injection to the worklist

56, Box 2 Incomplete digestion: (i) No or
substantially smaller signals for the
canonical nucleosides are observed in the
UV trace
(ii) Sometimes additional UV signals
appear at early (~1 min) or late (~10 min)
retention times
(iii) The pressure of the column increases
due to clogging

(i) Enzyme performance is reduced
(ii) Enzyme performance is reduced and
therefore residual single nucleotides or
oligonucleotides exist
(iii) pH variation of the sample and/or
salt impurities

(i) Test enzymes regularly with appropriate
amounts of DNA
(ii) See (i)
(iii) Test pH compatibility of sample and
enzyme and/or wash DNA more often with
DNA pre-wash and gDNA wash buffer during
the isolation
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Timing

Steps 1–4, general procedure for dissolution and dilution of nucleosides: 30 min
Steps 5–11, preparation of ISTD mastermix and UHPLC–MS/MS system, and performance of sensitivity
checks: 2–3 h
Steps 12–24, calculation of calibration curves: 1 d
Steps 25–36, isolation of gDNA: 1.5–3 h
Steps 37–42, DNA digestion: 7 h or overnight
Steps 43–48, sample preparation for UHPLC–MS/MS analysis: 1 h
Steps 49–57, evaluation: 20 min–1.5 h
Box 1, use of microscales for dilution of nucleosides: 15–30 min
Box 2, testing digestion conditions for an unknown sample: 8 h
Box 3, DNA digestion with Degradase Plus: 5 h

Anticipated results

The yield of gDNA depends on the cell/tissue type and isolation method. We adapted the procedure
delineated in the Quick-gDNA MidiPrep Kit in combination with Zymo-Spin IIC-XL spin columns
from Zymo Research. Using this method, ~6 or 10 µg of gDNA can be isolated from 106 human
embryonic kidney 293T (HEK293T) cells or 106 mESCs, respectively. The yield of gDNA from 1 mg
of mouse cerebellum will be ~1 µg per mg of tissue. The maximal binding capacity of the Zymo-Spin
IIC-XL spin columns is 20–25 µg of gDNA. If more gDNA is required, we recommend using a
proportional number of columns and combining the eluates at the end. Earlier, we had successfully
used spin columns from Zymo Research with higher binding capacity. These columns yielded DNA
of good quality, but recent production batches seemed to contain impurities, which perturbed our
LC–MS/MS setup, thus leading to a loss of sensitivity. Note, however, that the sensitivity to impurities
may vary with the specific UHPLC–MS/MS equipment. As an alternative to spin column–based
isolation, we have successfully used gravity flow columns with anion exchange properties (Qiagen
Blood & Cell Culture DNA Midi Kit). This method is recommended for abasic site analysis44, as it
generates lower background quantities of abasic sites, probably as a result of the gentler elution
procedure, but it takes much more time than the spin column–based method. An additional
advantage of the spin column–based method is that total RNA and (denatured) protein can be
subsequently isolated from the very same lysate.

The protocol described above details the steps needed to quantify DNA modifications and lesions
such as m5dC, hmdC or 8oxodG. The levels of 8oxodG in mammalian cells are probably between 0.07
and 0.9 × 10−6 8oxodG/dN, based on the average of the results from several laboratories and various
methods68. The background level of 8-oxodG has been estimated at 0.5 lesions per 10−6 dN69,70.
Depending on the modification, there are big differences in the abundance of certain modifications
between different cell lines or culture conditions. Whereas the abundance of m5dC for most
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mammalian cell lines or tissues is normally in a range between 0.6 × 10−2 and 1.0 × 10−2 m5dC/dN,
modifications that are less abundant can deviate by factors of hundreds or thousands, depending on
the biological background of the sample (e.g., organism, culture conditions).

Figure 7 shows typical quantities of m5dC, hm5dC, f5dC, ca5dC and 8oxodG for iNGNs obtained
8 d after differentiation, for untransfected HEK293T cells and HEK293T cells that were transfected
with a plasmid coding for Tet3 and incubated for an additional 24 h. For all the cell lines shown, 2 µg
of gDNA was used per technical replicate for the digestion. As m5dC is a very abundant DNA
modification, only very little amounts of gDNA are needed for detection and quantification, and 2 µg
is by far sufficient to exceed the LLOQ and the LODpractical. Also, for hm

5dC, for which the typical
amount is in the range of 10−4 hm5dC/dN, 2 µg of gDNA is more than enough for the quantification,
even in cell lines that have typically low quantities of this modification, such as HEK293T cells.
However, for less abundant modifications, here f5dC and ca5dC, 2 µg is often not enough to meet the
LLOQ or LODpractical criterion. Although the detected f5dC levels in iNGNs and untransfected
HEK293T cells were above the LLOQ, these results cannot be used for further interpretation, because
in this case the background signal was too high and the samples therefore did not meet the
LODpractical criterion. For ca

5dC, the abundance was above neither the LODpractical nor the LLOQ.
One possible way to overcome this problem is to use more gDNA for the quantification. If you are
interested only in a certain modification, you can also try to optimize the UHPLC–MS/MS system for

Table 7 | Measurements for an exemplary calibration curve for m4dC in technical triplicates

Calibration level A(m4dC) A*(15N2-m
4dC) A/A* Replicate

L1 4,797 1,745,218 0.0027 1

L2 7,213 1,737,978 0.0042

L3 10,664 1,692,721 0.0063

L4 19,426 1,670,953 0.0116

L5 34,395 1,677,652 0.0205

L6 74,308 1,646,471 0.0451

L7 164,901 1,566,133 0.1053

L8 379,446 1,467,230 0.2586

L9 869,825 1,340,740 0.6488

L10 1,960,129 1,181,613 1.6589

L11 4,164,191 971,267 4.2874

L1 5,094 1,611,819 0.0032 2

L2 6,145 1,658,872 0.0037

L3 10,207 1,658,337 0.0062

L4 18,928 1,586,681 0.0119

L5 34,678 1,570,039 0.0221

L6 73,600 1,534,700 0.0480

L7 163,872 1,558,445 0.1052

L8 368,404 1,454,277 0.2533

L9 875,082 1,321,236 0.6623

L10 1,914,969 1,189,553 1.6098

L11 4,264,798 885,407 4.8168

L1 4,728 1,689,815 0.0028 3

L2 6,595 1,680,195 0.0039

L3 10,841 1,677,259 0.0065

L4 18,867 1,670,998 0.0113

L5 35,859 1,696,961 0.0211

L6 72,444 1,694,990 0.0427

L7 169,019 1,543,636 0.1095

L8 386,871 1,510,771 0.2561

L9 897,343 1,315,416 0.6822

L10 1,994,610 1,225,289 1.6279

L11 4,063,788 944,247 4.3037
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this modification; however, this might impair the detection of other modifications. It is not possible to
avoid completely the generation of 8oxodG during the whole sample preparation process, and cells
always show a low background of oxidative damage. However, the 8oxodG quantity (unless cells were
put under (oxidative) stress) should not exceed the low 10−6 8oxodG/dN range.

Evaluation of calibration curve
Table 7 shows an exemplary evaluation of the calibration curve of m4dC as described in the
Procedure. Consideration of all data points for linear regression would result in the following
equation:

y ¼ 0:50101x � 9:60772 ´ 10�4:

Applying a so-called backfit (Step 23) results in the values shown in Table 8, column 5. These
values then must be divided by the mean for A/A* (Table 8, column 2) and multiplied by 100 to
provide the accuracy of the equation (Table 8, column 6) as a percentage. As described in Step 23, the
accuracy must be between 80 and 120%, but with consideration of all data points, e.g., levels, the
accuracy varies highly and does not meeting the requirements. Therefore Step 23 must be applied.

In this case, Step 24 had to be performed multiple times to yield a calibration curve consisting only
of data points with sufficient accuracy and therefore a valid linear equation (Fig. 8). Calibration levels
2-6 (see Table 8, columns 7 and 8) provide the lower and upper limits of quantification for n of 18.9

Table 8 | Calculations for an exemplary m4dC calibration curve

Calibration level Mean (A/A*) s.d. (A/A*) %s.d.
(A/A*)

Backfit
(invalid)

Accuracy
(invalid)

Backfit Accuracy

L1 0.0029 0.0002 7.7 0.0010 35 0.0025

L2 0.0039 0.0002 5.7 0.0030 76 0.0038 105

L3 0.0063 0.0002 2.4 0.0069 110 0.0064 99

L4 0.0116 0.0003 2.8 0.0148 128 0.0115 101

L5 0.0212 0.0008 3.8 0.0306 144 0.0218 97

L6 0.0453 0.0026 5.8 0.0622 137 0.0424 107

L7 0.1066 0.0025 2.3 0.1254 118 0.0835

L8 0.2560 0.0026 1.0 0.2519 98 0.1658

L9 0.6644 0.0168 2.5 0.5047 76 0.3305

L10 1.6322 0.0248 1.5 1.0103 62 0.6597

L11 4.4693 0.3010 6.7 2.0216 45 1.3181
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Fig. 8 | Exemplary calibration curve for m4dC. Three technical replicates were measured per data point. The mean
is plotted and error bars represent s.d.

NATURE PROTOCOLS PROTOCOL

NATURE PROTOCOLS | VOL 14 | JANUARY 2019 | 283–312 |www.nature.com/nprot 309

www.nature.com/nprot


and 302 fmol, respectively, with the lower and upper limits for A/A* in the range between 0.0042
and 0.0451.

Ethics statement
Tissue material was provided by the animal facility of the Department of Pharmacy at Ludwig-
Maximilians–Universität München, which is approved by the government of Upper Bavaria.

Reporting Summary
Further information on research design is available in the Nature Research Reporting Summary.
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ABSTRACT
Despite their central importance in mammalian de-
velopment, the mechanisms that regulate the DNA
methylation machinery and thereby the generation
of genomic methylation patterns are still poorly un-
derstood. Here, we identify the 5mC-binding protein
MeCP2 as a direct and strong interactor of DNA
methyltransferase 3 (DNMT3) proteins. We mapped
the interaction interface to the transcriptional re-
pression domain of MeCP2 and the ADD domain of
DNMT3A and find that binding of MeCP2 strongly
inhibits the activity of DNMT3A in vitro. This effect
was reinforced by cellular studies where a global
reduction of DNA methylation levels was observed
after overexpression of MeCP2 in human cells. By
engineering conformationally locked DNMT3A vari-
ants as novel tools to study the allosteric regulation
of this enzyme, we show that MeCP2 stabilizes the
closed, autoinhibitory conformation of DNMT3A. In-
terestingly, the interaction with MeCP2 and its result-
ing inhibition were relieved by the binding of K4 un-
modified histone H3 N-terminal tail to the DNMT3A–
ADD domain. Taken together, our data indicate that
the localization and activity of DNMT3A are under the
combined control of MeCP2 and H3 tail modifications
where, depending on the modification status of the
H3 tail at the binding sites, MeCP2 can act as either
a repressor or activator of DNA methylation.

INTRODUCTION
The correct establishment andmaintenance ofDNAmethy-
lation patterns that are set during mammalian embryoge-
nesis by the de novo DNA methyltransferases, DNMT3A
and DNMT3B, depend on the accurate targeting and regu-
lation of DNA methyltransferases (DNMTs) (1–3). Mam-
malian DNMTs comprise two parts, a large multi-domain
N-terminal part and a C-terminal catalytic domain (CD)
(4,5). The N-terminal parts of DNMTs are important for
guiding the nuclear and sub-nuclear localization of the en-
zymes. They function as an interaction platform with other
proteins, DNA and chromatin, thereby regulating the cat-
alytic activity (1,6). Two defined sub-domains are present
in the N-terminal part of DNMT3A and DNMT3B (Fig-
ure 1A): a PWWP domain, which recognizes H3K36me3-
modified H3 tails (7–9), and an ADD domain, which binds
the N-terminus of histone H3 if K4 is unmodified (10–
12). Structural and biochemical work has shown that the
ADD domain of DNMT3A forms contacts with the CD
at two distinct interfaces (Supplementary Figure S1) (13),
an autoinhibitory site, where ADD binding hinders DNA-
binding and thereby inhibits the activity of the CD, and an
allosteric site, where binding does not lead to inhibition.
Different ADD residues are contacting the CD, depending
on the conformation adopted by the enzyme. For instance,
Y526 contacts the CD in the allosteric conformation, while
D531 contacts the CD in the autoinhibitory conformation.
The conversion ofDNMT3A from the autoinhibitory to the
open conformation was shown to be stimulated by bind-
ing of the unmodified H3 peptide to the ADD domain.
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Figure 1. Structures ofDNMT3proteins andMeCP2 and interaction ofMeCP2withDNMT3A. (A)Domain architecture ofmouseDNMT3A,DNMT3L
andMeCP2 annotated with the domain boundaries used in this work. (B)Western blot detection of His-DNMT3A after its pull-downwith theGST-tagged
N-terminal truncated MeCP2 (MeCP2�N, residues 104–486). (C) Western blot detection of Myc-tagged DNMT3A after its pull-down by EYFP-tagged
MeCP2 following transient co-expression of both proteins in humanHEK293 cells. As a negative control, the pull-down was performed after co-expression
of DNMT3A with EYFP. See also Supplementary Figure S10. (D) Western blot detection of endogenous MeCP2 after its pull-down by DNMT3A using
mouse brain protein extracts. An immunoprecipitation using an IgG isotype control was included as negative control. NTD, N-terminal domain.

Through its binding, H3 induces a large movement of the
ADD domain, which leads to the activation of DNMT3A
(12–14). Several studies have recently shown that the activ-
ity of DNMT3 enzymes is regulated by the interaction with
the H3 tail not only in vitro, but also in cells (8,15–18).
The biological role of DNA methylation is mediated by

proteins, which specifically bind to DNA carrying methy-
lated cytosine (19). One important reader of DNA methy-
lation is the MeCP2 protein (Figure 1A) (20–23). It is
the founding member of a group of proteins containing
so called methyl-binding domains (MBDs), which bind to
DNA in a methylation specific manner (24). MeCP2 rec-
ognizes methylated DNA with a preference for CpG dense
islands (22,25), and its binding strength is strongly influ-
enced by the flanking sequence of the methylated CpGs
(26,27). Recently, binding of methylcytosine in non-CpG
contexts was also reported (28,29). In addition to the
MBD, MeCP2 contains a transcriptional repression do-
main (TRD), which serves as a protein recruitment platform
and shows a weak methylation-independent DNA binding
(23,30). MeCP2 is known to interact with various tran-
scriptional repressors and co-repressors, including Histone
Deacetylases, DNMT1, and the ATRX and Sin3A pro-
teins (31–34). Functionally,MeCP2 is involved in numerous
cellular processes, like methylation-induced gene repression
(in particular of long genes), control of repetitive elements,
chromatin compaction and looping and splice site regula-
tion (23,29,30,35–38). In addition to its role in gene silenc-
ing, gene expression studies performed in specific brain sub-
regions found altered expression levels of hundreds of genes
after loss of MeCP2, most of which were upregulated by
MeCP2 (39–41). These findings indicate that MeCP2 can
function as a gene activator or repressor depending on the

genomic context. Nevertheless, in spite of its high abun-
dance in adult neurons, important role in chromatin organi-
zation and strong clinical relevance, the mechanistic details
behind these opposing roles of MeCP2 are not fully under-
stood (42).
Both DNMT3A and MeCP2 are highly expressed in

neurons (35,43) (EBI expression atlas http://www.ebi.ac.
uk/gxa/) and they have important functions in the brain.
DNMT3A has been implicated in neuromuscular control,
synaptic plasticity, learning and memory (44–46). MeCP2
functions as a structural protein and forms a specific type
of chromatin, which is depleted of histone H1 (23). It plays
an essential role in brain plasticity (35) and inactivatingmu-
tations of the X-linked MECP2 gene were shown to cause
Rett syndrome, a severe neurodevelopmental disease asso-
ciated with developmental disorders and autism-like symp-
toms in females (30,34).

Since functional crosstalks between several readers and
writers of epigenetic modifications have been previously re-
ported (47) and DNMT3A and MeCP2 were both known
to be targeted to pericentromeric heterochromatin (48), we
investigated their potential interaction in this work. We ob-
served a strong binding of MeCP2 to DNMT3A in vitro,
in cells, and in the mouse brain and mapped the interac-
tion interface to the TRD domain of MeCP2 and the ADD
domain of DNMT3A. We found that binding of MeCP2
strongly inhibits the activity of DNMT3A by stabilizing its
autoinhibitory conformation. The inhibition of DNMT3A
was relieved by binding of an H3 tail peptide unmodified
at K4 to the ADD domain suggesting that MeCP2 controls
DNMT3A localization and activity depending on the local
chromatin context.
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MATERIALS AND METHODS
Generation of DNMT3A2 mutants andMeCP2 domain con-
structs

The murine DNMT3A and MeCP2 proteins and pro-
tein domains were prepared as indicated in Figure 1A.
The MeCP2 domains and mutant proteins were cloned in
pGEX-6P2 vector using BamHI and XhoI cloning sites. All
constructs were verified by DNA sequencing. Site-directed
mutagenesis were carried out by rolling circle polymerase
chain reaction (PCR) using a primer carrying point muta-
tion (49). The presence of the mutations was confirmed by
restriction marker analysis and by DNA sequencing.

Expression and purification of MeCP2 and DNMT3A pro-
teins

The MeCP2 domains and mutant proteins were expressed
in Escherichia coli BL-21 cells. Cells were cultivated in
Lysogeny broth (LB) medium at 37◦C while shaking un-
til an OD (600 nm) of 0.6–0.7 was reached. Then, protein
expression was induced by addition of 1 mM of isopropyl-
�-D-thiogalactoside and the culture was incubated at 18◦C
shaking at 200 rpm overnight. The cells were harvested by
centrifugation (15 min at 4600 rpm) and the pellet resus-
pended in sonication buffer (20 mM 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES) (pH 7.5), 500 mM
KCl, 1mM ethylenediaminetetraacetic acid (EDTA), 1mM
dithiothreitol (DTT), 10% glycerol) including protease in-
hibitor (Sigma). The cells were lysed by sonication and cen-
trifuged at 18 000 rpm for 1 h to prepare a clear lysate, which
was applied on a GST-sepharose column (GE Healthcare).
After washing with sonication buffer, the protein was eluted
with sonication buffer containing 50 mM reduced glu-
tathione and dialyzed first against dialysis buffer I (20 mM
HEPES (pH 7.5), 200 mMKCl, 1 mM EDTA, 1 mMDTT,
10% glycerol) for 3 h, then against dialysis buffer II con-
taining 60% glycerol overnight. The purified proteins were
analyzed on 12% sodium dodecylsulphate-polyacrylamide
gel electrophoresis (SDS-PAGE) gel stained with colloidal
Coomassie BB. The murine DNMT3A2 and DNMT3A–C
proteins were expressed and purified as described previously
(50–52). Since all DNMT3A structures were annotatedwith
numbers for the human proteins, we use human numbering
here. The residue numbers corresponding to human Q527,
D528 and D531 in murine DNMT3A are Q523, D524 and
D527, respectively. Examples of images of the purified pro-
teins used in this work are shown in Supplementary Figures
S2–S7.

GST pull-down experiments

For GST pull-down experiments, 20 �l of Glutathione-
Sepharose 4B beads were washed with 200 �l of interac-
tion buffer (25 mM Tris (pH 8.0), 100 mM KCl, 5 mM
MgCl2, 10% glycerol, 0.1% Nonident P-40 (NP-40), 200
�M Phenylmethanesulfonyl fluoride (PMSF)). The beads
were incubated for 1 h at 4◦C with 10–15 �g of the differ-
ent GST-tagged proteins, washed three times with interac-
tion buffer and incubated with His- or MBD-tagged pro-
teins (15 �g) for 1 h at 4◦C with shaking. Then, the beads

were washed three times with wash buffer containing high
salt (25 mMTris (pH 8.0), 5 mMMgCl2, 300 mMKCl, 10%
glycerol, 0.1% NP40, 200 �M PMSF). The interaction of
DNMT3A–ADD and MeCP2 TRDs was also investigated
using buffer containing up to 600 mM KCl. At last, the
beads were resuspended in sodium dodecyl sulphate (SDS)
gel loading buffer and incubated for 10 min at 95◦C. After
centrifugation of the beads at 14 000 rpm for 10 min, the
supernatant was loaded on a 12% SDS-PAGE gel. Proteins
were detected by western blotting or Coomassie BB stain-
ing as indicated. Some experiments were conducted in the
presence of recombinant histone H3.1 (Cat. No. M2503S,
New England Biolabs), as detailed in the ‘Results‘ section.

Co-immunoprecipitation assay

For co-immunoprecipitation of DNMT3A and MeCP2,
pcDNA-DNMT3A (expressing myc tagged DNMT3A)
and pEYFP-MeCP2 plasmids were co-transfected in
HEK293 cells. The pEYFPplasmidwas used as control. Af-
ter 48 h, the cells were collected and the cell pellets stored at
−80◦C. The cells were lysed as recommended by the GFP
trap protocol (ChromTek). Using GFP trap, YFP-tagged
MeCP2 was pulled-down and the complex washed with
buffer (10 mM Tris/Cl (pH 7.5), 0.5 mM EDTA, 0.5% NP-
40, 200 mM NaCl). The MeCP2 and DNMT3A proteins
were separated on a 12% SDS-PAGE and transferred to ni-
trocellulose membrane. To detect DNMT3A, the blot was
probed with anti-myc antibody (Santa Cruz, 1:1000 dilu-
tion) for 1 h at room temperature.
For immunoprecipitation of endogenous DNMT3A and

MeCP2, whole brains from 16-week-old C57Bl/N female
mice were used. Following mechanical disruption, the tis-
sue was lysed following a published protocol (53) with some
modifications. Three brains were homogenized in NP-40 ly-
sis buffer (10 mMHEPES (pH 7.9), 3 mMMgCl2, 10 mM
KCl, 10 mM NaF, 1 mM Na3VO4, 0.5 mM DTT, 0.5%
NP-40, 1× complete EDTA-free protease inhibitor cock-
tail (Roche)), by douncing 30× with a tight pestle, and pel-
leted at 1000 g. Lysates were next diluted 1:1 with Ben-
zonase buffer (10 mMHEPES (pH 7.9), 3 mMMgCl2, 280
mM NaCl, 0.2 mM EDTA, 10 mM NaF, 1 mM Na3VO4,
0.5 mM DTT, 0.5% NP-40) supplemented with 1× com-
plete EDTA-free protease inhibitor cocktail (Roche) and
sonicated with EpiShear (Active Motif) for 2 min 30 s (15
s ON, 30 s OFF cycles, 20% power, 3.2 mm microtip).
The homogenate was then digested with 500 units of Ben-
zonase (Novagen) for 2 h rotating at 4◦C. Chromatin pro-
teins were separated by centrifugation at 17 000 g for 20
min at 4◦C. For each pull-down, 2.5 mg lysate were pre-
cleared for 1 h at 4◦C with 20 mg Protein A Sepharose CL-
4B (GEHealthcare), followed by overnight incubation with
15 �g anti-DNMT3A antibody (sc-2070, Santa Cruz). For
negative control, an equivalent amount of non-related rab-
bit IgG anti-myc (ab9106, Abcam) antibody was used. The
antibody-bound proteins were immobilized to 100 mg Pro-
tein A Sepharose CL-4B, blocked in 10% bovine serum al-
bumin (Roth) for 6 h rotating at 4◦C. After five washes with
immunoprecipitation buffer, the immune complexes were
eluted from the beads by boiling in 100 �l Laemmli sam-
ple buffer. The samples were next analyzed by western blot
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as described above. For detection, anti-MeCP2monoclonal
primary antibody (#3456, Cell Signaling) was used, fol-
lowed by incubation with HRP-linked anti-rabbit IgG light
chain specific secondary antibody (211-032-171, Jackson
ImmunoResearch). Western lighting Ultra (Perkin Elmer)
was used as ECL HRP substrate.

Fluorescence microscopy

For sub-nuclear localization studies, NIH3T3 cells were
seeded on glass slides and transfected with plasmids ex-
pressing CFP- and YFP-tagged DNMT3L, DNMT3A–
ADD and MeCP2 using Fugene HD (Promega) accord-
ing to the manufacturer’s instructions. After 48 h, the cells
were fixed with 4% formaldehyde, mounted in Mowiol and
Z stacks images were collected using a Zeiss LSM 710 con-
focal microscope. Fluorescence signals were collected in
the YFP and CFP channels after confirming absence of
crosstalk (Supplementary Figure S8).

Substrates used for DNA methylation

The following oligonucleotide substrates were used for
DNA methylation assays: a biotinylated unmethylated 30
mer containing one CpG site (um30mer: TTG CAC TCT
CCT CCC GGA AGT CCC AGC TTC / Bt-GAA GCT
GGG ACT TCC GGG AGG AGA GTG CAA), the same
sequence hemimethylated at the CpG site with the methyla-
tion in the lower DNA strand (hm30mer: TTG CAC TCT
CCT CCC GGA AGT CCC AGC TTC / Bt-GAA GCT
GGG ACT TCmC GGG AGG AGA GTG CAA), a bi-
otinylated hemimethylated 30mer with optimized flanks for
methylation with DNMT3A (54) (hmF30mer: GAA GCT
GGA CAG TAC GTC AAG AGA GTG CAA / Bt-TTG
CAC TCT CTT GAmC GTA CTG TCC AGC TTC) and
a non-CpG substrate (nonCpG: GAA GCT GGT CCA
TTmC GAT GAT GGA GTG CAA / Bt-TTG CAC TCC
ATC ATmC GAA TGG ACC AGC TTC). The oligonu-
cleotides were annealed by heating to 86◦C for 5 min and
slowly cooling down to ambient temperature. In addition,
a biotinylated 585-mer DNA substrate obtained by PCR
was used that contains eight HpaII sites (CCGG) and 45
CpG sites (um585mer) (Supplementary Figure S9). The 585
mer was amplified from Lambda-phage DNA by PCR us-
ing the following primers: Bt-GAAGGA CAA CCT GAA
GTC CAG GTTG and GTG TAT GAC CAC CAG AGC
CTTTTGCand purified by PCRpurification kits (Qiagen).
To prepare partially methylated 585 mer (pm585mer), the
DNA was methylated with M.HpaII (NEB) following the
protocol of the provider and afterward purified by PCR pu-
rification kits. Successful pre-methylation atHpaII sites was
confirmed by HpaII (NEB) restriction digestion (Supple-
mentary Figure S9).

DNA methylation activity assay

The avidin–biotin microplate DNMT activity assay was
used to monitor the activity of different DNMT3A variants
in themethylation of biotinylatedDNAsubstrates, basically
as described (55,56). Each well of the microplate was coated
with 1 �g of avidin dissolved in 100 �l of 100 mMNaHCO3

(pH 9.6) and incubated overnight at 4◦C. Before starting the
assay, the wells were washed five times with 200 �l of 1×
PBST (140 mMNaCl, 2.7 mMKCl, 4.3 mMNa2HPO4, 1.4
mMK2HPO4, 0.05% v/v Tween 50, pH 7.2) containing 0.5
M NaCl. The reaction mixtures were prepared containing
2.5 �MDNMT3A2 orDNMT3A–C and 3 �MMeCP2 (or
any of its domains) in methylation buffer (20 mM HEPES
(pH 7.2), 1 mM EDTA, 50 mM KCl, 1.25 mg/ml bovine
serum albumin). For the control reactions without MeCP2,
the same volume of dialysis buffer II was added instead of
the MeCP2. The reaction mixtures were incubated on ice
for 20 min and the wells of the plate were filled with 5 �l of
0.5 M unlabeled AdoMet (Sigma) dispensed in 35 �l 1×
PBST/0.5 M NaCl. Then, 1 �M 30-mer oligonucleotide
DNA or 100 nM of 585-mer DNA and 0.76 �M [methyl-
3H]-AdoMet (PerkinElmer Life Sciences) were added to the
reactionmixture and the samples were incubated at 37◦C. In
order to follow the time course of the reaction, aliquots of 2
�l were removed from the reaction mixtures in duplicates at
time points between 2 and 30min and applied to one well of
the microplate where the incorporation of labeled AdoMet
was quenched by an excess of unlabeled AdoMet. This mix-
ture was incubated while slightly shaking for 30 min to 1 h.
The wells were washed five times with 200 �l of 1× PBST
and 0.5 M NaCl. A buffer (100 �l; 50 mM Tris–HCl (pH
8.0), 5 mM MgCl2) containing 0.7 �g unspecific nuclease
from Serratia marcescens was added per well and the mix-
ture was incubated for 30–60 min with slight shaking. At
last, the released radioactivity was measured using liquid
scintillation counting and the average count per minute of
the duplicates was plotted against time. Linear regression
was used to obtain the slopes of the initial linear parts of
the time courses. The data are reported as averages and stan-
dard error of the mean (SEM) of at least two independent
experiments.

DNAmethylation analysis inHCT116DNMT1 hyphomorph
cells

To study the effect of MeCP2 on DNMT3A-mediated
methylation in cells, we used HCT116 DNMT1 hyphomor-
phic cells (HCT116D1hypo, kindly provided by Prof. Bert
Vogelstein, HHMI, USA), which have a reduced level of
global DNA methylation (57,58). HCT116D1hypo cells were
cultivated in McCoy’s 5A medium (Gibco catalog no.: 16
600) supplemented with 10% heat-inactivated calf serum,
2 mM L-glutamine (Sigma), 100 U/ml penicillin and 100
�g/ml streptomycin at 37◦C in a saturated humidity at-
mosphere containing 5% CO2. HCT116D1hypo cells were
modified to express the ecotropic receptor and rtTA3 us-
ing retroviral transduction of pWPXLd-RIEP (pWPXLd-
rtTA3-IRES-EcoR-PGK-Puro) followed by drug selection
(0.8 ug/ml puromycin for 1week, respectively) similarly
as described (59). The resulting cell line was subsequently
transduced with ecotropically packaged retroviruses con-
taining the mecp2 gene fused to EYFP under control of
a TRE3G promoter. Retroviral gene transfer was per-
formed as previously described (60) using 10–20 �g plas-
mid DNA and 5 �g helper plasmid (pCMV-Gag-Pol, Cell
Biolabs) for each calcium phosphate transfection. Retrovi-
ral packaging was performed using PlatiniumE cells (Cell
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Biolabs). Transduction efficiencies of retroviral constructs
(TRE3G-MeCP2-EYFP-PGK-NEO and TRE3G-EYFP-
PGK-NEO) (61) were measured 48 h post induction with
1 �g/ml doxycycline by flow cytometry (MACSQuant®

VYB, Miltenyi Biotec GmbH, Germany). Transduced cell
populations were selected 5 days post infection using 500
�g/ml G418 (Gibco Life technologies). After 14 days of in-
duction,∼1 millionMeCP2 and the EYFP control express-
ing cells (as judged by being EYFP+) were sorted for each
replicate by flow cytometry (FACSAria III, BD, USA). Ge-
nomic DNAwas isolated using the DNAmini Kit (Qiagen)
and followed by LC-ESI-MS/MS analysis of DNA methy-
lation as described (62,63).

Quantitative RT-PCR

Quantitative RT-PCR assays were performed on a CFX96
Connect Real-Time detection system (Bio-Rad, Hercules,
CA, USA) using SsoFast EvaGreen supermix (Bio-Rad,
Hercules, CA, USA). For gene expression analysis, to-
tal RNA from 106 cells was isolated for each sample
using RNeasy Mini Kit (Qiagen, Limburg, The Nether-
lands). Complementary DNA (cDNA) was prepared using
MultiScribe™ Reverse Transcriptase (Applied Biosystems,
Thermo Fisher, USA) with oligo d(T)18 primers (NewEng-
land Biolabs, Ipswich, MA, USA) using 500 ng of RNA.
After this, quantitative PCR (qPCR) was carried out using
specific primers-sets for DNMT3A (CGA TTT CTC GAG
TCC AAC CCT G, ACC GGG AAG GTT ACC CCA),
DNMT3B (CAG TGA CAC GGG GCT TGA ATA TG,
CTT TGA GGA CTA GGT AGC CTG TCG CG) and
DNMT1 (GAG ACA CGA TGT CCG ACC TG, CCA
ATG CAC TCA TGT CCT TAC AG), normalized to the
housekeeping gene SDHA (TGG GAA CAA GAG GGC
ATC TG, CCA CCA CTG CAT CAAATT CAT). The rel-
ative DNMT expression was calculated using �Ct (Expres-
sion = 2−�C

t). Non-RT controls that did not undergo the
cDNA synthesis step were included in all experiments. Er-
ror analysis was based on independent cDNA preparations.

RESULTS
MeCP2 interacts with DNMT3A

To test whether DNMT3A and MeCP2 interact, we
first performed GST-pull-down assays using recombinant
murine full-length (FL) proteins.MeCP2 could be obtained
with good purity after generating a version lacking the N-
terminal unstructured domain (MeCP2�N) (Supplemen-
tary Figure S2). As shown in Figure 1B, a robust pull-down
of DNMT3A by GST-MeCP2�N could be detected. En-
couraged by the strong and direct interaction detected in
the in vitro assay, we next tested whether DNMT3A and
MeCP2 can also interact in cells. For this, HEK293 cells
were transiently co-transfectedwithMyc-taggedDNMT3A
and EYFP-tagged MeCP2 (Supplementary Figure S10).
To isolate immunocomplexes, the EYFP-tagged MeCP2
was immunoprecipitated and the pull-down material was
tested for the presence of Myc-DNMT3A. As shown in
Figure 1C, co-purified Myc-DNMT3A was detected after
co-expression with EYFP-MeCP2, but not with the EYFP
control. To exclude potential artifacts related to protein

overexpression, we finally performed immunoprecipitation
of endogenous DNMT3A frommouse brain, a tissue where
both MeCP2 and DNMT3A are abundantly expressed. As
shown in Figure 1D, MeCP2 could be specifically detected
in the pulled-downmaterial, but not in the IgG control. To-
gether, these results demonstrate that in addition to their
direct in vitro interaction DNMT3A and MeCP2 also as-
sociate after transient co-expression in mammalian cells as
well as at endogenous levels in brain extracts.

