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Abstract

This thesis presents the fruit of 3 years of research. During this time 3 works were deve-

loped, each one with its own mathematical formulations and results. These works are, of

course, related to each other and will be further developed in the near future.

The first work of this thesis is presented in chapter 1 and addresses the problem

of defining an optimality criterion for a semi-public company in a semi-mixed duopoly

model. Here, we have two agents competing, the semi-public company and a private firm,

both producing a homogeneous good to satisfy the demand in the market. The private

firm, as usual, seeks to maximize its net profit, while the semi-public company has a

commitment to watch over the economy of the population, but at the same time, does

not neglect its own profit. The compromise between these two objectives for the semi-

public company is described by a parameter β ∈ (0, 1], where β → 0 represents that the

semi-public company thinks only for its own net profit, and β = 1 represents that the

semi-public company cares solely for the economy of the population without seeking its

own benefit.

This kind of semi-mixed oligopoly model has been considered before, but only dealing

with a fixed parameter β. In our research, we studied the behavior of the consistent

conjectural variations equilibrium (CCVE), the Cournot-Nash equilibrium and the perfect

competitions equilibrium (the most important types of equilibrium for classic and mixed

oligopoly models), as functions of β. After analyzing the results, we develop an optimality

criterion for the socialization level that allows the semi-public company to take care of

the population’s economy, as well as its own profit.

These results are already published in Kalashnikov-Jr et al. (2017).

In the classic and mixed oligopoly model, in order to define the CCVE, two types

of demand must be contemplated, the passive demand that depends upon the price of

the product in the market, and an active demand that is independent of the price. This

assumption is essential to define the consistency of the conjectural variations equilibrium

(CVE). However, this is a disadvantage when defining the consistency of the CVE for

vii
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other kinds of market models (e.g. human migration and financial market models) where

the notion of active demand doesn’t exist.

This obstacle can be overcome thanks to the results obtained in the second work

of this thesis presented in chapter 2. In this second work, a classic oligopoly market is

considered (i.e. the is only private firms in the market which maximize their own net

profit), presenting the results for the consistency of the CVE (similar to the results of

the first work for the CCVE in the semi-mixed duopoly model). In addition, the classic

oligopoly market is modeled in another way, as a bilevel multi-leader-follower game where

the leaders and followers in both levels are the same private firms of the original oligopoly

model. In this formulation for the classic oligopoly market as a bilevel game, the strategies

for the agents in the lower-level are their output volumes of the product in the market while

their strategies in the upper-level are their conjectural variations. It is shown that for any

strategy profile for the upper-level, there exists a unique lower-level Nash equilibrium,

which implies that the upper-level game is well defined. This upper-level game is then

named the meta-game. Finally, it is shown that (under certain assumptions) a strategy

profile of conjectural variations is a Nash equilibrium for the meta-game if, and only if,

these conjectural variations are consistent for the original oligopoly model.

This result creates a bridge between two different concepts, the CCVE and the

Nash Equilibrium, which also gives us the idea of how to define the CCVE in other types

of market models (without the need of an active demand), as the solution of a bilevel

multi-leader-follower game.

These results are already published in Kalashnikov et al. (2019), Kalashnykova et al.

(2016), Kalashnikov, Kalashnykova and Flores-Muñiz (2018b) and presented in the follo-

wing conferences:

V Congreso Nacional de la Sociedad Mexicana de Investigación de Operaciones

(SMIO 2016), Guadalajara, México, October 2016.

Variational Inequalities, Nash Equilibrium Problems and Applications (VINEPA

2018), Reggio Calabria, Italy, March 2018.

2nd International Workshop on Bilevel Programming (IWOBIP 2018), Lille, France,

June 2018.

International Conference on Variational Analysis and Nonsmooth Optimization (IC-

VANO 2018), Halle, Germany, 28 June-July 2018.

Although an equivalence is found between the CCVE as the solution of a bilevel

game, the numerical results presented are computed with the theory corresponding to
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the consistency of the conjectural variations, which gives us an efficient way to find the

CCVE. However, an efficient algorithm to find the solution of the proposed meta-game is

yet to be developed.

Thus, for the third work of this thesis, presented in chapter 3, we start to study the

theory required for the construction of efficient algorithms to solve bilevel programming

problems. The problem chosen for this goal was the Tolls Optimization Problem (TOP)

which has one important similarity with the meta-game and is modeled as a linear bilevel

optimization problem where its lower-level is a many-person game.

The linear bilevel formulation of the TOP arises from the assumption that the delay

cost for a single unit to travel through an arc is a constant. However, this assumption is

unrealistic in the presence of congestion. Thus, in this third work of the thesis, we extend

the linear bilevel formulation of the TOP by letting the delay cost be a linear function

depending upon the total amount of drivers traveling along the same arc.

This new assumption leads to a linear-quadratic bilevel formulation for the TOP

where the lower-level is a convex quadratic problem, which is a special case of the more

general convex optimization problem appearing in the lower-level of the meta-game. Thus,

the theory and algorithms developed to solve the linear-quadratic bilevel formulation of

the TOP will be useful in the future to construct an algorithm to efficiently solve the

lower-level of the meta-game.

The efficient solution of the lower-level problem in bilevel optimization is especially

important since its optimal solution is required in order to evaluate the upper-level fun-

ctions.

These results are already published in Kalashnikov, Kreinovich, Flores-Muñiz and

Kalashnykova (2016), Flores-Muñiz et al. (2017), Kalashnikov, Kalashnykova and Flores-

Muñiz (2018a), Kalashnykova, Flores-Muñiz and Kalashnikov (2018), Kalashnykova, Ka-

lashnikov and Flores-Muñiz (2018), Kalashnikov, Flores-Muñiz and Kalashnykova (2016),

Kalashnikov, Flores-Muñiz, Kalashnykova and Kreinovich (2017), Kalashnikov, Flores-

Muñiz and Kalashnykova (2017), Kalashnikov, Flores-Muñiz and Kalashnykova (2018),

Kalashnikov, Kalashnykova and Flores-Muñiz (2018c) and presented in the following con-

ferences:

Congreso Internacional de Loǵıstica y Cadena de Suministro (CiLOG 2016), Yuca-

tan, México, October 2016.

2nd International Conference on Gas, Oil and Petroleum Engineering (GOPE 2018),

Texas, United States, February 2018.
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International Conference on Optimization (SIGOPT 2018), Kloster Irsee, Germany,

March 2018.

2nd International Workshop on Bilevel Programming (IWOBIP 2018), Lille, France,

June 2018.

International Conference on Unconventional Modelling, Simulation and Optimiza-

tion - Soft Computing and Meta Heuristics (UMSO 2018), Kitakyushu, Japan, De-

cember 2018.

Finally, although it is not included in this thesis, an application of this work has

been exposed in the following conferences:

2019 INFORMS-ALIO International Conference, Cancún, México, June 2019.

30th European Conference on Operational Research, Glasgow, United Kingdom,

June 2019.

EUROPT Workshop 2019, Dublin, Ireland, June 2019.

Now, without further ado, we present below the first chapter of the thesis.



Chapter 1

Consistent Conjectural Variations

Equilibrium in a Semi-Mixed

Duopoly

1.1 Introduction

During the last 15 years, researchers in the field of mathematical economics have extensi-

vely and intensively studied mixed oligopoly models. In contrast to the classical oligopoly,

a mixed oligopoly, apart from standard producers who seek to maximize their net pro-

fit, usually includes (at least one) public company trying to optimize another objective

function involving indicators of the firm’s social responsibility. Many such models include

an agent who maximizes the domestic social surplus (cf., Cornes and Sepahvand (2003);

Fershtman (1990); Matsumura (2003); Matsushima and Matsumura (2004); Matsumu-

ra and Kanda (2005)). An income-per-worker function replaces the standard net profit

objective function in some other publications (cf., Ireland and Law (1982); Bonin and

Putterman (1987); Stephen (1982); Putterman (2008)). Other researchers (Saha and Sen-

sarma (2013); Mumcu et al. (2001)) have studied a third kind of mixed duopoly, in which

an exclusive participant aims to maximize a convex combination of its net profit and

domestic social surplus. This work addresses such a company as semi-public.

In many of the aforementioned works, the authors investigated mixed oligopolies by

making use of the classical Cournot-Nash, Hotelling, or Stackelberg models. The notion

of conjectural variations equilibrium (CVE) first introduced by Bowley (1924) and Frisch

(1933) opens another way of the agents’ reaction to the market challenge, which attracts

ever-growing interest on part of the related researchers. In CVE, competitors behave as

follows: each producer selects its most favorable strategy having supposed that every op-

ponent’s action is a conjectural variation function of its own strategical variation. For

example, as Laitner (1980) states, “Although the firms make their output decisions simul-

taneously, plan changes are always possible before production begins”. In other words,

1
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in contrast to the Cournot-Nash approach, here, every company assumes that its choice

of the own output volume will affect her competitors’ reaction. The consequently arising

prediction (or, conjectural variation) function is the central point of conjectural variation

decision-making, or the conjectural variations equilibrium (CVE).

