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ABSTRACT
Recent analytical solutions to Mixed Sensitivity Control (MSC) are developed and compared with
standard MSC based on γ -iteration. The proposed MSC solution gives conditions for strong stabil-
ity and overcomes the pole-zero cancellations between the plant and the controller of non-iterative
solutions, keeping the low-computational effort advantage of non-iterative solutions. The proposed
MSC is based on the minimization of the most common closed-loop sensitivity functions in low-
frequencies and the free-parameters of the stabilizing-controllers solve an algebraic equation of
restriction that assigns the same value to the infinity-norms of the sensitivity functions at low and
high-frequencies, guaranteeing robust stability and robust performance. It is assumed that the plant
state dimension is double the plant input dimension and that the linear time-invariant nominal plant
has a stabilizable and detectable realization and is strongly stabilizable. This MSC problem is solved
in a one-parameter observer-controller configuration and reference tracking-control of positions is
realized on a two-degrees of freedom feedback-configuration. An approximated optimal value of
the location of the closed-loop poles is proposed based on Glover and McFarlane’s optimal stabil-
ity margin [(1989)] which in turn is based on Nehari’s Theorem. Simulations of a mechanical system
illustrate the results.
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1. Introduction

Robust H∞ control (see for instance the book of Zhou
et al. (1996)) has been successfully applied to the opti-
mal control, analysis and design of systems subject to
disturbance and unstructured uncertainties, like unmod-
elled dynamics. There is no information for these type of
uncertainties except that anupperboundon itsH∞ norm
as a function of frequency. Closed-loop stability under
uncertainties is guaranteed by the Small Gain Theorem.

One useful robust control technique is Mixed Sensi-
tivity Control (MSC) that reduces closed-loop sensitiv-
ity to H2 norm bounded disturbances and H∞ norm
bounded uncertainties. A data-driven approach of MSC is
proposedbyFomentin andKarimi (2013) and is applied to
an active suspension system. The present work focus on
model-based design. There are two general approaches
to solve the MSC problem, both based on the solution
of two-Riccati equations: the non-iterative approach pro-
posedbyGlover andMcFarlane (1989) and theγ -iteration
approach proposed by Doyle et al. (1989). The non-
iterative solution generally suffers from pole-zero cancel-
lations between the plant and the controller and heavily
depends on the selection of weighting functions (see Tsai
et al., 1992). It is pointed out that pole-zero cancellation is
dependent upon the choice of weighting functions and
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the particular construction of weighting function is given
to prevent the phenomenon. Two techniques are com-
pared in the work of Folly (2007) that prevent pole-zero
cancellation of the Riccati-based MSC approach. On the
other hand, the sub-optimal solution of the γ -iteration
approach has been further developed using LinearMatrix
Inequalities (LMI) that providemore flexibility for combin-
ing various design objectives.

Recent applications of MSC based on γ -iteration are
theworksof Banerjeeet al. (2018),Ounis andGolea (2016),
Diaz et al. (2015) and Cerone et al. (2009). In the work
of Banerjee et al. (2018) to damp inter-area oscillations
of grids, a multiterminal DC-current injection is mod-
elled as disturbances using an MSC formulation in the
LMI framework, in the work of Ounis and Golea (2016)
to address the DC-DC Buck converter control, sensitivity
functions are used to specify the desired design require-
ments and γ -iteration is used to tune Proportional Inte-
gral Derivative (PID) control parameters, in the work of
Diaz et al. (2015) a Linear Parametric Varying (LPV) con-
troller applied to a wind turbine, is based on the solu-
tion of LMI’s proposed in an MSC scenario, and in the
work of Cerone et al. (2009), an MSC of the yaw move-
ment of a vehicle is realized in a two-degrees of freedom
(d.o.f .) feedback configuration and is implemented on
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a hardware-in-the-loop simulation. Also, recent applica-
tions based on the non-iterative approach are the works
of Sutyasadi and Parnichkun (2016) and Sil et al. (2009). In
thework of Sutyasadi and Parnichkun (2016) to overcome
theuncertainties anddisturbances, anMSCwasproposed
to control a quadruped robot legs positions, and a power
system stabilizer is designed by Sil et al. (2009), using
weighted MSC.

The present work overcomes the pole-zero cancel-
lations between the plant and the controller of non-
iterative solutions, keeping the advantages of analytical
solutions such as low computational effort that is useful
for on-line control implementation.

Usually, the plant input and output disturbances are
attenuated at the plant output in low-frequencies while
the disturbance at the measurement and the stable
unstructured uncertainties are attenuated at the plant
output in high-frequencies. So, the feedback configura-
tion satisfies the compromises between the disturbance
and uncertainties sensitivity reduction in the frequency
bandwidths in which the disturbance and uncertainties
are more significant. In this approach are the works of
Galindo and Flores (2014), Galindo andConejo (2012) and
Galindo (2009). In the work of Galindo and Flores (2014),
MSC is synthesized for each vertex of the convex hull of
the plant, and an LPV controller is designed by interpola-
tion of these robust controllers.

For systems satisfying the assumptions of Section 2,
the contributions of this paper are,

(1) Recent results on MSC proposed in the works of
Galindo and Conejo (2012) and Galindo (2009) are
further developed in a one-parameter observer-
controller configuration in Section 3 for the criterion,

inf
K(s)

∥∥∥∥
[

So(s) So(s)P(s)
K(s)So(s) Ti(s)

]∥∥∥∥
∞

(1)

that is also used in the work on MSC of Glover
and McFarlane (1989), where So(s) := (I + P(s)
K(s))−1 is the output sensitivity function, P(s) is the
nominal plant, K(s) is the stabilizing controller and
Ti(s) := K(s)So(s)P(s) is the complementary input
sensitivity function.

(2) Analytical expressions for the free parameters of
the stabilizing controllers solving an MSC problem
are established, i.e. the criterion (1) is minimized by
decreasing ‖[So(s) So(s)P(s)]‖∞ at low-frequencies
subject to the algebraic equation of restriction
that assigns the same value to this norm and
‖[K(s)So(s) Ti(s)]‖∞ at high-frequencies. Moreover,
it is shown that the proposed solution to the MSC
problem, implies strong stability, that is, the stabiliz-
ing controllers are stable.

(3) An approximated optimal value of the location of
the closed-loop poles is proposed in Section 3, based
on the optimal stability margin proposed by Glover
and McFarlane (1989).