MeCP2 interacts with the ADD of DNMT3 proteins

Having established that the interaction between DNMT3A
and MeCP2 is not an artifact of the in vitro pull-down as-
say, but is also detected in biological relevant context, we
were next interested to pinpoint the interaction interfaces
between these two proteins. For this, we have undertaken
a systematic domain mapping approach by performing in
vitro pull-down experiments with serially truncated recom-
binant DNMT3A and MeCP2.
To define the interaction interface on DNMT3A, we first

performed GST pull-downs using MeCP2�N-GST and
DNMT3A2, a naturally occurring isoform of DNMT3A,
which lacks 219 N-terminal amino acids reported to be
involved in DNA binding (Figure 1A) (64,65). As docu-
mented in Figure 2A, a robust pull-down was detected with
DNMT3A2 indicating that residues 1–219 of DNMT3A
are not required for the interaction withMeCP2. To further
define the interacting area, we next resorted to DNMT3L,
an important regulatory member of the DNMT3 fam-
ily, which shares the ADD domain with DNMT3A and
DNMT3B, while containing a crippled CD and lacking
the N-terminal part and the PWWP domains (Figure 1A).
The direct interaction detected between DNMT3L and
MeCP2�N (Figure 2B) suggested that the association with
MeCP2 occurs through an interface that is shared between
DNMT3L and DNMT3A. To test this hypothesis, we next
performed pull-downs with the CDs of DNMT3A (Fig-
ure 2C) and DNMT3L (Figure 2D), respectively. Both of
these did not show an interaction with MeCP2�N. By
contrast, a robust interaction could be detected between
the GST-tagged ADD domain of DNMT3A as bait and
a GST-cleaved MeCP2�N as prey (Figure 2E). No signal
was detectable for the NTD and the PWWP domains of
DNMT3A in line with the results obtained for DNMT3L
and DNMT3A2. Taken together, these results show that
MeCP2 interacts with DNMT3 proteins via their ADD, a
domain that has been already reported to serve as a protein–
protein interaction platform and be essential for the regula-
tion of DNMT3 proteins.

DNMT3A interacts with the TRD of MeCP2

Having successfully mapped the interaction interface on the
DNMT3A side, we were next interested to dissect which
part of MeCP2 is responsible for the binding to DNMT3A.
To this end, we performed pull-downs with GST-tagged
MeCP2 domains. As shown in Figure 2F, out of the five
tested domains an interaction was detectable only for the
TRD. Pull-downs using the isolated MeCP2–TRD and
DNMT3A–ADD (Figure 2G) confirmed the direct and
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Figure 2. The ADD domain of DNMT3 proteins interacts with the TRD of MeCP2. (A) Coomassie staining of the pull-down of His-DNMT3A2 by
GST-MeCP2�N. (B) Coomassie staining of the pull-down of His-DNMT3L by GST-MeCP2�N. (C) Coomassie staining of the pull-down of MBP-
DNMT3A–C by GST-MeCP2�N. A signal can be only detected in the input lane. See also Supplementary Figure S15. (D) Western blot detection of the
pull-down of His-DNMT3L-C by GST-MeCP2�N. A signal is visible only in the input lane. (E) Western blot detection of the pull-down of MeCP2�N
with different GST-tagged DNMT3A domains. For this experiment, GST-cleaved MeCP2�N was used. The endogenous His-tag in MeCP2-CTDb was
used for detection. Out of the three tested DNMT3A domains, only the ADD domain displayed an interaction with MeCP2. (F) Western blot detection of
the pull-down of DNMT3A by different GST-tagged MeCP2 domains documenting an interaction with the MeCP2 FL, MeCP2�N and MeCP2–TRD
domain. (G) Coomassie detection of the pull-down of MBP–DNMT3A–ADD by wild-type GST-TRD domain (wt) or TRD containing the R306C Rett
mutation (RC), under two different salt concentrations. See also Supplementary Figures S11–S14.

self-sufficient interaction between these domains. The in-
teraction of MeCP2–TRD and DNMT3A–ADD was fur-
ther confirmed byAlpha-assay (Supplementary Figure S11)
and gel filtration (Supplementary Figure S12). Having iden-
tified the domains responsible for mediating the interac-
tion between these two proteins, we next tested the stabil-
ity and strength of the association between MeCP2–TRD
and DNMT3A–ADD by performing pull-downs under in-
creasingly high salt concentrations. Strikingly, we could re-
trieve comparable amounts of DNMT3A–ADD at both
300 and 600 mM KCl, indicating that its interaction with
MeCP2 TRD is strong and not driven by electrostatic in-
teractions (Figure 2G). A salt resistant and strong interac-
tion of MeCP2–TRD was also observed with DNMT3A2
(Supplementary Figure S13). Pull-down experiments in the
presence of the non-specific and highly active nuclease from
S. marcescens demonstrated that the interaction of both
proteins was not mediated by nucleic acids (Supplementary
Figure S14). SinceMeCP2 is mutated in the Rett syndrome,
we also tested the effect of the R306C Rett mutation in the
TRDdomain ofMeCP2 on the interactionwithDNMT3A,
but did not observe any change when compared with wild-
type TRD (Figure 2G).

MeCP2 influences the sub-nuclear localization of DNMT3L
and the DNMT3A–ADD domain

Having shown the direct interaction of MeCP2 with
DNMT3 proteins, we next aimed to study the influ-
ence of this interaction on the cellular localization of
these factors. MeCP2 is known to accumulate at peri-
centromeric heterochromatin (22,48,53), which clusters in
characteristic DAPI-dense foci in mouse fibroblasts. Un-
like MeCP2, the regulatory factor DNMT3L was shown
to have an almost homogenous nuclear distribution (66).

Expressing the fluorophore-tagged DNMT3L and MeCP2
in mouse fibroblasts confirmed the published localization
patterns of both proteins (Figure 3A and C). Notably,
co-expressing DNMT3L with MeCP2 led to a clear re-
targeting of DNMT3L toward chromocenters (Figure 3D
and F). This finding confirms the intracellular interaction
of DNMT3L andMeCP2 and indicates that the expression
of MeCP2 causes a re-distribution of the regulatory fac-
tor DNMT3L toward heterochromatin. Moreover, it shows
that the MeCP2 interaction influences chromatin target-
ing of DNMT3L. However, the physiological role of the
interaction of DNMT3L and MeCP2 is unclear, because
DNMT3L does not appear to play amajor role in the brain.
Unlike DNMT3L, DNMT3A is strongly enriched at

pericentromeric heterochromatin (52,66) (and references
therein), where it co-localizes with MeCP2 (48). This natu-
ral co-localization precluded direct studies of the effect of
MeCP2 on the localization of DNMT3A. To circumvent
this caveat, we performed localization studies with the flu-
orescently tagged DNMT3A–ADD domain. This showed
a diffuse nuclear localization when transfected alone in
mouse fibroblasts (Figure 3B). Similar to DNMT3L, after
its co-expression with CFP-tagged MeCP2, the ADD do-
main showed a preferential enrichment at heterochromatic
foci, indicating aMeCP2-mediated targeting to heterochro-
matin (Figure 3E and F). These results confirm that the
ADD domain interacts with MeCP2 in cells and demon-
strate that through its binding MeCP2 recruits DNMT3L
and DNMT3A–ADD to pericentromeric heterochromatin.

The interaction with MeCP2 inhibits the catalytic activity of
DNMT3A

To elucidate the function of the interaction betweenMeCP2
and DNMT3A, we next measured the in vitro rates of
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Figure 3. Transient expression of MeCP2 alters the cellular localization of DNMT3L and DNMT3A–ADD in NIH3T3 cells. (A) Representative fluo-
rescence microscopy images documenting the localization of CFP-DNMT3L upon its overexpression in mammalian cells. A predominantly homogenous
nuclear distribution is observed. (B) Representative fluorescence microscopy images documenting the localization of YPF-ADD upon its overexpression
in mammalian cells. A predominantly homogenous nuclear distribution is observed. (C) Representative fluorescence microscopy images documenting the
chromocenter-enriched localization of YFP-MeCP2 (left) and CFP-MeCP2 (right) upon their overexpression in mammalian cells. (D) Representative fluo-
rescence microscopy images showing that upon their co-expression DNMT3L is recruited to MeCP2 clusters. (E) Representative fluorescence microscopy
images showing that upon their co-expression DNMT3A–ADD is recruited to MeCP2 clusters. The scale bars correspond to 10 �m. (F) Quantification of
the fraction of cells showing spotty and diffuse localization patterns in the experiments shown in panels (A–E) (based on analysis of >20 individual cells
in each case). See also Supplementary Figure S8.

DNAmethylation byDNMT3A2 in the presence ofMeCP2
or its TRD domain. The activity of DNMT3A has been
shown to be modulated by the target site, where CpG
is preferred over CpA (67–69), the flanking sequence of
CpG sites (70,71) and the length of the DNA substrates
(72). To study all these different properties, six different
DNA substrates were used for our DNA methylation ex-
periments (Figure 4): (i) an unmethylated 30-mer oligonu-
cleotide (um30mer), (ii) the same substrate in hemimethy-
lated form (hm30mer), (iii) a hemimethylated 30 mer with
an optimized flank for DNMT3A (hmF30mer) (54), (iv) a
585-mer PCR fragment (um585mer), (v) the 585-mer PCR
fragment pre-methylated at HpaII sites (pm585mer) and
(vi) a 30-mer oligonucleotide non-CpG substrate (non-CpG
30 mer).
Using 2.5 �M DNMT3A2 and 3 �M MeCP2, we con-

sistently observed that the interaction of MeCP2 with
DNMT3A2 resulted in ∼40–60% reduction in DNMT3A2
activity with the unmethylated substrates (Figure 4A and
B). Similar results were obtained with a truncated form
of DNMT3B corresponding to DNMT3A2 (Supplemen-
tary Figure S6). The activity of DNMT3A2 was further
reduced by ∼80% with methylated substrates, which can
be attributed to the better binding of MeCP2 to methy-
lated DNA via its MBD. We speculated that binding of

MeCP2 to pre-methylated DNA might target DNMT3A2.
To test this hypothesis, a partiallymethylated 585-merDNA
substrate was prepared by methylation with HpaII, an en-
zyme that exclusively methylates CG sites found within
CCGG motifs (Supplementary Figure S9). However, even
on this substrate, we observed inhibition of the activity of
DNMT3A2 by MeCP2 (Figure 4B, pm585mer). As a con-
trol, we used DNMT3A–C, which lacks the ADD domain
and does not interact with the MeCP2–TRD (Supplemen-
tary Figure S15), and observed that MeCP2 did not inhibit
its activity (Figure 4C).
Having mapped the interaction interface to the TRD of

MeCP2, we next tested whether this isolated domain can
also inhibit the activity of DNMT3A2 and observed 40–
70% inhibition with the different substrates (Figure 4D).
Non-CpGmethylation has recently been detected in consid-
erable amounts in human ES cells and neurons, and it was
connected to DNMT3A activity (28,73–75). We, therefore,
also investigated the influence ofMeCP2–TRD on the non-
CpG methylation activity of DNMT3A2 using a 30-mer
oligonucleotide substrate that contains one already methy-
lated CpG site, such that additional methylation could only
occur at non-CpG sites. As with the other DNA substrates,
we observed a similar inhibition of DNMT3A2 activity
by TRD (Figure 4D, non-CpG 30 mer), indicating that
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Figure 4. MeCP2 (A–C) andMeCP2–TRD (D and E) inhibit the activity of DNMT3A2 on a broad range of substrates. In vitroDNAmethylation kinetics
was conducted with 2.5 �M DNMT3A2 (A and B) or DNMT3A–C (C) in the presence of 3 �M MeCP2 (A–C) or MeCP2–TRD (D). In each panel,
identical control reactions without addition of MeCP2 or MeCP2–TRD were used to calculate relative activities. Different DNA substrates were used as
indicated. (E) Inhibition of DNMT3A2 at increasing concentrations of MeCP2–TRD in kinetics using um30mer as substrate. Reactions with DNMT3A–
C were performed in parallel since this domain does not interact with MeCP2–TRD. Control refers to reactions without added TRD. Panel (A) shows
methylation kinetics of hmF30mer as an exemplary primary data set. Bars show averages and SEM based on 2–3 independent experiments. See also
Supplementary Figures S6, S13 and S14.

CpG and non-CpGmethylation are equally inhibited by the
TRD interaction.
At last, we tested the activity of DNMT3A2 in the

presence of increasing amounts of TRD and observed
that the methyltransferase activity was strongly inhibited
(>95%) using a 2.4-fold excess of TRD (6 �M with 2.5
�M DNMT3A2) (Figure 4E). These results were fitted by
a binding constant (KD) of TRD to DNMT3A2 of 2.8 �M
under catalytic conditions. As a control, the same experi-
ments were conducted with DNMT3A–C, but only a very
weak reduction of activity was observed (Figure 4E) indi-
cating that the inhibition of DNMT3A2 by TRD is not
caused by competition for the DNA substrate. This is an
important control, since TRD was reported to weakly bind
DNA (76,77). In summary, our results indicate that the
interaction between the TRD domain of MeCP2 and the
ADD domains of DNMT3A and DNMT3B results in a
direct and very strong inhibition of the DNMT activity at
both CpG and non-CpG sites.

MeCP2 overexpression reduces DNA methylation in
HCT116 cells

Based on the strong influence of MeCP2 on the activ-
ity of DNMT3 proteins, we were next interested to see if

the inhibitory effects on DNMT3A activity observed in
in vitro assays are also re-capitulated in a cellular context.
For this we resorted to the HCT116 DNMT1 hypomorphic
colon cancer cell line, which contains a truncated DNMT1
with reduced activity, but active copies of DNMT3A and
DNMT3B (57,58). Because of the impaired maintenance
DNA methylation activity, these cells have an ∼20% re-
duced amount of DNA methylation, which is more de-
pendent on the activity of DNMT3A and DNMT3B. This
makes theHCT116D1hypo cell line a suitablemodel system to
study the effect of the inhibition of DNMT3A by MeCP2.
We genomically integrated EYFP-fusedMeCP2 or only the
fluorophore as control by viral transduction and selected
for stably expressing clones. Expression of MeCP2 or fluo-
rophore control was induced for 14 days. Afterward, EYFP-
MeCP2 or fluorophore expressing clones were enriched by
fluorescence-activated cell sorting (Figure 5A). Genomic
DNAwas isolated and the global levels of 5-methylcytosine
were quantified by liquid chromatography-mass spectrom-
etry (LC-MS/MS). As shown in Figure 5B, we observed a
15% decrease in global DNA methylation. Expression lev-
els of all DNMTs were determined by qPCR indicating a
slight increase in DNMT3A expression, and no changes in
DNMT1 and DNMT3B (Figure 5C), showing that the re-
duction in DNAmethylation was not caused by reduced ex-
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Figure 5. MeCP2 reduces global DNA methylation in HCT116 cells containing a DNMT1 hypomorphic allele. (A) Flow cytometry analysis of EYFP-
MeCP2 andEYFP expression inHCT116D1hypo cells. The signal range used for sorting is indicated. (B)GlobalDNAmethylation levels after overexpression
of EYFP-MeCP2 in human HCT116D1hypo cells. EYFP-transfected cells were used as control. (C) Expression levels of all DNMTs in the HCT116D1hypo

cells expressing EYFP-MeCP2 or EYFP control. SDHA was used as reference gene. The error bars represent the SD based on two repeats.

pression of any of the DNMTs. Since DNMT1 interaction
with MeCP2 was reported not to cause a reduction in cat-
alytic activity (32), this result indicates that overexpression
of MeCP2 reduces the activity of DNMT3 enzymes in cells.

The TRD domain inhibits DNMT3A2 activity by an al-
losteric mechanism

We next aimed to mechanistically analyze the striking in-
hibitory effect of MeCP2 on DNMT3A. As described
above, structural studies showed that the ADD domain of
DNMT3A can dock on the CD at two alternative sites: an
allosteric and an autoinhibitory one (13). Binding of the
H3 tail peptide to the ADD domain was shown to stabilize
the allosteric conformation and thereby activate DNMT3A
(13,14). To investigate the mechanism of the repression of
DNMT3A by the TRDdomain, we engineeredDNMT3A2
variants containingmutations at Y526 orD531 in the ADD
domain, two critical residues involved in the two binding
sites at the CD (Supplementary Figure S1) in order to
selectively disrupt or strongly destabilize one of the two
DNMT3A conformations. Y526E was introduced to dis-
rupt the allosteric and D531R to disrupt the autoinhibitory
conformation. After confirming that both mutants still in-
teract with MeCP2–TRD (Supplementary Figure S16), we
investigated if these conformationally locked DNMT3A
variants still respond to the presence of the TRD. As shown
in Figure 6A, the inhibitory effect of MeCP2 was specifi-
cally lost in the D531R variant that can no longer adopt
the autoinhibitory conformation. This finding suggests that
MeCP2 reduces the activity of DNMT3A by an allosteric
mechanism, in which TRD binding stabilizes the autoin-
hibitory conformation of the enzyme.
Since through its binding to the ADD domain, un-

modified histone H3 was reported to allosterically acti-
vate DNMT3A, we next investigated if TRD and histone
H3 binding to the ADD domain influence each other. For
this, we conducted pull-down experiments using GST-TRD
and DNMT3A2 in the presence of increasing concentra-
tions of recombinant histone H3. As shown in Figure 6B,
addition of histone H3 abolished the ADD–TRD interac-
tion, suggesting that H3 and TRD binding to the ADD

domain is mutually exclusive. To investigate whether his-
tone H3 can rescue the TRD-mediated inhibition, we next
conductedDNAmethylation experiments withDNMT3A2
and DNMT3A2 pre-incubated with the unmodified H3 (1–
19) peptide in the absence and presence of GST-TRD (Fig-
ure 6C). In line with the previous experiments, we observed
that the TRD-mediated inhibition is alleviated in the pres-
ence of H3 peptide (5 �M). Correspondingly, the activation
of DNMT3A2–TRD complexes (which are predominantly
in the autoinhibitory conformation) is stronger than the ac-
tivation of free DNMT3A2 (which is in a mixed conforma-
tion state). Moreover, we observed that the inhibitory effect
of the TRD domain on DNMT3A activity was completely
lost at higher concentrations of the H3 peptide (25 �M,
Supplementary Figure S17). This indicates that the binding
ofH3 to theADDdomain can disrupt theDNMT3A–TRD
interaction and relieve the associated enzymatic inhibition.

DISCUSSION
During the past decade compelling experimental evidence
has accumulated, indicating that DNA methylation pat-
terns are highly dynamic and result from ongoing de
novo methylation and demethylation events (3). This dy-
namic landscape plays particularly important roles in non-
dividing cells, such as terminally differentiated neurons (78–
80). In the absence of cell division andDNA replication, the
DNA methylation profiles in these cells can only be con-
trolled through a tight regulation of the targeting and activ-
ity of DNA methylating and demethylating enzymes. How-
ever, despite their importance, the details of this regulatory
network have remained mysterious so far. In this work, we
took a closer look at the DNMT3 methyltransferases, fac-
tors that play essential roles in mammalian development
and disease (1,2,81), their targeting and allosteric regulation
(6). We find that recombinant DNMT3A and DNMT3L
proteins directly and strongly interact with the chromatin
regulatorMeCP2 in vitro.We confirmed this interaction un-
der overexpression conditions inmammalian cells, as well as
at endogenous expression levels in mouse brain lysates. By
performing systematic domainmapping, we find that the in-
teraction of MeCP2 and DNMT3 proteins is mediated by
their TRD and the ADD domains, respectively. Based on
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Figure 6. Mechanism of the inhibition of DNMT3A by the MeCP2–TRD. (A) Relative in vitro activity of DNMT3A2 wild-type and its conformational
variants in the absence (dark gray) or presence (light gray) of MeCP2–TRD. The inhibition by the TRD is lost in the DNMT3A2 D531R variant, which
carries a mutation that disrupts the autoinhibitory conformation. Error bars indicate the SEM based on three independent experiments. (B) Coomassie
staining of the pull-down of His-DNMT3A2 (0.25 �M) by GST-TRD in the presence of increasing concentrations of recombinant histone H3 (0, 0.26, 1.3
and 3.9 �M) indicating that the H3 binding toDNMT3A2 interferes with the TRD interaction. (C) DNAmethylation activity of DNMT3A2 (1 �M) in the
absence or presence of the H3 peptide (amino acid sequence 1–19, 5 �M) or TRD (1.2 �M). The two panels show the same data in different representation.
Error bars indicate the SEM based on three independent experiments. See also Supplementary Figures S16 and S17.

the fact that MeCP2 is highly expressed in neurons and it
has important functions in this cell type, the newly discov-
ered DNMT3A–MeCP2 interaction likely plays an impor-
tant role in controlling DNA methylation patterns in the
brain.
By employing in vitro methyltransferase assays using re-

combinant proteins and a variety of DNA substrates, we
observed an almost complete, concentration-dependent in-
hibitory effect caused byMeCP2 binding to DNMT3A. In-
hibition of DNMT3Awas observed on both CpG and non-
CpG substrates. Furthermore, DNMT3B activity was com-
parably reduced, proposing a conserved mode of action. To
our knowledge, MeCP2 is the first interactor of DNMT3
proteins shown to have a direct inhibitory effect on the en-
zymatic activity of these proteins. As MeCP2 is an impor-
tant reader of 5mC and 5hmC, this interaction might be re-
quired for mediating the crosstalk between 5mC/hmC sites
and DNMT3 proteins and for preventing ectopic de novo

methylation. By using engineered conformationally locked
DNMT3A variants as a novel tool to investigate DNMT3A
regulation, we show that the inhibition of DNMT3A by
MeCP2 occurs by an allosteric mechanism, in which bind-
ing of MeCP2 stabilizes the autoinhibitory conformation
of DNMT3A. Interestingly, binding of the unmodified H3
N-terminal tail peptide to the ADD domain of DNMT3A
was shown to have the opposite effect, by precluding the
autoinhibitory conformation and leading to the activation
of DNMT3A (Figure 7A) (13,14). We mechanistically ad-
dressed this crosstalk and show that binding of H3 and
TRD to DNMT3A are mutually exclusive and the MeCP2-
mediated inhibition of DNMT3A2 can be overcome by ad-
dition of the unmodified H3 tail peptide.
In summary, our data unravel one part of the intricate

regulatory network, which controls DNA methylation by
suggesting a model in which DNMT3A is under the com-
bined control of MeCP2 and the modification state of his-
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Figure 7. Model of the dual role of MeCP2 in the regulation and target-
ing of DNMT3A. (A) Binding of unmodified H3K4 to the DNMT3A–
ADD domain triggers a conformational change where the ADD moves
from the autoinhibitory (red) to the allosteric (green) interaction site and
DNA methylation can take place (purple lollipop). Model based on (13).
(B) Inhibitory role of MeCP2 on DNMT3A. Binding of MeCP2 (red) to
DNMT3A–ADD inhibits the methyltransferase by stabilizing the autoin-
hibitory conformation, thereby preventing untargeted activity. (C) Role
of MeCP2 in targeting of DNA methylation. At genomic sites with un-
modified H3K4, H3 binding to the ADD disrupts the interaction between
MeCP2 and DNMT3A leading to the activation of the enzyme and DNA
methylation (step ). MeCP2 can next bind to the methylated CpG sites
and recruit additional DNMT3A, thereby initiating a positive feedback
loop (step ).

tone H3 tails. On the one hand, the interaction withMeCP2
globally inhibits DNMT3A activity after overexpression of
MeCP2 in tissue culture (Figure 7B). This may act as a
safeguard mechanism to protect the genome from aberrant
DNA methylation. On the other hand, at specific target
sites such as repetitive sequences, where histone H3 lacks
activating marks, MeCP2 can function as a recruiter of
DNMT3 enzymes (Figure 7C). As shown by our biochem-
ical data, unmodified histone H3 can disrupt the MeCP2–
DNMT3A interaction, subsequently leading to the relief of
the allosteric inhibition. Therefore, the specific delivery of
DNMT3A to such regions by MeCP2 as visualized in the
cellular localization experiments can target DNA methy-
lation. Afterward, the elevated DNA methylation may in-
crease the methylcytosine-dependent MeCP2 recruitment
to these loci, initiating a positive feedback loop, which can
contribute to the stable maintenance of methylation at these
sites. In neurons, this process may be further supported
by the non-CpG (mainly CpA) methylation introduced by
DNMT3A, which is bound by MeCP2 as well. The oppos-
ing effect of MeCP2 on DNMT3A as potential inhibitor
and stimulator depending on the genomic context agrees
well with the dual role of MeCP2 in gene control, either as
gene repressor or activator (23,30,39,42).

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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Azacytidines (AzaC and AzadC) are clinically relevant pharmaceuticals that operate at the epigenetic level.
They are integrated into the genome as antimetabolites to block DNA methylation events. This leads to a
reduction of the 5-methyl-2’-deoxycytidine (m5dC) level in the genome, which can activate epigenetically
silenced genes. Because of the inherent chemical instability of Aza(d)Cs, their incorporation levels in DNA and
RNA are difficult to determine, which hinders correlation of therapeutic effects with incorporation and removal
processes. Existing methods involve radioactive labeling and are therefore unsuitable to monitor levels from
patients. We report here a new direct chemical method that allows absolute quantification of the levels of
incorporated AzaC and AzadC in both RNA and DNA. Furthermore, it clarifies that Aza(d)C accumulates to high
levels (up to 12.9 million bases per genome). Although RNA-based antimetabolites are often 2’-deoxygenated
in vivo and incorporated into DNA, for AzaC we see only limited incorporation into DNA. It accumulates
predominantly in RNA where it, however, only leads to insignificant demethylation.

Keywords: mass spectrometry, leukemia, DNA methylation, azacytidine, DNA methyltransferases.

Introduction

Methylation of deoxycytidines in genomic CpG context
creates methylated palindromic (mCpG) sites, which
trigger the silencing of gene expression.[1] Silencing of
tumor suppressor genes in turn is a hallmark of
cancer.[2] Others and us could recently show, that the
inability to remove methyl marks from mCpG-islands is
a problem in many tumors that helps maintaining
uncontrolled cell division and hence tumor growth.[3]

The RNA nucleoside 5-Azacytidine (AzaC) and its
corresponding DNA analogue 5-Aza-2’-deoxycytidine
(Decitabine, AzadC) are pharmaceuticals, which are in
clinical use for the treatment of myelodysplastic
syndromes (MDS) and acute myeloid leukemia
(AML).[4–6] These compounds are prodrugs, which are
converted into the corresponding triphosphates and

incorporated into both DNA and RNA at levels that are
difficult to measure and therefore often unknown.[7,8]

Once incorporated, they function as suicide inhibitors
of methyltransferases (Dnmt1 and 3a/3b) as depicted
in Scheme 1,a.[9–12] This inhibitory effect leads to a
global reduction of the m5dC levels in DNA[13] and
consequently to a reactivation of silenced tumor-
suppressor genes.[14,15] Methylation of cytidine bases
(m5C) occurs also in RNA, and is performed by
Dnmt2[16] and specific NOP2/Sun domain family
proteins (NSUN2[17], 4,[18] and 6[19]). The question to
which extent inhibition of methylation in RNA contrib-
utes to the clinical effect of AzaC treatment is
unanswered. A recent meta-analysis seems to back up
previous findings,[20–22] that AzaC gives slightly better
clinical results than AzadC.[23] The molecular cause
however remains elusive, especially considering the
fact that AzaC first has to be reduced by ribonucleo-
tide reductase to enter DNA. Accordingly, it is
important to investigate the levels at which AzadC and
AzaC are integrated into nucleic acids.
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A major problem associated with the analysis of
the incorporation efficiencies is the hydrolytic insta-
bility of the Aza(d)C compounds, which feature
reported half-life times between 3.5 h and 21 h.[24,25]

This makes the direct measurement of the compounds
in DNA and RNA impossible. Feeding of radioactive
Aza(d)C is only of limited use due to its instability
because one is unable to distinguish intact integrated
material from chemically unreactive fragments that are
still present in DNA and RNA.[26] In light of observed
resistance phenomena in treated patients, there is a
great need for a direct analytic method that can give
levels of intact AzadC and AzaC in DNA and RNA.[27,28]

Results and Discussion

The instability of Aza(dC) is caused by its electrophilic
character, which allows water to attack the C(6)
position as depicted in Scheme 1,b. This is followed by
opening of the hemiaminal substructure and subse-
quent deformylation and deribosylation.[24][25] We
rationalized that any analysis of intact Aza(d)C after
DNA or RNA isolation would require immediate
stabilization of the incorporated compounds to stop
further degradation during DNA and RNA isolation
and handling.

We found that treatment of Aza(d)C with
NaBH4

[29–32], is a very efficient reaction that leads to
the formation of the corresponding dihydro� Aza(d)C
(H2� Aza(d)C) compounds. We furthermore discovered
that despite the lack of any aromaticity, these

Scheme 1. a) Proposed mechanism of action of 5-Azacytidine (Aza(d)C). The blue components are part of the active site of the DNA
methyltransferases (DNMTs). The active part of the SAM cofactor is depicted in red. b) Depiction of the main hydrolysis pathway of
Aza(d)C. c) Stabilization of AzadC by NaBH4 reduction and d) fragmentation pathway of H2� AzadC with the calculated and found m/
z values in MS2 experiments.
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compounds are surprisingly stable. When we reacted
the Aza(d)C nucleoside with aqueous NaBH4 followed
by elimination of borate with acetate buffer (pH=5,
Scheme 1,c) we noted full conversion to the corre-
sponding stabilized H2� Aza(d)C versions already after
60 min reaction at room temperature (Figure SI-6 A in
the Supporting Information). A long-term NMR study
showed that H2� AzadC is stable in D2O at 37 °C for
several hours (Figure SI-4), while the original AzadC
shows 16% decomposition already after 6 h. In order
to enable LC� MS based quantification, we next
analyzed the MS fragmentation patterns of H2� AzadC
(Scheme 1,d). The positively charged precursor ion with
a mass-to-charge ratio (m/z) of 231 fragments first
through cleavage of the glycosidic bond. The base
heterocycle seems to exist in two tautomeric forms in
the gas phase, which undergo retro-Diels-Alder frag-
mentations under elimination of either � HNCO or
� CH2NH. This leads to clearly detectable fragment ions
with m/z of 72 and m/z 86 (Figure SI-7). This
mechanistic assumption is supported by a study with
a monodeutero-H2� AzadC derivative (Figure SI–8,
Scheme SI–1). We then developed a UHPLC method to
separate H2� Aza(d)C from the canonical nucleosides
and modified the enzymatic digestion protocol[33]

enabling digestion of DNA and RNA and liberating
H2� Aza(d)C completely (Figure SI-10–SI-12). This meth-
od was further validated with different amounts of
DNA. A similar method that uses a different sample
preparation and a different mass spectrometric meth-
od was recently published.[31]

Next, we evaluated the new method in realistic
scenarios using AzadC-treated cells. For the study, we
used leukemia model cell lines and AzadC concen-
trations of up to 1 μM. The first study was performed
with the leukemia model cell line HL60, which are
promyeloblast cells derived from acute promyelocytic
leukemia. A second study was performed with the
AML cell line MOLM-13 (Figure 1). In both cases, the
cells were cultured in the presence of increasing
concentrations of AzadC for 24 h, which is longer than
the half-life of the compound in solution.[24,25] The
DNA was isolated, treated with NaBH4, subsequently
fully digested and analyzed by UHPLC-MS2 using the
developed protocol.

To our delight, we detected a clear and strong
signal for the H2� AzadC using our method. The signal
intensity nicely increased in a dose-dependent manner
(Figure 1, green bars), proving the presence of intact
AzadC in the genome. Using external calibration
curves of the H2� AzadC standard subjected to our
optimized digestion conditions, it was now possible to

perform exact quantification (Figure SI-10). We found
about 2000 AzadC per million nucleotides when we
supplemented with AzadC (1 μM). This corresponds to
a rather high level of 12.9 million AzadCs per genome.
These high levels may be due to a higher stability of
the genome-incorporated AzadC compared to the
corresponding free nucleoside, possibly due to shield-
ing of the compound inside the genomic DNA duplex
from reaction with water. Indeed, the AzadC content
in isolated DNA was more stable (half-life time of
68.7 h at r.t. (Figure SI-15)) than the reported half-life
time of the nucleoside.[25] However, we strongly
recommend performing the NaBH4 treatment as early
as possible. We quantified m5dC in parallel (Figure 1,
yellow bars), and confirmed that the increase of AzadC
goes in hand with a decline of m5dC as expected, due
to the suicide inhibition of the DNA methyl trans-
ferases.

We next investigated the effect of AzadC on cells
that undergo significant epigenetic reprogramming to
see if we could obtain time-dependent data. For these
studies, we treated J1 mouse embryonic stem cells

Figure 1. Levels of H2� AzadC after a 24 h treatment with
different concentrations of AzadC. H2� AzadC (green), m5dC
(yellow) per dN in a) HL60 cells, b) MOLM-13 cells. nd: not
detected. Error bars indicate standard deviation of three
independent biological replicates.
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(mESC) with AzadC (1 μM) during the shift from the
naïve to the primed state.[34–36] We analyzed the
incorporation at different time points (Figure 2,a).
Indeed, isolation and analysis of the DNA shows an
immediate sharp increase of AzadC in the genome
that did not reach saturation even after 24 h. Interest-
ingly we noted that despite the immediate integration
of AzadC into the genome, a decline of the m5dC
values is first observed after 4 h. This observation is
difficult to rationalize but it may explain why also in
the clinic, long treatment times are essential for
therapeutic success. The biochemical reason for this
lag phase needs further investigation.

Furthermore, we started to study if our new
method would also allow us to determine the
incorporation of the ribo-version AzaC into DNA and
RNA. We therefore investigated the effect of the AzaC
(1 μM) in the mESC model. We first detected again the
deoxygenated version AzadC in the genome, showing
that 2’-deoxygenation of AzaC occurs and leads to
incorporation of AzadC (Figure 2,b). However, the
detected levels of H2� AzadC are reduced by a factor of
about four (330 instead of 1200 H2� AzadC per million
nucleotides) and the incorporation is time delayed.
The lag phase of 2 h may be attributed to the time
needed by the cells to deoxygenate AzaC.[7] The low
incorporation yield is most likely to be caused by

decreased availability of the 2’-deoxygenated nucleo-
side due to the incorporation into RNA and therefore
reduction of the soluble pool. Our finding also
matches a recent publication[37], in which the ribonu-
cleotide reductase was identified as an AzaC target
leading to reduction of the 2’-deoxy-nucleoside pool
and therefore probably arrest of the replication.