As is mentioned in Figuières et al. (2004) and Giocoli (2005), the notion of CVE has

been the topic of abundant theoretical discussions (cf., Lindh (1992)). Notwithstanding

this, economists have extensively used various forms of CVE to predict the outcome of non-

cooperative behavior in many areas of economics. The literature on conjectural variations

has focused mainly on two-player games (cf., Figuières et al. (2004)) because a serious

conceptual difficulty arises if the number of agents is greater than two (cf., Figuières et al.

(2004); Kalashnikov, Bulavsky, Kalashnykova and Castillo-Pérez (2011)).

In order to overcome conceptual hurdles arising in many-player games, a new tool

was developed in Bulavsky (1997); namely, instead of imposing very restrictive additional

assumptions (like the identity of players in the oligopoly), it was supposed that every

player makes conjectures only about the variations of the market-clearing (equilibrium)

price as a consequence of (infinitesimal) variations of the same player’s output volume.

Knowing the opponents’ conjectures (the influence coefficients), each firm applies a ve-

rification procedure in order to determine whether its influence coefficient is consistent

with those of the remaining agents.

In papers Kalashnikov, Bulavsky, Kalashnykova and Castillo-Pérez (2011) and Ka-

lashnykova et al. (2011), the authors extended the ideas of Bulavsky (1997) to the mixed

duopoly and oligopoly cases, respectively. They defined exterior equilibrium as a CVE

state with the conjectures fixed in an extrinsic manner. This sort of CVE was proved

to exist uniquely, which helped introduce the notion of interior equilibrium as the exte-

rior equilibrium with consistent conjectures (influence coefficients). All these instruments,

the consistency criteria, consistency verification procedures, and existence theorems for

the interior equilibrium were developed and demonstrated in Kalashnikov, Bulavsky, Ka-

lashnykova and Castillo-Pérez (2011) and Kalashnykova et al. (2011).

In the next series of papers, Kalashnikov et al. (2013) and Kalashnikov et al. (2014),

the aforesaid constructions were extended to the case of a semi-mixed duopoly, where

similar to Saha and Sensarma (2013) and Mumcu et al. (2001), the semi-public company

strives to maximize a convex combination of the net profit and domestic social surplus. The

results of numerical experiments with a test model of a market of electricity resembling

that of Liu et al. (2007), both with and without a semi-public producer, showed that the

consumer gains more if the semi-public producer follows the CVE strategy as compared

to the Nash-Cournot equilibrium. Furthermore, in Kalashnikov et al. (2014), the authors
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declared a guess that there must exist such a value of the combination parameter (also

interpreted as the public firm’s socialization level) that brings up the “equivalence” (in

a certain sense) of the consistent conjectural variations equilibrium (CCVE) and the

classical Cournot-Nash one. This equivalence permits a socially responsible municipality

to diminish (cancel) subsidies paid either to the private company (in order to compensate

its losses when following the consistent conjectures) or to the consumers (to reimburse

them the higher retail price of the good if both the competing semi-public firm and the

private company both are stuck to the Cournot-Nash conjectures).

In this chapter, we present mathematically rigorous proofs of the above-mentioned

guess. In other words, we establish the existence of the value of the combination coefficient

(also known as the semi-public enterprise’s socialization level) such that the private pro-

ducer’s profit is the same in the CCVE and Cournot-Nash equilibrium states, which makes

the subsidies from the authorities either to the producer or to the consumers unnecessary.

1.2 Model Specification

Consider a semi-mixed duopoly with two producers where i = 0 is a semi-public company

and i = 1 is a private firm. The companies supply a homogeneous produce under the

expenditure estimated by the cost functions fi(qi), i = 0, 1, where qi ≥ 0 is the output

volume by producer i. The market-clearing supply is specified by a demand (inverse price)

function G = G(p), whose argument p is the price suggested by the suppliers. An active

demand D is nonnegative and independent of the price. The equilibrium between the

demand and supply for a given price p is described by the following balance equality :

q0 + q1 = G(p) +D. (1.1)

We assume the following properties of the model’s data.

A 1.1. The demand function G = G(p) ≥ 0 has finite values for all p ≥ 0, and is

continuously differentiable with G′(p) < 0.

A1.2. For each i = 0, 1, the cost function fi(qi) is quadratic with zero overhead costs,

i.e.,

fi(qi) =
1

2
aiq

2
i + biqi, (1.2)

where

ai > 0, bi > 0, i = 0, 1. (1.3)
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Moreover, it is assumed that

b0 ≤ b1. (1.4)

The private firm i = 1 selects his output q1 ≥ 0 in order to maximize its net profit

function

π1(p, q1) = pq1 − f1(q1), (1.5)

whereas the semi-public company i = 0 decides its output volume q0 ≥ 0 so as to maximize

the convex combination of domestic social surplus and the net profit function

S(p, q0, q1) = β




q0+q1∫

0

p(x)dx− pq1 − f0(q0)


+ (1− β)(pq0 − f0(q0)), (1.6)

where 0 < β ≤ 1.

Here, domestic social surplus involving the integral in (1.6) is usually interpreted

as the money gained by the (domestic) consumer when he/she acquires the good at the

lower price (established in the market) than that expected by him/her before the semi-

public company entered the market (see the more detailed interpretation by the well-

known Japanese mathematicians and economists: Matsumura (2003); Matsushima and

Matsumura (2004); Matsumura and Kanda (2005)).

According to our concept of conjectural variations equilibrium (CVE), we assume

that both producers (semi-public and private) conjecture about variations in the market-

clearing price p as a function of the perturbations in their output quantities. In terms of

the first derivative, the latter assumption might be described by a conjectured dependency

of (infinitesimal) affine variations of the price p upon (infinitely small) perturbations of the

supply quantities qi. Within this framework, the first order optimum condition depicting

equilibrium reduces to the form: for the semi-public company (i = 0)

∂S

∂q0
= p− [βq1 − (1− β)q0]

∂p

∂q0
− f ′

0(q0)




= 0, if q0 > 0,

≤ 0, if q0 = 0.
(1.7)

A similar first order optimality condition for the private producer (i = 1) yields

∂π1

∂q1
= p+ q1

∂p

∂q1
− f ′

1(q1)




= 0, if q1 > 0,

≤ 0, if q1 = 0.
(1.8)
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On that account, in order to predict the (instantaneous) behavior of supplier i, one

need make use of the first order derivative

∂p

∂qi
≡ −νi (1.9)

rather than the (exact) functional dependency of p upon qi. Even more, the latter depen-

dency is extremely hard to estimate in a many-person game with several decision-makers.

Here, the negative sign is applied in order to have nonnegative values of νi. Surely, the

conjectured (first-order) dependency of p upon qi should guarantee the concavity of the i-

th producer’s conjectured profit as a function of its supply, which implies the maximum of

the producer’s revenue. Under the assumption that the cost functions fi(qi) are quadratic

and strictly convex (assumption A1.1), it suffices supposing the coefficient νi (referred to

as the i-th producer’s influence coefficient) to be nonnegative and constant. In this case,

the conjectured dependency of the semi-public company’s objective function variations

upon the production output q0 + η0 has the form

Ŝ(q0 + η0) =β




q0+q1+η0∫

0

p(x)dx− (p− ν0η0)q1 − f0(q0 + η0)




+ (1− β)[(p− ν0η0)(q0 + η0)− f0(q0 + η0)],

(1.10)

while the local maximum condition at η0 = 0 is provided by the relation:




p = −ν0 [βq1 − (1− β)q0] + a0q0 + b0, if q0 > 0,

p ≤ −βν0q1 + b0, if q0 = 0.
(1.11)

Similarly, the private firm’s profit presumes a local dependency upon the production

output q1 + η1 in the form

π̂1(q1 + η1) = (p− ν1η1)(q1 + η1)− f1(q1 + η1), (1.12)

which permits formulating the maximum condition at η1 = 0 as follows:




p = ν1q1 + a1q1 + b1, if q1 > 0,

p ≤ b1, if q1 = 0.
(1.13)

If the producers’ conjectures concerning market-clearing price were assigned exoge-

nously (like it was done in Bulavsky and Kalashnikov (1994) and Bulavsky and Kalashni-

kov (1995)), one might assume the values νi to be functions of qi and p. Notwithstanding
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that, we use the approach from Bulavsky (1997), where the conjectures in the equilibrium

are determined simultaneously with the market-clearing price p and the output volumes qi

by a special verification procedure. In this circumstance, the influence coefficients are the

solution of a nonlinear system of equations found for the equilibrium only. In section 1.4,

such equilibrium state is referred to as interior and is described by the extended vector

(p, q0, q1, ν0, ν1).