(4) The stabilizing controller solving the MSC is used in a
two-degrees of freedom (d.o.f .) feedback configura-
tion where the reference controller assures reference
tracking control of positions in Section 4.

The criterion (1) includes some of the most common
transfer functions. Under H2 norm bounded inputs, the
H2 norm of the outputs are related to the H∞ norm of
the associated transfer functions by Parseval’s Lemma.
The minimization of the criterion can be realized if K(s)
stabilizes P(s), using the parametrization of all stabilizing
controllers, the problem is transformed into an optimiza-
tionproblemwithout restrictions affine to the free control
parameter (see the book of Vidyasagar (1985)). This fact
was exploited in the works of Galindo and Conejo (2012)
andGalindo (2009), and Section 3. The organization of the
proposed results is depicted in Figure 1.

Notation: �(s) denotes the set of all rational functions
of the complex variable s with real coefficients; �H∞
the set of proper stable rational functions; � the set of
real numbers; Al := lims→0 A(s) and Ah := lims→∞ A(s)
are the asymptotic approximations of a matrix A(s) ∈
�(s), in low and high frequencies, respectively; and Ip the
identity matrix of dimension p by p.

2. Problem statement

A one-parameter observer-controller configuration is
shown in Figure 2, where P(s) = H(sIn − F)−1G + J∈
�p×m(s); K(s)∈ �m×n(s) and Ko(s)∈ �m×n(s) are the con-
trollers; v(t) ∈ �m and ym(t) ∈ �p are P(s) input and out-
put measurement, respectively; xd(t) ∈ �n is the state
input reference; T1 and T2 are linear similarity transfor-
mations, and do(t) ∈ �p and dm(t) ∈ �p are external dis-
turbances at the output and the measurement of P(s),
respectively. The estimated state x̂(t) ∈ �n is generated
at the bottom of Figure 2 and the estimated error xd −
x̂(t) is used by the one-parameter controller K(s) that
stabilizes P(s).

In the present work, it is assumed that,

A1 MIMO, causal, proper, lumped, and LTI nominal
plantshaving stabilizable anddetectable realizations,
are considered. In what follows the controllable and
observable subsystem is considered as a given nom-
inal plant P(s), that is assumed to be square.

A2 As in theworksofGalindo (2016),GalindoandConejo
(2012) and Galindo (2009), the state dimension of
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Figure 1. Organization diagram.

Figure 2. One-parameter observer-controller configuration.

P(s), denoted by n, must be even, and be double the
input dimension of P(s), denoted bym.

A3 The H2 and H∞ norms of the disturbances and
uncertainties, respectively, are bounded.

A4 As in theworksofGalindo (2016),GalindoandConejo
(2012) and Galindo (2009), let the state space
description of P(s) be,

F =
[
F11 F12
F21 F22

]
, G =

[
G1

G2

]
, H = [

H1 H2
]
(2)

where F ∈ �n×n has been partitioned accordingly
to the block partition of G ∈ �n×m. If all the entries
of u(t) and y(t) are linearly independent, then, it
is assumed that G2 and H2 are non-singular matri-
ces. If instead G1 or H1 is a non-singular matrix, then
perform a change of coordinates x̃(t) = [ 0 Im

Im 0 ]x(t)
such that G1 and H1 now play the role of G2 and H2,
respectively.

In assumption A1, square-plants means that the out-
put dimension of P(s), denoted by p, is equal to m, and
the rows of the plant are properly independent. Assump-
tion A2 avoid using pseudo-inverse matrices that both
loss uniqueness of the solution and closed-loop stability

is restricted to a range of the parameters in the kernel of
these matrices. Also, as shown by Galindo (2009), a full
state available and fully actuated Lagrange formulation is
a class of non-linear dynamic systems that has a linearized
realization of the form given by Equation (2). Although
the linearized Lagrange systems belong to a wide class of
systems, there are network systems that donot satisfy this
assumption such as an electrical system with one input
and 3 states.

If P(s) satisfies the parity interlacing property (p.i.p.)
then a stable controller exists among the set of all sta-
bilizing controllers. A stable controller is important for
practical interest as loop breaking, failure or to mini-
mize numerical errors. Also, an unstable controller always
introduces additional unstable zeros into the closed-
loop transfer function beyond those of the original plant
(see Vidyasagar, 1985), worsening the closed-loop perfor-
mance. The strong stabilization problem was tackled by
Youla et al. (1974) for SISO plants and Vidyasagar (1985)
extended this result to MIMO plants, given the p.i.p.

The problem to solve is,

Problem 2.1: Solve an MSC problem using the criterion,

min
R(s),R̃(s)

∥∥∥∥
[
Gl

Gh

]∥∥∥∥
∞

⇐⇒

⎧⎪⎪⎨
⎪⎪⎩
minR(s),R̃(s) ‖Gl‖∞
subject to

‖Gl‖∞ = ‖Gh‖∞

(3)

where

Gl := [Sol SolPl] ,

Gh := [KhSoh Tih]
(4)

and R(s) ∈ �H∞ and R̃(s) ∈ �H∞ are free control-
parameters of K(s) and Ko(s), in the one-parameter
observer-controller configuration of Figure 2.

The solution of Problem 2.1 is compared with stan-
dard MSC using the criterion given by Equation (1). The
standard solution is based on γ -iteration included on the
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MatLab function hinfsyn. This state-space approach was
proposed by Doyle et al. (1989) where the stabilizing con-
troller exists if and only if two algebraic Riccati equations
are positive definite.

Remark 2.1: In the circle model for unstructured uncer-
tainties, �(s), i.e. ‖�(s)‖∞ ≤ m, wherem ∈ �, the worst
case of uncertainties happens at high frequencies (see
Zhou et al., 1996). So, the Small Gain Theorem assures
robust stability if, ‖Tu�y�(s)‖∞ ≤ 1/m at high frequen-
cies, where Tu�y�(s) is the transfer function from the
output of �(s), y�(t), to the input of �(s), u�(t). Since
Tu�y�(s) is K(s)So(s) and Ti(s) for additive and input mul-
tiplicative uncertainty models, respectively, then robust
stability is assured when solving Problem 2.1 if,

‖Gh‖∞ ≤ 1
m

(5)

when both additive and input multiplicative uncertainty
models are expected. If only additive uncertainty mod-
els are expected then robust stability is guaranteed if
‖KhSoh‖∞ ≤ 1/m while this condition for multiplicative
uncertainty models is ‖Tih‖∞ ≤ 1/m.