To our surprise, despite the lower incorporation
level, the onset of m5dC reduction is again observed
after 4 h and the total decline of m5dC is similar
compared to feeding of AzadC. This observation is
very interesting and it raises the question of why the
observed demethylation is not dose-dependent. From
the same sample, we also investigated the levels of
the non-deoxygenated AzaC in RNA using a slightly
modified UHPLC-MS2 method. Here we exploit again
that the reduction with NaBH4 gives a stable derivative
(Figure SI-5, SI-6B) with a unique high resolution MS
fragmentation pattern (Figure SI-9).

The detected levels of H2� AzaC in RNA correspond
to 1000 AzaC per million nucleotides after 24 h, which
is comparable to the H2� AzadC levels in DNA after
AzadC treatment. The total amount of incorporated
nucleotides is consequently very similar, independent
of the supplemented Aza(d)C compound, arguing that
maybe proper triphosphate generation could be rate
determining in vivo. In RNA, m5C does not appear to
be significantly reduced upon AzaC feeding, clarifying
that demethylation of RNA is likely not responsible for
any therapeutic effects.

We conclude that ribosomal m5C represents the
vast bulk of the detected material since knockout of
Dnmt2, which is known to methylate tRNA, shows only
a slight and insignificant effect on global m5C levels
(Figure 3,a). It seems that in RNA, efficient inhibition of
the NSUN-methyltransferases does not occur.

In DNA however, Aza(d)C mediated demethylation
appears largely unaffected by the available methyl-
transferase. We find that equally strong demethylation
occurs in all investigated DNMT knockouts, despite
efficient incorporation of AzadC into their genomes
(Figure 3,b). This is somewhat surprising, since inhib-
ition of the maintenance methyltransferase DNMT1 is
considered to have the strongest impact on global
m5dC levels.[38]

Conclusions

Here, we report two new mass spectrometry-based
methods for the exact quantification of AzadC and
AzaC in DNA and RNA. Importantly, the methods allow

Figure 2. Levels of H2� AzadC (a) and H2� AzaC (b) in mESC after
drug treatment (1 μM Aza(d)C) over a period of 24 h. After the
indicated time points the cells were harvested and the DNA
was isolated and analyzed as described. H2� AzadC (dark green),
m5dC (yellow), H2� AzaC (light green) and m5C (light yellow). nd:
not detected; blq: below limit of quantification. Error bars
indicate standard deviation obtained from three independent
biological replicates.
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quantification of m5dC in parallel with H2� AzadC and
m5C in parallel with H2� AzaC, respectively. This now
enables us to correlate incorporation efficiencies with
the expected biochemical effect, namely reduction of
the m5(d)C values. Using the new method, we learned
that AzaC is efficiently 2’-deoxygenated to AzadC.
Both compounds lead to comparable reductions of
the m5dC levels, but not in a dose-dependent manner
and only after a significant lag time. Interestingly, we
did not see a significant reduction of the m5C values
upon feeding of AzaC, despite its efficient incorpo-
ration into RNA, arguing that depletion of RNA
methyltransferase may not be accomplished as easily
as of DNA methyltransferases. It may also hint at an
alternative mechanism of Aza(d)C-mediated demethy-
lation, which acts through replacement of m5dC by
DNA repair processes, rather than inhibition of main-
tenance methylation. The absence of equivalent repair
mechanisms in RNA adds further support to this
hypothesis. Given the generally lower DNA incorpo-
ration rate in case of AzaC, its particular beneficial
effects[23] may arise from the incorporation into RNA
rather than DNA. Most importantly, the new methods
do not rely on radioactive labeling and can conse-
quently be used to monitor the effects directly in
samples from patients treated with Aza(d)C and more-
over allow distinguishing catabolic by-products from

the intact drug. This now paves the way to study the
pressing resistance problems associated with epige-
netic Aza(d)C therapy.

Experimental Section

Chemical Synthesis–General Methods

Preparative HPLC: Waters 1525 Binary HPLC Pump,
2487 Dual λ Absorbance Detector; Macherey-Nagel VP
250/10 Nucleosil 100-7-C18; flow rate 5 mL/min.

Analytical HPLC: Waters 2695 Separation Module,
2996 Photodiode Array Detector; Macherey-Nagel EC
250/4 Nucleosil 120-3-C18; flow rate 0.5 mL/min.

1H- and 13C-NMR spectra were recorded with a
Bruker Avance III HD 400 MHz spectrometer equipped
with a CryoProbe. Chemical shifts are expressed in
parts per million [ppm] and indicated relative to
tetramethylsilane (TMS). The deuterated solvents D2O
served thereby as internal standards. Spin multiplicities
are indicated as follows: s (singlet), d (doublet), t
(triplet), q (quartet), m (multiplet) and combinations
thereof. Signals were assigned to their respective
source through informally allocated atom numbers.
Structural analysis was conducted with 1H- and 13C-
NMR spectra under the aid of additional 2D spectra
(COSY, HMBC, and HSQC). Spectral analysis was
conducted with the software MestReNova v.9.1.0–
14011 from Mestrelab Research S.L.

The high-resolution mass spectrometer for chem-
icals was operated by the section for mass spectrome-
try of the department chemistry and pharmacy, LMU
Munich. The spectra were acquired through electro
spray ionization (ESI) with a Finnigan LTQ FT from
Thermo Finnigan GmbH. Either the molecule ion signal
or the signal of another characteristic fragment is
indicated in the analysis section of each product.

Melting temperatures were acquired with a BÜCHI
Melting point B-450 from BÜCHI Labortechnik AG and
are uncorrected.

Synthesis of 5,6-Dihydro-5-aza-2’-deoxycytidine (=4-
Amino-1-[(2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)-
oxolan-2-yl]-5,6-dihydro-1,3,5-triazin-2(1H)-one;
H2� AzadC). The procedure was modified from a
previous publication.[30] In detail, a freshly prepared
solution of NaBH4 (9.95 mg, 262.9 μmol, 4 equiv.) in
H2O (1.5 mL) was added to AzadC (15.0 mg, 65.7 μmol,

Figure 3. Incorporation of AzadC and AzaC into RNA a) and
DNA b) of various DNMT knock-out mESCs 24 h after drug
treatment (1 μM). H2� AzadC (dark green), m5dC (yellow),
H2� AzaC (light green), and m5C (light yellow). nd: not detected.
Error bars indicate standard deviation obtained from three
independent biological replicates.
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1.0 equiv., Carbosynth Limited) and stirred 1.5 h at r.t.
The reaction was quenched with aqueous NaOAc-
Buffer (0.5 mL, 750 mM, pH=5), and the resulting
mixture was stirred for 1 h. The mixture was filtered
with a syringe filter (Acrodisc® 13 mm, 0.2 μm, GHP
Membrane, PALL Laboratory) and directly subjected to
preparative HPLC purification and collected as broad
peak at t=4.8 min (100% H2O in 25 min). The
obtained fractions were pooled and the solvent was
removed by lyophilization on a Christ Alpha L–D plus
to afford H2� AzadC as colorless powder. (14.9 mg,
64.7 μmol, 98%). M.p.: over 230 °C, decomposition. 1H-
NMR (400 MHz, D2O): 6.22 (dd, J =8.2, 6.5, 1 H); 4.66–
4.53 (m, 2H), 4.38–4.31 (m, 1 H); 3.94–3.82 (m, 1 H);
3.75 (dd, J =12.3, 4.0, 1 H); 3.67 (dd, J=12.3, 5.3, 1 H);
2.25 (ddd, J =14.6, 8.2, 6.6, 1 H); 2.06 (ddd, J=14.2, 6.5,
3.4, 1 H). 13C-NMR (101 MHz, D2O): 160.3; 159.3; 84.9;
83.7; 70.9; 61.6; 50.9; 35.1. HR-ESI-MS: 231.1088
([C8H15N4O4]

+, [M+H]+; calc. 231.1088).

Synthesis of 6-Deutero-5-hydro-5-aza-2’-deoxycyti-
dine (=4-Amino-1-[(2R,4S,5R)-4-hydroxy-5-
(hydroxymethyl)oxolan-2-yl](6-2H1)-5,6-dihydro-
1,3,5-triazin-2(1H)-one; MH2� AzadC). The synthesis
was performed analogous to H2� AzadC with NaBD4
(11.0 mg, 262.9 μmol, 4.0 equiv.) as reducing agent
and afforded 6-monodeutero-5-hydro-5-aza-2’-deoxy-
cytidine (MH2� AzadC; 14.6 mg, 63.1 μmol, 96%) as
colorless powder. M.p.: over 230 °C, decomposition.
1H-NMR (400 MHz, D2O): 6.17 (dd, J =8.1, 6.6, 1 H); 4.52
(d, J=9.2, 1 H); 4.34–4.25 (m, 1 H); 3.88–3.79 (m, 1 H);
3.69 (dd, J =12.3, 3.9, 1 H); 3.61 (dd, J=12.2, 5.3, 1 H);
2.19 (ddd, J =14.6, 8.2, 6.7, 1 H); 2.04 (ddd, J=14.1, 6.4,
3.4, 1 H). 13C-NMR (101 MHz, D2O): 160.5; 159.4; 84.8;
83.6; 70.9; 61.5; 50.5 (t, 1 C); 34.97. HR-ESI-MS: 232.1151
([C8H14DN4O4]

+, [M+H]+; calc. 232.1151).

Synthesis of 5,6-dihydro-5-azacytidine (=4-Amino-1-
[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)ox-
olan-2-yl]-5,6-dihydro-1,3,5-triazin-2(1H)-one;
H2� AzaC). The procedure was modified from a
previous publication.[30] In detail, a freshly prepared
solution of NaBH4 (9.29 mg, 245.6 μmol, 4 equiv.) in
H2O (1.5 mL) was added to AzaC (15.0 mg, 61.4 μmol,
1.0 equiv., Sigma-Aldrich) and stirred 1.5 h at r.t. The
reaction was quenched with aqueous HCl (0.5 mL,
0.5 M), and the resulting mixture was stirred for
30 min. The mixture was brought to pH=10 with
aqueous NH4OH (5%) and stirred for another 30 min.
After filtration with a syringe filter (Acrodisc® 13 mm,
0.2 μm, GHP Membrane, PALL Laboratory), the mixture
was directly subjected to preparative HPLC purification

and collected as broad peak at t=5.2 min. (100% H2O
in 25 min) The obtained fractions were pooled and the
solvent was removed by lyophilization on a Christ
Alpha L–D plus to afford 5,6-dihydro-5-azacytidine
(H2� AzaC) as colorless powder (14.7 mg, 59.7 μmol,
97%). M.p.: over 219 °C, decomposition. 1H-NMR
(400 MHz, D2O): 5.64 (d, J =6.8, 1 H); 4.52–4.44 (m, 2H),
4.14–4.08 (m, 1 H); 4.00 (dd, J=5.7, 3.6, 1 H); 3.88–
3.82 (m, 1 H); 3.64 (dd, J =12.5, 3.5, 1 H); 3.56 (dd, J =

12.5, 4.7, 1 H). 13C-NMR (101 MHz, D2O): 160.0; 159.0;
87.1; 83.1; 70.06; 70.04; 61.3; 51.3. HR-ESI-MS: 247.1037
([C8H15DN4O5]

+, [M+H]+; calc. 247.1037).

Long-Term NMR Study of the Stability of the Compound

A sample of the synthetic H2� AzadC or AzadC, or
H2� AzaC and AzaC respectively (ca. 1 mg) was dis-
solved in D2O (1 mL, Eurisotop) and immediately
subjected to 1H-NMR. The NMR-tube with the sample
was then incubated in a water bath at 37 °C and
measured after indicated times. After that, the sample
was left at r.t. and measured again. For AzadC,
integrals of peaks from H� C(1’) are indicated, after 6 h
at 37 °C, a decay of approximately 16% of the
compound can be observed (Figure SI-4). For AzaC,
integrals of peaks from H� C(1’) are indicated, after 18
h at 37 °C, a decay of approximately 37% of the
compound can be observed (Figure SI-5).

HPLC Conversion Studies

A freshly prepared solution of NaBH4 in H2O (0.5 mL,
250 mM) was added to AzadC (A) or AzaC (B) (1.00 mg,
4.4 μmol, 1.0 equiv., Carbosynth Limited) and stirred at
r.t. After 60 min, the mixture (100 μL) was quenched
with NaOAc-Buffer (50 μL, 750 mM, pH=5) and placed
in an Eppendorf Thermomix comfort at 22 °C and
600 rpm shaking to remove hydrogen bubbles from
the reaction. After short-spin centrifugation, the
mixture was diluted 1:10 and subjected to analytical
HPLC. 0!5% MeCN in H2O, 0!25 min; 5%!80%,
25 min!28 min; 80%!80%, 28 min!38 min; 80%!
0%, 38 min!45 min. As control, AzadC or AzaC was
diluted in H2O and immediately subjected to analytical
HPLC with the same mobile phase gradient (Figure SI-
6).

HR-MS-Fragmentation

Fragmentation experiments were conducted on an
Orbitrap XL mass spectrometer (Thermo Fisher Scien-
tific), equipped with a HESI-II-ESI source (Thermo Fisher
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Scientific). A solution of the sample in water was
directly injected using a syringe pump with a flow rate
of 3 μL/min (H2� AzaC) or 5 μL/min (H2� AzadC,
MH2� AzadC). Spray parameters are given in Table SI-5.
The isolation window was set to 1 m/z. High-resolution
mass spectra were recorded manually with a resolu-
tion of 30000 in a mass range from 60 m/z to 250 m/z.
MS2 and MS3 spectra for H2� AzadC and MH2� AzadC
were recorded with a normalized collision-induced
dissociation energy of 20% with a resolution of 30000
in a mass range from 50 m/z to 250 m/z. In the case of
H2� AzaC, MS

2 spectra were acquired with a normalized
higher-energy collisional dissociation energy of 30%
with a resolution setting of 30000 in a mass range
from 65 m/z to 300 m/z.

To gain a more accurate mass, after acquisition
several spectra were summarized in the Xcalibur
QualBrowser (Thermo Fisher Scientific; Figure SI-7). The
proposed fragmentation pathway of MH2� AzadC is
depicted in Scheme SI-1, and complementary to the
unlabeled H2� AzaC (Scheme SI-2).

Cell Culture and Drug Treatment

5-Azacytidine (Sigma-Aldrich) and 5-Aza-2’-deoxycyti-
dine (Carbosynth) were dissolved as dimethyl sulfoxide
(DMSO) stocks (100 mM) and stored frozen at � 80 °C.
For treatment of mESC, this stock was diluted to a
concentration, that when applied to cell culture
medium, the final DMSO concentration did not exceed
1%. Due to the sensitivity of the HL60 cells to DMSO,
the DMSO stocks (100 mM) were diluted with ddH2O
(to 100× the final concentration) and then directly
applied to the culture medium.

Cancer Cell Lines

HL60 cells (ATCC) and MOLM-13 (Leibniz Institute
DSMZ-German Collection of Microorganisms and Cell
Cultures) were cultured in RPMI-1640 Medium (Sigma-
Aldrich) supplemented with 20% fetal bovine serum
(FBS, Life Technologies), L-alanyl-L-glutamine (2 mM,
Sigma-Aldrich) and a mixture of penicillin and strepto-
mycin (100 U/mL, 100 μg/mL, 1× , Life Technologies).
HL60 cells are promyeloblast cells derived from an
acute promyelocytic leukemia, MOLM-13 is an acute
myeloid leukemia cell line.[39–41] Cells were incubated
in a humidified 37 °C incubator supplied with 5% CO2.
For drug treatment, 4×106 cells were suspended in
culture medium (4 mL) with Aza(d)C and incubated for
24 h in a P60 cell culture dish (Sarstedt). The medium

was removed by centrifugation (3 min, 260 g) and the
cells were washed with phosphate buffered saline
(PBS, Sigma-Aldrich) and centrifuged again. The pellet
was lysed with guanidinium isothiocyanate buffer
(1.6 mL, RLT Buffer, Qiagen) supplemented with β-
mercaptoethanol (final concentration 142 μM, Sigma-
Aldrich) and subjected to DNA isolation. All cell culture
experiments were done in independent biological
triplicates.

Mouse Embryonic Stem Cells (mESC)

J1 wt mESCs[42] were maintained in DMEM high
glucose (4500 mg/L glucose, sodium pyruvate, and
sodium bicarbonate, without L-glutamine, Sigma-Al-
drich) supplemented with 10% ESC tested FBS (PAN
Biotech), 1× MEM nonessential amino acids (Sigma-
Aldrich), L-alanyl-L-glutamine (2 mM, Sigma-Aldrich), β-
mercaptoethanol (0.1 mM), leukemia inhibitory factor
(LIF 1000 U/mL, ORF Genetics), and 100 U/mL penicillin
with 100 μg/mL streptomycin (Life Technologies). For
maintaining mESC in the undifferentiated, naive pluri-
potent state, so called 2 i conditions, MEK and GSK3
pathway inhibitors were applied. Therefore, the mESC
medium was supplemented with PD 0325901 (1 μM)
and CHIR 99021 (3 μM, Axon Medchem). For all experi-
ments, mESCs were trypsinized with trypsin (0.1%,
Gibco, LifeTechnologies) in phosphate buffered saline
(Sigma-Aldrich) containing EDTA (0.02%, Sigma-Al-
drich), D-glucose (0.01%, Sigma-Aldrich) and chicken
serum (1%, Gibco, LifeTechnologies) and plated in
culture dishes pretreated with gelatin (0.2%). mESCs
were incubated in a humidified 37 °C incubator
supplied with 5% CO2. For drug treatment, cells were
moved into the primed state by removing 2 i from the
medium. Cells were incubated 2d in medium without
2 i in P60 cell culture dishes (Sarstedt). After splitting,
4×105 cells were transferred into a 6-well plate culture
dish (VWR) and incubated additional 2d without 2 i.
Then the medium was replaced with Aza(d)C supple-
mented medium and incubated for another 24 h. The
medium was removed and cells were washed with
PBS. Then they were directly lysed with RLT Buffer
(Qiagen) supplemented with β-mercaptoethanol (final
concentration 142 μM, Sigma-Aldrich) and subjected to
DNA isolation.

For comparison of J1 wt mESCs with the respective
Dnmt1,[43] Dnmt2,[44] Dnmt3a,[44] and Dnmt3b[44]

knockout cell lines the culturing procedure was the
same as described above, but after the first passage in
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serum/LIF conditions without 2i only 2×105 cells were
plated per 6-well.

DNA and RNA Isolation

DNA was isolated from cell lysates using Zymo-Spin™
V spin columns (ZymoResearch), according to the
manufacturers’ manual with following variation. After
DNA binding columns were incubated 5 min with
Genomic Lysis Buffer (ZymoResearch) supplemented
with RNAse A (35 U/mL, Qiagen). After the washing
steps, DNA was eluted from the column with ddH2O
(100–150 μL) containing 3,5-di-tert-butyl-4-hydroxy-
toluene (BHT, 0.2 μM) and the concentration was
determined on a NanoDrop ND-1000 Spectrophotom-
eter (NanoDrop Technologies Inc.).

RNA was isolated from the flow-through of DNA
isolations using ZR-Duet™ DNA/RNA MiniPrep Kit
(ZymoResearch) according to the manufacturer’s man-
ual.

NaBH4 Reduction of Isolated DNA and RNA

The DNA or RNA (10 μg) was diluted with ddH2O (up
to 75 μL). A freshly prepared solution of NaBH4 (25 μL,
1 M) was added to the sample (final concentration of
250 mM NaBH4) and incubated in the dark in a
Eppendorf Thermomix comfort at 22 °C and 600 rpm
interval shaking (20 s shake, 9 min 40 s interval) for
4 h. This treatment was previously reported[30] in
different conditions and was modified to work in
water. Its compatibility with genomic DNA was
previously shown.[45] Then NaOAc buffer (50 μL,
750 mM, pH=5) was added carefully to each sample
to quench the excess of borohydride and incubated at
22 °C for 2 h at 600 rpm. Remaining hydrogen bubbles
were removed by short-spin centrifugation and the
DNA was purified and re-isolated using Zymo-Spin™
IIC–XL spin columns (ZymoResearch) according to the
manufacturer’s manual. The DNA was eluted in ddH2O
(60 μL) and the DNA concentration was determined.
RNA was re-isolated accordingly using the Zymo-
Spin™ IIC spin columns (ZymoResearch) according to
the manufacturer’s manual.

Enzymatic DNA and RNA Digest

DNA and RNA samples were digested to give a
nucleoside mixture and spiked with specific amounts
of the corresponding isotopically labeled standards
before LC� MS/MS analysis. The enzymatic digest

method was slightly modified from our previous
reported method.[33] Especially TRIS-buffer salts con-
tributed heavily to ion suppression of H2� AzadC and
H2� AzaC MS-signals. DNA or RNA (1 μg) was incubated
for 3 h at 37 °C in technical triplicate with S1 nuclease
(Sigma-Aldrich) and Antarctic Phosphatase (New Eng-
land BioLabs) as stated in our reported methods. For
RNA, the amount of ZnSO4 was increased (1.6 mM in
7.5 μL), and MgCl2 (2.67 mM in 7.5 μL) was added
additionally. Subsequently, for DNA Snake Venom
Phosphodiesterase I (Abnova) in a glycerol stock was
added according to the manufacturer omitting the
addition of TRIS-buffer salts and the solution was
incubated for another 3 h at 37 °C. For RNA, the first
S1/Antarctic Phosphatase addition and incubation was
repeated for another 12 h at 37 °C.

UHPLC-MS/MS Analysis

Experimental procedures for synthesis, purification,
stock solution preparation, and determination of
extinction coefficients for the isotopic nucleoside
standards were reported earlier by our group.[33,46–48]

In brief, LC-ESI-MS/MS analysis was performed using
an Agilent 1290 UHPLC system, equipped with an UV-
detector, and an Agilent 6490 triple quadrupole mass
spectrometer coupled with the stable isotope dilution
technique. The nucleosides were analyzed in the
positive ion selected reaction monitoring mode (SRM).
In the positive ion mode [M+H]+ species were
measured. The optimized general source-dependent
parameters were as follows: Gas temp. 80 °C, gas flow
15 L/min (N2), nebulizer 30 psi, sheath gas heater
275 °C, sheath gas flow 11 L/min (N2), capillary voltage
2500 V and nozzle voltage 500 V. The fragmentor
voltage was 380 V. Delta EMV was set to 500. For the
analysis, we used a Poroshell 120 SB-C8 column from
Agilent (2.7 μm, 2.1 mm×150 mm). The column tem-
perature was maintained at 30 °C. The flow rate was
0.35 mLmin� 1, and the injection volume amounted to
39 μL. The effluent up to 1.0 min and after 9 min was
diverted to waste by a Valco valve in order to protect
the mass spectrometer. The auto-sampler was cooled
to 4 °C.

The dC- and dG-content of DNA samples was
determined by LC-UV-detection. The compounds were
separated by a gradient using water (0.0090% v/v
formic acid) and MeCN (0.0075% v/v formic acid): 0!
5 min; 0!3.5% (v/v) MeCN; 5!6.9 min; 3.5!5%
MeCN; 6.9!7.2 min; 5!80% MeCN; 7.2!10.5 min;
80% MeCN; 10.5!11.3 min; 80!0% MeCN; 11.3!
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13 min; 0% MeCN. In addition to our previously
reported UHPLC-MS parameters, we implemented
parameters for H2� AzadC in time segment 1.0–4.0 min
with a Quantifier and a Qualifier fragmentation (Table
SI-1).

For RNA samples, the amount of the canonical RNA
nucleosides A, C, G, and U was determined by LC-UV
detection. For analysis of the H2� AzaC content of RNA,
the compounds were separated by a gradient using
water and MeCN, each containing 0.0090% (v/v) formic
acid: 0!2 min, 0!0% (v/v) MeCN; 2!6 min, 0!6%
MeCN; 6!7 min, 6!40% MeCN; 7!10.8 min, 40!
80% MeCN; 10.8!20 min, 80% MeCN; 20!20.8 min,
80!0% MeCN; 20.8!22 min, 0% MeCN. We imple-
mented UHPLC-MS parameters for H2� AzaC in time
segment 0.8–2.7 min with a Quantifier and a Qualifier
fragmentation (Table SI-2).

For absolute quantification of H2� AzadC and
H2� AzaC, we used calibration curves of diluted stand-
ards that were measured in technical triplicate prior to
every batch (Figure SI-10). Each dilution was subjected
to the same digest conditions as the DNA or RNA
samples to compensate for strong ion suppression of
the MS-signal. The resulting calibration curves were
then used for quantitation of the samples from the
according batch. For each calibration curve, the lower
limit of quantification (LLOQ) was defined as the limit,
where backfit of the calibration equation was out of a
80%–120% range (Table SI-3), and %CV of the median
MS-signal was below 15%.

Stability of DNA-Integrated AzadC

In a stability test, we aliquoted a treated, but not
reduced DNA sample into two vials, of which we froze
one at � 20 °C and incubated the other one for 24 h at
r.t. After the incubation time, both samples were
treated with NaBH4 as described and the re-isolated
DNA was digested in technical triplicates. The levels of
H2-AzadC were determined (Figure SI-15).

Statistical Analysis

UHPLC-ESI-MS/MS data were obtained from three
independent biological experiments (unless stated
otherwise). Each biological data point was measured
as technical triplicate. Error bars represent standard
deviation of three independent experiments. Statistical
analysis (Tables SI-8–SI-10) was performed with Sigma-
Plot® software version 11.0 (Systat Software Inc.,

Chicago, USA), using One-Way ANOVA Holm-Sidak as
test. Statistical significance is assumed if as * for p�
0.05, ** for p�0.01 and as *** for p�0.001.
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3.1.5 Influencing epigenetic information with a hydrolytically stable carbocyclic 5 aza-2'-deoxycytidine 

Thomas M. Wildenhof, Sarah Schiffers, Franziska R. Traube, Peter Mayer and Thomas Carell 

 

Prologue 

During the Ph.D. of Thomas M. Wildenhof, an analogue of AzadC, the carbocyclic compound (cAzadC, 

Figure 10) was synthesized. This molecule does not show the same hydrolysis reaction as AzadC. A 

comparison of the NMR signals immediately after dissolution and after 3 d at r.t., as well as after 14 d 

showed the same spectrum without any additional signals (see thesis Thomas M. Wildenhof). The 

missing hetero atom in cAzadC must therefore alter the electronic properties of the molecule and 

hence disable the nucleophilic attack that is known to occur on the C6-position of AzadC. 

 

Figure 10: Structures of AzadC (left) and the carbocyclic AzadC derivative (right). The differing atoms are marked 
in red. 

The compound was subsequently added to wt J1 mESCs for 24 h and the effects compared with those 

of AzadC. Interestingly, the molecule caused a less pronounced decrease of the m5dC levels (data from 

Thomas M. Wildenhof, not shown), when administered in the same concentration as AzadC. 

Unfortunately, during this investigation the incorporation of cAzadC was not analyzed. Therefore, 

direct correlation of the decrease in the m5dC levels with presence of the drug in the DNA was not 

possible. 

With AzadC, where the enzymes are trapped, a higher amount of covalently bound enzyme leads to a 

lesser amount of enzyme that is available for maintenance of methylation and subsequently to a 

quicker decrease of the m5dC levels. Since with cAzadC the m5dC levels decrease only to a lesser extent, 

we had to consider the possibility, that installation of m5dC is maintained and DNMT enzymes are 

generally available and active. This would suggest that the enzymes do not get bound covalently to the 

molecule and would subsequently indicate an inability of the enzymes to act on cAzadC. The decrease 

of the m5dC levels could indirectly be caused by the large amount of cAzadC in place of potentially to 

be methylated dC. As an additional effect, Thomas M. Wildenhof observed lower cytotoxicity of the 

compound in comparison with AzadC. 
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Project contribution 

In a follow-up experiment, Franziska R. Traube and I wanted to investigate the decrease of the m5dC 

levels in wt mESCs that were treated with cAzadC over a longer period of time. We decided to 

administer the drug in two different concentrations (1 µM and 5 µM, with 0.01% DMSO and 0.05% 

DMSO, respectively) for 72 h at the end of a 5 d priming period. Due to the higher stability of the 

compound, we did not expect significant hydrolysis of the molecule in the medium. To exclude effects 

of a potential decrease in the concentration, we set up a second experiment in parallel, where we 

added fresh supplemented medium every 24 h. In the first 24 h, the previously observed cytotoxic 

effect is not yet visible under microscopic evaluation. After the 5 d priming period, however, the cells 

treated for 72 h with cAzadC showed a round morphology and significant cell death. With 5 µM of the 

drug, even the majority of cells had suffered from apoptosis. The DMSO controls were however 

healthily primed and we can therefore attribute the amount of cell death to effects stemming from 

the compound. All cells were harvested with RLT+ buffer, the gDNA was subsequently isolated and 

subjected to total enzymatic digestion as described previously.[161] 

The UHPLC-MS method used in the experiments by Thomas M. Wildenhof did not record any 

information for cAzadC. Since this obscured interpretation of the data towards a potential mechanism 

of action, I developed a new method including the mass transition of cAzadC. Interestingly, the 

molecule did not only fragment in the typical way for nucleosides (see Figure 11) by breaking the 

N-glycosidic bond, but additionally exhibited elimination of water from the C2’-C3’ bond of the 

carbocycle. This fragmentation was used as a qualifier for the identification of the molecule. 

 

Figure 11: Fragmentation pattern for cAzadC; the upper fragmentation shows the typical N-glycosidic bond 
cleavage; the lower fragmentation depicts an elimination of water in the carbocycle. 

Since no isotope standard of cAzadC was available, exact quantification of the compound was 

performed using external calibration by measuring a serial dilution of the nucleoside prior to each 

measurement. Previous analysis of the hydrogenated AzadC compound had revealed significant ion 
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suppression caused by the digestion conditions. An optimized, but more costly and time-consuming 

protocol was able to overcome the effects. Although the new compound eluted at a retention time of 

2.9 min, where ion suppression is expected to be lower than at the retention time of 1.3 min for 

H2-AzadC, we wanted to make sure that the external calibration curve is accurate and that the 

digestion conditions do not compromise the MS signal. To this end, we measured a single pure serial 

dilution of the nucleoside, as well as a technical triplicate of the serial dilution that was subjected to 

the digestion conditions and compared the results. Indeed, the signal intensities and resulting 

calibration curves did not differ significantly. We therefore decided to perform external calibration by 

only measuring a pure serial dilution of the nucleoside in bidistilled water, without incubation of the 

nucleoside with the digestion enzymes. 

In a first test, we used 1 µg of gDNA for our sensitive measurements and found out that high amounts 

of cAzadC were found in the gDNA. The MS signal with the optimized collision energy (CE) exceeded 

standard ranges and was not proportional to the administered amounts. Since the substantial amounts 

of the nucleoside in the sample saturated the detector, we decided that we did not need maximum 

sensitivity. Consequently, we selected a different CE that gives a less enhanced signal to ensure 

accurate quantification. With this method in hand, we were able to analyze a full data set with 

biological triplicates and technical duplicates of m5dC, hmdC and cAzadC levels in parallel. 
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Figure 12: Modification levels upon administration of cAzadC to primed (serum/L, 5 d) wt J1 mESCs. A) m5dC 
levels, B) hmdC levels, C) external calibration curve for cAzadC, D) levels of cAzadC; Ctrl 1 µM/5 µM=DMSO Ctrl 
of 0.01% or 0.05%, respectively; MC = medium change. 

The result of all samples is displayed in Figure 12. The two control samples were supplemented with 

0.01% and 0.05% DMSO, respectively, and show only insignificant differences for all analyzed 

modifications. After administration of the drug for 72 h, a reduction of the m5dC level to 75% of the 

DMSO control is observed already at 1 µM concentration. The result is the same whether the drug is 

administered once and the cells are incubated with this solution for 72 h, or the medium is changed 

and supplemented with fresh cAzadC every 24 h. With 5 µM cAzadC, the decrease is even more 

pronounced, but only up to 50% of the control levels. In comparison, Thomas M. Wildenhof reported 

a decrease of m5dC to 75% of the controls after 24 h with 5 µM cAzadC, but a reduction to 50% was 

never observed even at 10 µM. Analyzing the hmdC levels, we observe a drop to 50% of the control 

levels at both concentrations of the drug. It has to be noted, however, that the hmdC signals were only 

above LOD in one replicate without medium change and not at all with change of the medium. This 

inability to quantify above LOD might therefore represent the real effect, hence erasure of hmdC. 
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Analysis of the cAzadC levels finally reveals incorporation of the drug to substantial amounts of 

0.5-1.5•10-3 per dN, which is 1/25th, or 1/5th respectively, of the m5dC levels. Interestingly, upon 

feeding with 5 µM cAzadC, in comparison to 1 µM only a three-fold higher level of the compound is 

found in the gDNA. In relation to the m5dC levels, administration of 5 µM cAzadC therefore shows a 

five-fold change that mirrors the difference in the concentration. When we compared these data with 

the effective amounts of integrated AzadC after administration of 1 µM of the compound for 24 h,[161] 

we realized that they match those observed with 5 µM cAzadC administered for 72 h. The new 

compound is therefore able to achieve the same effect on DNA methylation as AzadC. This observation 

strongly suggests, that the compound also causes entrapment of the DNMT enzymes, but simply needs 

more time to accumulate in the DNA. A possible explanation for the delayed incorporation is a 

decreased activity of the nucleotide kinase DCK towards the compound or inefficient uptake of the 

drug into the cells. Furthermore, it is possible that the DNA polymerases do not accept the cAzadCTP 

as readily. Due to the hydrolytic stability of the compound, a delay in its incorporation into DNA is not 

considered a disadvantage. 

To summarize the results, cAzadC can be incorporated and quantified to substantial amounts after 

administration of the drug for 72 h. A decrease of the m5dC levels to 75% and 50% of the control levels 

can be explained by a direct effect of the drug on the DNMT enzymes. This effect is however strongly 

time-delayed (72 h instead of 24 h) and depends on a higher concentration of the drug (5 µM instead 

of 1 µM). Possible explanations for the delayed incorporation comprise reduced activity of DCK, 

inefficient uptake into the cells or bias of the DNA polymerases. The significant reduction of the hmdC 

levels remains elusive. In data from Thomas M. Wildenhof (see Ph.D. thesis), the levels increased 

slightly during a time course experiment with administration of AzadC (1 µM). Since this time course 

was performed during a priming procedure, the effects might be due to action of the TET enzymes 

rather than the drug. In our investigation of cAzadC, the drug was administered earlier during the 

priming procedure (already at day three). A drop of the hmdC levels might indicate an additional effect 

of the compound on the TET enzymes or other processes that take place during priming. The significant 

occurrence of cell death, and therefore cytotoxicity, of the compound could have a variety of reasons: 

it might be attributed to effects on the priming procedure, but could also hint at efficient activation of 

normally silenced tumor suppressor genes or interference with other signaling pathways in mESCs. 