1.3 Exterior Equilibrium

In order to describe the verification procedure, we need first to define a more elementary

concept of equilibrium referred to as exterior (cf., Bulavsky (1997) with the parameters

νi assigned exogenously.

Definition 1.1. A vector (p, q0, q1) is named exterior equilibrium for the fixed coefficients

νi ≥ 0, i = 0, 1, if the market is balanced, i.e., equation (1.1) is satisfied, and the optimality

conditions for the semi-public company and private firm, (1.11) and (1.13) respectively,

hold.

In what follows, we are going to consider only the case when the set of producers

with strictly positive output volumes is fixed, i.e., it does not depend upon the values

νi of the influence coefficients. In order to assure this feature, we make the following

assumption:

A1.3. For the price p0 = b1, the following inequality holds:

p0 − b0
a0

< G(p0). (1.14)

The latter assumption, together with A1.1 and A1.2, guarantees that, for all non-

negative values of νi, i = 0, 1, there always exists a unique solution of the optimality condi-

tions (1.11) and (1.13) satisfying the balance equation (1.1), i.e, the exterior equilibrium.

Moreover, the latter three conditions (1.1), (1.11) and (1.13) can hold simultaneously if

and only if p > p0, or equivalently, if and only if qi > 0 for all i = 0, 1.

Lemma 1.1. Let assumptions A1.1-A1.3 be valid. Then, for all nonnegative values of

νi, i = 0, 1, supply values qi are strictly positive (i.e., qi > 0, i = 0, 1) at any exterior

equilibrium if and only if p > p0.

Proof. See appendix A.
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We are now in a position to formulate the main result of this section.

Theorem 1.1. Under assumptions A1.1-A1.3, for any β ∈ (0, 1], D ≥ 0 and νi ≥ 0,

i = 0, 1, there exists uniquely the exterior equilibrium (p, q0, q1) depending continuously

upon the parameters (D, ν0, ν1). The equilibrium price p as a function of these parameters

is continuously differentiable with respect to D and νi, i = 0, 1. Moreover p(D, ν0, ν1) > p0

and
∂p

∂D
=

1

1

(1− β)ν0 + a0
+

ν0 + a0
(1− β)ν0 + a0

(
1

ν1 + a1

)
−G′(p)

. (1.15)

Proof. See appendix A.

1.4 Interior Equilibrium

Now we are in a position to define the concept of interior equilibrium. To do that, we

first describe the procedure of verification of the influence coefficients νi exactly as it was

introduced in Bulavsky (1997). Assume that the system is in the exterior equilibrium

(p, q0, q1) that occurs for some given β, D and νi, i = 0, 1. One of the producers, say k,

k ∈ {0, 1}, temporarily changes its behavior by abstaining from the maximization of its

conjectured objective function, subtracts its produce qk from the total demand and makes

infinitesimal fluctuations around the latter. In mathematical terms, this is equivalent to

restricting the list of producers to the subset I−k = {1−k} with the output qk subtracted

from the active demand and the balance equation restated in the form:

q1−k = G(p) +D − qk. (1.16)

Then, variations of the production output by producer k are equivalent to the co-

rresponding active demand fluctuations in the form

dDk = d(D − qk) = −dqk. (1.17)

If we treat these variations as infinitesimal, we can assume that by observing the

corresponding variations of the equilibrium price in the equilibrium attained among the

remaining participants, producer k can evaluate the derivative of the equilibrium price

with respect to the active demand, i.e, its influence coefficient.

Applying formula (1.15) from theorem 1.1 to calculate the derivatives, one has to

remember that producer k is temporally absent from the equilibrium model, hence, one



Chapter 1. CCVE in a Semi-Mixed Duopoly 8

has to exclude the terms corresponding to i = k from the denominator. Having that in

mind, we obtain the following criterion:

Definition 1.2 (Consistency criterion). In the exterior equilibrium (p, q0, q1), the influen-

ce coefficients νi, i = 0, 1, are named consistent if the following equalities hold:

ν0 =
1

1

ν1 + a1
−G′(p)

(1.18)

and

ν1 =
1

1

(1− β)ν0 + a0
−G′(p)

. (1.19)

We are now ready to define the concept of interior equilibrium.

Definition 1.3. A vector (p, q0, q1, ν0, ν1) is named interior equilibrium if, for the in-

fluence coefficients νi ≥ 0, i = 0, 1, the vector (p, q0, q1) is the exterior equilibrium, and

the consistency criterion is valid for all νi, i = 0, 1.

The conjectural variations equilibrium is called consistent if the corresponding in-

fluence coefficients meet the consistency criterion (definition 1.2).

Theorem 1.2. Under assumptions A1.1-A1.3, there exists the interior equilibrium.

Proof. See appendix A.

Now, express the demand function’s derivative with τ = G′(p), and replace the

consistency conditions (1.18) and (1.19) with the formulas below:

ν0 =
1

1

ν1 + a1
− τ

(1.20)

and

ν1 =
1

1

(1− β)ν0 + a0
− τ

, (1.21)

where τ ∈ (−∞, 0].

When τ → −∞ the solutions of system (1.20) and (1.21) tend the (unique) limit

solution νi = 0, i = 0, 1. For any finite values of τ , we establish the following proposition.
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Proposition 1.1. For all τ ≤ 0, there exists a unique solution νi = νi(τ), i = 0, 1, of

system (1.20) and (1.21), which continuously depends upon τ . In addition, νi(τ) → 0

whenever τ → −∞, and νi(τ) strictly grows and tends to νi(0) as τ → 0, i = 0, 1.

Proof. See appendix A.

1.5 A Special Case: An Affine Demand Function

Assume that the demand function G(p) is affine, i.e.,

G(p) := −Kp+ T, (1.22)

where, K > 0, T > 0.

Under this extra assumption, theorem 1.2 entails the next corollary.

Corollary 1.1. Under assumptions A1.1-A1.3, for all β ∈ (0, 1], the demand function

of type (1.22) implies the uniqueness of the interior equilibrium.

Proof. See appendix A.

This section mainly targets at the study of the behavior (as a function of the parame-

ter β) of the three most popular equilibrium kinds: 1) the consistent conjectural variations

equilibrium (CCVE), 2) the Cournot-Nash equilibrium, and 3) the perfect competition

equilibrium.

1.5.1 Consistent Conjectural Variations Equilibrium

The conjectural variation equilibrium (CVE) is called consistent if the influence coeffi-

cients at the interior CVE meet the consistency principle represented by systems (1.18)

and (1.19).

For all β ∈ (0, 1], corollary 1.1 provides for the existence of the unique interior

equilibrium (p∗(β), q∗0(β), q
∗
1(β), ν

∗
0(β), ν

∗
1(β)). The behavior of the CCVE is described in

the following result:

Theorem 1.3. For the affine demand function G(p) from (1.22), the price p∗(β), the

supply outputs q∗i (β), i = 0, 1, and the influence coefficients ν∗
i (β), i = 0, 1, characterizing

the interior equilibrium, together with total market supply G∗(β) = q∗0(β) + q∗1(β), are



Chapter 1. CCVE in a Semi-Mixed Duopoly 10

continuously differentiable by β ∈ (0, 1]. Furthermore, q∗0(β) and G∗(β) strictly increase,

whereas p∗(β), ν∗
0(β), ν

∗
1(β) and q∗1(β) strictly decrease.

Proof. See appendix A.

1.5.2 Cournot-Nash Equilibrium

Below, we will examine the comportment of the (exterior) Cournot-Nash equilibrium as

a function of the parameter β.

The well-known Cournot-Nash conjecture

ωi =
∂G

∂qi
= 1, i = 0, 1, (1.23)

in the proposed framework is equivalent to the next conjecture:

νi = − ∂p

∂qi
= − 1

G′(p)
= − 1

K
, i = 0, 1. (1.24)

Theorem 1.1 implies that, for all β ∈ (0, 1], there exists uniquely the Cournot-

Nash equilibrium, denoted by (pc(β), qc0(β), q
c
1(β)). The behavior of the Cournot-Nash

equilibrium is described in the following result:

Theorem 1.4. For the affine demand function G(p) described in (1.22), the price pc(β)

and the supply values qci (β), i = 0, 1, from the Cournot-Nash equilibrium, are continuously

differentiable with respect to β ∈ (0, 1]. Moreover, pc(β) and qc1(β) strictly decrease, whe-

reas qc0(β) strictly increase.