In the work of Galindo (2016) the results of Galindo
and Conejo (2012) and Galindo (2009) have been exten
ded to proper P(s), in the feedback configuration of
Figure 2, where J is cancelled by the observer into
the dynamic equation of the estimation error, and the
dynamic state equation of P(s) does not depend on J, so,
without loss of generality, the strictly proper part (F,G,H)

of the realization of P(s) is considered, to design the sta-
bilizing controllers. However, the transfer function from
xd(s) to ym(t) is a function of J and has been taken into
account for the I/O decoupling problem in the work of
Galindo (2016). The controller is designed in new coordi-
natesunder the changeofbasisχ(t) := T1x(t)andη(t) :=
T2x(t), in the feedback configuration of Figure 2. Then,
as in Galindo and Conejo (2012), the separation princi-
ple is applied to split the problem, i.e. the controller is
designed for a realization (A, B, In), and the observer is
designed for a realization (Ao, In,Co), in new coordinates,
and are implemented in the feedback configuration of
Figure 2. The mistake in the rows order of T2 of the work
of Galindo and Conejo (2012) was amended in the work
of Galindo (2016) and the correct T2 is used in the present
work.

In the work of Galindo and Conejo (2012), the change
of basis χ(t) := T1x(t) and η(t) := T2x(t) have been used,
where,

T1 =
[

Im −G1G
−1
2

V1�1 Im

]
(6)

and

T2 =
[

�−1
2 −�−1

2 �2V2
H−1
2 H1�

−1
2 Im − H−1

2 H1�
−1
2 �2V2

]
(7)

being V1 := (F12 − G1G
−1
2 F22)−1, �1 := F11 − G1G

−1
2 F21,

�1 := Im + G1G
−1
2 V1�1, V2 := (F21 − F22H

−1
2 H1)

−1, �2

:= F11 − F12H
−1
2 H1 and�2 := Im + �2V2H

−1
2 H1, aregiven

to obtain,

A =
[
0 A12
A21 A22

]
, B =

[
0
Bm

]
, C = [C1 C2] (8)

and

Ao =
[

0 A12o
A21o A22o

]
, Bo =

[
B1
B2

]
, Co = [0 Cm] (9)

that are special structures of the realization of P(s) for the
controller and observer designs, respectively when the
separation principle is applied.

Analytical solutions of right and left coprime factor-
izations (r.c.f . and l.c.f ., respectively) over �H∞ of (sIn −
A)−1B = N(s)D−1(s) = D̃−1(s)Ñ(s) and Co(sIn − Ao)−1 =
No(s)D−1

o (s) = D̃−1
o (s)Ño(s), respectively, and solutions to

the Diophantine equations X(s)N(s) + Y(s)D(s) = I and
Ño(s)X̃o(s) + D̃o(s)Ỹo(s) = I, are given in Appendix that
have been proposed in the works of Galindo (2016) and
Galindo and Conejo (2012), in which Ñ(s) and N(s) are of
first-order rather than the ones of second-order proposed
in the work of Galindo and Conejo (2012). Then, K(s) and
Ko(s) in the feedback configuration of Figure 2 belong
to the set of all controllers that stabilize (sIn − A)−1B and
Co(sIn − Ao)−1, respectively, and the reference controller
Kr(s) are given by the parametrization of all stabilizing
controllers (see Vidyasagar, 1985),

K(s) = D̃−1
k (s)Ñk(s),

Ko(s) = Nko (s)D−1
ko (s) and

Kr(s) = D̃−1
k (s)Q(s)

(10)

where D̃k(s) = Y(s) − R(s)Ñ(s), Ñk(s) = X(s) + R(s)D̃(s),
Nko(s) := X̃o(s) + Do(s)R̃(s) and Dko(s) := Ỹo(s) − No(s)
R̃(s), being R(s) = [R1(s) R2(s)] ∈ �Hm×n∞ ,Q(s) ∈ �Hm×n∞
and R̃(s) = [R̃T1(s) R̃T2(s)]

T ∈ �Hm×n∞ free control parame-
ters, satisfyingdet(D̃k(s)) 
= 0,∀s anddet(Dko(s)) 
= 0,∀ s.
It is shown in Vidyasagar (1985) that ‘almost all’ R(s) and
R̃(s) satisfy det(D̃k(s)) 
= 0, ∀s and det(Dko(s)) 
= 0, ∀ s.

On the other hand, in the work of Glover and McFar-
lane (1989), a normalized left coprime factorization
(n.l.c.f.) of P(s) = D̃−1(s)Ñ(s) is used and is given by,

Lemma 2.1: Let P(s) = C(sI − A)−1B + E with (A, B,C, E)
be a minimal realization. Then, a n.l.c.f . of P(s), D̃−1(s)Ñ(s)
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is,

Ñ(s) = R−1/2C (sI − A − HC)−1 (B + HE) + R−1/2E

D̃(s) = R−1/2C (sI − A − HC)−1 H + R−1/2
(11)

where R := I + EE∗ andH := −(ZC∗ + BE∗)R−1 beingZ> 0
the unique solution of the Generalized Filter Algebraic Ric-
cati Equation (GFARE),

AfZ + ZA∗
f − ZC∗R−1CZ + B

(
I − E∗R−1E

)−1
B∗ = 0 (12)

where Af := A − BE∗R−1C.

In the above Lemma, D̃(s) is square, det(D̃(s)) 
= 0,
∃X̃(s) ∈ �H∞ and Ỹ(s) ∈ �H∞ such that Ñ(s)X̃(s) +
D̃(s)Ỹ(s) = I and Ñ(s)Ñ∗(s) + D̃(s)D̃∗(s) = I. This factor-
ization is equivalent to [Ñ(s) D̃(s)] be co-inner, preserv-
ing the H∞ norm. For n.l.c.f ., the criterion given by
Equation (1) is equivalent to,

inf
K(s)

∥∥∥∥
[

I
K(s)

]
So(s)D̃

−1(s)

∥∥∥∥
∞

(13)

This problem fits into the standard H∞ framework and
can be solved using the standard iterative procedures. An
advantage of electing the n.l.c.f. of Lema 2.1 is that the
problem can be solved exactly and that the computation-
ally expensive iterative procedure can be avoided.