Further analysis of the drug could reveal its mode of action. We conclude that a low dosage of the drug 

administered over a longer period of time might be a more gentle and cost-effective alternative to 

treatment with AzadC. 
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Influencing epigenetic information with a hydrolytically stable 

carbocyclic 5-aza-2’-deoxycytidine 

Thomas M. Wildenhof,[a] Sarah Schiffers,[a] Franziska R. Traube,[a] Peter Mayer[a] and Thomas Carell*[a] 

Dedicated to Prof. J. Rebek, Jr. on the occasion of his 75th birthday 

Abstract: 5-Aza-2’-deoxycytidine (AzadC) is an antimetabolite in 

clinical use, which reduces the level of the epigenetic modification 

5-methyl-2’-deoxycytidine (mdC). AzadC is incorporated into the 

genome of proliferating cells, where it inhibits the DNA 

methyltransferases (DNMTs) in a suicide process leading to a 

reduction of mdC. The loss of mdC, which is a transcriptional silencer 

in promoters, leads to the reactivation of genes including tumor 

suppressor genes, which elicits a beneficial effect. The problem 

associated with AzadC is that the compound is hydrolytically unstable. 

It decomposes during treatment to a variety of poorly characterized 

hydrolysis products. After its incorporation into the genome, this 

hydrolytic instability generates abasic sites. It is consequently difficult 

to dissect if the activity of the compound is caused by DNMT inhibition 

or more generally by DNA lesion formation. We now discovered that 

a disarmed version of AzadC, in which the ribose oxygen was 

replaced by a CH2-group, is surprisingly stable under a variety of pH 

values while keeping the epigenetic activity against the DNMTs. 

5-Aza-2’-deoxycytidine (decitabine, AzadC) is a nucleoside 

analogue that is able to manipulate epigenetic information.[1-5] 

Epigenetic information in DNA is associated with the formation of 

5-methyl-2’-deoxycytidine (mdC) from 2’-deoxycytidine (dC) with 

the help of DNA methyltransferases (DNMTs) and 

S-adenosylmethionine (SAM) as the methylating cofactor.[6-7, 4] 

Methylation of dC to mdC in promoter regions is typically 

associated with transcriptional silencing of genes.[8-9] AzadC is a 

prodrug that is inside cells converted into the corresponding active 

triphosphate and subsequently incorporated into the genome 

during cell division. The mode of action of AzadC involves 

reaction of its electrophilic C6 positions with a DNMT active site 

thiol nucleophile (Fig. 1a).[10-11] This generates a covalent 

intermediate that is methylated by the SAM cofactor as depicted 

in Fig 1a. Due to the N-atom at position 5 of the triazine 

heterocycle, the final -elimination reaction, which would usually 

release mdC from the DNMT enzyme, is not possible anymore. 

The consequence is the formation of a covalent DNA-DNMT 

crosslink. As a result of administering AzadC, a large drop of the 

mdC levels (hypomethylating effect) is observed, which leads to 

the reactivation of silenced tumor suppressor genes in cancer 

cells.[1] This epigenetic effect is hoped to re-differentiate cancer 

cells back into normally proliferating cells. AzadC is currently in 

use as one of the first pharmaceuticals that operates at the 

epigenetic level for the treatment of myelodysplastic syndromes 

(MDS)[2] and for acute myeloid leukemia (AML)[4]. Clinically, it is 

administered in several cycles, with each cycle involving one 

week of treatment and three weeks of pausing. 

The problem associated with AzadC is that the compound 

hydrolyses in aqueous solution following the path depicted in 

Fig. 1b. This hydrolysis compromises the activity of AzadC, 

particularly over the long treatment times. In order to circumvent 

this problem, it is necessary to generate an AzadC compound that 

can demethylate (and hence react with an S-nucleophile), while 

hydrolysis (reaction with an O-nucleophile) should be blocked. 

Such a compound may allow to dissect how demethylation and 

lesion formation contribute to the anti-cancer activity, which is an 

information needed for the design of new epigenetically acting 

antimetabolites.  

Here, we report that replacing the oxygen of the ribose by a CH2-

group has a surprisingly large remote effect on the reactivity of 

the heterocycle. The created carbocyclic version of AzadC 

(cAzadC, 1) still inhibits DNMTs but is hydrolytically stable 

(Fig. 1c).  

 

 

Figure 1. Depiction of 5-aza-2’-deoxycytidine (decitabine, AzadC) together with 

its mode of action. a) Active site thiol reacts with the C6-position of AzadC. b) 

Hydrolytic degradation pathway that goes in hand with reaction of a water 

molecule with the C6-position (O-reactivity) of AzadC. This leads to a final base 

loss and formation of an abasic site. c) Boxed, depiction of the carbocyclic 

version cAzadC 1. 

The synthesis of cAzadC 1 is depicted in Scheme 1. It starts with 

the Boc-protected aminocyclopentane derivative 2 that we used 

previously to synthesize DNA lesion analogues.[12-15] Compound 

2 was first benzyl-protected to 3, Boc-deprotected to 4, and then 

reacted with carbimidazole 5, which was prepared in two steps 

from isomethylurea 6 after generation of the free base 7 with 

potassium hydroxide and reaction of 7 with carbonyldiimidazole. 

[a] M. Sc. T. M. Wildenhof, M. Sc. S. Schiffers, M. Sc. F. R. Traube,  Dr. 

P. Mayer, Prof. Dr. T. Carell 
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 Supporting information for this article is given via a link at the end of 
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This provides the carbamoylurea-cyclopentane nucleoside 

analogue 8. Cyclization to the triazine base 9 was subsequently 

performed with triethylorthoformate. Reaction of 9 with NH3 in 

methanol and deprotection of the benzyl groups with BCl3 in 

dichloromethane furnished the final compound cAzadC 1 as the 

free nucleoside.  

 

 
 
Scheme 1. Synthesis of the carbocyclic 5-aza-2’-deoxycytidine (cAzadC, 1). a) 
NaH, BnBr, DMF, 0 °C, 1.5 h and stirred for additional 2 h at r.t.; b) TFA (30%), 
CH2Cl2 then Na2CO3, 10 min r.t.; c) CH3CN, reflux, 2 h d) HC(OEt)3, TFA cat., 
reflux, 3 h; e) NH3 (7 N, MeOH), 3 h, r.t., then H2O ;f) CH2Cl2, -78 °C, BCl3, 1 h, 
then  r.t., 2 h, MeOH, 20 min. g) KOH, Et2O:H2O (39:1), -15 °C, 30 min, h) 
carbonyldiimidazole, THF, r.t., 3 h; R = Me or Et. 
 

Recrystallization of compound cAzadC 1 from hot methanol gave 

colourless needles, which allowed us to solve the crystal structure 

that is depicted in Fig. 2. Interesting is the observation that 

cAzadC 1 exists with two different cyclopentane conformations in 

the crystal (Fig. 2; Fig.SI 1). One conformer adopts a C6’-endo 

(P = 88.2 °, max = 47.8 °) conformation (Fig. 2a), while the second 

exists as the C2’-endo-C3’-exo (South, P = 150.8 °, max = 45.4 °) 

conformer (Fig. 2b). The latter conformation is typical for 

2’-deoxynucleosides in DNA. This shows that the cAzadC 1 

nucleoside can adopt the correct DNA-type conformation, fueling 

hope that the analogue has the potential to get phosphorylated 

and integrated into the genome.  

 

 

Figure 2. Crystal structure of carbocyclic 5-aza-2’-deoxycytidine (cAzadC 1) 

showing the molecule in the observed C6’-endo conformation (a) and the C2’-

endo-C3’-exo conformation (2T1) (b). 

We next investigated the stability of cAzadC 1 in direct 

comparison to the pharmaceutical AzadC (Fig. 3). Since one 

treatment cycle goes over four weeks we decided to measure the 

stability at a time point related to a half cycle (14 d). We dissolved 

AzadC and cAzadC 1 at a concentration of 100 mM in a 

phosphate buffer (100 mM) at three different pH values (7.4, 5.5 

and 8.5) and measured NMR spectra after keeping the solutions 

at r.t. Since tumour cells often provide an acidic micro-

environment,[16] the stability under slightly acidic pH is particularly 

informative. As evident from the data shown in Fig. 3, the 

pharmaceutical AzadC strongly degraded within these 14 d. 

Importantly, at pH = 5.5 and at pH = 8.5, intact AzadC was only 

hardly detectable anymore. At physiological pH (7.4), AzadC was 

still present after 14 d but the level of degradation is dramatic. In 

contrast to these results, we observed for cAzadC 1 surprisingly 

no degradation at all tested pH values, including pH = 5.5. This 

result led to the surprising discovery that the simple O → CH2 

exchange causes a strong remote disarming effect that seems to 

change the properties of the triazine ring so that reaction with 

water is stopped. 

 

Figure 3. HPLC-based stability measurements showing (a) severe hydrolytic 

decomposition of 5-aza-2’-deoxycytidine (AzadC) solutions at different pH 

values, while (b) the carbocyclic compound cAzadC 1 was stable at all three pH 

values. The inset table in (a) shows the chromatogram between t1 = 10 min and 

t2 = 20 min for AzadC. The AzadC signal is depicted in red. 

We next investigated if this disarming effect would influence the 

biological functions. We used for this purpose mouse embryonic 

stem cells (mESC) that were primed in serum/LIF as a model 

system, since mdC levels increase from naïve to primed state.[17] 

We added cAzadC 1 in two different concentrations (1 µM and 

5 µM) to mESC that have been primed for 48 h and allowed the 

cells to further proliferate under priming conditions in the presence 

of cAzadC 1 for additional 72 h. After the 72 h, we harvested the 

cells, isolated the DNA and digested the DNA down to the 

nucleoside level using our described protocol.[18] The levels of 

mdC were finally precisely quantified using isotope dilution 

UHPLC-MS2. To this end, isotopically labelled standards of the 

nucleosides were spiked in for exact quantification.[19, 18] In 

addition to mdC, we quantified the levels of 5-hydroxymethyl-

2’-deoxycytidine (hmdC), which is formed from mdC by the action 

of TET enzymes.[20-21] The absolute levels of hmdC are in mESC 
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more than ten times lower than the mdC levels[20, 22]. The 

consequence is that even after a substantial reduction of mdC, 

there should be sufficient mdC to keep the hmdC levels constant. 

The question if and by how much the hmdC level is affected can 

therefore inform us about how epigenetic reprogramming is 

organized. Parallel to the quantification of mdC and hmdC we also 

quantified to which extent cAzadC 1 itself was incorporated into 

the genome of the mESC. Detection of AzadC in the genome of 

treated cells is only possible after treatment of the DNA with 

NaBH4. Application of NaBH4 reduces the C(5)=C(6) double bond, 

which stabilizes the compound so that its quantification becomes 

possible.[23, 19] To our delight, we noted that the stability of 

cAzadC 1 allowed its quantification without this pre-treatment. We 

also noted that the applied enzymatic digestion protocol allowed 

to digest genomic DNA (gDNA) even in the presence of large 

amounts of cAzadC 1. Taken together, quantification of cAzadC 1 

by UHPLC-MS2 using an external calibration curve (Fig. SI2) was 

possible in parallel to quantification of canonical and epigenetic 

bases.  

 

 

Figure 4. Depiction of the quantification data of DNA modifications of 

carbocyclic 5-aza-2’-deoxycytidine-treated (cAzadC 1) mouse embryonic stem 

cells (mESC) obtained by UHPLC-MS2. For each condition, three biological 

replicates were measured in technical triplicates. For each technical replicate, 

0.5 µg of DNA were digested. Bar graphs represent mean, error bars represent 

standard deviation. LLOQ indicates the lower limit of quantification. 

At 1 M cAzadC 1 concentration, we detected a cAzadC 1 level 

of 5x10-4 cAzadC per dN (Fig. 4a). This amounts to almost 

3 million cAzadC nucleotides integrated into the genome. At the 

higher concentration of 5 µM cAzadC 1, the level increased 3-fold 

to 1.7x10-3 cAzadC per dN and consequently to more than 

8 million integrated cAzadCs per genome. Compared to the 

incorporation of AzadC, which reaches 1.2x10-3 AzadC per dN, 

when applied with 1 µM[19], the levels of cAzadC 1 reaches about 

a third of this level. The data clearly show that the carbocyclic 

version of AzadC (cAzadC 1) is incorporated and that it reaches 

in the genome finally comparable levels at 5 µM concentration. 

Importantly, after exposing the mESC for 72 h at 1 M cAzadC in 

the medium, we detected a reduction of the mdC values by almost 

30% (Fig. 4b). At 5 M concentration in the medium, the mdC 

levels dropped even to about 50% of the original value. A 

decrease to 50% is observed for AzadC as well. Here, however, 

the 50%-reduction is reached faster (24 h) and already with lower 

AzadC concentration (1 µM).[19] The data show that the 

carbocyclic version cAzadC 1 needs simply more time to affect 

the mdC levels by the same amount. We believe that this effect is 

caused by a potentially slower conversion of cAzadC 1 into the 

triphosphate. The slower kinetics of cAzadC 1, however, is not 

necessarily a disadvantage given the long treatment times that 

are applied in the clinic.  

Very interesting is also the discovery that the hmdC levels were 

reduced to about 50% already in the 1 M experiment. At 5 M, 

we were even unable to detect hmdC above background levels 

using 0.5 µg of genomic DNA. The result shows that the hmdC 

level dropped even faster than the mdC levels, although hmdC is 

more than ten times less abundant in the genome. This result is 

interesting. It indicates that hmdC might be potentially 

predominantly generated in the mdC maintenance process during 

cell division. We see here that compound cAzadC 1 is a perfect 

tool molecule that now allows to gain further insight into the 

interplay between methylation of dC to mdC and oxidation of mdC 

to hmdC. With the new compound cAzadC 1 in hand we can now 

begin to clearly correlate demethylation of the genome with the 

corresponding cellular effects without compromising DNA 

damaging effects. Finally, cAzadC 1 may not only be a valuable 

tool compound but potentially even a next generation epigenetic 

pharmaceutical.  

In summary, we show that the replacement of the in-ring O-atom 

by a CH2-unit stabilizes the pharmaceutical so that its nucleophilic 

reaction with water is stopped. The new nucleoside cAzadC 1 is 

accepted by the phosphorylating enzymes in cells and the 

corresponding cAzadC-triphosphates are efficiently incorporated 

into the genome. cAzadC 1 is incorporated in the genome with 

several million nucleotides and it causes the mdC level to 

decrease to 70% relative to the control levels. 

Experimental Section 

Synthesis 

All synthetic procedures are described in detail in the supplementary 

material. 

 

Cell culture of mESC for cAzadC treatment 
Feeder independent wt J1 (strain 129S4/SvJae)[24] cells were cultured 
in the presence of serum and LIF as previously described[25]. They 
were routinely maintained on gelatinized plates in 2i/L medium. For 
priming experiments, 2i cultures were passaged when applicable in 
DMEM supplemented with FBS and LIF as above but lacking the 
inhibitors. For drug treatment, cells were moved into the primed state 
by removing 2i from the medium. Cells were incubated 2 d in DMEM 
supplemented with FBS and LIF in 6-well plates (VWR). After splitting, 
2x105 cells were transferred into a 6-well plate culture dish and 
supplemented with either 1 µM (in 0.01% DMSO) or 5 µM cAzadC (in 
0.05% DMSO) and treated for 72 h. After removal of the medium and 
washing the cells with DPBS, they were directly lysed with RLT+ buffer 
as described in a previous publication[18]  

 

gDNA isolation, total enzymatic digest and UHPLC-MS2 
The gDNA was isolated as described previously[18]. Due to the higher 
stability of cAzadC 1, a hydrogenation procedure was not necessary 
and the gDNA was directly subjected to a total enzymatic digest and 
analyzed using UHPLC-MS2 as described in a previous publication.[19]  
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3.2 Unpublished results 

3.2.1 Investigation of the formation of m6dA in gDNA upon exogenous stimuli 

We discovered previously[374] (see section 3.1.1) that m6dA does not seem to be a highly abundant 

modification in human or murine cells or tissues. The question as to why this modification is frequently 

found in these organisms still remained. In the article, we also report an incorporation of the 

nucleoside into the gDNA upon administration of the free nucleoside. We therefore suggest that the 

occurrence of the modification can be explained from a dynamic endogenous or exogenous source. 

According to a publication by Liu et al.,[83] m6dA is found in early development of zebrafish 0.5-3.5 h 

post fertilization (hpf), while m6A-containing RNA is degraded in this developmental stage (2-8 hpf).[375] 

These results led us to hypothesize that there might be a connection between m6A-containing RNA 

degradation and the occurrence of m6dA in DNA. 

3.2.1.1 Administration of free m6A to different cell lines 

By supplementing growth media with 1 µM/1 mM m6dA, we have previously shown that genomic 

m6dA may stem from external sources, such as media components or bacterial degradation products. 

We now wanted to elucidate also internal sources of this modification. As a first experiment, we 

administered the free RNA nucleoside m6A to wt J1 mESCs and the somatic cells HeLa and HEK293T, 

since ribonucleotide reductase (RNR) may lead to the conversion of phosphorylated m6A to the 

2’-deoxy nucleoside. Subsequently, we analyzed the DNA for m6dA. Feeding of HeLa and HEK293T cells 

was only performed once. 
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Figure 13: Levels for DNA incorporated m6dA and respective m6A levels in RNA after administration of m6A to the 
medium of mESCs and cancer cells. For wt J1 three independent biological samples are depicted 
(Exp.: experiment). As a control, the levels of m6dA in unfed cells were analyzed. The results for DNA are depicted 
on the left side and those for the RNA are on the right. 

Indeed, administration of a 100 µM solution (0.25% DMSO for wt J1 and 2% for the somatic cell lines) 

led to clearly detectable elevated levels of m6dA in DNA in HEK293T and wt J1 cells, and even high 

levels in HeLa cells (see Figure 13, right side). It is also clear that administration of the free RNA 

nucleoside leads to a significant incorporation of m6A into RNA of HeLa cells (see Figure 13, left side), 

whereas HEK293T and wt J1 cells show no difference.  

Interestingly, the incorporation of m6dA does not seem to occur to the same levels in different 

replicates of supplemented mESCs, whereas the m6A levels seem to be rather stable between 

replicates. 

To summarize the results, administration of m6A to various cell lines gave us evidence for the ability of 

various cells to process the free m6A nucleoside and finally to incorporate it as m6dA into the DNA. Due 

to slight contamination of the commercially available adenosine as the precursor for the m6A synthesis 

with 2’-deoxyadenosine, we could however not exclude the possibility that the incorporated m6dA 

nucleoside was actually an impurity of the administered nucleoside. Nevertheless, the concentration 

of m6dA that was administered in a previous publication[374] lead to barely detectable levels of m6dA in 

the DNA, and the concentrations of potential m6dA impurities in the administered m6A solution are 

still expected to differ by several orders of magnitude. The potential impurity of the administered 

solution would be expected to be present in a constant concentration leading to a constant background 

signal and not cause fluctuating levels for m6dA. The incorporated m6dA is therefore likely to stem from 

the converted m6A nucleoside. 
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3.2.1.2 Transfection of m6A-containing RNA 

Like detailed in the introduction, m6A is the most abundant modification in mRNA. Since mRNA is 

constantly turned over, we hypothesized that this m6A represents a source also for genomic m6dA. 

Therefore, we thought of simulating degradation of m6A-containing RNA in vivo. To this end, we 

designed the following RNA strand containing six m6A nucleosides: 

 

5’-(6-FAM)-UGm6ACCGm6AUGGm6AGGUm6AGUm6AUm6AG-3’ 

 

As a control, we used the same strand with unmodified A. Both forward strands had a 

6-Carboxyfluoresceine (6-FAM)-tag at the 5’-end. The tag was used as a fluorescent marker for the 

transfection efficiency of the RNA. Since transfection is usually performed with dsRNA, we constructed 

a complementary strand that contained only A. All strands were synthesized by Matthias Q. Kurz. 

We transfected the 6-FAM-tagged RNA containing m6A into mESCs and monitored the levels of m6dA 

in DNA. With an increased abundance of free m6A in the cytoplasm, we subsequently expected a higher 

level of m6dA in DNA. As a control, DNA from untransfected cells and from cells transfected with the 

RNA strand only containing unmodified A was analyzed. 

 

Figure 14: Levels for DNA incorporated m6dA and respective m6A levels in RNA after transfection of 
m6A-containing RNA at different time points. As a control, the levels of m6dA in untransfected cells and cells 
transfected with only A-containing RNA were analyzed. The results for DNA are depicted on the left side and 
those for the RNA are displayed on the right. 

The cells were lyzed at the different time points and the gDNA was isolated and enzymatically digested. 

Analysis of a first biological replicate of DNA indeed showed higher levels of m6dA for the 

m6A-containing strand 12 h post-transfection (see Figure 14). Since the strand has to be degraded to 
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release free m6A nucleoside, which then needs to be phosphorylated and 2’-deoxygenated to be finally 

incorporated into the DNA, an increase of m6dA is expected to occur time-delayed to the microscopic 

observation. The results therefore seem to fit our expectations and hint at a formation of m6dA in the 

DNA upon degradation of RNA that contains m6A. How this degradation process would take place and 

in which biological process remains elusive. Curiously, increased signals for the nucleoside were also 

found in the untransfected and A-strand control, potentially indicating an additional internal source of 

m6dA nucleosides. It has to be clarified, that the culturing conditions for the untransfected control 

were not different from those previously described.[374] Longer culturing of the cells without change of 

medium might therefore lead to higher background levels for the m6dA nucleoside. 

Additional analysis of the RNA for changes in the m6A levels was conducted to determine potential 

effects upon transfection of RNA. After the first 6 h, the levels are the same in the controls and the 

cells transfected with the m6A-strand. After 12 h and 24 h, a slight and insignificant decrease of m6A 

can be observed. Upon administration of m6A-containing RNA, one could expect more m6A, but our 

result could reflect other biochemical processes as reaction towards the foreign RNA. Furthermore, 

the slight variations might be fluctuations due to the high abundance of the nucleoside. 

Repetition of the experiment unfortunately did not show any detectable levels of m6dA above 

background level. Analysis of the m6A levels in the RNA isolated from the transfected cells also did not 

show altered levels for the m6A-containing strand. We therefore decided to try a different approach. 

3.2.1.3 Induction of differentiation of wt mESCs with all-trans retinoic acid 

The cause of the different results from the DNA analysis in section 3.2.1.1 might be explained by an 

additional interesting observation, which was not recorded visually: we found that in the biological 

replicate with the highest m6dA level, the cell morphology was different from the controls and the cells 

seemed to be partly differentiated. Since we only saw this effect once, we were not sure whether this 

was indeed a consequence of the administration of the nucleoside. In this replicate, the cells might 

have been seeded at a lower density than in the other experiments and therefore there might have 

been a higher local concentration of the nucleoside. The DNA results nevertheless suggest that the 

observed morphology might indeed have been caused by the administered nucleoside. Recent 

literature also reports a differentiating effect of m6dA on pluripotent C2C12 cells[376] and cancer 

cells,[377] whereas this was not present with m6A.[377] Whether the cells differentiate upon feeding or 

incorporate more of the 2’-deoxygenated m6dA nucleoside due to differentiation remains elusive. 

Therefore, we wanted to analyze, whether m6dA could potentially be formed during a differentiation 

process. To differentiate cells, transcription is regulated differentially and many signaling cascades are 

altered. Decay of RNA containing m6A was reported during maternal-to-zygotic transition in 

zebrafish.[375] Additional processes involving degradation of m6A-containing RNA might be present 
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during differentiation of mESCs. These events could provide an endogenous source for free m6A, which 

might subsequently lead to m6dA in DNA. It was reported previously, that administration of all-trans 

retinoic acid (ATRA, see Figure 15) can induce differentiation of mESCs into neural cells.[378] 

 

Figure 15: Structure of all-trans retinoic acid (ATRA). 

Naïve mESCs express hallmark pluripotency factors like octamer-binding protein 4 (OCT-4),[379-380] also 

known as Pou domain, class 5, transcription factor 1 (POU5F1), which is a homeodomain transcription 

factor of the Pou family and is critically involved in the self-renewal of undifferentiated embryonic 

stem cells.[381] We decided to administer ATRA to OCT-4 reporter knockin mESCs expressing yellow 

fluorescent protein (YFP) from one allele of the Oct-4 gene. The cells are from now on referred to as 

Oly2-1. Excitation of YFP (excitation maximum at 512 nm) with an excitation filter of 500/24 nm and 

monitoring the fluorescence of YFP (emission maximum at 527 nm) with an emission filter of 

524/27 nm, allowed the determination of the expression of OCT-4 and hence the differentiation state 

of the stem cells. 

In a first experiment, we tested various seeding densities and concentrations of ATRA to find suitable 

conditions for our study. The basal medium for the experiment was serum/L. A 2i/L culture served as 

additional control on how undifferentiated, naïve cells look. To monitor changes of the developmental 

potential, we analyzed the fluorescence at 48 h and 72 h after administration of the drug. 
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Figure 16: Induction of differentiation of Oly2-1 cells with all-trans retinoic acid (ATRA). The cells used are OCT-4 
reporter cells expressing YFP. The figure shows the morphology (BF: bright field) and fluorescence (YFP) of the 
cells with different seeding densities and different concentrations of ATRA after 48 h. 

After 48 h (see Figure 16), the cells already show very little fluorescence at 527 nm for a concentration 

of 1 µM ATRA. This indicates substantial loss of pluripotency. The uninduced 2i/L and DMSO controls 

exhibit strong fluorescence and hence expression of YFP-tagged OCT-4, and the cells treated with 

100 nM ATRA show a weakened signal and therefore decreased pluripotency. 
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Figure 17: Induction of differentiation of Oly2-1 cells with all-trans retinoic acid (ATRA). The cells used are OCT-4 
reporter cells expressing YFP. The figure shows the morphology (BF: bright field) and fluorescence (YFP) of the 
cells with different seeding densities and different concentrations of ATRA after 72 h. 

After 72 h (see Figure 17), we observed significant amounts of cell death at 1 µM ATRA and concluded 

that this concentration is too high for our investigation. Administration of 100 nM ATRA with a seeding 

density of 4•105 cells per 6-well, however, produced healthy, differentiated cells with significant loss 

of pluripotency. We therefore decided to apply these conditions in our subsequent experiments. 
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Figure 18: Induction of differentiation of Oly2-1 cells with 100 nM ATRA after 24 h. The figure shows the 
morphology (BF: bright field) and fluorescence (YFP) of the cells in different p100 plates (for harvests at 48 h and 
60 h) or p60 plates (for harvest at 72 h). 

The results of our experiments performed with the optimized seeding density and administered ATRA 

concentration (see Figure 18) show that the cells exhibit a strong signal for YFP after 24 h. This suggests 

expression of the pluripotency marker OCT-4 and we conclude that the cells are as expected still 

pluripotent in all administered conditions at this time point. 
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Figure 19: Induction of differentiation of Oly2-1 cells with 100 nM ATRA after 48 h. The figure shows the 
morphology (BF: bright field) and fluorescence (YFP) of the cells in different p100 plates (for harvests at 48 h and 
60 h) or p60 plates (for harvests at 72 h). 

After 48 h at the first harvesting time point (see Figure 19), the cells treated with 100 nM ATRA already 

show a decreased signal for YFP, which indicates their differentiation. For the treated and DMSO 

control, two p100 plates each were lyzed and the lysate stored at -80 °C for subsequent gDNA and RNA 

isolation and UHPLC-MS/MS analysis. 
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Figure 20: Induction of differentiation of Oly2-1 cells with 100 nM ATRA after 60 h and 72 h. The figure shows 
the morphology (BF: bright field) and fluorescence (YFP) of the cells in a p100 (60 h) or a p60 (72 h) plate at the 
harvesting time points. 

After 60 h at the second harvesting time point (see Figure 20), the cells treated with 100 nM ATRA 

show a strongly decreased signal for YFP, which indicates progressive loss of pluripotency and 

therefore differentiation. For the treated and DMSO control, one p100 plate each was lyzed and the 

lysate stored at -80 °C for subsequent gDNA and RNA isolation and UHPLC-MS/MS analysis. At the last 

time point after 72 h, almost no fluorescence is detected for the ATRA-treated cells indicating 

near-complete differentiation. With bright field microscopy, the morphology of the cells is also rather 

flat and spread-out. Although the DMSO control has a similar morphology and is also cultured in the 

absence of 2i which leads to maturation of the cells, evaluation of the YFP signal clearly shows 

expression of OCT-4 and therefore pluripotency. 
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Subsequent isolation of the gDNA and RNA enabled investigation of the occurrence of m6dA and 

potential effects on the RNA. 

 

Figure 21: Levels for m6dA in gDNA and m6A in RNA after induction of differentiation with ATRA at different time 
points. As a control, the levels of m6dA in untreated cells with only administration of DMSO were analyzed. The 
results for gDNA are depicted on the left side and those for the RNA are on the right. 

Analysis of the gDNA (see Figure 21, left) reveals very small amounts of m6dA after 48 h and 60 h, but 

these do not differ between the control and the induced cells and might be artefacts. After 72 h 

however both set-ups show increased levels, and for the induced cells this increase also seems to be 

significantly different from the control. Therefore, it is possible that differentiation upon ATRA 

treatment and corresponding events in the cells are responsible for the generation of m6dA in stem 

cells. The m6A content of the RNA (see Figure 21, right) shows slight fluctuations with differences of 

about 2.5% between the untreated control and the induced cells, but at the 72 h time point they are 

similar. If m6dA originates from m6A-containing RNA turnover, however, a lag time would be expected. 

Therefore, the slight decrease of m6A at 60 h after start of the treatment is a potential indicator of 

liberated free m6A nucleoside and therefore potential source for m6dA in the gDNA. 

The experiment was performed only once. Because of this reason, a biological effect cannot be fully 

evaluated and needs further investigation. 

3.2.1.4 Treatment of wt mESCs with Trichostatin A 

As a last experiment, we wanted to investigate the influence of histone deacetylase (HDAC) inhibitors 

on m6dA formation. HDAC enzymes remove acetyl groups from lysines on histone tails. The 

subsequently positively charged amino group enables tighter binding of those proteins to the 

negatively charged DNA backbone. As a result, the DNA gets compacted more tightly into 

heterochromatin and the transcription decreases. Inhibition of the enzymes leads to less dense 



Unpublished Results 
 

114 
 

packaging of the DNA, so-called euchromatin, and therefore increased transcription. We hypothesized 

that less densely packed DNA might be more accessible to m6dA writers and wanted to study this 

condition by applying the HDAC inhibitor Trichostatin A (TSA, see Figure 22). This inhibitor[382] is 

selective for Zn2+ dependent Class I, II and IV histone deacetylases, but not NAD+ dependent HDACs.[383] 

 

Figure 22: Structure of the HDAC inhibitor Trichostatin A (TSA). 

Furthermore, it was previously reported,[384] that HDAC1 and 2 inhibition leads to degradation of 

poly(A)-RNA. If this includes many RNA containing m6A, a transformation into phosphorylated m6dA 

and subsequent incorporation into DNA would be possible. Additionally, recent literature reports that 

TSA positively affects the development of neuronal[385] and embryonic cells in vitro.[386] Investigation 

of the effect of TSA on mESCs might result in detection of m6dA stemming from development-related 

degradation of m6A-containing RNA. 

In detail, we administered TSA (10 nM and 500 nM, respectively) to wt Kindlin3+/+ mESCs.[387] After lysis 

of the cells at different time points after treatment, subsequent gDNA isolation and enzymatic gDNA 

digest, we analyzed the gDNA for m6dA. 

Unfortunately, for none of the conditions applied m6dA was found. This could have three reasons: a) 

chromatin density and therefore transcription-coupled processes do not have an effect on formation 

of m6dA in gDNA, b) the treatment with TSA has to be performed as a shorter and maybe more 

concentrated pulse for effects to take place or c) the inhibitor was not functional and the experiment 

should be repeated with parallel analysis of the histone acetylation and the m6A levels in the RNA. If 

m6dA occurs as a lesion due to processes during transcription, it might furthermore be repaired rather 

quickly and we might not have been able to capture the effects. 
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3.2.2 Investigation of active demethylation of m5dC via deamination 

Active demethylation is expected to not only happen via an oxidative pathway, but might potentially 

take place through enzymatic deamination of m5dC to dT and further processing of this nucleotide by 

a repair mechanism. 

Previous research in this group by Jessica Steinbacher, Olesea Kosmatchev, Angie Kirchner and Dr. 

Fabio Spada has indeed revealed a formation of dT through deamination of m5dC. The underlying 

experimental set-up for the investigation included isotope tracing studies of “heavy” 

[13C,D3]-methionine on mESCs and analysis via UHPLC-MS/MS. The isotopically labeled methionine as 

a fundamental precursor for the DNMT cofactor SAM can establish [13C,D3]-methyl groups on dC (see 

Figure 23). TET-mediated oxidation of this subsequently labeled [13C,D3]-m5dC leads to the formation 

of [13C,D2]-hmdC and [13C,D]-fdC. A putative deamination reaction of [13C,D3]-m5dC is the only origin 

for [13C,D3]-dT. Endogenous dT in the DNA is generated through methylation of dUMP by TS with 

5,10-methylenetetrahydrofolate (5,10-CH2-THF) as the methyl donor and further phosphorylation to 

dTTP. The dT biosynthesis is therefore SAM-independent and will not introduce a [13C,D3]-label in dT. 

This has previously been proven by investigation of DNMT triple knockout mESCs, in which upon 

administration of [13C,D3]-methionine [13C,D3]-dT was not detected. 

 

Figure 23: Overview over the labeling of DNA nucleotides upon administration of [13C,D3]-methionine. 

The UHPLC-MS/MS data from the previous research were evaluated via relative quantification. 