Proof. See appendix A.

It is quite evident that the Cournot-Nash equilibrium in our framework does not

satisfy the consistency criterion, i.e., it is not interior (consistent) equilibrium.

1.5.3 Perfect Competition Equilibrium

Now, the comportment of the (exterior) perfect competition equilibrium as a function of

the parameter β will be evaluated.

The perfect competition conjecture

ωi = 0, i = 0, 1, (1.25)
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in our framework is described with the subsequent conjecture:

νi =
∂p

∂qi
= 0, i = 0, 1. (1.26)

For every β ∈ (0, 1], theorem 1.1 guarantees that there exist uniquely the exte-

rior equilibrium implementing the perfect competition. The latter will be represented by

(pt(β), qt0(β), q
t
1(β)). Once more, in order to conduct a comparative study of all three ty-

pes of equilibrium in our affine framework, we will establish the clear-cut formulas for the

perfect equilibrium supplies and price in the next result.

Theorem 1.5. For the affine demand function G(p) described in (1.22), the price pt(β)

and the output volumes qti(β), i = 0, 1, related to the perfect competition equilibrium, are

invariant for all β ∈ (0, 1] and are described by the clear-cut expressions:

pt =
a0b1 + a1b0 + a0a1(T +D)

a0 + a1 + a0a1K
, (1.27)

qt0 =
a1 (G(b0) +D) + (b1 − b0)

a0 + a1 + a0a1K
, (1.28)

qt1 =
a0 (G(b1) +D)− (b1 − b0)

a0 + a1 + a0a1K
. (1.29)

Proof. See appendix A.

Like in the Cournot-Nash case, one can easily see that the perfect competition

equilibrium within our framework does not meet the consistency criterion, thus, it is

non-interior (inconsistent) equilibrium.

1.5.4 Comparison of Consistent CVE with Cournot-Nash and

Perfect Competition Equilibriums

In this subsection, taking advantage of the simple (affine) demand function, we will deduce

some comparative statics results. These are always interesting for evaluating the strong

and weak points of different concepts of more or less similar nature.

Theorem 1.6. For the affine demand function G(p) from (1.22), the price functions

in the CCVE, p∗(β), the Cournot-Nash equilibrium, pc(β), and the perfect competition

equilibrium, pt, satisfy the following inequalities:

pt < ĺım
β→0

p∗(β), (1.30)
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and

p∗(β) < pc(β), ∀β ∈ (0, 1]. (1.31)

Proof. See appendix A.

Inequality (1.30), in general, does not hold when β → 1. The latter is a very cu-

rious result because the perfect competition equilibrium price pt is usually the lowest in

the market while the Cournot-Nash equilibrium price is the highest (as seen in (1.31)).

Moreover, in some cases, it may happen that pt > pc(β) for the values of β near 1 (e.g.,

see table 1.4).

1.5.5 Optimality Criterion for β

In order to find an optimal (in some sense) value for the “socialization” level β of the

semi-public company, we study the behavior of the private firm’s profit function in the

two equilibrium states: CCVE and Cournot-Nash equilibrium.

The function π1(p, q1) given by (1.5) is continuously differentiable with respect to p

and q1, while p∗(β), q∗1(β), p
c(β) and qc1(β), are continuously differentiable with respect

to β. Therefore, for the equilibrium states CCVE and Cournot-Nash, we have that the

private firm’s net profit values,

π∗
1(β) = p∗(β)q∗1(β)−

1

2
a1q

∗
1(β)

2 − b1q
∗
1(β), (1.32)

in the interior equilibrium (CCVE), as well as the similar values

πc
1(β) = pc(β)qc1(β)−

1

2
a1q

c
1(β)

2 − b1q
c
1(β), (1.33)

in the Cournot-Nash exterior equilibrium, are continuously differentiable by β ∈ (0, 1].

Theorem 1.7. The functions π∗
1(β) and πc

1(β) are strictly decreasing with respect to

β ∈ (0, 1]. Moreover, the following inequalities hold:

π∗
1(1) > πc

1(1) (1.34)

and

ĺım
β→0

π∗
1(β) < ĺım

β→0
πc
1(β). (1.35)

Proof. See appendix A.
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Directly from the proof of the last theorem, we conclude that there exists the value β

such that π∗
1(β) = πc

1(β). We now assume that the semi-public firm is socially responsible,

and making use of the subsidy policy, it economically motivates the private firm to change

its Cournot-Nash strategy to the consistent CVE comportment, or pays subsidies to the

consumers to compensate the highest price in the Cournot-Nash equilibrium. The choice

of this parameter β allows the semi-public company not to pay subsidies either to the

private company or to the consumers.

With this idea in mind, we introduce the following definition:

Definition 1.4. The value of the parameter β ∈ (0, 1) such that π∗
1(β) = πc

1(β) is called

optimal socialization level.

From theorem 1.7, it follows immediately that, for the duopoly model considered in

this paper, we can always find the optimal socialization level for the semi-public company.

In other words, the following result has been established above:

Theorem 1.8. Under assumptions A1.1-A1.3, there exists the value of β ∈ (0, 1) such

that π∗
1(β) = πc

1(β). In other words, the optimal socialization level exists.

1.6 Numerical Results

In this section, we rely on the data of the numerical experiments exposed in the work of

Liu et al. (2007). Here, we describe the experiments in more detail.

The inverse demand function is given by

p(G,D) = 50− 0.02(G+D) = 50− 0.02(q0 + q1). (1.36)

Then, solving (1.36) for G+D yields the demand function

G(p) +D = −50p+ 2500. (1.37)

The producers’ cost functions are quadratic and are described by (1.2), where the

values ai and bi are given in table 1.1.

We calculate and compare three types of equilibrium: the consistent conjectural va-

riations equilibrium (CCVE), the Cournot-Nash equilibrium, and the perfect competition

equilibrium. The influence coefficients for the CCVE are determined by equations (1.18)
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i bi ai
0 2.0 0.02
1 1.75 0.0175
2 3.25 0.00834

Table 1.1: Experiments’ input data

and (1.19). For the Cournot-Nash equilibrium, the influence coefficients are given by the

equality (1.24), while for the perfect competition equilibrium, they have the value from

(1.26).

Based on the data of table 1.1, we proceed to perform the numerical experiments

for the following three instances:

Experiment 1.1. Firm i = 0 is public and firm i = 2 is private.

Experiment 1.2. Firm i = 0 is public and firm i = 1 is private.

Experiment 1.3. Firm i = 2 is public and firm i = 1 is private.

In each instance, we handle the following notation for each of the three kinds of

equilibrium: CNE for Cournot-Nash Equilibrium, CCVE for Consistent Conjectural Va-

riations Equilibrium, and PCE for Perfect Competition Equilibrium.

1.6.1 Experiment 1.1

For this instance, firm i = 0 is semi-public and firm i = 2 is private, so the semi-public

firm is stronger than the private firm; that is, the inequality b0 ≤ b1 holds (assumption

A1.2). The numerical results of this experiment are shown in table 1.2.

From the results of table 1.2, we see that the behavior of variables is as described in

the theorems of the previous sections. The numerical results show that, for socialization

levels 0 < β ≤ 0.50, the private firm’s profit is higher in the Cournot-Nash equilibrium

than in the CCVE, but for 0.75 ≤ β ≤ 1, its profit is higher in the CCVE equilibrium than

in the Cournot-Nash. Then, the optimal socialization level lies within the interval 0.50 <

βoptimal < 0.75. Furthermore, as a result of the numerical experiment, the approximate

optimal value βoptimal = 0.55262 is found, for which the private firm’s net profit is almost

the same both in the Cournot-Nash (CNE) and the Consistent Conjectural Variations

Equilibrium (CCVE). The corresponding CCVE (interior equilibrium) is presented as

follows: (p∗, q∗0, q
∗
1, ν

∗
0 , ν

∗
1) = (18.07, 829.5, 766.8, 0.009830, 0.01099). This means that, if

the semi-public company i = 0 accepts its objective function as a mixture of 55% of

domestic social surplus and 45% of its (would-be) net profit, then, the private (foreign)
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ωi = −G′(p)νi
CNE CCVE PCE

β = 0.25

ω0 1.0 0.49870 0.0
ω2 1.0 0.57870 0.0
p 22.609318 19.486879 13.595420
q0 686.424683 710.318787 579.770996
q2 683.109314 815.337402 1240.458008
G 1369.533936 1525.656250 1820.229004
π0 14124.014648 13194.797852 11644.427734
π2 11278.648438 10466.422852 6416.529297