Let (A, B,C, E) be a stabilizable and detectable realiza-
tion of P(s), and Xr ≥ 0 and Z ≥ 0 be unique solutions of
the GFARE and of the Generalized Control Algebraic Ric-
cati Equation (GCARE), respectively, where the GCARE is
given by,

XrAk + A∗
kXr − XrBS

−1B∗Xr + C∗ (
I − ES−1E∗) C = 0 (14)

beingAk := A − BS−1E∗C and S := I + E∗E. Then, themin-
imal value γ ∗ of the criterion (13) is given by Glover
and McFarlane (1989), where the proof is developed,

γ ∗ = 1
εmax

=
√
1 + λmax (ZXr) (15)

This value is useful to compare suboptimal solutions,

εmax =
√
1 − ‖[D̃(s) Ñ(s)]‖2H is the stability margin,

where ‖ · ‖2H is Hankel norm. In the work of Glover
andMcFarlane (1989) it is proved that the robust stability
problemof Equation (13) is reduced to aNehari extension
problem based on co-inner matrices that preserves the
H∞ norm. Then, εmax is gotten by Nehari’s Theorem, that
is, the Hankel norm is solved, assuring that the nearest
unstable system to the stable nominal plant of the Nehari
extension.

For a given value of γ ≥ γ ∗, a solution of an MSC
problem was proposed by Glover and McFarlane (1989)

in state space. However, this solution generally produces
undesired pole-zero cancellations between the plant and
the controller and heavily depends on the election of
weighting functions.

In the next section, a solution to Problem 2.1 is given.

3. Mixed sensitivity

First, asymptotic approximations of So(s) and So(s)P(s)
at low frequencies, and of K(s)So(s) and Ti(s) at high
frequencies, are proposed by,

Lemma 3.1: Consider the plants (sIn − A)−1B and Co(sIn
− Ao)−1 where A and B are given by Equation (8), Ao and
Co are given by Equation (9), the left and right coprime fac-
torizations of these plants and the solutions of theDiophan-
tine equations are given in Appendix. Let R(s) be [R1 R2] ∈
�Hm×n∞ and R̃(s) be [R̃T1 R̃T2]

T ∈ �Hm×n∞ and suppose that
K(s) and Ko(s) are given by Equation (10) and that A21 and
A21o are non-singular matrices. Then, for (sIn − A)−1B,

Sol =
⎡
⎣ 1
a2

A12

(
1
a
R2 − Im

)
A21

0

1
a2

A12

(
1
a
R1 + 1

a2
R2A21A12 − X2

)
Im

⎤
⎦

SolPl =
⎡
⎣ 1
a2

A12

(
Im − 1

a
R2

)
Bm

0

⎤
⎦

KhSoh = B−1
m

[
X1 + (R1 + aR2)A

−1
12 X2 − 1

wh
R1 + R2

]

Tih = 1
wh

B−1
m (X2 + R2) Bm (16)

where X2 = 2aIm + A22. Besides, for Co(sIn − Ao)−1,

Sol = 1
a2

Cm

(
1
a
R̃2 − Im

)
A21oA12oC

−1
m

SolPl =
[
1
a2

Cm

(
Im − 1

a
R̃2

)
A21o 0

]

KhSoh =

⎡
⎢⎣

[
X̃1 + A−1

21o

(
R̃1 + aR̃2

)]
C−1
m(

X̃2 − 1
wh

R̃1 + R̃2

)
C−1
m

⎤
⎥⎦

Tih =

⎡
⎢⎣0

1
wh

[
X̃1 + A−1

21o

(
R̃1 + aR̃2

)]
0

1
wh

(
X̃2 + R̃2

)
⎤
⎥⎦

(17)

where X̃1 = a2A−1
21o + A12o and X̃2 = 2aIm + A22o.

Proof: First, consider the asymptotic frequency approxi-
mations of the sensitivity functions for (sIn − A)−1B. In a
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one-d.o.f . feedback configuration, To(s) = N(s)Ñk(s) (see
Vidyasagar, 1985) then, the low-frequency asymptotic
approximation of So(s) = In − To(s) is Sol = In − NlÑkl ,
where Ñkl = Xl + RlD̃l . So, from Lemma A.1 of Appendix,
	l = (−1/a2)A21A12, X is not a function of frequency and,

Nl :=
1
a2

[
cA12
0

]
, D̃l =

⎡
⎢⎣ 0

−1
a

Im
−1
a

A21
−1
a2

A21A12

⎤
⎥⎦ (18)

Taking Rl = [R1 R2], then the result of Sol given by
Equation (16) follows. From Appendix, Dl := (−1/a2)
B−1
m A21A12, so,

Pl =
[−A−1

21 Bm
0

]
(19)

and the result of SolPl given by Equation (16) follows.
Also, in a one-d.o.f . feedback configuration KhSoh =
D̃−1
kh Ñkh(In − NhÑkh) = D̃−1

kh (In − ÑkhNh)Ñkh, where D̃kh =
Yh − RhÑh and Ñkh = Xh + RhD̃h. From Lemma A.1 of
Appendix, 	h = Im, Y is not a function of frequency and,

D̃h =
⎡
⎣ A−1

12
−1
wh

Im

aA−1
12 Im

⎤
⎦ , Ñh = 1

wh

[
0
Bm

]
(20)

wherewh is a fixed frequency in thehigh-frequencyband-
width of P(s). Taking Rh = [R1 R2],

D̃kh =
(
Im − 1

wh
R2

)
Bm and

Ñkh =
[
X1 + (R1 + aR2)A

−1
12 X2 − 1

wh
R1 + R2

] (21)

Hence, ÑkhNh = (1/wh)(X2 + R2) and D̃−1
kh (Im − ÑkhNh)

= B−1
m at high frequencies, where Nh = [ 0

(1/wh)Im ]. So,
the result of KhSoh given by Equation (16) follows. From
Equation (20),

Ph =
⎡
⎣ 0

1
wh

Bm

⎤
⎦ (22)

and the result of Tih = KhSohPh given by Equation (16) fol-
lows. Second, consider the asymptotic frequency approx-
imations of the sensitivity functions for Co(sIn − Ao)−1.
In a one-d.o.f . feedback configuration (see Vidyasagar,
1985), Sol = DkolD̃ol , where Dkol = Ỹol − NolR̃l . So, from
LemmaA.2 of Appendix,	ol = (−1/a2)A21oA12o, Ỹo is not
a function of frequency and,