Absolute quantification was not possible, because [13C,D3]-m5dC differs by only 1 amu from [D3]-m5dC, 

which was the only available isotope standard at that time. This difference in the mass-to-charge ratio 

is not sufficient for mass spectrometric distinction on a Triple Quadrupole mass spectrometer. Co-

culture of the same experiment supplemented with unlabeled methionine allowed then for a 
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projection of the percentage of the labeled or unlabeled species onto the global levels of the 

modification. This projection was nevertheless not accurate due to small isotope effects. 

Therefore, new standards with more isotopes [15N2,D4]-m5dC, [13C5,15N2]-hmdC, [13C5,15N2]-fdC and 

[13C5,15N2]-dT were synthesized by Charlotte Ebert and René Rahimoff to enable exact quantification. 

For exact quantification of [15N5,13C10]-dG, which was co-fed as a marker for replication, we bought 

commercially available [15N5]-dG. With these standards in hand, Fabio Spada and I could continue the 

investigation via absolute quantification. 

 

Figure 24: Overview over modified nucleosides and their heavy labeled analogues derived from administration 
of [13C,D3]-methionine on mESCs, as well as added isotopologues that enable absolute quantitative analysis of 
the data. The black dots indicate 13C atoms. 

To this end, we first had to verify the mass transitions for the standards and developed the method for 

the UHPLC-QQQ-MS. This method was now able to monitor:  

I) all unlabeled, naturally occurring modifications (see Figure 24 lower row) 

II) the labeled modifications that result from the addition of [13C,D3] onto dC with its 

deamination and oxidation products (see Figure 24 middle row) 

III) the amount of co-fed [13C10,15N2]-dT (see Figure 24 lower row) and [13C10,15N5]-dG (not 

depicted) 

IV) as well as all isotope standards including [15N5]-dG (not depicted) simultaneously (see 

Figure 24 upper row). 
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Furthermore, our experiments were slightly modified from the culturing conditions used prior. In vitro 

mESCs are derived from pre-implantation blastocysts (see section 1.1.2.2.2). These cells are therefore 

naïve pluripotent and require addition of specific factors to the medium. Feeder independent culturing 

of mESCs can utilize serum with two inhibitors (2i),[380] capturing the homogeneous[388] and very naïve 

pluripotent state. CHIR 99021, one of the two inhibitors, acts on glycogen synthase kinase 3 (GSK3) α 

and β and promotes wingless/lnt1 (WNT)/β-catenin signaling. This inhibitor is used for several culturing 

conditions of naïve as well as primed pluripotent mESCs. The second inhibitor, PD 0325901, inhibits 

mitogen-activated protein kinases (MAPK) kinases (MEK1/2), which phosphorylate MAPK. Additional 

supplementation with leukemia inhibitory factor (LIF)[389] is possible, forming 2i/L conditions. This 

protein is an interleukin 6 class cytokine, which affects cell growth by inhibiting differentiation, 

because it binds the LIF receptor and thereby activates Janus kinase/signal transducer and activator of 

transcription (JAK/STAT) and MAPK signaling cascades.[390] Inhibition of MEK blocks transduction of 

most of the fibroblast growth factor (FGF) signaling activity. MEK inhibition[391-392] furthermore leads to 

DNA hypomethylation[393-395] due to low expression of DNMT1,[396] 3a and 3b,[397-398] as well as 

associated cofactors DNMT3l and UHRF1, and higher oxidation of m5dC to hmdC by TET activation. 

Impaired maintenance of methylation includes methylation at ICRs[399] that is not reestablished during 

differentiation[400-402] and results in bi-allelic expression of imprinted genes.[403] Studies of imprinted 

gene expression in vivo should therefore avoid such culturing conditions. 

Instead of PD 0325901, the proto-oncogene tyrosine-protein kinases SRC inhibitor CGP77675[404] can 

be used to culture naïve mESCs. In these so-called ‘alternative 2i’ (a2i) conditions, first described by 

Shimizu et al.,[405] MAPK signaling is suppressed in a more moderate fashion[405] than through inhibition 

of MEK1/2. Cells in these conditions exhibit reduced genome-wide DNA methylation due to expression 

of DNMT3 enzymes and gamete-derived methylation is retained.[392, 399] These culturing conditions are 

therefore more suitable to study events that involve DNA methylation, especially in regards to 

differential methylation. 

Serum-based medium can be supplemented only with LIF (serum/L). ES cells in serum/L display 

heterogeneity and fluctuate between the naïve inner cell mass (ICM)-like state and the primed 

epiblast-like state,[406] therefore representing a wide variety of states of the pluripotency spectrum. 

More homogeneous priming of mESCs can be initiated by supplementation with FGF or Activin A, or 

molecules activating the corresponding signaling pathways. Addition of IWR1 to serum-based medium 

containing CHIR 99021, hereafter called C/R priming, is one commonly used priming condition. The 

IWR1 molecule is a potent inhibitor for the WNT signaling pathway leading to a loss of multipotency. 

The molecule induces β-catenin degradation by abrogation of the Axin protein turnover which is part 

of the degradation complex.[407] The molecular cause for the effect is inhibition of tankyrases (TNKS-1 
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and -2), which transfer poly-(ADP ribose) (PAR) chains to targeted proteins[408-409] and which are 

involved in the nuclear transport of β-catenin. 

In our experiments, naïve mESCs were mostly maintained in a2i/L conditions, unless stated otherwise. 

Additionally, mESCs were primed in serum/L conditions as well as C/R priming conditions. 

3.2.2.1 Time course of labeling wt mESCs with [13C,D3]-methionine 

In a first experiment, we wanted to investigate the changes in labeling of m5dC and dT in naïve and 

primed conditions in a labeling time course and a pulse and chase experiment on Kindlin+/+ (K3+/+) wt 

mESCs. 

For the labeling time course, we cultured an a2i/L or C/R priming culture for 3 d. Subsequently, the 

medium was supplemented with [13C,D3]-methionine and with [13C10,15N2]-dT for up to additional 48 h 

with cell harvests at every 12 h. 

The complementary experiment, in which we were interested in monitoring the decrease in labeling 

of the modifications (pulse and chase), was performed by labeling the cells with [13C,D3]-methionine 

for 2 d in naïve conditions and additional 3 d in naïve or C/R conditions, respectively. Additionally we 

added [13C10,15N2]-dT as a marker for replication for the last 24 h of the labeling phase. We then 

changed the medium to normal methionine and collected the cells at 0 h, 12 h, 24 h, 36 h and 48 h. 
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Figure 25: Level changes of [13C,D3]-m5dC, [13C,D2]-hmdC, [13C,D3]-dT and [13C10,15N2]-dT in K3+/+ mESCs in naïve 
(a2i/L) and primed conditions (C/R). A and E show the labeling strategy (d: day). Depicted in B, C and D are 
absolute results of a labeling time course experiment, in which the increase of labeled material is monitored 
every 12 h after addition of [13C,D3]-methionine and [13C10,15N2]-dT. Depicted in F, G and H are the absolute results 
of the corresponding pulse and chase experiment, where the labeling was performed to almost 100% and then 
the decrease of labeled material was observed after medium change to unlabeled methionine. I and J show the 
corresponding relative changes in labeling for the labeling time course experiment, whereas K and L visualize the 
relative changes in labeling for the pulse and chase. The right half of F, G and H, as well as L show results for two 
combined biological replicates, whereas all other parts of the figure only represent data from one biological 
replicate measured in technical triplicates. 

In the labeling time course experiment of naïve (a2i/L) and primed (C/R) mESCs (see Figure 25B and F), 

the gDNA shows increasing levels of [13C,D3]-m5dC at 12 h and subsequent time points after the 

medium change. The [13C,D2]-hmdC nucleoside, as a product of m5dC oxidation, is not detected until 
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after 24 h of labeling with [13C,D3]-methionine (see Figure 25C and G), but also increases over the 

following time points. In C/R priming conditions, hmdC levels are however generally low and division 

of an already low global amount of hmdC into two species renders both of them difficult to detect 

above background level. Like we expected, we also find the deaminated derivative of [13C,D3]-m5dC, 

[13C,D3]-dT, in naïve (up to 3•10-5 per dN) and priming (up to 9•10-5 per dN) conditions. The 

modification accumulates nicely in a time-dependent manner. Interestingly, whereas hmdC is rather 

low during the priming period using CHIR 99021 and IWR1, [13C,D3]-dT is three times more abundant 

than in naïve conditions. This result indicates that during priming of mESCs the process that generates 

dT from m5dC takes place more frequently than in naïve conditions. 

In the pulse and chase experiment, we follow the decrease of the labeled nucleosides over time. 

Indeed, [13C,D3]-m5dC and [13C,D2]-hmdC show a reduction over time. However, since we performed 

the a2i/LIF experiment only performed once, it seems like the global m5dC and hmdC levels (see 

Figure 25F and G left side) behave rather unexpected and fluctuate a lot, although the labeled fraction 

shows a steady decrease over time (see Figure 25K). The reduction in [13C,D3]-m5dC seems similar to 

that of the replication marker [13C10,15N2]-dT, suggesting dilution through replication. In the C/R 

conditions (Figure 25L), the modification decreases faster than the replication marker, which indicates 

active turnover. For [13C,D3]-dT, we also see a clear decrease of the modification in naïve conditions. 

Surprising are the results for the priming conditions. We performed the experiment twice with 

different seeding densities, then normalized and combined the data. It seems like both replicates of 

the labeling time course in C/R conditions show a decrease in labeled [13C,D3]-m5dC, [13C,D2]-hmdC and 

[13C10,15N2]-dT, but not in [13C,D3]-dT. We conclude that deamination of m5dC to dT is performed at a 

high rate in this cell state, overcoming dilution through replication and finally leading to an overall 

increase of the modification during the first 36 h after the medium change. A repair process involving 

deamination of m5dC to dT is therefore likely to occur throughout those developmental stages of 

mESCs. The opposite results for the oxidized nucleosides indicate that the two pathways for active 

demethylation of m5dC might complement each other in different embryonic states. 

3.2.2.2 Investigation of TET TKO mESCs 

Next, we wanted to evaluate whether the strong decline of [13C,D3]-m5dC can be explained through 

oxidation events, and whether there are changes in the formation of [13C,D3]-dT in the absence of m5dC 

oxidation. Therefore we decided to investigate the labeling with [13C,D3]-methionine in TET triple 

knockout (TET TKO) mESCs, in which no TET enzymes are expressed and therefore generation of hmdC, 

fdC or cadC is not possible. To get a more detailed picture, we performed the labeling procedure over 

a 3 d C/R priming period and subsequently conducted a chase experiment with cell harvests at every 

12 h for a total of 48 h. [13C10,15N2]-dT was again used as a marker for replication. 
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Figure 26: Relative changes of nucleoside labeling after administration of [13C,D3]-methionine to E14tg2a mESCs 
(left) and TET TKO mESCs (right) in 5 d of C/R priming conditions and subsequent medium change to unlabeled 
methionine. Depicted are data for several time points (0 h, 12 h, 24 h, 36 h and 48 h) after the medium change 
in one biological and three technical replicates. 

Indeed, the results (see Figure 26) of the chase experiment with E14tg2a cells are very similar to those 

obtained from wt K3+/+ cells (see Figure 25J). In this experiment, labeled m5dC turns over quicker than 

[13C10,15N2]-dT, which indicates active turnover rather than dilution by replication. Furthermore, as 

seen in wt K3+/+ cells, [13C,D3]-dT also counteracts dilution through replication and increases over the 

first time points of the chase. The highest level of this modification is, however, reached already at the 

12 h time point and not – as with wt K3+/+ cells – at 36 h. In contrast to this, the TET TKO cells do not 

show a stronger decrease of labeled m5dC than [13C10,15N2]-dT. This result suggests that the major part 

of m5dC turnover stems indeed from oxidation of the nucleotide to hmdC, fdC and cadC. In the TET 

TKO cells, we find a more or less constant level of [13C,D3]-dT at all time points. This nucleotide is 

therefore actively generated in the course of the experiment. Since the [13C,D3]-m5dC levels are three 

orders of magnitude higher than those of [13C,D3]-dT, a lack of a difference between the relative 

changes of [13C,D3]-m5dC and [13C10,15N2]-dT is expected. Our results might indicate that in absence of 

m5dC oxidation a deamination reaction of m5dC to dT takes place more frequently and functions as a 

back-up mechanism for m5dC turnover. 

3.2.2.3 Determination of the effect of soluble deaminases on formation of [13C,D3]-dT 

In a further experiment, we wanted to investigate possible enzymes that could perform the transition 

of m5dC to dT. First, we were interested in the deaminases that perform deamination in the soluble 

nucleoside and nucleotide pool, CDA and DCTD. Angie Kirchner previously generated a double 

knockout cell line (from now on termed CD DKO), in which the two enzymes are not expressed. To this 
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end, she applied the CRISPR/Cas genome editing methodology, which utilizes guide RNA to direct the 

editing process, but additional undesired mutations are possible. We analyzed three clones #3, #40 

and #41 for our investigation to make sure observed effects stem from lack of the enzymes and not 

from potential off-target events. 

Since all three KO clones did not show any [13C,D3]-dT in the gDNA (data not shown), the observation 

suggests that the nucleoside is mainly generated from excised labeled m5dC in the soluble pool of the 

cells and knockout of the enzymes leads to a complete loss of the nucleoside. 

Due to the high abundance of natural dT, which co-elutes with [13C,D3]-dT, a detection of the labeled 

nucleoside might be impaired by competition of the nucleosides for charge, so-called ion suppression. 

This circumstance creates a rather high limit of detection (LOD) for [13C,D3]-dT of approximately 10-5 

per dN. In comparison, the LOD of epigenetically relevant fdC lies in the range of 10-7 per dN and 

enables quantification of this nucleoside at low levels. The accumulation of [13C,D3]-dT at levels of 10-7–

10-6 per dN in the CD DKO cells might therefore be obscured by the background signal. 

3.2.2.3.1 Administration of [13C9,15N3]-dC and [13C,D3]-methionine on the CD DKO mESCs 

In an attempt to overcome the problems with the LOD, we thought of elevating the exact mass of our 

target nucleosides by applying [13C9,15N3]-dC to the culturing medium and additionally adding 

[13C,D3]-methionine. This dC isotopologue should be incorporated into the gDNA just like the unlabeled 

nucleoside[179, 410] and subjected to all enzymatic processes that take place on the gDNA (methylation, 

oxidation and deamination). 

With 100% labeling of dC and 100% labeling with [13C,D3]-methionine, we would expect only 

[13C9,15N3]-dC, [13C10,D3,15N3]-m5dC and subsequently [13C10,D3,15N2]-dT. It is, however, known[410] that 

labeling of dC will not exceed 30-40%. We must therefore take into consideration that there will still 

be unlabeled dC, which will lead to formation of [13C,D3]-m5dC and [13C,D3]-dT. Furthermore, labeling 

with [13C,D3]-methionine is indeed almost 100% efficient, but our cultures are supplemented with 

serum and it contains residual unlabeled methionine from this biological source. As a result, also 

completely unlabeled m5dC and dT, as well as [13C9,15N3]-m5dC and [13C9,15N2]-dT are possible 

nucleosides in the gDNA of the mESCs (see Figure 27). Nevertheless, these nucleosides might still not 

reflect the whole picture of all dT derivatives. Formation of dT opposite of dC as a result of genomic 

deamination could finally lead to BER by TDG and MBD4, which will release thymine. This thymine 

could potentially be unlabeled or labeled with [13C,D3], [13C4,15N2] or [13C5,D3,15N2]. Subsequent salvage, 

(ribosylation and phosphorylation to the triphosphate) could finally lead to reincorporation into the 

gDNA as [13C4,15N2]-dT or [13C5,D3,15N2]-dT. 

All of these possible dC, m5dC and dT isotopologues have to be considered, when establishing an 

UHPLC-QQQ-MS/MS method to make sure that all potential processes in the cell and their outcome 
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are monitored. Due to the selection for specific precursor and product ions, other molecules are not 

recorded and the information from the experiment would be incomplete. As a marker for replication 

in this experiment, we chose not to apply a dT isotopologue because of the already high number of 

possible dT isotopologues potentially arising in the course of the experiment, but we supplemented 

the cells with [13C10,15N5]-dG (7.5 µM). 

This experiment can only shed light on the existence and action of the soluble deaminases, when we 

additionally investigate the nucleosides in the soluble pool. The soluble pool of wt mESCs is expected 

to contain dC and [13C9,15N3]-dC. Deamination of these nucleosides to the respective dU compounds 

could subsequently generate dT and [13C9,15N2]-dT. Since methylation of dU to dT by TS depends on 

5,10-CH2-THF, which is independent of methionine as determined in DNMT TKO mESCs, a modification 

with [13C,D3]-methionine in the soluble pool can be excluded. On top of the two dT isotopologues 

directly generated in the soluble pool, DNA repair might also release other dT isotopologues from the 

gDNA, which could be salvaged in the soluble pool (see Figure 27). The CD DKO cells are expected to 

show significantly lower amounts of [13C9,15N2]-dT, since soluble deamination is impaired. Traces from 

spontaneous deamination or as a result of DNA repair are however possible. Comparison of the 

nucleoside content of the gDNA and the soluble pool might therefore give indication as to the 

occurrence of genomic deamination. 
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Figure 27: Possible nucleosides in the soluble pool and gDNA upon administration of [13C9,15N3]-dC on mESCs 
supplemented with [13C,D3]-methionine. Black dots indicate 13C atoms; R marks the DNA strand.  
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Figure 28: Isotope levels of modifications in the gDNA and soluble pool of wt and CD DKO mESCs upon 
administration of [13C9,15N3]-dC and [13C,D3]-methionine after 5 d of priming under C/R conditions. A) shows 
relative distribution of dC isotopologues, B) depicts relative distribution of dT isotopologues, C) illustrates relative 
distribution of m5dC isotopologues and D) shows absolute levels of m5dC isotopologues per dN. The data 
represent technical triplicates of one biological sample. 

Our results show that the gDNA (see Figure 28) exhibited up to 25% [13C9,15N3]-dC in the wt, and 10-12% 

[13C9,15N3]-dC in the CD DKO. The reduced presence of the [13C9,15N3]-dC nucleoside in the CD DKO 

probably stems from high intracellular levels of dCMP due to the absence of DCTD. Since 

phosphorylation of nucleosides is an equilibrium reaction, most of the administered free [13C9,15N3]-dC 

does not get phosphorylated and the labeled material is incorporated to smaller extent than in the wt. 

Furthermore, up to 53% [13C9,15N2]-dT was found in the gDNA of the wt, and 4-5.5% [13C9,15N2]-dT in 

the gDNA of the CD DKO. In the wt gDNA, we additionally found traces of [13C,D3]-dT. The other dT 

isotopologues were not detected. The m5dC species as the precursors for labeled dT interestingly 

comprise 72% [13C,D3]-m5dC, up to 22% [13C10,D3,15N3]-m5dC, 5% of unlabeled m5dC and around 1% of 

[13C9,15N3]-m5dC in the wt gDNA. In contrast, the CD DKO show 85-88% [13C,D3]-m5dC, 7-10% 

[13C10,15N3,D3]-m5dC, 5% of unlabeled m5dC and only traces <0.5% of [13C9,15N3]-m5dC. The overall 

percentage of nucleosides containing labeled dC both in the results for the dC and m5dC species is 

comparable. The observation, that next to unlabeled dT, only [13C9,15N2]-dT, but no [13C10,D3,15N2]-dT is 

detected, suggests again that the major part of labeled dT is produced by deamination in the soluble 

nucleoside/-tide pool. Taking into consideration, that upon administration of [13C,D3]-methionine on 

cultures without further labeling we only detect small amounts of [13C,D3]-dT, the cause for the 
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absence of [13C10,D3,15N2]-dT might still be ion suppression. An isotopic effect can also be present, since 

the [13C,D3]-methyl group might be too bulky or alter the electronic properties of the nucleoside so 

that the action of deaminases is affected. Our finding furthermore hints at generally low repair of m5dC 

involving deamination. 

The soluble pool of the same experiment contained 45% [13C9,15N3]-dC in the wt, and 40-45% 

[13C9,15N3]-dC in the CD DKO. The difference in labeling between wt and CD DKO is not as pronounced 

as in DNA, because the overall dC pool is at an equilibrium and we analyze the free nucleoside after 

enzymatic dephosphorylation of all free and phosphorylated dC species present in the cytosol. In 

comparison, the dT isotopologues comprise 52% [13C9,15N2]-dT in the wt, and 3-4% [13C9,15N2]-dT in the 

CD DKO. Due to the low abundance of repaired m5dC nucleoside, it is not surprising that the nucleoside 

was not detected in the soluble pool. In contrast to the results for dC, the results for dT are comparable 

to those of the gDNA. This might suggest an isotopic effect in the generation of the dCTP from 

[13C9,15N3]-dC and incorporation of the corresponding dCMP derivative into gDNA by DNA polymerases, 

since we would expect the isotopologues to be at an equilibrium after 5 d of labeling with [13C9,15N3]-dC. 

The fact that the percentage of [13C9,15N2]-dT is the same in the soluble pool and the gDNA might 

subsequently mean, that generation of dTTP, its incorporation into gDNA as dTMP or DNA repair is not 

affected by the isotopes. The latter is logical since repair processes address a great variety of 

nucleotides, of which some are bulky, and must therefore be performed by rather unspecific enzymes. 

Overall, the levels of [13C9,15N2]-dT in the CD DKO are still rather high and not likely to stem from 

spontaneous deamination. It is however possible, that the labeled nucleoside is generated after 

deamination and repair of labeled dC in the DNA and that subsequent methylation of the generated 

labeled dU(MP) produces the considerable amounts of [13C9,15N2]-dT. Due to the possibility that this 

isotopologue is generated both by processes in the gDNA as well as the soluble pool, a determination 

of its origin is not possible. In respect to the background signal due to natural dT, we do not observe 

any improvement. CDA/DCTD still have to be considered as the major contributors to formation of 

labeled dT upon repair of m5dC. 

3.2.2.3.2 Administration of F-dC and [13C,D3]-methionine on the CD DKO mESCs 

Due to the complexity of the experiment reported above, we thought of a simplified set-up, in which 

we administered F-dC to wt mESCs and CD DKO cells under labeling with [13C,D3]-methionine. The 

nucleosides that could potentially be detected in this experiment are shown in Figure 29. 
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Figure 29: Possible nucleosides in the soluble pool and gDNA upon feeding of F-dC with [13C,D3]-methionine. 
Black dots indicate 13C atoms. 

The data (not shown) suggest that F-dC is incorporated into the gDNA of all mESCs, but wt cells contain 

with only approximately 0.2% of dN 100-fold more of this nucleoside. Furthermore, we observed that 

upon spiking of an isotope standard, the background levels, increase and the KO mESCs do not possess 

amounts above LOD. The measurements for F-m5dC and [13C,D3]-F-m5dC unfortunately had a technical 

problem, since parts of the peak eluted earlier than expected and this fraction was not recorded. We 

were however able to detect small amounts of the unlabeled F-m5dC in wt mESCs and we also found 

labeled F-m5dC. The gDNA of CD DKO mESCs, however, does not contain any F-m5dC derivative 

exceeding LOD. The gDNA of wt mESCs additionally exhibited small amounts of F-dT and F-dU, whereas 

these nucleosides were not found in the gDNA of CD DKO mESCs. [13C,D3]-F-dT was not detected in any 

of the cell lines. 

We then investigated the soluble pool for its nucleoside content. Here, the amounts of F-dC were 

comparable between the cell lines, but slightly higher in the wt. The area of the signal was, however, 

only about 1/25 of those in the gDNA of wt mESCs. This finding is interesting, since this means that 

most of the administered nucleoside is incorporated into the DNA. F-dU and F-dT were also only found 

in traces and only in the wt. Surprisingly, we furthermore found traces of [13C,D3]-F-m5dC in the soluble 

pool of wt mESCs, but not in the KO mESCs. This nucleoside can only be generated and found in the 

soluble pool after incorporation of F-dC, its substitution with a [13C,D3] methyl group and finally 

excision through DNA repair. If this is not an artefact of the measurement, this result might hint at an 

inability of CDA and DCTD to process the F-nucleoside. Analysis of the gDNA and soluble pool both did 

not detect any [13C,D3]-F-dT in any of the cell lines and the formation of F-dT seems in general only 

little in mESCs. This experiment can therefore not determine the involvement of the deaminases CDA 

and DCTD in formation of dT from m5dC. 
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3.2.2.4 Investigation of DNMT3 enzymes in a deamination process 

Subsequently, we wanted to investigate the role of the DNMT3 enzymes in the deamination process. 

The previous experiments hinted at a reduction of [13C,D3]-labeled dT in the KO cells, especially in case 

of DNMT3b. Since in the Dnmt3b-/- cells the global m5dC levels are also decreased, the effects might 

correlate. DNMT3b occurs in multiple splice variants, of which only one isoform (DNMT3b1) is 

catalytically active.[411] Complementation with the stable and constitutively expressed DNMT3b1 

isoform could however only restore m5dC levels, but not labeled dT. This suggested an occurrence of 

m5dC to dT transition upon specific genomic events depending on DNMT3b, which cannot be restored 

after DNMT3b has been absent from the cell. The investigated mESC lines apart from the Dnmt3b1 

complemented mESCs were first cultured on feeder cells and then cultured feeder independent under 

2i/L conditions for two passages prior to any investigations in our laboratory. The Dnmt3b1 

complemented mESCs were generated in 2i/L conditions. The parental Dnmt3b-/- cells had also long 

been cultured in 2i/L conditions. These cells are therefore expected to have lost all methylation that 

cannot be maintained in the 2i/l conditions, where the global methylation is strongly reduced. For our 

investigation, we only used cells that had been cultured in a2i/L conditions upon their receipt unless 

stated otherwise. 

 

Figure 30: Levels for unlabeled and [13C,D3]-labeled m5dC and [13C,D3]-dT in wt, Dnmt3a-/- (D3a-/-), Dnmt3b-/- 
(D3b-/-), as well as two clones (#8 and #9) of complemented cells expressing Dnmt3b1 (G3b1#8/9) upon 
administration of [13C,D3]-methionine after 4.5 d of priming with serum/L conditions (starting from 2i/L). The 
data represent one biological replicate, measured as technical triplicate. 

The new results of labeling mESCs, that are routinely maintained in 2i/L conditions, with 

[13C,D3]-methionine during serum/L priming for 4.5 d (Figure 30) show that we can verify the previous 

observations with the absolute quantification method. The reduction of methylation and dT formation 

in Dnmt3b-/- cells is, however, slightly less and in Dnmt3a-/- slightly more pronounced. When we 

complemented Dnmt3b-/- cells with constitutively expressed DNMT3b1 (the only catalytically active 

isoform of DNMT3b) in two separate clones (#8 and #9), we found that the methylation levels are 

restored to those of the wt. However, rescue of m5dC to dT transition is not possible and the levels 
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stay at knockout levels. We therefore keep the hypothesis that the DNMT3 enzymes are likely to be 

involved in the formation of dT from m5dC.  

Next, we investigated the levels of [13C,D3]-labeled m5dC and subsequent formation of labeled dT at 

different time points of a C/R priming procedure (starting from 2i/L as the naïve culture) during the 

administration of [13C,D3]-methionine. Depicted in Figure 31 are data from three different experiments 

with wt, Dnmt3a-/- (D3a-/-), Dnmt3b-/- (D3b-/-) mESCs, as well as two clones (#8 and #9) of 

complemented mESCs expressing Dnmt3b1 (G3b1#8/9). In the first experiment, we performed a time 

course with cell harvests at 3 d, 4 d and 5 d of the priming/labeling procedure. In comparison, the 

second experiment was only conducted a total of 3 d, whereas the third experiment was performed 

with 4 d of priming/labeling. 

 

Figure 31: Levels for [13C,D3]-labeled m5dC and [13C,D3]-dT in wt, Dnmt3a-/- (D3a-/-), Dnmt3b-/- (D3b-/-), as well as 
two clones (#8 and #9) of complemented cells expressing Dnmt3b1 (G3b1#8/9) upon administration of 
[13C,D3]-methionine after different lengths of priming with C/R conditions (starting from 2i/L). The data represent 
three separate experiments (1, 2 and 3), of which 1 is a time course after culturing the cells under priming 
conditions for a different time. All samples were measured as technical triplicate. 

The time course experiment shows clear differences in the methylation levels between wt, D3a-/- and 

D3b-/- mESCs after 3 d of priming with C/R. The levels of [13C,D3]-m5dC at this time point are reduced 

by 30-40% in the KO mESCs. At the 4 d time point, the wt shows slightly lower levels of [13C,D3]-m5dC, 

whereas both KO mESCs exhibit increased levels. The overall reduction in comparison to the wt mESCs 

is therefore decreased to 10-25%. At the last time point, the levels between the wt and KO mESCs are 
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even more similar and the [13C,D3]-m5dC reduction only amounts to 5-15% compared with the wt. In 

the second experiment of a total of 3 d, the levels for [13C,D3]-m5dC are a little lower than in the first 

experiment, but the relative reduction of the KO mESCs towards the wt mESCs mirrors the 3 d time 

point of the first experiment. The third experiment with a total of 4 d of priming/labeling also exhibits 

[13C,D3]-m5dC levels that are very similar to the 4 d time point of the first experiment. Similar to the 

results for serum/L priming, the formation of [13C,D3]-dT seems to be significantly reduced in the KO 

mESCs by up to 50% of wt levels. Variations of the absolute levels between the experiments might be 

explained by the different durations, since the seeding density of the cells was adjusted for maximum 

harvesting amounts. Cell density might affect the speed of priming and therefore the turnover and 

subsequently the amount of specific nucleotides in the gDNA. 

The two complemented cell lines were only investigated in the second and third experiment. The 

respective methylation levels are elevated in comparison with the D3b-/- mESCs, but do not reach wt 

levels as observed in the serum/L priming conditions. The [13C,D3]-dT levels, however, show the same 

effect as in the serum/L conditions and also do not exceed the levels of the D3b-/- mESCs. This 

strengthens the hypothesis that loss of DNMT3b leads to irreversible erasure of processes in the cell, 

in which m5dC gets deaminated to dT. Prolonged culture in 2i/L conditions will add to this effect, 

because in these conditions DNMT3a and b are expressed at very low levels. 

As an additional experiment, we were interested in determining the effect of m5dC to dT transition 

after a culturing procedure in alternative naïve (a2i/L) conditions.[392, 399, 405] We made sure that the 

mESCs used in these experiments had been cultured in 2i/L for the shortest possible lengths. In case 

of the complemented Dnmt3b1 cells with their different culturing history, we expect significant 

differences due to the effect of long culture in 2i/L. The reason for our investigation was the hypothesis, 

that in these naïve conditions methylation occurs already and that an early direct repair process could 

subsequently take place and be observed as well. 
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Figure 32: Levels for [13C,D3]-labeled m5dC and [13C,D3]-dT in wt, Dnmt3l-/- (D3l-/-), Dnmt3a-/- (D3a-/-), Dnmt3b-/- 
(D3b-/-), as well as one clone (#8) of complemented cells expressing Dnmt3b1 (G3b1#8) upon administration of 
[13C,D3]-methionine after different culturing lengths in naïve conditions (a2i/L) and subsequent priming in C/R 
conditions. The data represent five separate experiments, of which up to two have been performed with mESCs 
at early passages of culturing in a2i/L and up to three with later passages. All samples were measured as technical 
triplicate. 

Our data (see Figure 32) indeed show reproducible [13C,D3]-m5dC levels in the a2i/L conditions that are 

comparable to those found in primed cultures. The three knockout cell lines D3l-/-, D3a-/- and D3b-/- 

exhibit reproducibly lower methylation than the wt mESCs, but the decrease is smaller than 20%. 

Interestingly, although the cell line was only analyzed once and therefore cannot be considered 

biologically significant, we did not detect an increase of [13C,D3]-m5dC in the mESCs complemented 

with DNMT3b1. 

The results for [13C,D3]-dT are quite interesting. In some experiments, the levels in the D3a-/- and the 

D3b-/- mESCs do not differ from the wt, but in other experiments the effect is the same as observed in 

priming experiments. When we looked at the culturing history of those cultures, we realized that the 

KO mESCs with a different result from the wt were at an early passage after thawing. At a later passage 

in contrast, the results did not differ from those of the wt. Since with a2i/L conditions DNMT3a and b 

are expressed at relatively high levels, these results suggest that upon prolonged culture under these 

conditions DNMT3a and b cross-complement each other in methylating the sites that are turned over 

by direct DNA repair. Interestingly, the D3l-/- mESCs were only analyzed in one early and one late 

passage, but show the same relative levels compared to the wt. This observation might hint at a loss 

of specific methylation that requires DNMT3l as a cofactor for action of the DNMT3a or b enzymes, 

which cannot be cross-complemented. The complemented cell line was only investigated once at a 

later passage and exhibits decreased [13C,D3]-dT levels compared with all other cell lines. This result 

might stem from the overall different culturing history of these cells. 

To sum up the results, our data support an involvement of the DNMT3 enzymes in an active 

demethylation process via direct DNA repair. If the DNMT3b enzyme is ablated from the cells, the 
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ability to convert m5dC to dT is not restored even after reintroduction of the enzyme. We presume 

however that the DNMT3 enzymes do not perform m5dC deamination reaction themselves, but that 

they are rather responsible for dC methylation at sites that are turned over by direct DNA repair. Prime 

candidates for such sites[96] are genomic imprints, since maintenance of imprinted methylation in the 

embryo depends on all three catalytically active DNMT enzymes (1, 3a and 3b). Once imprints are lost 

in mESCs deficient for any of these enzymes they cannot be restored even after re-expression of the 

missing enzyme as their establishment requires (unknown) factor(s) present only in the germ line. Our 

observation of elevated formation of dT from m5dC during priming, which recapitulates the priming of 

the pluripotent epiblast during the embryonic days E3.5-E7.5, and the fact that sDMRs are set starting 

from the same period on, strengthen our hypothesis. 