β = 0.50

ω0 1.0 0.49275 0.0
ω2 1.0 0.55480 0.0
p 20.858637 18.324474 13.595420
q0 835.733032 808.190979 579.770996
q2 621.335083 775.585388 1240.458008
G 1457.068115 1583.776367 1820.229004
π0 19391.527344 19203.304688 19927.513672
π2 9331.004883 9183.150391 6416.529297

β = 0.75

ω0 1.0 0.48590 0.0
ω2 1.0 0.52850 0.0
p 18.868885 17.108099 13.595420
q0 1005.430603 911.731628 579.770996
q2 551.125122 732.863464 1240.458008
G 1556.555664 1644.595093 1820.229004
π0 25023.082031 25747.185547 28210.599609
π2 7341.368652 7916.434082 6416.529297

β = 1.0

ω0 1.0 0.47835 0.0
ω2 1.0 0.50000 0.0
p 16.587503 15.846337 13.595420
q0 1200.000122 1020.859924 579.770996
q2 470.624695 686.823181 1240.458008
G 1670.624756 1707.683105 1820.229004
π0 31014.878906 32875.441406 36493.683594
π2 5353.354980 6684.358887 6416.529297

Table 1.2: Results of experiment 1.1
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competitor is indifferent to the choice of the Cournot-Nash or CCVE model to generate its

supply because its net profit is the same in both cases. This can be considered as a win-win

outcome for the local authorities since they need not either subsidize the consumers (in

order to reimburse the higher price of the commodity in the Cournot-Nash equilibrium)

nor pay compensation to the private firm for having accepted the CCVE equilibrium

model (which uses to decrease the private firm’s net profit as compared to that in the

Cournot-Nash equilibrium).

In the previous sections, we made use of assumption A1.2. In the following two

experiments, we will consider the case when this assumption is not met to see how our

model behaves.

1.6.2 Experiment 1.2

In this instance, firm i = 0 is semi-public and firm i = 1 is private, so the semi-public

firm is weaker than the private firm. The numerical results of this experiment are shown

in table 1.3.

The results shown in table 1.3 demonstrate that the variables still behave as des-

cribed in the theorems of the previous sections, even though assumption A1.2 is not

met.

In this second experiment, we have that βoptimal = 0.62905 and its corresponding in-

terior equilibrium is as follows: (p∗, q∗0, q
∗
1, ν

∗
0 , ν

∗
1) = (19.46, 905.4, 627.2, 0.01175, 0.01098).

1.6.3 Experiment 1.3

For this instance, firm i = 2 is semi-public and firm i = 1 is private, so the semi-public

firm now is even weaker than the private firm in comparison to the previous experiment.

Again, we observe that the variables behave according to our model. The numerical results

of this experiment are presented in table 1.4.

For the third instance, we have that βoptimal = 0.80324 and its corresponding interior

equilibrium is as follows: (p∗, q∗0, q
∗
1, ν

∗
0 , ν

∗
1) = (13.33, 1359, 474.8, 0.01099, 0.006886).

From the results of the numerical experiments, we can see that the weaker semi-

public company (as compared to the private company), the closer to 1 its optimal socia-

lization level.
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ωi = −G′(p)νi
CNE CCVE PCE

β = 0.25

ω0 1.0 0.59445 0.0
ω2 1.0 0.59110 0.0
p 23.938864 21.564388 17.181818
q0 711.353699 746.033264 759.090942
q2 591.703064 675.747375 881.818176
G 1303.056763 1421.780640 1640.909180
π0 14790.943359 14083.678711 12493.647461
π2 10065.734375 9393.968750 6804.028809

β = 0.50

ω0 1.0 0.59000 0.0
ω2 1.0 0.56425 0.0
p 22.112148 20.202539 17.181818
q0 851.401917 848.829346 759.090942
q2 542.990601 641.043823 881.818176
G 1394.392578 1489.873169 1640.909180
π0 19596.324219 19344.347656 19225.105469
π2 8476.324219 8233.186523 6804.028809

β = 0.75

ω0 1.0 0.58485 0.0
ω2 1.0 0.53400 0.0
p 20.010050 18.733961 17.181818
q0 1012.562927 960.608276 759.090942
q2 486.934662 602.693542 881.818176
G 1499.497559 1563.301758 1640.909180
π0 24847.169922 25176.449219 25956.564453
π2 6816.779297 7057.777832 6804.028809

β = 1.0

ω0 1.0 0.57895 0.0
ω2 1.0 0.50000 0.0
p 17.565216 17.155014 17.181818
q0 1200.000122 1082.066895 759.090942
q2 421.739105 560.182312 881.818176
G 1621.739258 1642.249268 1640.909180
π0 30578.642578 31659.882813 32688.021484
π2 5113.585938 5883.829590 6804.028809

Table 1.3: Results of experiment 1.2
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ωi = −G′(p)νi
CNE CCVE PCE

β = 0.25

ω0 1 0.57135 0
ω2 1 0.4581 0
p 21.52866 18.10005 13.16771
q0 896.135986 981.770264 1189.17383
q2 527.430908 613.227173 652.440613
G 1423.5669 1594.99744 1841.6145
π0 18097.7637 16920.0293 14375.8008
π2 7997.77197 6735.87891 3724.68872

β = 0.50

ω0 1 0.5625 0
ω2 1 0.41105 0
p 18.86553 16.055681 13.16771
q0 1100.30933 1141.02332 1189.17383
q2 456.414124 556.192444 652.440613
G 1556.72339 1697.21582 1841.6145
π0 24250.3164 23585.2266 22854.6621
π2 5989.02344 5249.89893 3724.68872

β = 0.75

ω0 1 0.5519 0
ω2 1 0.3569 0
p 15.652787 13.826693 13.16771
q0 1346.61963 1318.49219 1189.17383
q2 370.740997 490.173065 652.440613
G 1717.3606 1808.66528 1841.6145
π0 31259.9844 31230.5996 31333.5254
π2 3951.65552 3817.31006 3724.68872

β = 1.0

ω0 1 0.539 0
ω2 1 0.2943 0
p 11.700713 11.425176 13.16771
q0 1649.61206 1515.0188 1189.17383
q2 265.352356 413.722351 652.440613
G 1914.96436 1928.74121 1841.6145
π0 39263.8008 40014.6523 39812.3867
π2 2024.34131 2505.13232 3724.68872

Table 1.4: Results of experiment 1.3
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1.7 Conclusions and Future Research

In this chapter, we presented mathematically rigorous proofs of the conjectures (cf., Ka-

lashnikov et al. (2014)) concerning the behavior of the semi-public company and private

firm of a semi-mixed duopoly of a homogeneous good. The main difference of this work

from the classical duopoly models is in the presence of one producer who maximizes not

its net profit, but the convex combination of the latter with the domestic social surplus.

Moreover, we not only studied the classical Cournot-Nash and perfect competition equi-

libriums in the model, but also the consistent conjectural variations equilibrium (CCVE)

introduced and examined previously by numerous authors.

We demonstrated the existence (and in the case of the affine demand function,

the uniqueness) of the CCVE and provided elements of comparative static analysis by

evaluating the relationships between the equilibrium price and equilibrium production

outputs of both the semi-public and private producers in the aforementioned equilibrium

types.

Finally, the role of the convex combination parameter β ∈ (0, 1] involved in the

definition of the objective function of the semi-public (socially responsible) company was

discussed and investigated. Since this parameter can be considered as reflecting the semi-

public company’s socialization level, we introduced a criterion to estimate its optimal

value, namely, we proposed to admit the value of this parameter as desirable (optimal)

if, for this parameter value, the net profits of the private firm under the CCVE and

the Cournot-Nash equilibrium conditions coincide. It can be reasonable when taking into

account that, with such profit equality, the socially responsible authorities need not pay

any subsidies either to the private producer (to compensate its financial losses if switching

from the Cournot-Nash strategy to the consistent conjectures prevailing in CCVE), or to

the consumers (in the case when the equilibrium price under Cournot-Nash equilibrium

turns out to be much higher than it would be in the consistent conjectural variations

equilibrium, CCVE). Under the additional assumption about the affine nature of the

model’s demand function, the existence of such an optimal parameter value β ∈ (0, 1) is

proven.

The linearity of the demand function is a serious restriction. Hence, one of the aims

for future research is to relax this condition and extend the obtained results to the semi-

mixed duopoly with the demand function being not necessarily affine. The next step of

our research plan is to investigate the role of the socialization level parameter in order to

find its optimal value in the semi-mixed oligopoly, wherein more than one private firms

compete.