Nol = 1
a
[0 Cm] , D̃ol = −1

a2
A21oA12oC

−1
m (23)

Taking R̃l = [R̃T1 R̃T2]
T , then the result of Sol given by

Equation (17) follows. From Appendix, Ñol = (1/a2)[A21o

0], so,

Pol = Cm
[
−A−1

12o 0
]

(24)

and the result of SolPol given by Equation (17) fol-
lows. Also, in a one-d.o.f . feedback configuration KhSoh =
NkohD̃oh, where Nkoh = X̃o + DohR̃oh. From Lemma A.2 of
Appendix,	oh = Im, X̃o is not a function of frequency and,

D̃oh = C−1
m ,Doh =

⎡
⎣ A−1

21o aA−1
21o−1

wh
Im Im

⎤
⎦ (25)

Taking R̃oh = [R̃T1 R̃T2]
T , so, the result of KhSoh given by

Equation (17) follows. In a one-parameter configuration
Tih = NkohÑoh and from Appendix,

Ñoh =
[
0

1
wh

Im

]
(26)

Hence, the result of Tih givenby Equation (17) follows. �

The elements (1, 1) of Sol and SolPl into Equation (16)
of Lemma 3.1 can beminimized using the control param-
eters R2 or a, however, the element (2, 2) of Sol into
Equation (16) has a maximum value. For this reason in
what follows the velocity entries of the state input refer-
ence are set to zero. A solution to the restriction equation
‖Gl‖∞ = ‖Gh‖∞ of Equation (1) into Problem 2.1, when
the velocity entries of the state input reference are zero,
is proposed by,

Theorem 3.2: Consider the plant P(s) = H(sIn − F)−1G +
J ∈ �p×m in the one-parameter observer-controller config-
uration of Figure 2, under Assumptions A1 to A4 and the
change of basis χ(t) := T1x(t) and η(t) := T2x(t)where T1
and T2 are given by Equations (6) and (7). Let the state input
reference be xd(t) = [yd(t) 0]T , R(s) be [0 rIm] ∈ �Hm×n∞
and R̃(s) be [0 roIm]T ∈ �Hm×n∞ , where r ∈ � and r̃ ∈ �,
and suppose that K(s) and Ko(s) are given by Equation (10)
and that A21 and A21o are non-singular matrices. Then, the
optimal values of r and ro are,

r∗ = a (b1 − b3)

b2 − b3 + b1

r∗o =
a

(
b̃1 − b̃3

)
b̃2 − b̃3 + b̃1

(27)

where 0 < a ∈ �,

b1 := 1
a2

‖A12 [−A21 Bm]‖∞

b2 :=
∥∥∥∥B−1

m

[
2a2A−1

12 + A21
1
wh

(3aIm + A22) Bm

]∥∥∥∥∞
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b3 :=
∥∥∥∥B−1

m

[
X1

1
wh

X2Bm

]∥∥∥∥∞

b̃1 := 1
a2

∥∥CmA21o [−A12oC
−1
m Im

]∥∥∞

b̃2 :=

∥∥∥∥∥∥∥∥

⎡
⎢⎢⎣

(
2a2A−1

21o + A12o
) [

C−1
m

1
wh

Im

]

(3aIm + A22o)

[
C−1
m

1
wh

Im

]
⎤
⎥⎥⎦

∥∥∥∥∥∥∥∥∞

b̃3 :=

∥∥∥∥∥∥∥∥

⎡
⎢⎢⎣
X̃1

[
C−1
m

1
wh

Im

]

X̃2

[
C−1
m

1
wh

Im

]
⎤
⎥⎥⎦

∥∥∥∥∥∥∥∥∞

(28)

being X1 = a2A−1
12 + A21, X2 = 2aIm + A22, X̃1 = a2A−1

21o +
A12o and X̃2 = 2aIm + A22o. Moreover,when r is r∗,

‖Gl‖∞ = ‖Gh‖∞

= 1
a2

∥∥∥∥ b2
b2 − b3 + b1

A12 [−A21 Bm]

∥∥∥∥∞
(29)

where Gl := [Sol SolPl],Gh := [KhSoh Tih] andwhen ro is r∗o ,

‖Gl‖∞ = ‖Gh‖∞

= 1
a2

∥∥∥∥∥ b̃2

b̃2 − b̃3 + b̃1
CmA21o

[−A12oC
−1
m Im

]∥∥∥∥∥∞
(30)

Proof: First, consider the restriction equation of the sen-
sitivity functions for (sIn − A)−1B. Since R(s) be [0 rIm]
and the input reference is xd(t) = [yTd(t) 0]T , then only
the elements (1, 1) of Sol and KhSoh that are given by
Equation (16) of Lemma 3.1, are considered to minimize
the criterion given by Equation (3), that is,

Gl = 1
a2

(
1 − r

a

)
A12 [−A21 Bm] ,

Gh = B−1
m

[
X1 + arA−1

12
1
wh

(X2 + rIm) Bm

] (31)

Hence, when r = 0, b1 = ‖ limr→0 Gl‖∞ and b3 =
‖ limr→0 Gh‖∞, and when r = a, b2 = ‖ limr→a Gh‖∞.
Due to the entries of Gl and Gh are real, their norms
behave as straight lines that have an intersection point
since limr→a Gl = 0. So, the equation of restriction ‖Gl‖∞
= ‖Gh‖∞ has a solution in the intersection point of the
two straight lines of Figure 3, that is,

b1 − b1
a
r∗ = b3 + b2 − b3

a
r∗ (32)

this implies the result of r∗ given by Equation (27).
Second, consider the restriction equation of the sensi-

tivity functions for Co(sIn − Ao)−1. Since R̃(s) be [0 roIm]T ,

Figure 3. Intersection function for one-d.o.f . feedback
configuration.

from Lemma 3.1 and Equation (3),

Gl = 1
a2

(
1 − ro

a

)
CmA21o

[−A12oC
−1
m Im

]
,

Gh =
⎡
⎣

(
X̃1 + aroA

−1
21o

) [
C−1
m

1
wh

Im
]

(
X̃2 + roIm

) [
C−1
m

1
wh

Im
]

⎤
⎦ (33)

So, when ro = 0, b̃1 = ‖ limro→0 Gl‖∞ and b̃3 = ‖ limro→0

Gh‖∞, andwhen ro = a, b̃2 = ‖ limro→a Gh‖∞. The norms
of Gl and Gh have an intersection point since limro→a