3.2.2.5 Analysis of uni-parental mESCs for m5dC to dT transition 

To further analyze genomic imprints – genomic regions that are differentially methylated depending 

on the origin of the allele – for their contribution to the conversion of m5dC into dT we acquired 

uni-parental mESCs. These were provided by Tristan Bouschet/Robert Feil at the University of 

Montpellier and were generated in the labs of K. John McLaughlin and Azim Surani. These cells are 

derived from embryos that contain only paternal (androgenetic) or maternal (parthenogenetic) 

genomes and therefore lack methylation that is inherited exclusively from the female and male germ 

line, such as maternal and paternal methylation imprints, respectively. To ensure biological 

significance of the results, we analyzed two androgenetic (paternal; Ag B6 and AK2) and three 

parthenogenetic (maternal; Pg8-021, Pg BT6 and PR8) mESC lines in comparison with a bi-parental 

(wt-B1) mES cell line. In this experiment, we quantified the absolute amounts of [13C,D3]-dT upon 

[13C,D3]-methionine labeling. 
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Figure 33: Levels of [13C,D3]-m5dC and [13C,D3]-dT in uni-parental mESCs upon administration of 
[13C,D3]-methionine cultured for 5 d in C/R priming conditions; black: bi-parental control cells; purple: 
androgenetic cells; green: parthenogenetic cells. Each biological data point represents technical triplicates. 

Our results (see Figure 33) show, that the levels of [13C,D3]-m5dC do not differ between the different 

cell lines and are reproducible in several biological replicates. The levels for [13C,D3]-dT are, however, 

higher in bi-parental cells than in androgenetic and parthenogenetic cells. Curiously, addition of the 

[13C,D3]-dT levels of the androgenetic to the parthenogenetic cell lines equals the levels of the 

bi-parental cells. Whether this has a biological cause or is a coincidence needs further investigation. 

Furthermore, both androgenetic cell lines contain comparable levels of [13C,D3]-dT with respect to each 

other. The same result is also found for the three parthenogenetic cell lines when comparing them 

directly with each other. These findings strongly support the conclusion from the experiments on 

DNMT3 deficient cells and complementation of DNMT3b deficiency that methylation imprints 

represent a source for the conversion of m5dC into dT. 

3.2.2.6 Evaluation of haploid APOBEC3A KO mESCs 

Recent literature[299-301] describes the potential of APOBEC3A to deaminate m5dC in DNA. We found a 

haploid, parthenogenetic (maternally derived) cell line offered by the HaploBank ES Cell Resource and 

decided to investigate the formation of [13C,D3]-dT in these cells upon administration of 

[13C,D3]-methionine. 

The results were rather inconclusive due to the low levels of the modification and the high background 

level from natural dT and are therefore not shown. This result matches the finding that 

parthenogenetic cells (see section 3.2.2.5) generally exhibit less formation of [13C,D3]-dT in C/R 

conditions. We conclude that for an investigation of APOBEC3A as the potential DNA deaminase for 

m5dC the generation of a respective CRISPR/Cas9-mediated diploid knockout mESC line would be 

useful. If the single knockout mESC line does not show an effect – maybe due to complementary action 

of AID –, the additional establishment of an Aid-/-/Apobec3a-/- double knockout mESC line could shed 

light on the existence of genomic deamination.  
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3.2.3 Investigation of the base excision repair pathway 

Base excision repair is a process to remove mispaired and modified bases from DNA through the action 

of glycosylases. The potentially mutagenic AP sites and β-elimination products that are subsequently 

formed cannot be quantified directly via UHPLC-QQQ-MS/MS. Underlying reason for this is the lack of 

a weak bond that will fragment in the mass spectrometer. In previous work from our group, a 

derivatization protocol for the analysis of AP sites and β-elimination products was established by Toni 

Pfaffeneder, Olesea Kosmatchev and René Rahimoff[410] using a hydroxylamine reagent (Figure 34) that 

reacts with the aldehyde moiety of the targets. The reagent furthermore contains a phenyl ring to 

intercalate with the DNA, a tetrazol ring, which releases nitrogen upon collision induced dissociation 

(CID) with N2 gas, and a permanently charged quarternary ammonium ion, which increases the 

solubility and ionizability of the adduct. 

 

Figure 34: Structure of the derivatization reagent in use for AP sites and β-elimination products. 

In cooperation with René Rahimoff and Angie Kirchner, I conducted further analysis of the base excision 

repair on various cell lines. Angie Kirchner performed the majority of the cell culture and feeding 

experiments for this investigation, before we both applied the DNA isolation protocol. Derivatization 

of the AP sites and β-elimination products was conducted as a team, and the digest of genomic DNA 

and mass spectrometric evaluation of the samples was performed by myself. 

3.2.3.1 Global AP sites and β-elimination products in Tdg-/- and Smug1-/- cells 

First, we were interested in analyzing the impact of the two DNA glycosylases TDG and SMUG1 on 

global AP site and β-elimination product formation. TDG was found to excise dT from dT:dG 

mismatches preferentially in CpG islands, as well as fdC, cadC, hmdU and fdU opposite of dG. For 

SMUG1, it has been shown that it excises XdU derivatives opposite of dG or dA on ds- and ssDNA. The 

experiments were performed in technical triplicates of one (SMUG1) or two (TDG) biological replicates. 
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Figure 35: Levels of global AP Sites and β-elimination products (βEP) in TDG and SMUG1 KO cell lines and their 
respective wildtypes. 

For both enzymes (Figure 35), the AP sites are slightly, but insignificantly decreased in the knockout 

cell lines. This result is not unexpected, since knockout of one of the several glycosylases in cells might 

not have a big contribution to the overall levels. The decreased levels of the knockout mESCs suggest 

however that both enzymes contribute to the generation of AP sites in gDNA. The experiments were 

only performed once (Smug1-/-) or twice (Tdg-/-) and have to be repeated to estimate the significance. 

In case of the β-elimination products, TDG also does not show any effect, but the high error bars of the 

Tdg-/- cells might obscure a difference. The Smug1-/- cell line, in contrast, shows 50% higher levels of 

β-elimination products. This observation might be explained by compensation for the loss of SMUG1 

through TDG or MBD4, which could potentially recruit the bifunctional NEIL enzymes. These enzymes 

would subsequently generate more β-elimination products. Our observation is rather interesting, but 

again repetition of the experiment is necessary to verify our findings. 

3.2.3.2 [13C5]-labeled AP sites and β-elimination products after administration of [13C9,N3]-dC on 

Tdg-/- cells 

Next, we wanted to investigate base excision repair specifically on dC. Therefore, Angie Kirchner 

supplemented Tdg+/- and Tdg-/- mESCs with [13C9,N3]-dC. In this molecule, five 13C atoms are present in 

the sugar moiety and should therefore still be present after excision of the base from the gDNA. All 

detected [13C5]-labeled AP sites and β-elimination products must stem from excision of the labeled and 

potentially modified cytosine derivatives. It is however possible that a deamination reaction on the 

nucleoside in the soluble pool, which could be incorporated into the gDNA, or direct deamination of 

the nucleotide in the gDNA can be processed by additional glycosylases. A small fraction of the labeled 

BER intermediates might therefore stem from these dU derivatives. Off note, previous data from our 

group[410] however showed no increase [13C5]-labeled AP sites and β-elimination products upon 

administration of [13C10,15N2]-dT and we can therefore exclude this possibility. In the KO cells, 

[13C5]-labeled AP sites and β-elimination products should only be generated from dC, m5dC and hmdC 
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or the deaminated dU derivatives, because fdC and cadC cannot be excised anymore in the absence of 

TDG. The bases of hmdU and fdU will still be excised by SMUG1, and derivatives of dU can additionally 

be processed by UNG or MBD4. 

 

Figure 36: Levels of labeled AP sites and β-elimination products (βEP) in Tdg-/- cells and their respective wildtype 
after feeding of [13C9,15N3]-dC. The two different bar graphs for the AP sites represent two separate biological 
replicates (Exp.: experiment). 

Upon administration of [13C9,15N3]-dC, the levels of [13C5]-labeled AP sites and β-elimination products 

did not differ in Tdg+/- and Tdg-/- cells (see Figure 36). The values of the [13C5]-labeled AP sites 

unfortunately show high variability between the two biological replicates and are therefore not 

combined. Although TDG acts on five substrates - dT in a dT:dG mismatch, fdC, cadC, hmdU and fdU –, 

their levels might however be rather low in comparison with the total amount of [13C5]-labeled AP sites 

and β-elimination products. Excised dU, which can be generated through deamination of dC could for 

example be a major contributor to the labeled BER products and is known to be processed by the UNG 

enzymes and MBD4. The two substrates hmdU and fdU can furthermore still be processed by SMUG1 

and MBD4 and should not affect the levels. One needs to additionally consider the fact, that a 

substantial amount of the administered nucleoside might already be deaminated in the soluble pool 

leading to formation of [13C9,15N2]-dT. This dT isotopologue is incorporated into the gDNA in big 

quantities and might then be oxidized to hmdU and fdU by the TET enzymes. Excision of the respective 

bases can also be performed by SMUG1, since it accepts both dG and dA as nucleotides on the DNA 

strand opposite of its target. 

Overall, the great variety of glycosylases and their overlap in substrate specificity establishes a highly 

developed network of back-up repair processes, which seems to compensate for the loss and effect of 

one absent glycosylase. In the mixed cell population, the overall kinetics of the BER products might be 

evened out and therefore locus-specific changes might not be visible. 
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3.2.3.3 [13C5]-labeled AP sites and β-elimination products after administration of [13C5,15N2]-fdC on 

Smug1-/- cells 

Subsequently, we thought of narrowing down the potential sources for [13C5]-labeled AP sites and 

β-elimination products by applying [13C5,15N2]-fdC to Smug1-/- cells and their respective wildtype. 

SMUG1 shows no activity towards fdC, but in previous unpublished feeding experiments in our group 

(data not shown) of fdC we observed substantial amounts of fdU both in the DNA and the soluble pool. 

 

Figure 37: Levels of labeled AP sites in Smug1-/- cells and corresponding wt J1 cells after administration of 
[13C5,15N2]-fdC. 

We found out that upon administration of [13C5,15N2]-fdC to wt and Smug1-/- cells no labeled 

β-elimination products are detected. This finding is reasonable, since fdC is processed by TDG, MBD4 

and the NEIL enzymes. The latter are known to be bifunctional and to perform β,δ–elimination on the 

AP sites. After δ-elimination, the DNA does not contain any 13C atoms anymore. Residual labeled 

β-elimination products might be present in amounts that do not exceed the LOD. 

The Smug1-/- cells furthermore possess smaller amounts of [13C5]-labeled AP sites than the respective 

wt J1 cells (see Figure 37). This result matches our expectations, because SMUG1 excises fdU from 

DNA. In the knockout cells, the base excision repair of this nucleoside is reduced, but not absent due 

to the complementary action of TDG and MBD4. Our results however identify SMUG1 as the major 

glycosylase acting on this lesion. It is important to investigate the levels of the untreated control 

Smug1-/- control sample, because it shows a small signal for the labeled AP sites. This background signal 

is not extremely high, but has to be considered in the determination of the real amount of labeled AP 

sites. 

3.2.3.4 Global AP sites and β-elimination products in Neil KO cells 

Next, we wanted to determine the extent to which dC derivatives are processed by the base excision 

repair mechanism in Neil KO cells. To this end, Angie Kirchner and myself cultured Neil1-/-, Neil2-/- or 

Neil1,2-/- mESCs and the respective wt cell line. 
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Figure 38: Statistical evaluation of the levels for the β-elimination products (βEP) and AP sites in gDNA of wt and 
Neil KO cells from seven different biological replicates. 

After measurement of several biological replicates and statistical analysis of the data (see Figure 38), 

there did not seem to be a difference between the wt and Neil KO cells. All four cell lines show levels 

for AP sites in the range of 5-7.5•10-7 per dN and levels for the β-elimination products in the range of 

0.5-5•10-6 per dN. As one outlier, we found higher levels of β-elimination products in the Neil1,2-/-. 

Since the NEIL enzymes are thought to facilitate the release of other glycosylases from the AP sites 

they generate and to be part of a so-called BERosome,[35-36] double knockout of the enzymes might 

destabilize the machinery and not process all lesions efficiently. Nevertheless, a single biological 

deviation can only establish a hypothesis and not indicate biological significance. From the overall lack 

of an effect of the Neil KOs on global BER intermediates, we conclude, however, that the harmful AP 

sites and β-elimination products are still processed by APE1. 

3.2.3.5 [13C5]-labeled AP sites and β-elimination products after administration of [13C9,N3]-dC or 

[13C9,N3]-C on Neil KO cells 

In an additional experiment, we were interested in determining the amount of labeled AP sites and 

β-elimination products in the Neil KO cells upon administration of [13C9,15N3]-labeled dC or C. This 

experiment was especially interesting, since administration of [13C9,15N3]-C introduces the nucleoside 

in a part of the nucleotide biosynthesis pathway, where a deamination reaction through action of 

soluble deaminases can mostly be excluded. In the first step, RNA nucleoside specific kinases 

phosphorylate the nucleoside (see Figure 39B). Finally, the ribonucleotide reductase (RNR) generates 

the [13C9,15N3]-dCDP from [13C9,15N3]-CDP. Equilibrium reactions might still generate labeled dCMP from 

the labeled dCDP, which could subsequently be deaminated by DCTD. Nevertheless, the overall 

generation of labeled dU species should be reduced compared with direct administration of labeled 

dC (see Figure 39A). 
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Figure 39: Metabolism of nucleosides and nucleotides and the corresponding enzymes. A) Depiction of the 
generation of DNA nucleotides with all responsible enzymes and in relation to RNA nucleotides. B) Generation 
of phosphorylated dC species upon administration of C. 

Unfortunately, neither upon administration of [13C9,15N3]-labeled dC nor C, we were able to detect any 

[13C5]-labeled AP sites in the control and KO mESCs (data not shown). Analysis of unsupplemented 
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control cells showed high background levels for the signal of the labeled AP site adduct, which might 

suppress the real signal. 

 

Figure 40: Levels of labeled β-elimination products ([13C5]-βEP) in Neil KO mESCs and corresponding control (Ctrl) 
cells after administration of [13C9,N3]-C. On the left side the background levels of the labeled β-elimination 
products without administration of the nucleoside are depicted. 

Furthermore, the results for [13C5]-labeled β-elimination products (Figure 40) are very diverse between 

the biological replicates (data for administration of [13C9,15N3]-dC are not shown). In one replicate, the 

Neil single knockouts show higher levels than the wt and the double knockout has a level that matches 

addition of both single knockouts. When we achieved this result, we were intrigued, but repetition of 

this experiment in two additional replicates did not lead to the same results. However, in the results 

for the Neil1,2-/- of those replicates, the levels of [13C9,15N3]-labeled β-elimination products are about 

one order of magnitude lower than those of the first replicate. It is therefore possible, that the 

derivatization reaction did not work to completion and the data do not reflect the real amount of the 

BER intermediates. 

3.2.3.6 Quantification of formylcytosine as a product of BER 

The high variability within the biological replicates might be due to the generally fast turnover of the 

BER intermediates, which is difficult to capture with our method. Subsequently, we decided to focus 

our investigation on BER of fdC and to analyze its other repair product, which is the excised base 

formylcytosine (see Figure 41). 
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Figure 41: Schematic overview over base excision repair on fdC and cadC by TDG. 

Previous unpublished research by Toni Pfaffeneder and Matthias Q. Kurz uncovered the reaction of 

the formyl group of fdC with the hydroxylamine moiety of the AP site reagent[410] under catalysis with 

p-methoxy-aniline. For the investigation of the excised base formylcytosine that is released in the BER 

of fdC, Eva Korytiaková synthesized the free formylcytosine and its 15N2-isotopologue. We 

subsequently studied and optimized the reaction of this free base with the reagent and came to the 

conclusion, that addition of a catalyst is not necessary when we performed the reaction in a 

water/acetonitrile mixture at pH=10. After 1 h, the free base reached full conversion to the oxime 

adduct (see Figure 42) and the reaction was neutralized with formic acid and concentrated. 

Subsequently, excess of the derivatization reagent was removed from the sample by capturing it with 

an aldehyde resin to reduce ion suppression in the mass spectrometer. 

 

Figure 42: Structure of the formylcytosine adduct with the derivatization reagent. 

Next, we wanted to investigate the soluble pool of naïve mESCs for the presence of formylcytosine. To 

this end, we cultured wt K3+/+ cells under a2i/L conditions, because these conditions are known to lead 

to formation of fdC in the DNA. In case of base excision repair of this nucleotide, we would expect to 

find the free base in the cytoplasm. The extraction of the soluble pool was performed as previously 

described.[179] Due to the poor solubility of the free base, we decided however to perform the screening 

for the optimized derivatization reactions with soluble pool prior and after purification via SUPEL™ 
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SELECT HLB SPE 60 mg/3 mL SPE tubes (Supelco). First analyses of the soluble pool did not lead to 

detection of derivatized formylcytosine. The reaction needs to be further optimized for smaller scale 

as well as same reactivity in the complex soluble pool sample creating high background signals. 
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3.2.4 Administration of azacytidine nucleoside analogues to study epigenetic processes 

3.2.4.1 Investigation of epigenetic modification level changes upon administration of Aza(d)C to 

different cell culture systems 

Azacytidines are antimetabolites used in the treatment of AML and MDS. They are considered to be 

epigenetic drugs, because they are known to inhibit DNMT enzymes. The compounds are labile 

towards nucleophilic attacks and therefore hydrolyze quickly. Multiple groups[159-160] and our own[161] 

developed methods for chemically stabilizing the azacytidines in DNA and RNA by hydrogenation, and 

thereby reduction of the double bond between N5 and C6. This reaction was achieved on the 

nucleoside (Scheme 3) with NaBH4 and work-up with acidic aqueous buffer and the reaction was 

furthermore optimized on gDNA. 

 

Scheme 3: Chemical stabilization of the azacytidines with NaBH4 gives the hydrogenated nucleoside. 

The chemically stabilized gDNA was then subjected to digestion conditions that had previously been 

used in our group.[412] High resolution MS fragmentation performed on an Orbitrap XL mass 

spectrometer (Thermo Fisher Scientific), equipped with a HESI-II-ESI source (Thermo Fisher Scientific), 

verified the correct fragmentation of the nucleoside with the mass transitions for m/z 231.1  115.1, 

as well as further fragmentation of m/z 231.1  72.1 and m/z 231.1  86.0 (see Scheme 4). 

 

Scheme 4: Fragmentation pattern of the H2-AzadC nucleoside with high resolution mass spectrometry. 

With the verified mass transitions in hand, Thomas M. Wildenhof developed the method on the triple 

quadrupole mass spectrometer and was able to generate time- and dose-dependent data for the 

incorporation of the pharmaceutical in DNA from various cell lines. For absolute quantification, the 

reduced H2-AzadC was utilized as an external standard, since no heavy labeled isotope was available. 

When he subsequently wanted to apply the method to RNA, I joined the project. Together, we verified 

the fragmentations m/z 247.1  115.1, m/z 247.1  72.1 and m/z 247.1  86.0 for H2-AzaC via high 

resolution mass spectrometry (as described above). Subsequently, we developed the triple quadrupole 
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method for quantification of AzaC-containing RNA based on a method developed by Katharina Iwan. 

Then we isolated RNA from previous samples and performed the enzymatic digestion. Analysis of the 

RNA samples was nevertheless not possible using the tested conditions, since just a weak signal was 

detected for the H2-AzaC nucleoside. We attributed this effect to the early retention time of the 

nucleoside and the resulting high ion suppression by early eluting molecules and salts. 

Therefore, we optimized the digestion conditions by testing different enzymes, salts and filtration 

methods and applied the tested conditions also to the external standard. We found that several factors 

were responsible for the loss of signal intensity, like EDTA and TRIS salts in the enzyme solution, and 

we were able to find a suitable protocol for the analysis of the samples. Subsequently, we optimized 

the previously established method for the DNA sample preparation in a similar manner. The final 

protocols for analysis of all samples and verification of previous measurements are given in Table 1. 

Table 1: Overview over digestion conditions from the previous protocol and the optimized conditions 
for quantification of H2-AzaC and H2-AzadC in RNA and DNA, respectively.  

 Old protocol Optimized protocol DNA Optimized protocol RNA 

Amount of 
nucleic acid [µg] 

1-5 1 1 

Digestion length 
1. step: 3 h 
2. step: 3 h 

1. step: 3 h 
2. step: 3 h 

1. step: 3 h 
2. step: over night 

Salts 

1. step: 480 µM ZnSO4 
in 7.5 µL 
2. step:  
520 µM Na2-[EDTA] in 
7.5 µL 

1. step: 480 µM ZnSO4 in 
7.5 µL 
2. step: --- 

1. step: 1.6 mM ZnSO4 
and 2.7 mM MgCl2 in 
7.5 µL 
2. step: 1.6 mM ZnSO4 
and 2.7 mM MgCl2 in 
7.5 µL 

Enzymes 

1. step: 42 U Nuclease 
S1 and 5 U Antarctic 
phosphatase in 7.5 µL 
2. step: 0.2 U Snake 
Venom 
Phosphodiesterase in 
TRIS-buffer 

1. step:21 U Nuclease S1 
and 2.5 U Antarctic 
phosphatase in 7.5 µL 
2. step: 0.1 U Snake 
Venom 
Phosphodiesterase in 
TRIS-free buffer 

1. step:21 U Nuclease 
S1 and 2.5 U Antarctic 
phosphatase in 7.5 µL 
2. step:21 U Nuclease 
S1 and 2.5 U Antarctic 
phosphatase in 7.5 µL 

Filtration 0.2 µm Supor 0.45 µm Supor 0.45 µm Supor 

Quantification Internal standard 
External standard in 
digestion conditions 

External standard in 
digestion conditions 
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3.2.4.1.1 Analysis of wt J1 and Dnmt KO cell lines treated with AzaC and AzadC 

Thomas M. Wildenhof’s experiments analyzed the time- and dose-dependent integration of AzaC and 

AzadC into leukemia cell lines and mESCs. In a next experiment, we wanted to investigate the 

incorporation of AzaC and AzadC into the DNA of wt J1 and different Dnmt KOs[161] (see Figure 43), and 

the resulting methylation levels to uncover the effects of the drugs on the selected DNA 

methyltransferases. To this end, the knockout cell lines were supplemented with either 1 µM AzaC or 

1 µM AzadC in 0.0001% DMSO. As a control, only DMSO was added. Although most of the data have 

previously been published,[161] the full data set is displayed and analyzed in Figure 43-Figure 45. 

 

Figure 43: Results of Aza(d)C-treatment of Dnmt KO mESCs. The upper row shows a comparison of H2-AzadC 
levels after treatment with DMSO (Ctrl), 1 µM AzaC or 1 µM AzadC in DNA of wt J1 mESCs and the respective 
Dnmt1-/- (D1-/-), Dnmt2-/- (D2-/-), Dnmt3a-/- (D3a-/-) and Dnmt3b-/-  (D3b-/-) mESCs. The lower row shows the 
corresponding m5dC levels. 

The control samples show no H2-AzadC and the expected levels for m5dC in a primed mES cell line. 

When comparing AzaC-treated cells with AzadC-treated cells, one can clearly see that the nucleoside 

is integrated to an approximately 10-fold smaller extent after treatment with AzaC with about 

0.25-0.4•10-3 H2-AzadC per dN. After AzaC-treatment, the AzadC incorporation seems slightly higher 

in the Dnmt1-/- and Dnmt3b-/- cells than in the wt and the other Dnmt KOs. 
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After treatment with AzadC, the levels are at 1.3-2.4•10-3 H2-AzadC per dN. Interestingly, the lowest 

levels for H2-AzadC are observed in Dnmt3b-/- cells at about half of the wt levels and second-lowest in 

Dnmt2-/- at about 80%. 

Analyzing the m5dC levels, the Dnmt3a-/-, Dnmt3b-/- and Dnmt1-/- cells have a 1.3-2.5 fold lower basic 

level, whereas the Dnmt2-/- cells show even slightly higher methylation. After treatment with AzaC, the 

methylation levels of the Dnmt3a-/- and Dnmt3b-/- cells are reduced to 50% of the controls, 

Dnmt2-/- levels are reduced to 60% and Dnmt1-/- levels are reduced to 40%. Treatment with AzadC, in 

comparison, leads to reduction of dC methylation to 50% of the controls in Dnmt2-/-, to 40% in 

Dnmt3a-/- and Dnmt3b-/-, and to 30% in Dnmt1-/-. The drug therefore does not seem to show a direct 

correlation between the amount of its incorporation and the reduction in the m5dC levels. 

In conclusion, the Dnmt2-/- cells show comparable results for incorporation of AzaC and methylation 

changes as the wt, although the m5dC levels are slightly higher. The incorporation of AzadC is not as 

high as for wt mESCs and therefore the decrease in m5dC is less pronounced. The Dnmt3a-/- cells do 

not possess the same basic methylation due to the missing de novo methylation during priming, but 

the trends of the methylation levels are comparable to those of the wt. The most interesting results 

are those for Dnmt1-/- and Dnmt3b-/- cells. The former generally exhibit the largest drop of the m5dC 

levels, but comparable incorporation of the drug. The latter incorporates a 50% smaller amount of 

AzadC into the DNA than the other cell lines and still shows a decrease in the methylation level that is 

almost as strong as for Dnmt3a-/-. So far, it is unclear why those cells integrate less of the drug and 

whether the reduction is smaller due to the decreased incorporation or if other processes are involved, 

e.g. repair or reduced cell growth. The observation however suggests a better therapeutic effect in 

absence of DNMT3b, although Oka et al.[173] describe higher resistance of Dnmt3b-/- mESCs towards 

AzadC. 
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Figure 44: Comparison of H2-AzaC and m5C levels in isolated RNA of different Dnmt KOs. The upper row shows a 
comparison of H2-AzaC levels after treatment with DMSO (Ctrl) and 1 µM AzaC in RNA of wt J1 mESCs and the 
respective Dnmt1-/-, Dnmt2-/-, Dnmt3a-/- and Dnmt3b-/- KO cells. The lower row shows the corresponding m5C 
levels. 

Analysis of the RNA of the Dnmt KOs (Figure 44) reveals a different situation. Surprisingly, the general 

levels of H2-AzaC are by one order of magnitude lower than those of H2-AzadC in gDNA. This might be 

explainable by the higher turnover rate of RNA. As key players for protein synthesis, RNA with 

covalently bound and therefore inhibited methyltransferases could be recognized to be malfunctioned 

even earlier and be subjected to RNA decay or repair. Overall, the incorporated AzaC levels are similar 

in all cell lines. Looking at the m5C levels, a significant change of methylation due to the knockout of 

any DNMT enzyme or administration of the drug is not observed. Dnmt1-/-, Dnmt3a-/- and 

Dnmt3b-/- mESCs are not expected to show any effect, since the enzymes are not active on RNA. 

Dnmt2-/- mESCs, however, are also not affected. This might be explained by the high variety of RNA 

methyltransferases, of which some might generally not react with azacytidines, but also by the higher 

turnover of RNA. 
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Later on, we realized that the isolated RNA was actually not total RNA, since the utilized protocol 

apparently depleted a major fraction of the tRNA. We decided to investigate the total RNA of the same 

samples using an isolation protocol optimized for the recovery of tRNA. 

 

Figure 45: Comparison of H2-AzaC and m5C levels in total RNA of different Dnmt KOs. The upper row shows a 
comparison of H2-AzaC levels after treatment with DMSO (Ctrl) and 1 µM AzaC in RNA of wt J1 mESCs and the 
respective Dnmt1-/-, Dnmt2-/-, Dnmt3a-/- and Dnmt3b-/- KO cells. The lower row shows the corresponding m5C 
levels. 

The results of total RNA analysis (Figure 45) show a significantly lower incorporation of AzaC per 

nucleoside than the results without tRNA. This is, however, not surprising since mRNA with their high 

turnover rates and thereby constant synthesis has a higher probability of incorporating AzaC. If this 

type of RNA is enriched over a much more abundant RNA that turns over slower - incorporating less 

AzaC - the average incorporation of the nucleoside increases. Interestingly, however, the levels of m5C 

seem to be negatively affected when tRNA is present in the RNA preparation. Since the results are 

average numbers for the whole RNA content of the cell, we can assume that pure tRNA will show a 

rather large decrease of the m5C levels. To take the evaluation even further, we hypothesize that the 

drug inhibits mostly methyltransferases modifying tRNA. 
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3.2.4.1.2 Analysis of treating cancer cells with AzaC and AzadC 

Further studies of leukemia cell lines were performed in cooperation with Laura Bocci from the 

Spiekermann laboratory. In their group, they wanted to study the effects of the two pharmaceuticals 

in vivo and determine differences on a genomic and transcriptomic level. 

First, a variety of cell lines was analyzed with the established method (details for those cell lines are 

given in Table SI-2). To this end, Laura Bocci performed in vivo treatment of various leukemia cell lines 

and provided me with the treated cells for further analysis. According to the literature, the plasma 

levels of the drugs in patient blood samples amount to 0.3-1.6 µM for AzadC[413-414] and 3-11 µM for 

AzaC.[415] We therefore decided to consistently apply 0.5 µM AzadC and 3 µM AzaC to all of the 

following experiments of this collaboration. 

 

Figure 46: Screening of various AML cell lines for AzadC incorporation into DNA and the effect on m5dC; all data 
represent one biological replicate measured in technical triplicates; dark green bars: H2-AzadC, dark yellow bars: 
m5dC. 

Analyzing the DNA of the leukemia cell lines, we achieved valid results for most of the cell lines and 

conditions, but due to a technical problem, some samples had to be dismissed. All measurements were 

performed in technical triplicates, but only of one biological replicate. 
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In general, it seems like all cell lines incorporate more AzadC into DNA when they are treated with 

AzadC directly (see Figure 46) amounting to 3-3.5•10-3 per dN for administration of AzadC and 

0.25-2•10-3 per dN for administration of AzaC. This matches our previous findings in the experiments 

of Thomas M. Wildenhof (see section 3.1.4), although overall the tested cell lines incorporate more 

AzadC. In samples with only one treatment condition shown (KG1α, NB4 and MM6) a comparison was 

not possible. The cell line MM6 is an exception, because it incorporates about 3•10-3 H2-AzadC per dN 

upon administration of AzaC. 

The m5dC levels appear to be rather inhomogeneous between the different leukemia cell lines with 

levels ranging from 40-100% compared to naïve pluripotent mESCs. The cell line K562 shows especially 

low levels of m5dC already in the untreated control and might lack or express very small amounts of 

DNMT enzymes. Generally, the m5dC levels verify that a reduction upon treatment is observed in all 

cell lines and conditions. It seems like the decrease of the m5dC level is bigger after treatment with 

AzadC than with AzaC. This is not surprising due to the higher AzadC content in the DNA, but the effect 

appears not proportional to the incorporated amount of AzadC between the two drugs. MM6 is again 

surprising, since the relatively high levels of H2-AzadC after administration of AzaC only lead to 

comparably low changes in the m5dC levels of 25%. In contrast, upon administration of AzadC leading 

to comparable H2-AzadC levels in other cell lines, the reduction of m5dC is about 30-50%. This finding 

hints at additional effects of AzadC on m5dC levels, e.g. indirectly by interaction of the nucleoside with 

the DNMT enzymes. 

 

Figure 47: Screening of various AML cell lines for AzaC incorporation into RNA and the effect on m5C; all data 
represent one biological replicate measured in technical triplicates; light green bars: H2-AzaC, light yellow bars: 
m5C. 

We then analyzed the RNA of these cells (see Figure 47). Due to technical problems, data for KG1α, 

NB4 and MV411 are not available. As in the DNA, the cell lines express rather inhomogeneous 
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integration of AzaC into the RNA. The highest incorporation is observed in MM6 and amounts four-fold 

that of the lesser-incorporating cells. Lowest levels occur in HL60, U937 and Kasumi-1 cells. This is 

rather interesting, since HL60 exhibits highest sensitivity towards the drug, whereas Kasumi-1 cells 

seem to be most resistant (see next section 3.2.4.1.3). 

Addressing the impact on m5C levels, however, suggests an explanation for this circumstance, since 

HL60 and U937 cells are affected very strongly by the drug (decrease to ~25%), whereas Kasumi-1 cells 

do not show any difference in the m5C levels. The sister cell lines MM1 and MM6 exhibit different 

levels of AzaC - MM6 integrates 1.7-fold more than MM1 -, but show only moderate reduction of their 

m5C levels (by ~30% and ~40% respectively) in comparison with strongly affected cells. THP-1 and 

MOLM-13 cells both exhibit higher incorporation of AzaC, but moderate reductions of the m5C levels 

to 40-50% of the untreated control. 

These results are comprised of only one biological replicate, in which Laura Bocci unfortunately 

performed the cell harvest in a way that was probably not optimal for cells treated with azacytidines. 

In detail, she froze the cells slowly in vials containing freezing medium and then placed them in an 

isopropanol-containing storage box in the –80 °C freezer rather than shock freezing the pelleted cells. 

This procedure unfortunately keeps the cells longer in a liquid environment leading to a higher 

probability for hydrolysis of the compound. Although the high levels for H2-AzadC and H2-AzaC might 

indicate that the results were not compromised, further experiments needed to be performed to verify 

our findings. 

3.2.4.1.3 IC50 studies on the treatment of AML cell lines with AzaC and AzadC 

Next, Laura Bocci performed IC50 studies with all AML cell lines that were available and provided me 

with the results from this experiment. The IC50 is defined as the concentration at which a biological 

process is inhibited by half. Therefore, cells were treated in three biological replicates with various 

concentrations of the drug and the cells were counted after 72 h. Linear regression of all data points 

then gave the IC50 values, which are depicted in Figure 48. 
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Figure 48: IC50 values [µM] determined for treatment of various AML cell lines with AzaC (A) or AzadC (B); 
determination not possible means that the tested concentrations never lead to a reduction of the cell count by 
half after 72 h. 

The results of the IC50 determination suggest, that of the tested cancer cells none show hypersensitivity 

towards AzaC, but three cell lines (EOL-1, NB4 and MOLM-13) exhibit strongly reduced viability already 

when low concentrations of AzadC (0.1-0.2 µM) are administered. Furthermore, the response towards 

AzaC does not differ much between most of the cell lines (IC50 values of 1-2 µM), whereas with AzadC 

the cells show IC50 values in a broad range of concentrations. The highest IC50 value for AzaC is found 

for the Kasumi-1 cells. Similarly, these cells do not even reach 50% reduction of the viability with AzadC. 

Comparable results were also observed for the MM1 cells. In contrast, HL60, NB4 and KG-1α cells show 

low IC50 values for both drugs. Of all cell lines, MM6 seems to have the most different IC50 values 

between the two azacytidines. This effect might be caused by differential expression of the DNA and 

RNA cytidine kinases DCK[170] and UCK,[171] two enzymes that have been shown to promote resistance 

towards azacytidines. 