Chapter 2

Consistent Conjectural Variations

Coincide with the Nash Solution

in the Meta-Model

2.1 Introduction

As mentioned in chapter 1, the concept of the conjectural variations equilibrium (CVE)

was first proposed by Bowley (1924) and Frisch (1933) to extend the concept of a solution

to a static (Cournot) model (game).

The papers Bulavsky and Kalashnikov (1994, 1995) and the monograph Isac et al.

(2002) introduce and examine a new form of the CVE, in which the conjectural variations

(represented via the influence coefficients of each agent) were used to bring about a new

equilibrium concept distinct from that of Cournot-Nash.

For instance, in Isac et al. (2002), the classical oligopoly model was extended to

the conjectural oligopoly as follows. Instead of the usual Cournot-Nash assumptions, all

producers i = 1, . . . , n, considered the conjectural variations described below:

Gi(qi + ηi) = G+ ηiωi(G, qi). (2.1)

Here, G is the current total quantity of the product cleared in the market, qi and

qi + ηi are, respectively, the present and the expected supplies by the i-th agent, whereas

Gi(qi+ηi) is the total cleared market volume conjectured by the i-th agent as a response to

changing her own supply from qi towards qi + ηi. The conjecture function ωi was referred

to as the i-th agent’s influence quotient (coefficient). Recall that the usual Cournot-Nash

model assumes ωi ≡ 1 for all i = 1, . . . , n. Under general enough assumptions concerning

the properties of the influence coefficients ωi = ωi(G, qi), cost functions fi(qi), and the

inverse demand function (or, price function) p = p(G), new existence and uniqueness

20
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results for the conjectural variations equilibrium (CVE) were obtained. This approach was

further developed in Kalashnikov et al. (2009); Kalashnikov, Cordero and Kalashnikov-Jr

(2010).

An interesting comparison of the Cournot-Nash and Bertrand models is provided

in Kreps and Scheinkman (1983). The Bertrand’s model of oligopoly, which considers the

perfect competition, assumes that: 1) there is a competition over prices; and 2) production

follows the realization of the demand. The authors from Kreps and Scheinkman (1983)

demonstrate that both of these assumptions are required. In more detail, they study a

two-stage oligopoly game where, first, there is a simultaneous production, and, second,

after the production levels are made public, there is a price competition. Under rather

mild assumptions about the demand, the authors show in Kreps and Scheinkman (1983)

that the unique equilibrium is the Cournot-Nash one. This illustrates that solutions to

oligopoly games depend on both the strategic variables employed and the context (game

form) in which those variables are employed.

A different example of a two-stage game can be found in Murphy and Smeers (2005).

Similar studies were presented in the unpublished manuscript Kimbrough et al. (2014)

dealing mainly with forward markets but still providing important insight into the con-

sistent conjectural variations equilibrium regarding the many-stage oligopoly model. The

authors examine the impact of the conjectures about the players’ knowledge on the out-

come of the game, where the outcomes are consistent with their conjectures. Then they

deduce the similar result obtained by Allaz and Vila (1993) on forward markets but under

different assumptions of knowledge from consistent conjectural variations. All the above-

mentioned papers deal in various ways with games with conjectural variations equilibrium

(CVE).

In chapter 1, we brought up the approach proposed in Bulavsky (1997) to define the

consistent CVE, where each agent applies a verification procedure and checks if its influen-

ce coefficient is consistent (compatible) with those of the rest of the agents. Exactly the

same verification formulas were obtained independently (10 years later) in Liu et al. (2007)

establishing the existence and uniqueness of consistent conjectural variation equilibrium

in an electricity market. However, to do that, the authors of Liu et al. (2007) made use of

a much more complicated optimal control technique when searching the system’s steady

states (a similar approach was employed in Driskill and McCafferty (1989)). Moreover, in

Liu et al. (2007), the inverse demand function is linear, and the agents’ cost functions are

quadratic, whereas Bulavsky (1997) allows nonlinear and even non-differentiable demand

functions as well as arbitrary convex cost functions for the agents.
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As shown in chapter 1 and Kalashnikov, Bulavsky, Kalashnykova and Castillo-Pérez

(2011), in general, the consistent conjectures are not the Cournot-Nash conjectures. In

other words, at a consistent CVE, each agent i does not use the Cournot-Nash equilibrium

concept since it does not assume that all other agents are dead set on the (equilibrium)

production volumes qj, j 6= i. In Kalashnikov, Bulavsky, Kalashnykova and López-Ramos

(2017), a meta-model is introduced, in which not the players’ production volumes qi but

their conjectures νi serve as the players’ strategies. The remarkable fact was demonstrated:

the consistent (for the original oligopoly) conjectures ν∗
i , while in general not being the

Cournot-Nash ones for this game, are the optimal Cournot-Nash strategies in the above-

mentioned meta-model. In other words, if each player i assumes that the rest of the

players stick to their consistent CVE conjectures ν∗
j , j 6= i, then, its consistent conjecture

ν∗
i is optimal for player i, too. This means that the vector of (consistent in the original

oligopoly) conjectures (ν∗
1 , . . . , ν

∗
n), coincides with the classical Cournot-Nash equilibrium

in the meta-game. Similar results were claimed (without proof) in Kalashnykova et al.

(2012) but only for quadratic cost functions.

However, since the meta-model allows the agents to select their strategies from R
n,

and this isn’t a compact set, the existence of the Cournot-Nash equilibrium in the meta-

model has to be guaranteed by some extra assumptions (similar difficulties related to the

price equilibrium were run into and overcome by Kress and Pesch (2016)). Under those

assumptions, the complete equivalence of the consistent CVE in the original oligopoly and

the meta-model has been established in this chapter.

2.2 Model Specification

Consider an oligopoly of at least two producers of a homogeneous good with cost functions

fi = fi(qi), i = 1, . . . , n, n ≥ 2, where qi ≥ 0 is the supply by producer i. Consumers’

demand is described by a demand function G = G(p), whose argument p is the market

price established by a cleared market. An active demand D is nonnegative and does not

depend upon the price. The equilibrium between supply and demand for a given price p

is guaranteed by the following balance equality:

n∑

i=1

qi = G(p) +D. (2.2)

We assume the following properties of the model’s data:
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A2.1. The demand function G = G(p) ≥ 0 is defined for p > 0, being strictly decreasing

and continuously differentiable.

A2.2. For each i = 1, . . . , n, the function fi = fi(qi) is defined for every qi ≥ 0, is twice

continuously differentiable, and in addition, the following inequalities hold:

f ′
i(0) > 0 and f ′′

i (qi) > 0, ∀qi ≥ 0. (2.3)

Next, every producer i = 1, . . . , n chooses its output volume qi ≥ 0 so as to maximize

its net profit function:

πi(p, qi) = pqi − fi(qi). (2.4)

Now we postulate that the producers admit that their perturbations in production

volumes may affect the price value p. Thus, the first order maximum condition to describe

the equilibrium will have the form:

∂πi

∂qi
= p+ qi

∂p

∂qi
− f ′

i(qi)




= 0, if qi > 0,

≤ 0, if qi = 0,
i = 1, . . . , n. (2.5)

Therefore, to describe the (infinitesimal) behavior of producer i, it is enough to

conjecture the first order derivative

∂p

∂qi
≡ −νi. (2.6)

The conjectured first-order dependence of p on qi must provide, at least locally,

concavity of the i-th producer’s conjectured profit as a function of its output. As we

suppose that the cost functions fi are strictly convex and strictly increasing, by inequalities

(2.3), then, for all i = 1, . . . , n, concavity of the product pqi with respect to qi would suffice.

Here, it is enough to assume the coefficient νi to be nonnegative and constant. Then, the

conjectured dependence of the profit’s variations upon the production output qi + ηi has

the form:

π̂i(qi + ηi) = (p− νiηi)(qi + ηi)− fi(qi + ηi), (2.7)

which is a concave function on ηi.

Here, it is worthwhile to mention that relation (2.7) does not mean that producer

i exercises its market power. In fact, vice versa, player i is a price-taker: it accepts its

conjectured influence coefficient νi and calculates the expected variation in the market-
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clearing price p (and hence in its net profit) under the infinitesimal variation of its produce

ηi.

Therefore, the maximum necessary condition at ηi = 0 is provided by the relations-

hips 


p = νiqi + f ′

i(qi), if qi > 0,

p ≤ f ′
i(0), if qi = 0,

i = 1, . . . , n, (2.8)

and it is the sufficient condition, too.

Here we use, again, the approach from Bulavsky (1997) and Kalashnykova et al.

(2012), where the conjectured parameters for the equilibrium are determined simultaneo-

usly with the price p and the output values qi in the interior equilibrium state described by

the combined vector (p, q1, . . . , qn, ν1, . . . , νn). Nevertheless, in order to define the interior

equilibrium, we first need to introduce the notion of exterior equilibrium (cf., Bulavsky

(1997)) with the parameters νi assigned in the exogenous form.