Gl = 0. So, the equation of restriction ‖Gl‖∞ = ‖Gh‖∞
has a solution in the intersection point of the two straight
lines of Figure 3, replacing b1, b2, b3, r, r∗, Gl and Gh by b̃1,
b̃2, b̃3, ro, r∗o ,Gl andGh, respectively. This implies the result
of r∗o given by Equation (27). The results of Equations (29)
and (30) follows directly substituting r∗ and r∗o . �

The solution given by Theorem 3.2 is not unique.
Another selection can be done, for instance, R(s) be
[−A21A12 − (ar + a2)Im rIm] ∈ �Hm×n∞ and similarly for
R̃(s). From Lemma 3.1, these elections simplify the terms
X1 + (R1 + aR2)A

−1
12 and X̃1 + (R̃1 + aR̃2)A

−1
12o of the sen-

sitivity functions to zero, that could be desirable for some
specific applications.

Remark 3.1: The values of ‖Gl‖∞ and ‖Gh‖∞ that are
given by Equations (29) and (30) of Theorem 3.2 depend
mainly on the value of a. These norms are of order 1/a2,
so, increasing the value of a leads to a solution of Prob-
lem 2.1. Also, as the value of a is increased, for a certain
value of a the conditions of robust stability of Remark 2.1
are accomplished. However, the location of the closed-
looppoles are at−a, hence, as thevalueofa increases, the
speed of the output response and the closed-loop low-
frequency bandwidth are increased that could amplify
dm(t) and u(t), leading to control saturation. Thus, a com-
promise exists between these closed-loop requirements
and the minimization of criterion (3).
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A useful result for the selection of the value of a is,

Corollary 3.3: Under the assumptions and definitions of
Theorem 3.2. If a2‖A−1

12 ‖∞ � ‖A21‖∞ and a4‖B−1
m A−1

12 ‖∞
� ‖A12[−A21 Bm]‖∞, then,

a∗ ∼=
√

2
γ ∗ ‖A12 [−A21 Bm]‖∞ (34)

where γ ∗ is given by Equation (15).

Proof: If a2‖A−1
12 ‖∞ � ‖A21‖∞ then X1 ∼= a2A−1

12 and
from Equation (29),

‖Gl‖∞ ∼=
∥∥∥∥ 1
a2 + �

A12 [−A21 Bm]

∥∥∥∥∞
(35)

where

� := ‖A12[−A21 Bm]‖∞ − a4‖B−1
m A−1

12 ‖∞
2a2‖B−1

m A−1
12 ‖∞

.

Since a4‖B−1
m A−1

12 ‖∞ � ‖A12[−A21 Bm]‖∞, then,

‖Gl‖∞ ∼= 2
a2

‖A12 [−A21 Bm]‖∞ (36)

So, the result follows equating this equation to γ ∗. �

The solution of Theorem 3.2 assures strong stability,
when P(s) satisfies the p.i.p., as shown by,

Corollary 3.4: Under the assumptions and definitions of
Theorem 3.2, suppose that P(s) satisfies the p.i.p., r be r∗ and
ro be r∗o ,where r∗ and r∗o aregivenbyEquation (27). Then, the
characteristic polynomials of the stabilizing controllers K(s),
Kr(s) and Ko(s) given by Equation (10) are Hurwitz.

Proof: If P(s) satisfies the p.i.p., then a stable controller
exists among the set of all stabilizing controller (see
Vidyasagar, 1985). The characteristic polynomials of the
stabilizing controllers are,

det
(
D̃k(s)

)
= det

(
Y(s) − R(s)Ñ(s)

)
and

det (Dko(s)) = det
(
Ỹo(s) − No(s)R̃(s)

) (37)

where Y(s), Ñ(s), Ỹo(s) and No(s) are given in Appendix,
and R(s) ∈ �H∞ and R̃(s) ∈ �H∞ are free control-
parameters. From Theorem 3.2, R(s) and R̃(s) are [0 rIm]

and [0 roIm], respectively. So, from Appendix,

det
(
D̃k(s)

)
= det

(
s + a − r

s + a
Bm

)

= det
(
s + a − r

s + a
Im

)
det (Bm) and

det (Dko(s)) = det
(
s + a − ro
s + a

Cm

)

= det
(
s + a − ro
s + a

Im

)
det (Cm) (38)

Since Bm and Cm are non-singularmatrices, then the char-
acteristic equations of K(s), Kr(s) and Ko(s) are,

(s + a − r)m = 0 and

(s + a − ro)
m = 0

(39)

Since r is r∗ and ro is r∗o , then the characteristic polynomials
of K(s), Kr(s) and Ko(s) are Hurwitz if a − r∗ > 0 and a −
r∗o > 0. Hence, from Equation (27),

a − r∗ = ab2
b2 − b3 + b1

and

a − r∗o = ab̃2

b̃2 − b̃3 + b̃1

(40)

From Theorem 3.2, a>0 is selected and due to the fact
that b2 > 0, b1 > 0, b2 > b3, b̃2 > 0, b̃1 > 0 and b̃2 > b̃3,
then the result follows. �

The results are analysed for the reference tracking con-
trol problem in the next section and are illustrated by a
simulation example of a two cart system in Section 5.

4. Reference tracking control

The one-parameter observer-controller configuration of
Figure 2 is replaced by a two-parameter observer-
controller configuration as shown in Figure 4. The con-
troller Kr(s) ∈ �m×p is used to improve the regulation
or tracking, and the controller K(s) satisfies closed-
loop requirements solving the MSC problem applying
Theorem 3.2. In this work Kr(s) is used to solve the
reference tracking control problem. If Kr(s) is unsta-
ble, it is required to implement into the loop the
common coprime denominator of K(s) and Kr(s) (see
Vidyasagar, 1985). Using the results of Section 3 the con-
trollers are stable and strong stability is assured if P(s)
satisfies the p.i.p. (see Corollary 3.4).

In a two-d.o.f . feedback configurationTo(s) = N(s)Q(s)
(see Vidyasagar, 1985). Let the input reference be
xd(t) = [yTd(t) 0]T , so, at low frequencies, from
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Figure 4. Two-parameter observer-controller configuration.