In a recent paper,[143] IC50 values were determined for several cell lines. Of those, only two cell lines 

were the same (HL60 and U937) as in our experiments. The results for HL60 cells are comparable with 

our results. The sensitivity of U937 cells towards AzadC, however, is reported to be very high with a 

value between 0.05 and 0.4 µM, whereas our data show an IC50 of ~3.5 µM. Laboratory-specific 

differences of cell lines in regards to e.g. speed of cell growth or resistances are not uncommon and 

their consideration is necessary to enable full interpretation of biological effects. 

Based off these data, we concluded that the cell lines HL60 and MOLM-13 are generally more sensitive 

towards azacytidines, because they both exhibit significant cell death already with small doses of both 

drugs. In comparison, the cell lines MM1 and Kasumi-1 are generally more resistant towards the drugs. 



Unpublished Results 
 

153 
 

This effect is so pronounced that for AzadC even with high doses above 8 µM the cell count could not 

be reduced to 50%. 

3.2.4.1.4 Comparison of more sensitive and more resistant cell lines towards treatment with 
AzaC and AzadC in a time course experiment 

We then decided to proceed with our analysis only with the four cell lines MOLM-13, HL60, Kasumi-1 

and MM1. To achieve comparable results to the previous screening experiment and reduce dose-

dependent effects, the cells were again treated with 0.5 µM AzadC and 3 µM AzaC, respectively, for 

24 h. After incubation for 24 h and additionally after a total of 72 h, we harvested and analyzed the 

cells for their incorporation of AzadC and AzaC into the gDNA and RNA (see Figure 49 and Figure 50). 

 

Figure 49: Overview over incorporation of AzadC into the gDNA of different cell lines. The upper part shows the 
levels of incorporated H2-AzadC after treatment with 0.5 µM AzadC (left) or 3 µM AzaC (right) after 24 h (dark 
green) or 72 h (light green). The lower part of the figure pictures the resulting changes in the m5dC levels at the 
same time points (dark yellow and light yellow, respectively). 

Generally, it seems like treatment of the different cell lines with 0.5 µM AzadC leads to a higher 

incorporation of AzadC in comparison with treatment of six times this amount of AzaC (3 µM) 
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(see Figure 49). Due to the error bars however, the levels are only in Kasumi-1 cells significantly 

different. This effect is even more obvious, since the H2-AzadC levels after treatment of AzadC are 

about double the H2-AzadC levels in the other cell lines. In comparison, treatment with AzaC results 

only in about half the H2-AzadC levels. Kasumi-1 therefore seems to incorporate AzadC easily upon 

administration of the DNA analogue and fails to incorporate high amounts of the RNA analogue. This 

observation suggests a reduced function of the ribonucleotide reductase enzyme or other enzymes in 

the process of generating AzadCTP in these cells. 

The m5dC levels are generally reduced upon treatment with the drug. This effect is more pronounced 

in the samples that incorporate more AzadC. Subsequently, it is not surprising that AzaC-treated 

samples show a smaller decrease of the m5dC levels than the AzadC-treated cells. It is however 

remarkable that Kasumi-1 with the highest incorporation of AzadC after AzadC-treatment shows 

relatively lower impact on m5dC (reduction to ~80%) than the cell lines MOLM-13 and HL60 (reduction 

to ~60%). The same reduction to ~80% of the levels in the untreated control is observed in MM1 cells. 

The higher resistance of these cells might therefore be explained by mechanisms to prevent the cells 

from losing too many of their methylation marks. These mechanisms might be higher 

expression/activity of DNMTs, more repair of the resulting lesions or a generally lower rate of 

replication and establishment of methylation on the newly-synthesized strand. 

Analysis of the H2-AzadC levels 72 h after AzadC-treatment, shows insignificant reduction in Kasumi-1 

cells and insignificant elevation in MOLM-13 cells, whereas the levels drop by 50% in HL60 and MM1 

cells. The m5dC levels, which also marginally decrease in Kasumi-1 cells, are constant in MM1 cells and 

increase in HL60 cells and MOLM-13 cells. There does not seem to be a correlation to the changes in 

the AzadC content of the DNA. It is important to note the slight increase of the m5dC levels in the 

MOLM-13 control sample, indicating that the levels might be affected from the long culturing of the 

cells rather than recovery from the treatment. However, in none of the cells significant differences 

were observed. This result suggests that more time is needed for the cells to recover from the loss of 

methylation after treatment. One possible reason for this might be the cytostatic effect of the drug, 

inhibiting cell proliferation and therefore maintenance methylation. 

The data for the H2-AzadC levels 72 h after AzaC-treatment generally show a reduction of the drug 

content. This observation is not surprising since the cells have a limited pool of the drug. Due to the 

sensitivity of the drug towards water, the azacytidine concentration in the medium will decrease over 

time. Furthermore, the DNA replication could be impaired by the cytostatic effects of the drugs leading 

to no further incorporation of the drug and DNA repair mechanisms then decrease the levels of the 

incorporated drug. As observed with the treatment of AzadC, the methylation levels do not show 

significant differences to the levels after 24 h. This suggests that re-establishment of the methylation 

is not directly affected by the choice of treatment. The relatively greater reduction of the H2-AzadC 
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levels after 72 h in MM1 and HL60 cells could be explained by a more effective mechanism for repair 

of the lesion. In HL60 cells, the significant loss of the drug to ~20% of the initial levels after 

AzaC-treatment indicates additional biological pathways. One further explanation could be a reduction 

or loss of the RNR activity that has previously been described,[166] limiting the availability of the drug in 

addition to degradation by hydrolysis. 

 

Figure 50: Overview over incorporation of AzaC into the RNA of different cell lines. The upper part shows the 
levels of incorporated H2-AzaC after treatment with 3 µM AzaC after 24 h (blue) or 72 h (light blue). The lower 
part of the figure pictures the resulting changes in the m5C levels at the same time points (yellow and light yellow, 
respectively). 

Analysis of the RNA (see Figure 50) also seems to differ significantly from the results in 3.2.4.1.2. The 

data exhibit roughly the same levels for H2-AzaC in all cell lines rather than higher incorporation for 

MOLM-13 and MM1. The data after 72 h show very high inhomogeneity between the biological 

samples. We cannot exclude that this effect stems from technical problems. It is however clear, that 

in Kasumi-1 and MOLM-13 cells less H2-AzaC is detected after 72 h. In these cells, some kind of removal 

process for RNA containing the nucleoside has to have taken place. Potential processes are normal 

RNA turnover or RNA quality control and decay by nucleases or the exosome, because RNA damage is 

most likely not repaired. 
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Interestingly, all cell lines show smaller effects on m5C levels and greater error bars for the 72 h time 

points. In general, the m5C levels upon AzaC-treatment do not differ between the 24 h and 72 h time 

point. If the loss of AzaC in RNA is a result from RNA turnover or decay, the m5C integrity of the replaced 

RNA must be strictly controlled. This might hint at an installation by the NSUN methyltransferases and 

that these enzymes are not trapped by the incorporated nucleoside. Another explanation might be 

higher expression levels of these enzymes that can compensate for the fraction of enzymes that stays 

covalently attached to the RNA and has to be degraded. It seems like the cells have higher 

inhomogeneity of long-term effects on the RNA between biological samples, but there is no 

proportionality between the inhomogeneity of the AzaC levels and those of m5C. Kasumi-1 control cells 

surprisingly exhibit different levels of m5C between the two time points. This effect is also present in 

MM1 cells but less pronounced. A possible explanation could be a side effect of treating those cells 

with DMSO. 

Overall, the analysis of different cell lines at various time points after treatment with AzadC or AzaC 

gives very complex results and can only hint at possible effects in samples of real patients. As described 

in current literature, the mode of action and resistance phenomena of and towards azacytidines is an 

important research field that needs more intense investigation. 

3.2.4.1.5 Analysis of patient derived xenograft samples 

To investigate the mechanism and effects of AzaC in a more advanced experimental set-up, we decided 

to investigate AML cells extracted from patients that were transplanted into mice. This patient derived 

xenograft (PDX) mouse model enables studies on individual cancer types without unnecessarily 

burdening the patient. The implanted cells will grow in the bone marrow of the mouse and cause AML. 

Therefore, growth behavior and disease phenotypes can be observed. Furthermore, treatment options 

can be studied in the mouse model and enable investigation of resistance phenomena. It is possible to 

extract the AML cells again and subsequently culture and study them in vivo. 

This experiment was performed in cooperation with Dr. Binje Vick from the Jeremias laboratory at the 

Helmholtz Center Munich. The specimens derived from patient 393 (AML-393) and 372 (AML-372), 

respectively, were chosen according to previous mouse experiments of this laboratory, in which 

AML-393 appeared more resistant and AML-372 seemed more sensitive towards AzaC-treatment. 

Another sample from patient 485 (AML-485) was prepared in the mouse model specifically for our 

research, because the patient itself showed resistance towards AzaC-treatment. Two more specimens 

from patient 346 and 669 (AML-346 and AML-669, respectively) were selected randomly due to 

availability. After isolation of the PDX cells from the spleen or bone marrow, they were cultured with 

AzaC (1 µM) for various incubation lengths. The drug was administered every 24 h and the cells lyzed 

after 24 h, 48 h or 72 h. 
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A complete table of all provided samples is given in Table SI-1. Of these samples, analysis was only 

possible of some, because either the treatment was performed in the wrong manner or we had 

problems with the sample preparation (marked in blue in Table SI-1). However, data for incorporation 

of AzadC into DNA could be obtained from seven samples (# 1, 2, 3, 4, 11; 12, 13), and for incorporation 

of AzaC into RNA from twelve samples (# 1, 2, 3, 4, 7, 8, 10, 11, 12, 13, 14, 15) as shown in Figure 51A 

and B (in ascending sample #). The data presented are derived from single biological samples measured 

in technical triplicates. In most cases, one biological specimen equals one donor mouse and the 

isolated cells were treated with AzaC in a single experiment with a treatment length of 24 h. In some 

cases, however, more material from the same mouse was available and another time point could be 

taken. Analysis of the samples revealed incorporation of AzadC/AzaC in both DNA and RNA. 

 

Figure 51: A) Incorporation of AzadC into DNA of AML PDX cells after AzaC-treatment with levels of H2-AzadC 
(upper row) and the effect on m5dC levels (lower row), B) Incorporation of AzaC into RNA of AML PDX cells after 
AzaC-treatment with levels of H2-AzaC levels (upper row) and the effect on m5C levels (lower row). 

In general, longer treatment of PDX cells seems to lead to higher incorporation of AzadC into DNA and 

therefore to lower levels for m5dC. The treatment of AML-372 only gave data for a 24 h treatment 

length. Compared with the mean of the respective time points for AML-393, the levels of H2-AzadC are 

the same, but the m5dC levels seem to be decreased slightly more. Samples from AML-485 showed the 

lowest incorporation of AzadC and also the highest levels of m5dC. Considering the resistance of the 

patient towards AzaC-treatment, these results match the expectations. There must be some 

mechanism in these cells that prevents incorporation of the drug, e.g. expression levels of UCK. A 
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second explanation might be accelerated repair of the DNMT adducts, since generally the methylation 

levels appear to match levels from other somatic cells.[99] In one biological sample of AML-393 that 

after 24 h exhibits similar levels for administration of AzadC as those found in AML-485, the m5dC levels 

are nevertheless reduced to a significantly greater extent. This raises the question, if AML-393 

expresses generally lower methylation of the DNA – possibly due to decreased expression of the 

methyltransferases – or if the effect of the drug is stronger. Unfortunately, we did not analyze 

untreated control experiments. 

Analysis of the RNA (see Figure 51B) gives a slightly different picture. The first four samples were only 

analyzed in regards to the levels for H2-AzaC, because quantification of m5C was not yet established. 

In the following analyses, m5C was also addressed. In two experimental set-ups with AML-393 treated 

for 24 h, the levels for H2-AzaC are lower than for longer treatment lengths. In one experiment they 

were, however, the highest compared with all other treatment lengths and cell lines. The mean of this 

cell line and time point is, nevertheless, comparable with AML-372 and AML-485. The two 48 h time 

points for AML-393 show comparable results for the incorporation of AzaC, although the extraction of 

the cells was performed once from the spleen and once from the bone marrow. This demonstrates 

reproducibility of the data, even though the extraction from the bone marrow showed significantly 

less homogeneous cell preparations. For AML-485, two experiments with 24 h treatment, and two 

experiments with 24 h treatment plus 24 h of incubation without addition of fresh AzaC (chase) were 

performed. We observe that the H2-AzaC levels are about 25% lower for the samples with the chase. 

This difference might be due to the relatively high turnover rate of most RNA and reason longer 

treatment periods in the clinic. In total however, this specimen shows 30-60% higher levels for m5C in 

comparison with AML-393 and AML-372 and raises the same questions about the general methylation 

levels of this sample as in DNA. Another explanation, like the quality of the administered 

pharmaceutical, can be neglected, because in AML-372, the levels of H2-AzaC are comparable, but the 

m5C levels are significantly lower. It is possible that this sample also has an overall lower methylation 

level, but we were not able to determine this without an untreated control. 

As a conclusion, the effects of AzaC on different biological samples can differ significantly. This result 

is not surprising and matches various publications investigating resistance phenomena in patients. Our 

UHPLC-QQQ-MS method is able to determine levels of incorporation of the pharmaceuticals and the 

effects on the respective methylation levels in a simple protocol. This enables fast routine analysis of 

patient samples and can help predict treatment outcome. Monitoring of the incorporation of the drug 

into the (deoxy)ribonucleic acid might identify resistances correlated with DNMT enzyme, as well as 

DCK[170] and UCK[171] expression levels. 
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3.2.4.2 Investigation of deformylation via 6-Aza-2’-deoxycytidine derivatives 

Active demethylation has been proposed to occur in a variety of different ways. Recent investigation 

of 2’-fluorinated dC derivatives and heavy labeled dC derivatives suggested deformylation as one 

possible pathway to eliminate m5dC from the gDNA.[179] Further research in our group (data not shown) 

additionally hinted at involvement of DNMT3b and potentially the NAD+ dependent Sirtuin histone 

deacetylases III (SIRT) in this process. Since SIRT proteins could attack nucleophilically in the 

C6-position (Scheme 5), we thought of a chemical way to inhibit this reaction. 

 

Scheme 5: Possible deformylation mechanism of fdC under catalysis of NAD+ dependent SIRT proteins. 

To this end, a special AzadC compound with a nitrogen in the 6-position, from now on abbreviated as 

6-Aza-dC, and its methylated and oxidized derivatives, 6-Aza-m5dC, 6-Aza-hmdC and 6-Aza-fdC (see 

Figure 52), were synthesized by Alexander Schön. 

 

Figure 52: Structures of the 6-Aza compounds synthesized by Alexander Schön. Marked in red are the N atoms 
in position 6 and the functional groups on C5. 

The compounds are thought to be taken up into cells and incorporated into their genome as dC 

derivatives. Administration of 6-Aza-dC to cell cultures is supposed to disable the DNMT enzymes, since 

their mode of action involves nucleophilic attack on the 6-position. Feeding of 6-Aza-m5dC can give 

insight into the selectivity of TET enzymes, and 6-Aza-fdC might help uncover a mechanism for a 



Unpublished Results 
 

160 
 

deformylation reaction. If deformylation is still detected on the compound, resulting in formation of 

6-Aza-dC from 6-Aza-fdC, this provides evidence for a deformylation process that does not involve 

nucleophilic reactions on the 6-position and vice versa. Additionally, in contrast to regular fdC, this fdC 

derivative can easily form a hydrate in the presence of water. Since the hydrated fdC compound might 

be an intermediate of the deformylation reaction, a discovery of substantial amounts of 6-Aza-dC 

might still provide information on the mechanism of deformylation. 

3.2.4.3.1 Method development for UHPLC-QQQ-MS/MS 

For investigation of the compounds, we first had to develop a suitable UHPLC-QQQ-MS method. The 

method development included determination of the fragmentation products, CE optimization for the 

fragmentation and adjustment of the UHPLC gradient. During the fragmentation studies, a cleavage of 

the N-glycosidic bond, which is typical for nucleosides, was confirmed (see Scheme 6). For 6-Aza-fdC, 

an additional species – the hydrated nucleoside – was observed, of which also the free base was the 

most prominent fragment. Corresponding CE optimization was then easily achieved with the standard 

procedure for method development. 

 

Scheme 6: Fragmentation patterns for the 6-Aza nucleosides. 

Chromatographic analysis of the nucleosides, however, was challenging in case of 6-Aza-fdC because 

of its hydrate formation. The pure nucleoside and its hydrate have different chromatographic 

properties. Since hydrate formation is, however, an equilibrium reaction, constant shifting of the 
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nucleoside between its two forms resulted in elution of both precursor ions in a broad peak spanning 

both retention times (see Figure 53). Consequently, the MS signals for both species exhibit the same 

elution pattern. 

 

Figure 53: UHPLC-MS/MS chromatogram overlay for the fragmentation of all 6-Aza nucleosides in their 
respective MRM. 

 

3.2.4.3.2 Administration of the 6-Aza-dC derivatives to wt mESCs 

The purified compounds were administered to wt K3+/+ mESCs by Angie Kirchner and Ewelina Kaminska 

and subsequently the DNA isolated. After total enzymatic digest, the nucleosides were analyzed with 

UHPLC-QQQ-MS/MS. 

First results showed an incorporation of 6-Aza-fdC into the DNA upon administration of 6-Aza-fdC, but 

the absolute levels were below the limit of quantification. The underlying cause might be the broadly 

eluting peak of this nucleoside and therefore increased background. Importantly, 6-Aza-dC was not 

found in the same sample, which might indicate lack of a nucleophilic attack on the 6-position of the 

nucleoside, and therefore impaired deformylation reaction. Administration of the other 6-Aza-dC 

derivatives did not even result in detection of a peak and the nucleosides hence seem to not be 

incorporated into DNA. 

We performed these experiments three times with the same outcome. 

Simultaneously, we thought about analyzing the DNA in a full scan via high resolution MS to exclude 

deamination of the administered nucleosides and therefore formation of 6-Aza-dU derivatives. Dr. 

Mirko Wagner performed the analysis on the Orbitrap MS and could not confirm the incorporation of 

6-Aza-fdC, which might be due to the lower sensitivity of the machine. However, the measurements 

reproduced the lack of incorporation of the other supplemented nucleosides or corresponding 

oxidation products. Only upon administration of 6-Aza-m5dC we observed a yet to be validated peak 
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(Figure 54) with the mass-to-charge ratio (m/z) of 244.0938, which is likely to be 6-Aza-dT (calc. 

[M+H]+: 244.0928). No other 6-Aza-dU derivatives were found in any of the other experiments. 

 

Figure 54: UV- and MS-Chromatogram of DNA analyzed on an Orbitrap mass spectrometer. 

We conclude that the nucleosides are either not taken up by the cells or not as readily accepted by 

enzymes involved in nucleotide or DNA biosynthesis. A third explanation might be recognition of these 

nucleotides as lesions and an efficient repair process. It is however also possible, that the digestion 

protocol applied in the experiment is not suitable for efficient cleavage of the DNA into nucleosides. 
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3.2.4.3.3 Administration of 6-Aza-dC derivatives to somatic cells 

Next, we decided to investigate other cell lines. ESCs might not incorporate a sufficient amount of the 

6-Aza-fdC nucleoside to observe a deformylation reaction, but other cell lines might be able to 

accumulate more of the nucleoside in their DNA. To this end, Ewelina Kaminska administered the 

nucleoside to Neuro-2a, CHO-K1 and RBL-2H3 cells. 

Indeed, when we analyzed the DNA, we found the 6-Aza-fdC nucleoside in two-digit fmol amounts in 

all three cell lines, with CHO-K1 cells incorporating the highest amount. Using an external calibration 

curve, an estimated quantification was possible, but calculation of the real amount was impaired due 

to the occurrence of the molecule in two different species. Derivatization of the incorporated 

nucleotide could overcome this problem. We however again did not observe any incorporation of 

6-Aza-dC upon administration of the 6-Aza-dC or formation of the nucleotide upon administration of 

6-Aza-fdC. Although the levels of 6-Aza-fdC are still low in these somatic cells, our finding hints at 

impaired C-C bond cleavage on this molecule, where nucleophilic attack at position 6 cannot occur. 

The experiment needs to be repeated in more biological replicates to verify our findings. 

3.2.4.3.4 Derivatization of 6-Aza-fdC with methoxyamine 

To achieve peak sharpening of the broadly in two species eluting 6-Aza-fdC nucleoside, Alexander 

Schön developed a derivatization protocol to establish a Schiff-base of methoxyamine on the formyl 

group of the nucleoside. Indeed, method development on the UHPLC-QQQ-MS was successful with the 

positively charged nucleoside as the precursor and the positively charged base as the product ion (see 

Figure 55A). Chromatographic separation (Figure 55B) revealed two sharp peaks for the E/Z-isomers, 

which are furthermore shifted by several minutes in comparison with the underivatized nucleoside. 

 

Figure 55: A) Structure of the precursor ion and product ion for the methoxyamine-derivatized 6-Aza-fdC B) 
UHPLC-MS/MS chromatogram for the fragmentation reaction of the methoxyamine derivatized 6-Aza-fdC 
nucleoside. The two peaks correspond to the E- and the Z-isomer. 

In a first test, I applied these derivatization conditions to the digested and dried nucleoside mixture. 

To this end, I dissolved the pellet in NaOH (500 µL, pH=10) and added 100 fmol methoxyamine. After 
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an incubation time of 15 min at 900 rpm in a ThermoShaker (Eppendorf), the reaction was brought to 

pH=7 with formic acid (200 µL, pH=3) and the solvent was removed over three days using the lyophylle 

and SpeedVac. After resuspension in ultra-pure water, the samples were filtered utilizing a 0.2 µm 

Supor filtration plate (Pall Corporation) and subjected to UHPLC-QQQ-MS/MS. 

Unfortunately, with the first test we neither detected free, nor derivatized 6-Aza-fdC in the samples. 

This result might stem from the instability of the nucleoside in basic conditions as observed by 

Alexander Schön during prolonged reaction of the free nucleoside. The long drying process therefore 

might have caused a degradation of the product. Other explanations might be higher LOD of the 

derivatized nucleoside or incomplete derivatization, which decreased both molecules to amounts 

below LOD. In case of incomplete derivatization, the reaction on the DNA has to be optimized. Due to 

significant cell death and low incorporation of the nucleoside into the DNA, optimization on DNA 

directly requires a large amount of input material and provides potentially limited material for a 

screening procedure. Therefore, optimization of the protocol on artificial strands with known amounts 

of the nucleotide could be an alternative strategy. The synthesis of the strands would however require 

production of the corresponding phosphoramidite building blocks. 

As a conclusion, derivatization of the 6-Aza-fdC nucleotide is a suitable strategy to achieve elution of 

the nucleoside as one sharp peak and therefore decrease the loss of sensitivity due to background 

signals. It is however important to perform the derivatization protocol as fast as possible and to 

neutralize the reaction mixture in a timely manner to avoid degradation of the product. Once the 

derivatization procedure is established, determination of the absolute levels of 6-Aza-fdC should be 

possible. 
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3.2.5 Analysis of modifications in RNA 

3.2.5.1 i6A, ms2i6A, t6A 

RNA modifications are important for the stability, secondary structure and interactions of the nucleic 

acids with each other or with proteins, e.g. in processes like RNA interference or translation. In 

cooperation with Dr. Noelia Fradejas-Villar from the group of Prof. Schweizer, we investigated the 

levels of i6A and ms2i6A in tRNA isolated from TRIT1 knockout mice. TRIT1 is the enzyme that is 

responsible for the transfer of an isopentenyl group onto adenosine. Both modifications are known to 

have a stabilizing effect in the interaction of codon and anticodon in position A37. We wanted to 

determine whether a knockout of the enzyme was really achieved, and whether isopentenylated A is 

still present in the tRNA. This could indicate the existence of an additional ‘writer’ enzyme. 

Furthermore, we were interested in the analysis of t6A, because the mice showed a mitochondrial 

effect and this modification is known to be synthesized in the mitochondria by OSGEPL1.[416] 

The method for this analysis had previously been developed by Katharina Iwan. However, during this 

experiment, problems with the quantification of ms2i6A arised: although [D3]-ms2i6A was added to the 

digestion mixture as usual with the established protocol, the MS signal for the corresponding 

fragmentation could not be observed. After trying different digestion set-ups with more or less RNA or 

enzymes, I finally found the solution for this problem by adding 1% formic acid to the digestion mixture 

after the digest was completed. Thiomethylated modifications are very sensitive to pH changes and 

have to be analyzed in slightly acidic conditions to ensure exact quantification. 

The isotope standard for t6A ([13C4
15N]-t6A) had already been synthesized previously and used for 

quantification with high resolution MS, but the method for the UHPLC-QQQ-MS was not fully 

developed. Katharina Iwan had however optimized the parameters for mass spectrometry. The valid 

internal calibration curve was then produced by myself to perform exact quantification. 
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Figure 56: Quantification results of t6A, i6A and ms2i6A in wt and TRIT1 knockdown mice. The levels for the 
modifications t6A (left), i6A (middle) and ms2i6A (right) are given as percentage of A. 

The results of the quantification as a percentage of A are displayed in Figure 56. The t6A level does not 

seem to differ in the tRNA of the TRIT1 knockout samples in comparison with the wt, leading to the 

conclusion that the observation of a mitochondrial effect does not correlate with modification levels 

in tRNA. The levels for i6A and ms2i6A are significantly reduced by more than 50%. This confirms a 

knockdown of the enzyme, but not a complete knockout since the levels are still clearly quantifiable. It 

is however possible that the detection of these nucleosides gives evidence for additional, yet unknown 

enzymes that install isopentenyl and thiomethyl groups on tRNA in mice. 

3.2.5.2 ms2A, ms2m6A, ms2t6A 

As already described in 3.2.5.1, isopentenylated RNA nucleosides are known to be thiomethylated. 

This raised the question, whether enzymes exist, which establish thiomethylation of unmodified 

adenosines. The formed ms2A could then further be modified by methylation leading to formation of 

ms2m6A, or isopentenylation/threonylation generating ms2i6A/ms2t6A as an alternative biosynthetic 

pathway for these modifications. Thiomethylated A might furthermore occur as an intermediate of 

modification removal processes. 

In cooperation with Matthias Q. Kurz and Timm Ensfelder, analysis of various RNA was performed in 

regards to these modifications and potential ‘writer’, ‘reader’ and ‘eraser’ enzymes. Matthias Q. Kurz 

synthesized the ms2A and [D3]-ms2A nucleosides. Utilizing those reference molecules, I developed a 

suitable UHPLC-QQQ-MS method. Like most other nucleosides, ms2A and its derivatives fragment by 

cleavage of the N-glycosidic bond. The mass transitions for ms2A were m/z 314.1  m/z 182.1 and for 

[D3]-ms2A m/z 317.1  m/z 185.1. 

Subsequently, Timm Ensfelder prepared RNA from E. coli strains. For digestion of this RNA, I first 

applied a previous RNA digest protocol from Katharina Iwan,[417] but the nucleosides showed weak and 

inconsistent signals in the MS. I attributed this observation to decreased solubility of the nucleosides. 

Before addition of the standards to the digestion mixture, I therefore equilibrated the respective 
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solutions at 37 °C to ensure a homogeneous solution. Since this enhanced the MS signal, but the signal 

for a specific administered amount was not stable between the samples, I performed the digestion 

according to a different protocol.[161] 

Since we were interested in ms2A as a potential intermediate of ms2i6A biosynthesis or an isopentenyl 

group removing process, we analyzed E. coli wt and MiaA and MiaB KO strains. Clear signals for ms2A 

were found in the wt, but only weak signals below LOD were detected in the KO. This observation 

suggests formation of the nucleoside after deisopentenylation of ms2i6A. It is, however, not possible 

to exclude, that traces of the nucleoside exist which are not exceeding LOD. Therefore, ms2A as a 

precursor for ms2i6A might exist, but this biosynthetic pathway would be minor. 

Further experiments were evaluated by Dr. Mirko Wagner. Of note and as a final conclusion (see 

section 3.2.5.1), modifications containing thiomethyl groups on A require more acidic pH. Future 

analyses should consider these observations. 



Outlook 
 

168 
 

4. Outlook 

In the course of this Ph.D. thesis, several UHPLC-MS/MS methods have been developed, which could 

in principle be used or optimized for a variety of further investigations. Mass spectrometric evaluation 

of RNA, specifically, poses many options from analyzing total RNA in a variety of organisms, 

investigation of specific enriched RNA for selected modifications, or identification of interacting 

proteins. 

The azacytidine derivatization and nucleoside analysis methodology has been studied intensively in 

cancer cell culture and some additional measurements were conducted in patient-derived xenograft 

samples. As a next step, this strategy could be applied to blood samples taken from Aza(d)C-treated 

patients to monitor the clinical effect of the drug. Naturally, combination therapies with other 

chemotherapeutics can also be analyzed for their drug incorporation and methylation level changes. 

Furthermore, a more thorough investigation of the cAzadC compound should be conducted. This 

compound is not used in clinical trials and might prove useful as a milder and more cost-effective 

alternative to AzadC. 

The 6-Aza-dC compounds in combination with other experiments performed in our group, which are 

not described in this research, gave valuable insights into a possible deformylation mechanism of fdC 

in gDNA and suggested an involvement of DNMT3b and potentially SIRT proteins. In the future, the 

enzymes have to be verified for their role in this process and in vitro assays with the purified enzymes 

and 6-Aza-fdC and fdC containing strands in parallel could prove the deformylation mechanism over 

the 6-position. To this end, a synthesis of the respective phosphoramidites and DNA strands would be 

necessary. 

The field of the repair of dC derivatives offers a great variety of further opportunities for investigation. 

An optimized analysis protocol for formylcytosine in the cytoplasm of cells might give valuable insights 

into base excision repair. This repair pathway could have a specialized role depending on the state of 

the cells. As a next step towards the method development, an isotope standard needs to be 

synthesized, which will consist of formylcytosine and a [D9]-labeled Superfly reagent moiety. It will 

then be used to safely identify the adduct from the soluble pool and enable absolute quantification via 

the isotope dilution technique. Once the method is established on wt mESCs, investigation of TDG-/- 

and catalytically inactive TDG mutant cells will be performed. 

Finally, the investigation of active demethylation of m5dC via a pathway that involves formation of dT 

will continue in regards to finding the genomic deaminase. As a prime candidate, we suspect the 

APOBEC3A enzyme. Generation of a CRISPR/Cas-directed knockout cell line as a single KO, and in 

combination with the KO of AID will be useful to investigate the role of this enzyme. Once the cell line 

is established, mass spectrometric analysis of naïve and primed cultures supplemented with 
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[13C,D3]-methionine can then identify a role of this enzyme in genomic deamination. Furthermore, we 

want to sequence some of the previously generated and mass spectrometrically analyzed samples in 

respect to genomic imprints. 
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5. Experimental 

5.1 Materials 

All buffers and solutions were, if not stated otherwise, produced from ultra-pure water. This was 

obtained from the water filtration device arium® pro-DI from the company Sartorius with 18.2 MΩ/cm 

at 25 °C. Chemicals were purchased from the companies Sigma, Merck, AppliChem, Fluka and Roth in 

the commercially available quality grades p.a., molecular biology grade, LC-MS grade and Chromasolv®. 

5.1.1 Devices 

Agarose Gel chamber  Mini Sub-Cell GT MINI, Bio-Rad (Munich)  

Analyzer 6490 Triple Quadrupole LC-MS system, Agilent 
Technologies (Santa Clara, CA) 

Autoclave  Vakulab S3000, Systec (Gießen)  

Visualization chamber Agarose  E-BOX VX5, Vilber Lourmat (Eberhardzell) 

CO2-Incubator  Hera Cell 150, Heraeus (Hanau)  

Liquid chromatograph 1290 Infinity II LC System, Agilent Technologies (Santa 
Clara, CA) 

Homogenizer  TissueLyser, Qiagen (Hilden)  

Bead mill MM 200 Retsch (Haan) 

Microscope  EVOS FL Cell Imaging System (Life technologies) 

NanoDrop  ND-1000 UV/VIS, peqlab (Erlangen)  

pH-meter  MP220, METTLER TOLEDO (Schwerzenbach)  

Rotor  SORVALL SS-34, Thermo Electron Corporation 
(Dreieich)  

Thermoshaker  Thermomixer comfort, eppendorf (Hamburg)  

Deep freezer -80 °C  VIP Series -86 °C, SANYO (Bad Nenndorf)  

Vortexer  Vortex Schüttler, VWR (Göttingen)  

Water filtration device  arium®pro H2Opro-DI-D, Sartorius (Göttingen) 

Centrifuge  Eppendorf Centrifuge Typ 5810 R, eppendorf 
(Hamburg)  

Centrifuge  Eppendorf Centrifuge Typ 5424 R, eppendorf 
(Hamburg)  

Centrifuge  SORVALL Evolution RC, Thermo Electron Corporation 
(Dreieich)  

Centrifuge  MiniSpin, Eppendorf (Hamburg)  
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5.1.2 Buffers, Media, Solutions 

RLT+ RLT buffer (Qiagen) 
β-mercaptoethanol (14.3 mM)) 
3,5-di-tert-butyl-4-hydroxytoluene (BHT, 400 μM) 
Desferoxamine mesylate salt (Desferal (DF), 400 μM) 

GTC-Citrate+ (pH=6.9) Guanidinium Thiocyanate (3.5 M) 
Sodium citrate (25 mM) 
DF (400 µM) 
BHT (400 µM) 
β-mercaptoethanol (14.3 mM) 

G2+ G2 buffer (Qiagen) 
DF (400 µM) 
BHT (400 µM) 

Serum-containing medium for culture of 
naïve mESCs 

DMEM (high glucose, PAA or Sigma)) 
FBS (10%) 
β-mercaptoethanol (0.1 mM) 
1×MEM-nonessential amino acids (NEAA, 1x, PAA) 
L-Alanyl-L-Glutamine (2 mM, PAA) 
Pen/Strep (1x, PAA) 

For 2i/L conditions add: PD 0325901 (1 µM, Axon MedChem) 
CHIR 99021 (3 µM, Axon MedChem) 
Mouse recombinant LIF (1000 U/mL, ORF Genetics) 

For alternative 2i/L (a2i/L) conditions 
add: 

CGP 77675 (1.5 µM, Axon MedChem) 
CHIR 99021 (3 µM, Axon MedChem) 
Mouse recombinant LIF (1000 U/mL, ORF Genetics) 

DPBS Dulbecco’s phosphate buffered saline (Sigma) 

HBSS Hank’s balanced salt solution with Ca2+ and Mg2+, but 
without NaHCO3 (Sigma) 

 

5.2 Biochemical Methods 

5.2.1 Methods for the investigation of m6dA as a modification in gDNA 

Cell culture of wt J1 and Kindlin3+/+ mESCs 

Feeder independent wt J1 cells (strain 129S4/SvJae)[418] or Kindlin3+/+[387] cells were cultured in the 

presence of serum and LIF as previously described.[177] They were routinely maintained on gelatinized 

plates in 2i/L or a2i/L medium. For priming experiments, 2i/a2i cultures were passaged when 

applicable in DMEM supplemented with FBS and LIF as above but lacking the inhibitors. 