2.3 Exterior equilibrium

We define the concept of exterior equilibrium as follows:

Definition 2.1. A vector (p, q1, . . . qn) is called exterior equilibrium for the given influence

coefficients νi ≥ 0, i = 1, . . . , n, if the market is balanced, i.e., equality (2.2) holds, and

for each i = 1, . . . , n, the maximum conditions (2.8) are valid.

From now onward, we are going to consider only the case when the set of really

producing participants is fixed. To guarantee this feature, we make the assumption listed

below.

A2.3. For p0 = max
1≤i≤n

{f ′
i(0)} and any i = 1, . . . , n, there exists a unique (due to A2.2)

supply volume q0i ≥ 0 such that

p0 = f ′
i(q

0
i ), and in addition,

n∑

i=1

q0i < G(p0). (2.9)

Lemma 2.1. Assumptions A2.1-A2.3 imply that for all nonnegative values of νi, i =

1, . . . , n, any exterior equilibrium has its supply values qi strictly positive if and only if

p > p0.
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Proof. cf., Kalashnikov, Bulavsky, Kalashnykova and López-Ramos (2017).

The existence and uniqueness of the exterior equilibrium for any set of (nonnegative)

conjectures (influence coefficients) were established in Bulavsky (1997). However, in the

latter paper, only differentiability of the equilibrium clearing price p with respect to

the active demand D was proven, while in this work, we also need to show that the

same equilibrium price function p = p(D, ν1, . . . , νn) is differentiable by the influence

coefficients, too. Therefore, the following theorem has been proved.

Theorem 2.1. Under assumptions A2.1-A2.3, for any D ≥ 0, νi ≥ 0, i = 1, . . . , n,

there exists uniquely the exterior equilibrium (p, q1, . . . , qn) that depends continuously on

the parameters D ≥ 0, νi ≥ 0, i = 1, . . . , n. The equilibrium price p = p(D, ν1, . . . , νn), as

a function of these parameters, is differentiable with respect to both D and νi, i = 1, . . . , n.

Moreover, p(D, ν1, . . . , νn) > p0, and

∂p

∂D
=

1
n∑

i=1

1

νi + f ′′
i (qi)

−G′(p)

, (2.10)

while

∂p

∂νi
=

qi
νi + f ′′

i (qi)
n∑

k=1

1

νk + f ′′
k (qk)

−G′(p)

> 0, i = 1, . . . , n. (2.11)

Similarly, the equilibrium supply qi = qi(D, ν1, . . . , νn), i = 1, . . . , n, is differentiable with

respect to the influence coefficients νk, k = 1, . . . , n, with the partial derivatives having

the forms:

∂qi
∂νi

= − qi
νi + f ′′

i (qi)




n∑

k=1
k 6=i

1

νk + f ′′
k (qk)

−G′(p)

n∑

k=1

1

νk + f ′′
k (qk)

−G′(p)



< 0, i = 1, . . . , n, (2.12)

and

∂qi
∂νj

=
1

νi + f ′′
i (qi)




qj
νj + f ′′

j (qj)
n∑

k=1

1

νk + f ′′
k (qk)

−G′(p)



> 0, i, j = 1, . . . , n, j 6= i. (2.13)
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Proof. cf., Kalashnikov, Bulavsky, Kalashnykova and López-Ramos (2017).

2.4 Interior equilibrium

Now we are in a position to define the concept of interior equilibrium. To do that, we make

use of the verification procedure for the influence coefficients νi introduced in Bulavsky

(1997). Assume that the system is in the exterior equilibrium (p, q1 . . . , qn) that occurs for

some given D and νi, i = 1, . . . , n. Now, producer k, 1 ≤ k ≤ n, temporarily changes its

behavior by abstaining from maximizing its conjectured profit, subtracts its production

qk from the total demand and makes infinitesimal fluctuations around the latter. This is

tantamount to restricting the model’s producers to the subset I−k := {i | 1 ≤ i ≤ n, i 6=
k} with the output qk subtracted from the active demand with the balance equality

restated in the form:
n∑

i=0
i 6=k

qi = G(p) +D − qk. (2.14)

Variations of the production output by producer k are, then, equivalent to the active

demand fluctuation in the form dDk := d(D− qk) = −dqk. If we treat these variations as

infinitesimal, producer k can evaluate the derivative of the equilibrium price with respect

to the active demand, i.e., their influence coefficient.

Applying formula (2.10) from theorem 2.1 to calculate the derivatives, producer k is

temporarily absent from the equilibrium model. Hence one has to exclude the term with

number i = k from the sum. This yields the consistency criterion.

Definition 2.2 (Consistency criterion). In the exterior equilibrium (p, q1 . . . , qn), the in-

fluence coefficients νi, i = 1, . . . , n, are called consistent if the following equalities hold:

νi =
1

n∑

j=1
j 6=i

1

νj + f ′′
j (qj)

−G′(p)

, i = 1, . . . , n. (2.15)

Now, we define the consistent (interior) equilibrium.

Definition 2.3. A collection (p, q1 . . . , qn, ν1, . . . , νn) is referred to as interior equilibrium

if, for the influence coefficients νi ≥ 0, i = 1, . . . , n, the vector (p, q1 . . . , qn) is the exterior

equilibrium, and the consistency criterion 2.2 is valid for all those νi.
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Theorem 2.2. Let the number of oligopoly producers be at least three, i.e., n ≥ 3, then,

under assumptions A2.1-A2.3, there exists an interior equilibrium. Moreover, if the

number of producers is two, i.e., n = 2, in addition to assumptions A2.1-A2.3, suppose

that there exists an ε > 0 such that G′(p) ≤ −ε for all p > 0, then, there exists interior

equilibrium.

Proof. See appendix B.

Without additional assumptions or simplifications of the model, uniqueness of the

interior equilibrium is not guaranteed.

In our future research, we are going to extend the obtained results to the case of

not necessarily differentiable demand functions. However, some of the essential techniques

can be developed now, in the differentiable case but under slightly stronger assumptions

about the structure of the producers’ cost functions. Namely, let us introduce the following

assumption instead of A2.2. Moreover, this new assumption is used in the extension of

the existence theorem 2.2 for the case of duopoly, i.e., when n = 2.

A2.4. For every i = 1, . . . , n, the cost function fi is quadratic (and strictly convex) with

fi(0) = 0, f ′
i(0) > 0 and f ′′

i > 0, i.e.,

fi(qi) =
1

2
aiqi

2 + biqi, (2.16)

where ai > 0, bi > 0, i = 1, . . . , n.

Theorem 2.3. Let n = 2 (duopoly), and assumptions A2.1, A2.3 and A2.4 hold true.

If in addition there exists ε > 0 such that G′(p) ≤ −ε for all p > 0, then, there exits the

unique interior equilibrium.

Proof. cf., Kalashnikov, Bulavsky, Kalashnykova and López-Ramos (2017).

Now denote the value of the demand function’s derivative by τ = G′(p) and rewrite

the consistency equations (2.15) in the form:

νi =
1

n∑

j=1
j 6=i

1

νj + f ′′
j (qj)

− τ

, i = 1, . . . , n, (2.17)

were τ ∈ (−∞, 0].

When τ → −∞, the system (2.17) converges to the solution νi = 0, i = 1, . . . , n.

For all finite values of τ we establish the following proposition.
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Theorem 2.4. Let assumptions A2.1, A2.3 and A2.4 be valid. Then, for any τ ∈
(−∞, 0] there exists a unique solution νi = νi(τ), i = 1, . . . , n, of system (2.17), con-

tinuously depending upon τ . Furthermore, νi → 0 when τ → −∞, and νi(τ) strictly

increases and tends to νi(0) as τ → 0, i = 1, . . . , n.

Proof. The proof is easily deduced from that of theorem 3 in Kalashnikov, Bulavsky,

Kalashnykova and Castillo-Pérez (2011).

2.5 Consistent conjectures as optimal Nash

strategies in the meta-game

This section establishes the three most important results of this chapter. Indeed, un-

der certain rather mild conditions, we prove the equivalence of the consistent conjectural

variations equilibrium (CCVE) in the oligopoly model to the classical Cournot-Nash equi-

librium in, what we call the meta-game. The latter comprises the same producers of the

oligopoly but with their conjectures (about the possible price variations) as their strate-

gies.

These results seem to be very interesting in two aspects. First, they could be consi-

dered as a good justification of the CVE concept as being tightly related to the classical

Nash equilibrium. Second, this equivalence occurring in the oligopoly can help one develop

a concept similar to the CVE but in application to other kinds of economic and financial

models that lack some attributes of the oligopoly and thus do not allow one to introduce

the consistent CVE directly. In other words, one could define the consistent CVE in such

a model via the Nash equilibrium in the corresponding meta-game.