Equation (18),

Tl = 1
a2

[
A12
0

]
Ql (41)

The selection,

Ql = a2A−1
12 ∈ �Hm×m

∞ (42)

solves the reference tracking control problem.
On the other hand, using the lower Linear Fractional

Transformation Fl(P̃(s), K(s)) := P̃11(s) + P̃12(s)K(s)(I −
P̃22(s)K(s))−1P̃21(s), the criterion (1) can be rewritten as
minK(s) ‖Fl(P̃(s), K(s))‖∞ where,

P̃11(s) :=
[
I P(s)
0 0

]
P̃12(s) :=

[−P(s)
I

]

P̃21(s) := [I P(s)] P̃22(s) := −P(s)

(43)

in the general control scheme of Figure 5 where the
transfer function from d(t) := [dT1(t) dT2(t)]

T to z(t) :=
[zT1(t) zT2(t)]

T is Fl(P̃(s), K(s)). Using the state space real-
ization of P(s), (F,G,H, J, ), a state space description of the
generalized plant P̃(s) is,

ẋ(t) = Fx(t) + [0 G − G] ṽ(t)

z1(t) = Hx(t) + [I J − J] ṽ(t)

z2(t) = [0 0 I] ṽ(t)

ym(t) = z1(t)

(44)

where ṽ(t) := [dT1(t) dT2(t) uT (t)]T . This state space des
cription is used into the MatLab function hinfsyn select-
ing γ ∗ given by Equation (15) as the lower bound
of γ and the method based on two Riccati equa-
tions. The control objective is that z1(t) = ym(t) tracks
the input reference d2(t) = yd(t) in stationary state. So,
a gain 
 is added in the feedback configuration of
Figure 5. Let (Fcl ,Gcl ,Hcl , Jcl , ) be the closed-loop state-
space description gotten by hinfsyn MatLab function,
then the closed-loop transfer function at stationary state

Figure 5. General control scheme for the criterion (1).

Figure 6. Two cart system.

is Pclss = −HclF
−1
cl Gcl + Jcl ∈ �p×n. Let Pclss be block par-

titioned as Pclss := [P1 P2] where P1 ∈ �p×m and P2 ∈
�p×m and suppose that P2 is a non-singular matrix.
Hence,


 = P−1
2 (45)

In the following section, the results are illustrated by a
simulation example of a two cart system.

5. Example of a two cart system

A state-space realization of the two-cart system shown in
Figure 6 is,

F =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1 0
0 0 0 1

−k

m1

k

m1

−b

m1

b

m1
k

m2

−k

m2

b

m2

−b

m2

⎤
⎥⎥⎥⎥⎥⎥⎦

G =

⎡
⎢⎢⎢⎢⎢⎣

0 0
0 0
1
m1

0

0
1
m2

⎤
⎥⎥⎥⎥⎥⎦

H =
[
1 0 0 0
0 1 0 0

]
(46)

where x(t) := [x1(t) x2(t) ẋ1(t) ẋ2(t)]T is used as the
state, u(t) = [u1(t) u2(t)]T is used as the plant input, m1

and m2 are the mass, k1 and k2 are the stiffness coeffi-
cients, and b1 and b2 are the friction coefficients.

This system is controllable, observable and satis-
fies n = 2m. Besides, the poles of H(sI − F)−1G + J are
−0.2917 ± 2.8720i, 0 and 0, and does not have transmis-
sion zeros, so, P(s) satisfies the p.i.p. Notice that G2 is a
nonsingular matrix and using T1 from Equation (6) keeps
the same realization of Equation (46), so, the stabilizing
controllers K(s) and Kr(s) of Figures 2 and 4 are obtained
from Appendix and Equation (10). Since H2 is a singular
matrix, this system requires the similarity transformation
T3 = [ 0 Im

Im 0 ] before applying T2 from Equation (7). After
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applying T2T3, the stabilizing controller Ko(s) is obtained
from Appendix and Equation (10). Simulations were real-
ized on the two-parameter observer-controller configura-
tion of Figure 4 using MatLab-Simulink and considering
k = 10 N/m, b = 0.7 N s/m, m1 = 2 Kg and m2 = 3 Kg,
the initial condition x(0) = 0 and desired state reference,
xd = [2 3 0 0]T , where the velocity references are set to
zero to apply Theorem 3.2.

The solutions of the equations GCARE and GFARE that
are given by Equations (14) and (12) are,

Xr =

⎡
⎢⎢⎣
1.1906 0.6199 0.8384 1.1562
0.6199 2.0371 1.1811 1.8144
0.8384 1.1811 1.8408 2.6282
1.1562 1.8144 2.6282 4.0714

⎤
⎥⎥⎦ and

Z =

⎡
⎢⎢⎣
0.4602 0.4380 0.2018 0.2020
0.4380 0.4524 0.1977 0.1983
0.2018 0.1977 0.2903 0.1059
0.2020 0.1983 0.1059 0.2261

⎤
⎥⎥⎦

(47)

respectively. So, from Equations (15) and (34),

γ ∗ = 2.6099 and a∗ ∼= 2.8366 (48)

respectively. A sub-optimal controller is used selecting,

γ = γ ∗ + 0.01 (49)

Let sysG be the state-space realization of P̃(s) given by
Equation (44), then the state-space realization of the con-
troller K1 is obtained by the MatLab function,

[K1,CL1,GAM1, INFO1]

= hinfsyn
(
sysG,m,m,′ GMAX ′, γ ,′ GMIN′, γ ∗,

′METHOD′,′ ric′
)

(50)

where CL1 is the closed-loop state-space realization. This
controller is implemented on the control scheme of

Table 1. Optimal values for MSC.

a = 0.75 a = 1.8 a = a∗

r∗ = −0.0091 r∗ = −2.0233 r∗ = −2.5488
r∗o = 0.3983 r∗o = −1.958 r∗o = −2.015

Figure 5, where 
 is given by Equation (45), and com-
pared with the stabilizing controller of Appendix where
the free control parameters solve MSC and reference
tracking control problems in the observer-controller con-
figurations of Figures 2 and 4, respectively.

Selectingwh = 300 and applying Theorem 3.2, Table 1
shows the results of MSC problem for a = 0.75, a = 1.8
and a = a∗ in the intersection of the norms of ‖Gl‖∞
and ‖Gh‖∞ that are given by Equations (29) and (30) of
Theorem 3.2.

The free control parameter of Kr(s) is selected from
Equation (42).