Cell culture of HeLa and HEK293T cells 

HeLa and HEK293T cells were cultivated at 37 °C in water saturated, CO2-enriched (5%) atmosphere. 

DMEM (10% FBS) was used as growing medium. When reaching a confluence of 70% to 80% the cells 

were passaged or lyzed, respectively. 
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Administration of m6A 

HeLa and HEK cells were supplemented with 100 µM m6A and 2% DMSO and incubated for 4 d. Feeder 

independent wt J1 cells were supplemented with 100 µM m6A and 0.25% DMSO for 4 d, with splitting 

after 2 d, in FBS/LIF priming conditions. All cells were lyzed after 4 d with RLT+ buffer and stored 

at -80 °C until further gDNA isolation. 

Transfection of m6A-containing strands into mESCs 

The following strand containing m6A was synthesized by Matthias Kurz: 

5’-UGm6ACCGm6AUGGm6AGGUm6AGUm6AUm6AG-3’ 

As a control, the strand containing only A instead of m6A was synthesized. The counter strand 

contained a 6-FAM-tag to monitor the fluorescence at 509 nm to estimate the transfection efficiency. 

After desalting on an MF-Millipore™ cellulose acetate and cellulose nitrate membrane filter (0.025 µm 

VSWP, 25 mm diameter), the concentration of the strand was adjusted to 10 µM. 

For transfection, six times 1x106 wt J1 cells were plated into gelatin-coated 6-wells in 2i/L medium and 

incubated at 37 °C and 5% CO2 for 24 h. Then, the Lipofectamine RNAiMax (Invitrogen) reagent was 

used as described in the manufacturer’s instructions. In brief, the lipid mixture was produced by adding 

RNAiMax to Opti-MEM medium and the RNA (containing A or m6A, respectively) was diluted in Opti-

MEM medium. Addition of the RNA mix to the lipid mix and incubation for 5 min at room temperature 

gave the complex mix that was added to the cells. An untransfected culture was used as a control. 

After 6 h, 12 h, 24 h and 48 h the medium was removed from the cells, they were washed with DPBS 

and HBSS was added. Then they were analyzed for fluorescence with an excitation filter of 470/22 nm 

and an emission filter at 510/42 nm using an EVOS FL Cell Imaging System (Life technologies). 

Subsequently, the cells were lyzed with GTC-Citrate+ buffer and the gDNA isolated as described in a 

previous publication.[412] 

Treatment of mESCs with all-trans retinoic acid 

For treatment with all-trans retinoic acid (ATRA), heterozygous knockin mESCs derived from E14tg2a 

cells expressing YFP instead of the pluripotency marker OCT-4 (termed Oly2-1) were cultured in the 

presence of serum and LIF as previously described[177] and routinely maintained in 2i/L. Per gelatin-

coated p60 or p100 plate, 9.2•105 cells, or 2.5•106 cells respectively were seeded in DMEM 

supplemented with FBS and LIF and either 0.1% DMSO or 100 nM ATRA. After different time points, 

the cells were washed with DPBS and analyzed for fluorescence with an excitation filter of 500/24 nm 

and an emission filter of 524/27 nm using an EVOS FL Cell Imaging System (Life technologies) in HBSS 

Subsequently, cells were lyzed in GTC-Citrate+ buffer. 
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Treatment of wt mESCs with Trichostatin A 

Wt Kindlin3+/+ (K3+/+) cells were seeded in 2i/L medium in 4x gelatin-coated p100 plates and incubated 

at 5% CO2 and 37 °C. After 24 h, 10 nM Trichostatin A (TSA) was added to the medium and the cells 

incubated for 16 h. Then, the medium was removed and the cells were washed with DPBS. One p100 

was lyzed with GTC-Citrate+ buffer and on the other plates fresh medium was added for subsequent 

lysis time points at 2 h, 4 h and 6 h. 

In a different set-up, the cells were cultured in a2i/L medium with administration of 500 nM TSA for 

16 h at 5% CO2 and 37 °C. After washing with DPBS, an untreated control and one treated plate were 

lyzed with GTC-Citrate+ and the other plate incubated with fresh medium for 6 h before lysis. 

All lysates were stored at -20 °C until gDNA isolation. 

Genomic DNA (gDNA) isolation 

Cell culture samples were lyzed directly in the plates with GTC-Citrate+ buffer. The gDNA was isolated 

using a standard protocol.[412] 

Digest of gDNA 

1 µg (10 μg) of gDNA in 35 μl H2O were digested as described in a previous publication[374] using the 

nuclease S1 (Aspergillus oryzae, Sigma-Aldrich), Antarctic phosphatase (New England BioLabs) and 

snake venom phosphodiesterase I (Crotalus adamanteus, USB corporation) enzymes supplemented 

with specific amounts of labeled internal standards. The sample was incubated for two times 3 h (3 h 

and overnight, respectively) at 37 °C. 

Digest of RNA 

1.0 μg of RNA in 35 μL ultrapure H2O were digested as follows: an aqueous solution (7.5 μL) of 480 μM 

ZnSO4, containing 18.4 U nuclease S1 (Aspergillus oryzae, Sigma-Aldrich), 5 U Antarctic phosphatase 

(NEB) and specific amounts of the labelled internal standards [D3]-m6A was added, and the mixture 

was incubated at 37 °C for 3 h. After addition of 7.5 μL of a 520 μM Na2-[EDTA] solution, containing 

0.15 U snake venom phosphodiesterase I (Crotalus adamanteus, USB corporation), the sample was 

incubated for 3 h at 37 °C. After the digestion the total digestion volume of 50 µL was filtered by using 

an AcroPrep Advance 96 filter plate 0.2 μm Supor (Pall Corporation) prior to UHPLC-MS/MS analysis.  

Analysis of gDNA samples 

Quantitative LC-ESI-MS/MS analysis of digested gDNA samples was performed as described in a 

previous publication.[374] 

Analysis of RNA samples 

The quantitative UHPLC-MS/MS analysis of digested RNA samples was performed on a 1290 UHPLC 

system equipped with a UV detector and an Agilent 6490 triple quadrupole mass spectrometer using 
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a stable isotope dilution technique. An optimized quantitative UHPLC-MS/MS method was previously 

published[417] to analyze multiple nucleosides in one run in parallel. The source parameters and 

parameters for chromatographic separation were slightly modified with the following changes: 

10.8→20 min; 80% MeCN; 20→ 20.8 min, 80%→0% (v/v) MeCN, 20.8→22 min; 0% MeCN. 

Table 2: Compound dependent LC-MS/MS parameters for the analysis of RNA. CE: Collision Energy, CAV: Collision 
Cell Accelerator Voltage, EMV: Electron Multiplier Voltage. The nucleosides are measured in the positive mode. 
([M+H]+ species in ion selected reaction monitoring mode (SRM)) 

Compound Precurs
or Ion 
(m/z) 

MS1 
Resolution 

Product 
Ion (m/z) 

MS2 
Resolution 

Dwell 
time 
[ms] 

CE 
(V) 

CAV 
(V) 

Polarity 

Time segment 3.5-14 min 

[D3]-m6A 285.14 Wide 153.10 Wide 20 2 5 Positive 

m6A 282.12 Wide 150.08 Wide 20 2 5 Positive 

 

5.2.2 Methods for the analysis of active demethylation of m5dC via deamination 

Cell culture of mESCs 

The [13C,D3]-methionine feeding experiments on wt and KO mESCs were performed by Dr. Fabio Spada 

or Yingqian Zhang and are not described in detail. The samples were lyzed in GTC-Citrate+ buffer and 

stored at -80 °C until gDNA isolation. 

gDNA Isolation 

The gDNA isolation of mESC samples supplemented with [13C,D3]-methionine was performed by Dr. 

Fabio Spada or Luis de la Osa de la Rosa according to a standard protocol[412] and is not described in 

detail. 

Digest of gDNA and UHPLC-MS/MS analysis 

The digest of gDNA and UHPLC-MS/MS analysis was performed as described in a previous 

publication[412] using 4 µg of DNA and S1 Nuclease, Antarctic Phosphatase and Snake Venom 

Phosphodiesterase. 

Extraction of the soluble pool 

The extraction of the soluble pool was performed as described in a previous publication.[179] In detail, 

a confluent p60 plate with mESCs was extracted with 50% MeCN (ice-cold), incubated on ice for 5 min 

and the insoluble fraction pelleted at 21130 g and 0 °C for 5 min. The supernatant was transferred and 

the solvent removed by lyophilization on a Christ Alpha L--D plus. A SUPEL™ SELECT HLB SPE 

60 mg/3 mL SPE tube (Supelco) was pre-equilibrated with 1.5 mL MeOH and 3 mL HCl (pH=4). The dried 

residue was dissolved in 1 mL of HCl (pH=4) and loaded on the equilibrated SPE tube. Subsequently, 

the tube was washed with 1.5 mL HCl (pH=4) and then dried with high vacuum. Elution of the soluble 
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pool was performed with 500 µL MeCN/MeOH (1:1) and the solvent removed by lyophilization on a 

Christ Alpha L--D plus. The residue was dissolved in 200 µL ultra-pure water and 25 µL of the solution 

was used per technical replicate of the digest. 

Digest of the soluble pool 

Of the dissolved sample obtained from the extraction of the soluble pool, 25 µL were diluted to a total 

volume of 35 µL. A mixture of internal standards, AP and ZnSO4 in concentrations as described in a 

previous publication[412] was added to give a volume of 50 µL. The sample was incubated for 3 h at 

37 °C, before the routine filtration procedure.[412] 

5.2.3 Methods for the analysis of base excision repair 

Cell culture of Neil KO cell lines 

Neil wt and Neil1-/-, Neil2-/- and Neil1,2-/- knockout cell lines were cultured as previously described.[177] 

For determination of global AP sites and β-elimination products, the cells were moved into the primed 

state by removing 2i from the medium. The cells were cultured under serum/LIF priming conditions 

for 3 d, passaged and expanded for another 48 h. After removal of the medium and washing the cells 

with DPBS, they were directly lyzed with G2+ buffer as described in a previous publication.[410] 

Cell culture of other mESCs and feeding experiments 

Culture of additional cell lines with the corresponding feeding experiments was performed by Angie 

Kirchner and are not described in detail. 

gDNA isolation 

Isolation of gDNA was performed as described in a previous publication.[410] 

Derivatization of the abasic sites and β-elimination products in gDNA 

To capture AP sites and β-elimination products, the gDNA was derivatized with a hydroxylamine 

reagent (Superfly, SF) as described in a previous publication.[410] 

Digest of gDNA 

For determination of global AP sites and β-elimination products 5 µg of gDNA, and for labeled AP sites 

and β-elimination products 20 µg of gDNA, respectively, were digested as described in a previous 

publication.[410] 

UHPLC-MS/MS analysis 

Analysis of the digested gDNA was performed as described in a previous publication.[410] 
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5.2.4 Methods for the Aza(d)C project 

Cell culture of mESCs for Aza(d)C-treatment 

Feeder independent wt J1 cells (strain 129S4/SvJae)[418] and the respective Dnmt1-/-,[401] Dnmt2-/-,[419] 

Dnmt3a-/-[419] and Dnmt3b-/-[419] knockout cell lines were cultured as previously described.[177] 

For drug treatment, cells were moved into the primed state by removing 2i from the medium. Cells 

were incubated 2 d in DMEM supplemented with FBS and LIF in 6-well plates (VWR). After splitting, 

2x105 cells were transferred into a 6-well plate culture dish and incubated additional 2 d. Then the 

medium was replaced with DMEM supplemented with FBS and LIF medium containing Aza(d)C (1 µM, 

0.001% DMSO) and incubated for another 24 h. After removal of the medium and washing the cells 

with DPBS, they were directly lyzed with RLT+ buffer as described in a previous publication[412] and 

subjected to the described DNA isolation. 

Cell culture of cancer cell lines 

Various cancer cell lines were cultured and treated by Laura Bocci from the group of Prof. Spiekermann 

and are not described in detail. 

Extraction and treatment of PDX cells 

Cells were routinely extracted from either the murine spleen or the bone marrow by the Dr. Binje Vick 

or technicians from the Dr. Jeremias laboratory and the procedure is not described in detail. In brief, 

AML cells were subsequently enriched via Ficoll gradient centrifugation. After a cell count and 

microscopic inspection of the enrichment, about 10 million cells were cultured in 5 mL DD-medium 

(supplied by the Jeremias’ laboratory) with 1 µM AzaC in Jeremias’ or our laboratory. Every 24 h the 

cells were counted and readjusted to the starting conditions with administration of fresh AzaC. After 

24 h, 48 h and 72 h, respectively, the cells were washed with DPBS and lyzed with 1.6 mL RLT+ buffer. 

Lysates were stored at -20 °C until DNA and RNA isolation. 

gDNA isolation 

The isolation of gDNA was performed as described in a previous publication.[161] 

RNA isolation 

The isolation of RNA was performed as described in a previous publication.[161] 

As a variation, the RNA was isolated with two instead of one volume of EtOH to obtain total RNA 

instead of tRNA-depleted RNA. 

Reduction and re-isolation of gDNA and RNA 

The reduction of gDNA and RNA, as well as subsequent re-isolation was performed as described in a 

previous publication.[161] 
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Digest of gDNA 

The digest of gDNA and the external calibration curve – a serial dilution of pure H2-AzadC – was 

performed as described in a previous publication.[161] 

Digest of RNA 

The digest of RNA and the external calibration curve – a serial dilution of pure H2-AzaC – was performed 

as described in a previous publication.[161] 

UHPLC-MS analysis of Aza(d)C 

The UHPLC-MS/MS analysis of Aza(d)C samples was performed as described in a previous 

publication.[161] 

5.2.5 Methods for the investigation of cAzadC 

Cell culture of wt mESCs for treatment with cAzadC 

Feeder independent wt J1 cells were in principal cultured as described in 5.2.4. For drug treatment, 

cells were moved into the primed state by removing 2i from the medium. Cells were incubated 2 d in 

DMEM supplemented with FBS and LIF in 6-well plates (VWR). After splitting, 2x105 cells were 

transferred into a 6-well plate culture dish and supplemented with either 1 µM or 5 µM cAzadC, 0.01% 

DMSO or 0.05% DMSO, respectively. All experiments were treated for 72 h. Of the cells treated with 

cAzadC, one experiment each was incubated for the full 3 d without any medium change, as were the 

DMSO controls. One replicate of cells was supplemented every 24 h with fresh medium containing 

1 µM or 5 µM cAzadC, respectively. After removal of the medium and washing the cells with DPBS, 

they were directly lyzed with RLT+ buffer as described in a previous publication[412] and subjected to 

the described DNA isolation. 

gDNA isolation and total enzymatic digest 

Essentially, the gDNA was isolated as described previously.[412] Due to the higher stability of cAzadC, a 

hydrogenation procedure was not necessary and the gDNA was directly subjected to a total enzymatic 

digest as described in a previous publication.[161] 

UHPLC-MS analysis of cAzadC and calibration curves for cAzadC 

The external calibration curve was generated by serially diluting pure cAzadC and measuring in 

technical triplicates prior to each measurement. 

5.2.6 Methods for the analysis of 6-Aza-dC derivatives 

Cell culture of mESCs or somatic cells and feeding experiments 

Culture of mESCs, CHO-K1, RBL-2H3 or Neuro-2a cells with the corresponding feeding experiments was 

performed by Angie Kirchner or Ewelina Kaminska and are not described in detail. 



Experimental Section 
 

178 
 

gDNA isolation 

Isolation of gDNA was performed by Luis de la Osa de la Rosa, Ewelina Kaminska or Angie Kirchner as 

described in a previous publication.[412] 

Digest and UHPLC-MS/MS analysis of gDNA 

Digest of the gDNA was performed as described in a previous publication[412] using S1 Nuclease, 

Antarctic Phosphatase and Snake Venom Phosphodiesterase. No isotope standards were added to the 

digestion solution. 

Quantification of the 6-Aza-dC derivatives was performed via external calibration curves that were 

measured as technical triplicates of a serial dilution of the pure nucleosides prior to each sample batch. 

Derivatization of 6-Aza-fdC 

To achieve a sharper peak during the HPLC of 6-Aza-fdC, the nucleoside (60 nmol, 1 eq.) was 

derivatized with methoxyamine (600 nmol, 10 eq.) in NaOH pH 10. After 15 min at r.t. the reaction was 

neutralized with water/formic acid pH 3. 

The digested gDNA was lyophyllized, resuspended in NaOH (pH 10, 500 µL) and incubated with 

methoxyamine (100 fmol) for 15 min at r.t. Subsequently, the reaction was neutralized with 

water/formic acid (pH 3, 200 µL) and the solvent removed. Before UHPLC-MS analysis, the sample was 

resuspended in water (50 µL) and filtrated by using an AcroPrep Advance 96 filter plate 0.2 μm Supor 

(Pall Corporation) as described previously.[412] 

5.2.7 Methods for analysis of RNA in regards to their i6A, ms2i6A and t6A levels 

RNA digestion 

0.5 µg-1.0 μg of RNA in 34 μL ultrapure H2O were digested as follows: An aqueous solution (7.5 μL) of 

480 μM ZnSO4, containing 18.4 U nuclease S1 (Aspergillus oryzae, Sigma-Aldrich), 5 U Antarctic 

phosphatase (NEB) and specific amounts of the labelled internal standards [D3]-ms2i6A was added, and 

the mixture was incubated at 37 °C for 3 h. After addition of 7.5 μL of a 520 μM Na2-[EDTA] solution, 

containing 0.15 U snake venom phosphodiesterase I (Crotalus adamanteus, USB corporation), the 

sample was incubated for 3 h at 37 °C. After the digestion 1 µL 50% formic acid (LC-MS grade, Sigma-

aldrich) was added to the digestion mixture and mixed well, giving a total digestion volume of 50 µL 

with 1% formic acid. Subsequently, 3 µL of the reaction mixture were diluted with 47 µL ultrapure 

water containing specific amounts of [13C4,15N]-t6A and [D2]-i6A. The diluted sample, as well as the 

remaining digestion mixture were filtered by using an AcroPrep Advance 96 filter plate 0.2 μm Supor 

(Pall Corporation) prior to UHPLC-MS/MS analysis. All measurements were performed in technical 

duplicates or triplicates. 
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UHPLC-MS/MS analysis of RNA 

The quantitative UHPLC-MS/MS analysis of digested RNA samples was performed on a 1290 UHPLC 

system equipped with a UV detector and an Agilent 6490 triple quadrupole mass spectrometer using 

a stable isotope dilution technique. An optimized quantitative UHPLC-MS/MS method based on 

previously published methods[274, 357, 417, 420] was developed to analyze all nucleosides in one run in 

parallel. The source parameters and parameters for chromatographic separation were slightly 

modified from a previously published method[417] with the following changes: 10.8→20 min; 80% 

MeCN; 20→ 20.8 min, 80%→0% (v/v) MeCN, 20.8→22 min; 0% MeCN. 

Table 3: Compound dependent LC-MS/MS parameters for the analysis of RNA. CE: Collision Energy, CAV: Collision 
Cell Accelerator Voltage, EMV: Electron Multiplier Voltage. The nucleosides are measured in the positive mode. 
([M+H]+ species in ion selected reaction monitoring mode (SRM)). 

Compound Precursor 
Ion (m/z) 

MS1 
Resolution 

Product 
Ion 
(m/z) 

MS2 
Resolution 

Dwell 
time 
[ms] 

CE 
(V) 

CAV 
(V) 

Polarity 

Time segment 3.5-9 min 

[D2]-i6A 338.2 Wide 206.1 Wide 20 15 5 Positive 

i6A 336.2 Wide 204.1 Wide 20 15 5 Positive 

[13C4,15N]-
t6A 

418.2 Wide 286.1 Wide 20 25 5 Positive 

t6A 413.1 Wide 281.1 Wide 20 25 5 Positive 

Time segment 9-14 min 

[D3]-ms2i6A 385.2 Wide 253.1 Wide 245 25 5 Positive 

ms2i6A 382.2 Wide 250.1 Wide 245 25 5 Positive 

 

Quantification of the nucleosides 

In order to obtain the internal calibration curves for exact quantification, each standard, namely 

[D3]-ms2i6A, [13C4,15N]-t6A and [D2]-i6A was analyzed with the MassHunter Workstation Software 

Quantitative Analysis (Version B.07.01) in comparison to the corresponding non-labelled nucleoside 

with constant concentration. This gives different ratios for the amount n of the natural nucleoside over 

the amount n* of the labeled nucleoside. Each sample was measured in technical triplicates to obtain 

the area A for the natural nucleoside and A* for the labeled nucleoside. The ratio of A/A* was then 

plotted against the ratio of n/n* with Origin® 6.0 (MicrocalTM) and linear regression was performed to 

achieve the calibration curve (Figure 57/Table SI-3). Quantification of the canonical base adenosine 

was performed as described previously.[417] Using the calibration curves one can determine the amount 

n from the sample with the values for A, A* and the known amount n*. Finally, the level of the modified 

nucleosides is calculated as percentage of the amount of adenosine. 
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Table SI-1: Overview over all specification of the PDX samples. Marked in black are all samples of which the DNA 
or RNA has been analyzed, marked in blue are samples that did not give any results. 

Sample 
# 

Patient 
# 

Mouse 
# 

Cell 
origin 

Cell # 
begin-
ning 
[Mio] 

Cell # 
end 
[Mio] 

Specialties 
AzaC 
conc. 

Treat-
ment 
immediate
? 

Treat-
ment 
length 

1, 2 393 11036 Spleen 10 

15 
After 48 h 
grew to 15 
mio --> 
readjusted 
to 10 Mio. 

1 µM Yes 

24h 

N.d. 72h 

3, 4 393 12393 Spleen 10 N. d. 
Many 
erythrocyt
es 

1 µM Yes 
24h 

48h 

5 393 14131 Spleen 10 N. d.  0.1 µM Yes 24h 

6 346 12906 Spleen 10 N. d. 
Cells grew 
attached 
to flask 

0.1 µM 
No, after 
24h 

24h 

7 393 16127 Spleen 
14.2 
(live, 
64%) 

16.3 
(live, 
66%) 

 1 µM Yes 24h 

8 393 15869 
Bone 
marrow 

23.3 
(live, 
39%) 

14.1 
(live, 
32%) 

Bone 
marrow: 
cells are 
flaking and 
look like 
fibers; 
some 
erythrocyt
es 

1 µM After 4h 48h 

9 669 14933 Spleen 13 13.8  1 µM After 20h 24h 

10 372 14884 Spleen 10 
8.84 
(live, 
21%) 

 1 µM Yes 24h 

11 372 14885 Spleen 10 
10.5 
(live, 
57%) 

 1 µM Yes 24h 

12, 13 485  Spleen 7.25 

8.65 
(live, 
28%)  

Mostly 
erythrocyt
es 

1 µM Yes 
24h 

N. d. 24h 

14, 15 485  Spleen 7.25 N. d. 

Many 
erythrocyt
es; 
Treatment 
only at 0h, 
not after 
24h --> 
chase 

1 µM Yes 

24h + 
24h 
Chase 

24h + 
24h 
Chase 
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Table SI-2: Overview over the cell lines used in a screening for the incorporation and response of AzadC and AzaC. 

Cell line Origin Tissue Cell type Reference 

MONO-MAC-1 (MM1) human  peripheral blood B lymphoblast [421] 

HL-60 human peripheral blood promyeloblast [422] 

U-937 human pleural effusion hystiocytic lymphoma [423] 

Kasumi-1 human peripheral blood myeloblast [424] 

K562 human bone marrow lymphoblast [425] 

THP-1 human peripheral blood leukemic monocyte [426] 

KG1α human bone marrow promyeloblast, macrophage [427] 

MONO-MAC-6 (MM6) human  acute monocytic leukemia [428] 

MV4-11 human peripheral blood macrophage (lymphoblast) [429] 

MOLM-13 human  acute myeloid leukemia [430] 

NB4 human bone marrow acute promyelocytic leukemia [431] 

 

The parent cell line, MONO-MAC-1[421] (sister to MONO-MAC-6[428]), was established from peripheral 
blood of a multiple myeloma patient who had become resistant to steroid-based therapy.  
HL-60[422] is a promyelocytic cell line. Peripheral blood leukocytes were obtained by leukopheresis from 
a 36-year-old Caucasian female with acute promyelocytic leukemia.  
U-937[423] was established in in 1974 from the pleural effusion of a 37-year-old man with generalized 
diffuse histiocytic lymphoma.  
The Kasumi-1[424] cell line was established from the peripheral blood of an acute myeloid leukemia 
(AML) patient. 
The continuous cell line K562[425] was established from the pleural effusion of a 53-year-old female 
with chronic myelogenous leukemia in terminal blast crises. 
The THP-1[426] cell line was derived from the peripheral blood of a 1 year old man with acute monocytic 
leukaemia. 
The variant subline KG-1α of the human acute myelogenous leukemia cell line KG-1 was isolated by 
H.P. Koeffler, et al.[427]  
The cell line MONO-MAC-6 was established from the peripheral blood of a 64-year-old male with 
relapsed acute monocytic leukaemia (AML FAB M5) in 1985 following myeloid metaplasia. 
The cell line MV4-11[429] was established from a 10-year-old boy with acute monocytic leukemia (AML 
FAB M5) at diagnosis. 
The cell line MOLM-13[430] was established from the peripheral blood of a 20-year-old man with acute 
myeloid leukemia AML FAB M5a at relapse in 1995 after initial myelodysplastic syndromes.  
NB4[431] cell line was established from the bone marrow of a 23-year-old woman with acute 
promyelocytic leukemia (APL = AML FAB M3) in second relapse in 1989. 
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Figure 57: Internal calibration curves for the RNA nucleosides t6A (upper left), i6A (upper right) and m5C in a wide 
range (lower left) and a small range (lower right). 

 

Table SI-3: Parameters for the internal calibration curves for the RNA nucleosides t6A (row row), i6A (second row) 
and m5C in bigger amounts (third row) and smaller amounts (last row). 

Nucleoside Linear Regression in 
H2O/MeCN 

LLOQ 
[pmol] 

ULOQ 
[pmol] 

LLOQ 
A/A* 

ULOQ 
A/A* 

t6A y=1.06909x-0.0887 0.019 0.611 0.0606 2.217 

i6A (big) y=1.94366x-0.00737 0.062 0.997 0.0225 0.467 

m5C (big) y=0.88882x-0.01373 0.323 10.332 0.0920 3.401 

m5C (small) y=0.73732x-0.00023 0.020 0.323 0.0053 0.092 

__________________________________________________________________________________  



Appendix 
 

XXIV 
 

List of abbreviations 

°C degree centigrade 
5‘-dRP 5‘-deoxyribose phosphate 
5,10-CH2-THF 5,10-methylenetetrahydrofolate 
8-oxodG 7,8-dihydro-8-oxoguanine 
βEP β-elimination product 
µ micro 
a2i/L alternative two inhibitors/LIF 
A area 
(A/C/G/U/T) (D/M/T) P ((2‘-deoxy)adenosine/cytidine/guanosine/uridine/thymidine) 

(di/mono/tri) phosphate 
AID/AICDA activation-induced cytidine deaminase 
Ala-Gln L-alanyl-glutamine 
AML acute myeloid leukemia 
APE AP endonuclease 
APOBEC apolipoprotein B mRNA editing enzyme, catalytic 

polypeptide-like family 
AP site abasic site 
AS Angelman syndrome 
(H2-)Aza(d)C (dihydrogenated) 5-Aza-(2‘-deoxy)-cytidine 
BER base excision repair 
bp base pairs 
BWS Beckwith-Wiedemann syndrome 
c centi 
ca(d)C 5-carboxy-(2’-deoxy)cytidine 
CDA cytidine deaminase 
CDKAL1 CDK5 regulatory subunit associated protein 1-like 1 
CDK5 cyclin-dependent protein kinase 5 
CDK5RAP1 CDK5 regulatory subunit associated protein 1 
CGP77675 inhibitor of proto-oncogene tyrosine-protein kinases SRC 
CHCl3 chloroform 
CHIR 99021 inhibitor of GSK3α and β 
CO2 carbon dioxide 
CpG 2’-deoxycytidine-phosphate-2’-deoxyguanine 
CSR class switch recombination 
d days 

2‘-deoxy 
D2- double deuterated 
D3- triple deuterated 
Da Dalton 
dA 2‘-deoxyadenosine 
dC 2‘-deoxycytidine 
DCK deoxycytidine kinase 
DCTD deoxycytidylate deaminase 
DCTPP1 dCTP pyrophosphatase 1 
dG 2‘-deoxyguanosine 
DMAPP dimethylallyldiphosphate 
(g/s)DMR (gametic/somatic) differentially methylated region 
DMSO dimethylsulfoxide 
(g)DNA (genomic) deoxyribonucleic acid 
DNMT DNA methyltransferase 
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DPBS Dulbecco’s phosphate buffered saline 
Dr. doctor 
dU 2‘-deoxyuridine 
dT thymidine 
ELP3 elongator protein complex 3 
ERK extracellular signal-related kinases 
ESI elektrospray ionisation 
et al. and others 
EtOH ethanol 
F- 2‘-fluorinated 
FBS fetal calf serum 
f(d)C 5-formyl-(2’-deoxy)cytidine 
FeII iron(II) 
FTO fat mass and obesity associated protein 
g gram 
g gravitation constant (6,674•10-11 m3/(kg•s²)) 
GADD45 growth arrest and DNA damage 45 
GGR global genome repair 
GSK3β glycogen synthase kinase 3 β 
h hour 
hENT-1/-2 human equilibrative nucleoside transporter 1/2 
hm(d)C 5-hydroxyl-(2’-deoxy)cytidine 
H2O water 
hpf hours post fertilization 
HPLC high performance liquid chromatography 
HRR homologous recombination repair 
Hz Hertz 
i6A N6-isopentenyladenosine 
ICE imprinting control element 
ICM inner cell mass 
ICR imprinting control region 
IGC immunoglobulin gene conversion 
Igf(r)2 insulin-like growth factor (receptor) 2 
JAK/STAT Janus kinase/signal transducer and activator of transcription 
L liter 
LC-MS liquid chromatography coupled to mass spectrometry 
LIF leukemia inhibitory factor 
Lig IIIα DNA ligase 
LINE long interspersed element 
(l)ncRNA (long) non-coding RNA 
LOI loss-of-imprinting 
m milli 

meter 
M molar 
MΩ mega ohm 
MAPK mitogen-activated protein kinase 
m6(d)A N6-methyl-(2‘-deoxy)adenosine 
MBD4 methyl-CpG-binding domain protein 4 
m5(d)C 5-methyl-(2’-deoxy)cytidine 
MDS myelodysplastic syndromes 
MEK1/2 MAPK kinase 
(m)ESC (mouse) embryonic stem cells 
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METTL methyltransferase-like 
MgCl2 magnesium chloride 
min minute 
mio. million 
miRNA micro RNA 
MLH1 mutL homologue 1 
mm millimeter 
MMR mismatch repair 
mRNA messenger RNA 
ms2i6A 2-thiomethyl-N6-isopentenyladenosine 
mtDNA mitochondrial DNA 
n amount 
NaCl sodium chloride 
Na2-[EDTA] disodium ethylendiamine tetraacetate 
NEIL Nei-like DNA glycosylase 
NER nucleotide excision repair 
NHEJ non-homologous end joining 
NSUN NOL1/NOP2/sun domain enzyme 
OCT-4 octamer-binding protein 4 
p passage 
p60/100 plate 60 mm/100 mm 
PAR poly-(ADP ribose) 
PCNA proliferating cell nuclear antigen 
PD 0325901 inhibitor of MEK1/2 
PGC primordial germ cell 
PNK polynucleotide 5‘-hydroxyl kinase 
Polβ DNA polymerase β 
PWS Prader-Willi syndrome 
QQQ Triple Quadrupole mass spectrometer 
R² coefficient of determination 
RNA ribonucleic acids 
RNR ribonucleotide reductase 
ROS reactive oxygen species 
RPA replication protein A 
RPMi 1640 Roswell Park Memorial Institute medium 
rRNA ribosomal RNA 
s second 
SAM S-adenosyl-L-methionine 
SHM somatic hypermutation 
siRNA small interfering RNA 
SMRT single molecule real time 
SMUG1 single-strand selective monofunctional uracil DNA glycosylase 
SNP single nucleotide polymorphism 
snoRNA small nucleolar RNA 
snRNA small nuclear RNA 
SRS Silver-Russell syndrome 
SSBP1 single-stranded DNA-binding protein 1 
ssDNA single-stranded DNA 
t6A N6-threonyl-carbamoyl-adenosine 
TCR transcription-coupled repair 
TDG thymidine DNA glycosylase 
TET enzyme ten-eleven translocation enzyme 
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TK thymidine kinase 
TNKS-1/-2 tankyrase-1/-2 
Tris-HCl tris(hydroxymethyl) aminoethane hydrochloric acid 
TRIT1 tRNA isopentenyltransferase 1 
tRNA transfer RNA 
TS thymidine synthase 
u enzyme unit 
UCK uridine-cytidine kinase 
UHRF1 ubiquitin-like PHD and RING finger domain-containing protein 

1 
UNG uracil DNA glycosylase 
UV ultraviolett light 
V Volt 
WNT wingless/Int1 
wt wildtype 
XPG Xeroderma pigmentosum complementation group G 
XRCC1 X-ray repair complementing defective repair in Chinese 

hamster cells 1 
ZnSO4 zink sulfate 
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