Figures 7–10 show the results, under additive distur-
bances dm(t) = sin(300t), t ≥ 0 seg. and do(t) = 1, t ≥
22 seg.. As expected stability is guaranteed and the sta-
bilizing controllers are stable. The outputs track the
input references with a very ‘small’ stationary state error
when the proposed controller is applied while the out-
puts of the hinfsyn MatLab function oscillate more at
the beginning than the proposed controller. Both con-
trollers require the same amount of energy at stationary
state as shown in Figures 9 and 10. Also, according to
Remark 3.1, the time response decrease, the closed-loop
low-frequency bandwidth increase, and the overshoot
of the inputs u1(t) and u2(t) is ‘bigger’ as the value of
a increase for the proposed controller. Also, the perfor-
mance is improved due to the solution of the MSC prob-
lem, as shown in Figures 7–10. The additive disturbance
dm(t) is attenuated and remains as very ‘small’ oscillations
at the outputs in Figures 7 and 8 and more noticeable at

Figure 7. Output y1(t) applying the MSC controller with the control parameters a = 0.75, a = 1.8 and a = a∗, and compared with the
γ -iteration controller based on Riccati (ric) solution.
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Figure 8. Output y2(t) applying the MSC controller with the control parameters a = 0.75, a = 1.8 and a = a∗, and compared with the
γ -iteration controller based on Riccati (ric) solution.

Figure 9. Input u1(t) applying the MSC controller with the control parameters a = 0.75, a = 1.8 and a = a∗, and compared with the
γ -iteration controller based on Riccati (ric) solution.

Figure 10. Input u2(t) applying the MSC controller with the control parameters a = 0.75, a = 1.8 and a = a∗, and compared with the
γ -iteration controller based on Riccati (ric) solution.
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the control laws in Figures 9 and 10. The amplitude of
these oscillations is bigger for the γ -iteration controller.
The additive disturbance do(t) is attenuated recover-
ing the values at stationary state after a certain time as
shown in Figures 7 and 8. As expected the MSC gen-
erates smooth trajectories. Since the closed-loop poles
are located at −a, as the value of a increases the time
response decreases and the magnitude of the control
input is increased at the beginning of the simulation.

6. Conclusions

A solution to a non-iterative Mixed Sensitivity Control
(MSC) problem is proposed. The problem is transformed
into an optimization problem without restrictions affine
to the free control parameter. TheH∞ norms of the sen-
sitivity functions in low frequencies are minimized sub-
ject to an algebraic equation of restriction that assigns
the same value to the H∞ norms of the sensitivity func-
tions at low and high frequencies. The results are com-
pared with standard MSC based on γ -iteration and Ric-
cati equations available at MatLab hinfsyn function. The
results show that the optimal stability margin proposed
by Glover and McFarlane (1989) is very useful to tune
the proposed stabilizing controllers and the iterative con-
troller. Both control techniques achieve ‘good’ perfor-
mance, the trajectories are smooth with ‘small’ control
energy and assure very ‘small’ stationary state error under
additive output andmeasurement disturbances. Also, the
proposed MSC assures stable controllers and low com-
putational effort that is useful for on-line control imple-
mentation. The proposed solution can be further used for
control problems like linear parametric varying control or
fault-tolerant control.
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Appendix. Analytical solutions of Galindo (2016)
and Galindo and Conejo (2012)

l.c.f . and r.c.f . of (sIn − A)−1B and solution of X(s)N(s) +
Y(s)D(s) = I are given by,

Lemma A.1: Consider the state space realization given by Equa
tion (2) satisfyingassumptionsA1 toA5,under the changesofbasis
T1 and T2 given by Equations (6) and (7), in the feedback config-
uration of Figure 4. Suppose that A12 ∈ �m×m, A21 ∈ �m×m and
Bm ∈ �m×m are non-singular matrices, 0 < a ∈ �, then a l.c.f . of
(sIn − A)−1B over�H∞ is (seeGalindo, 2016),

D̃ (s) :=
⎡
⎣ s

(s + a)
A−1
12

−1

(s + a)
Im

a	(s)A−1
12 	(s)

⎤
⎦ ,

Ñ(s) := 1
s + a

[
0
Bm

] (A1)

where 	(s) := (1/(s + a)2)(s2Im − A22s − A21A12). A r.c.f . over
�H∞ of (sIn − A)−1B is (seeGalindo & Conejo, 2012),

N (s) := 1
(s + a)2

[
A12
sIm

]
, D (s) := B−1

m 	(s), (A2)

where0 < a ∈ �. Also, inGalindo and Conejo (2012)a solution to
XN(s) + YD(s) = Im over�H∞ is,

X := [X1 X2] ∈ �Hm×n
∞ , Y := Bm, (A3)

where X1 := a2A−1
12 + A21 and X2 := 2aIm + A22.

l.c.f . and r.c.f . of Co(sIn − Ao)−1 and solution of Ño(s)X̃o(s) +
D̃o(s)Ỹo(s) = I are given by,

Lemma A.2: Consider the state space realization given by Equa
tion (2) satisfyingassumptionsA1 toA5,under the changesofbasis
T1 and T2 given by Equations (6) and (7), in the feedback config-
uration of Figure 4. Suppose that A12 ∈ �m×m, A21 ∈ �m×m and
Bm ∈ �m×m are non-singular matrices, 0 < a ∈ �, then a r.c.f . of
Co(sIn − Ao)−1 over�H∞ is (seeGalindo, 2016),

No(s) := 1
s + a

[0 Cm] ,

Do(s) :=

⎡
⎢⎣

s

s + a
A−1
21o aA−1

21o	o(s)

−1
s + a

Im 	o(s)

⎤
⎥⎦

(A4)

where 	o(s) := (1/(s + a)2)(s2Im − A22os − A21oA12o). A l.c.f .
over�H∞ of Co(sIn − Ao)−1 is (seeGalindo & Conejo, 2012),

D̃o(s) := 	o(s)C
−1
m , Ño(s) := 1

(s + a)2
[A21o sIm] , (A5)

where0 < a ∈ �. Also, inGalindo and Conejo (2012)a solution to
Ño(s)X̃o + D̃o(s)Ỹo = Im over�H∞ is,

X̃o :=
[
X1o
X2o

]
∈ �Hn×m

∞ , Ỹo := Cm (A6)

where X1o := a2A−1
21o + A12o and X2o := 2aIm + A22o.
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