To begin with, theorem 2.1 allows us to define the following many-person game Γ =

(N, V,Π, D), which will be referred to as the meta-game. Here, D ≥ 0 is the fixed value of

the active demand, N = {1, . . . , n} is the set of the same producers (the players) as in the

model described above, V = R
n
+ represents the set of possible strategies, i.e., the vectors of

conjectures ν = (ν1, . . . , νn) accepted by the producers. Finally, Π = Π(ν) = (π1 . . . πn) is

the collection of payoff values defined (uniquely, according to theorem 2.1) by the strategy

vector ν. Indeed, the payoff values πi = πi(ν), i = 1, . . . , n, are defined by formula (2.4),

were the equilibrium outputs qi ≥ 0, i = 1, . . . , n, as well as the equilibrium price p, are

the elements of the exterior equilibrium whose existence and uniqueness is guaranteed by

theorem 2.1 from section 2.3.
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Now, the main results of this chapter are as follows. As was mentioned in the in-

troduction, the Cournot-Nash conjectures ωi = 1 are usually inconsistent (in sense of

criterion 2.2) in our single commodity market model. In other words, the Cournot-Nash

conjectures νi = −1/G′(p) in general do not satisfy the consistency system (2.15). Ho-

wever, in the meta-game introduced above, the consistent conjectures νi, i = 1, . . . , n,

determined by (2.15) provide the Nash equilibrium. This curious fact could be considered

as an extra argument supporting the concept of interior equilibrium introduced in section

2.4.

Theorem 2.5. Suppose that assumptions A2.1-A2.3 hold. Then, any Nash equilibrium

in the meta-game Γ = (N, V,Π, D) generates interior equilibrium in the original oligopoly.

Proof. cf., Kalashnikov, Bulavsky, Kalashnykova and López-Ramos (2017).

Since the meta-game strategies set V = R
n
+ is unbounded, the existence of at least

one Nash equilibrium state in this game is by no means easy to check. The following three

results (under some extra assumptions) guarantee that the existence of interior equilibrium

in the original oligopoly implies the existence of Nash equilibrium in the meta-game.

Theorem 2.6. Suppose that the stronger assumption A2.4 is true, together with A2.1

and A2.3, and suppose that the function G is concave. Then, the consistency criterion for

the original oligopoly is a necessary and sufficient condition for the collection of influence

conjectures ν = (ν1, . . . , νn) to produce Nash equilibrium in the meta-game.

Proof. See appendix B.

Corollary 2.1. In addition to assumptions A2.1, A2.3 and A2.4, if the demand fun-

ction is affine, that is,

G(p) := −Kp+ T, (2.18)

where K > 0 and T > 0, then, the consistency criterion for the original oligopoly is a ne-

cessary and sufficient condition for the collection of influence conjectures ν = (ν1, . . . , νn)

to form the Nash equilibrium in the meta-game.

Since the concavity of the demand function may be a much too restrictive requi-

rement, the next theorem relaxes it by replacing it with the Lipschitz continuity of the

derivative G′(p).

Theorem 2.7. Suppose that apart from assumptions A2.1, A2.3 and A2.4, the regular

demand function’s derivative is Lipschitz continuous. In more detail, for n ≥ 3 assume
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that for any p1 > 0 and p2 > 0 the following inequality holds:

|G′(p1)−G′(p2)| ≤
1

2s2G(p0)
|p1 − p2|, (2.19)

where s = max{a1, . . . , an}, and the price p0 is the one defined in the assumption A2.3.

Next, if n = 2 (duopoly), we again suppose that there exists ε > 0 such that G′(p) ≤ −ε

for all p > 0, and the Lipschitz continuity of the demand function is described in the form:

|G′(p1)−G′(p2)| ≤
2

(
a1 + a2

εmin{a1, a2}
+ 3max{a1, a2}

)2

G(p0)

|p1−p2|, ∀p1, p2 > 0. (2.20)

Then, the consistency criterion for the original oligopoly is a necessary and sufficient con-

dition for the collection of influence conjectures ν = (ν1 . . . νn) to be the Nash equilibrium

in the meta-game.

Proof. See appendix B.

2.6 Numerical Experiments

Now we illustrate our main results from section 2.5. For the numerical experiments, we

consider the inverse demand and costs function from an electricity market presented in

Liu et al. (2007).

The inverse demand function is given by:

p(G,D) = 50− 0.02(G+D), (2.21)

thus, the demand function has the form:

G(p) +D = −50p+ 2500. (2.22)

There are n = 6 firms with quadratic costs functions, i.e., fi(qi) =
1

2
aiqi

2 + biqi,

i = 1, . . . , n, where the coefficients ai and bi are given in table 2.1.

In addition, as a kind of dual concept developed in our previous papers, we are going

to consider the influence of the producers over the total output G (cf., Isac et al. (2002)),

i.e, the influence coefficients ωi :=
∂G

∂qi
, i = 1, . . . , n.
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i ai bi
1 0.02 2.0
2 0.0175 1.75
3 0.025 3.0
4 0.025 3.0
5 0.0625 1.0
6 0.00834 3.25

Table 2.1: Quadratic costs function’s coefficients

In this sense, the conjectures ωi = 1, ∀i = 1, . . . , n, correspond to the Cournot-

Nash conjecture, while the zero-conjectures ωi = 0, ∀i = 1, . . . , n, lead to the perfect

competition model.

Moreover, by the chain rule, one can easily verify the relationship

ωi = −G′(p)νi, ∀i = 1, . . . , n. (2.23)

Experiment 2.1. For the electricity market described above, the producers’ influence

coefficients ωi, supplies qi and profits πi, i = 1, . . . , n, along with the market’s price p and

demand G, of the interior equilibrium results are shown in table 2.2.

i 1 2 3 4 5 6
ωi 0.19275 0.19635 0.18759 0.18759 0.17472 0.22391
qi 353.40 405.12 258.44 258.44 142.90 560.18
πi 1730.4 2080.6 1085.4 1085.4 709.48 2713.8
p 10.431
G 1978.5

Table 2.2: Interior equilibrium for the electricity market

Next, we vary the influence coefficient of one of the producers and compute the

corresponding exterior equilibrium to see how their profits change.

i 1 2 3 4 5 6

ωi
0.19275

0.19635 0.18759 0.18759 0.17472 0.22391
0.39165

πi
1730.4

2163.4 1136.0 1136.0 735.45 2844.6
1703.2

Table 2.3: Net profits when producer 1 (unilaterally) changes its consistent influence
coefficient

In tables 2.3-2.8 we see that whenever one of the producers (unilaterally) increases

or decreases its consistent influence coefficient, its profit drops. This, as proved in section
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i 1 2 3 4 5 6

ωi 0.19275
0.19635

0.18759 0.18759 0.17472 0.22391
0.12000

πi 1688.8
2080.6

1055.9 1055.9 694.22 2637.3
2072.0

Table 2.4: Net profits when producer 2 (unilaterally) changes its consistent influence
coefficient

i 1 2 3 4 5 6

ωi 0.19275 0.19635
0.18759

0.18759 0.17472 0.22391
0.43615

πi 1783.6 2142.7
1085.4

1123.3 728.97 2811.9
1066.3

Table 2.5: Net profits when producer 3 (unilaterally) changes its consistent influence
coefficient

i 1 2 3 4 5 6

ωi 0.19275 0.19635 0.18759
0.18759

0.17472 0.22391
0.061570

πi 1697.1 2041.7 1061.8
1085.4

697.27 2652.6
1077.8

Table 2.6: Net profits when producer 4 (unilaterally) changes its consistent influence
coefficient

i 1 2 3 4 5 6

ωi 0.19275 0.19635 0.18759 0.18759
0.17472

0.22391
0.14870

πi 1728.9 2078.8 1084.3 1084.3
709.48

2711.0
709.44

Table 2.7: Net profits when producer 5 (unilaterally) changes its consistent influence
coefficient

i 1 2 3 4 5 6

ωi 0.19275 0.19635 0.18759 0.18759 0.17472
0.22391
0.47305

πi 1968.4 2358.2 1255.6 1255.6 796.41
2713.8
2578.1

Table 2.8: Net profits when producer 6 (unilaterally) changes its consistent influence
coefficient
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2.5, is due to the fact that the consistent influence coefficients describing the interior

equilibrium form the Nash equilibrium in the meta-game.

Experiment 2.2. Here, we are going to find the interior equilibrium for an electricity

market (as the base model) that does not meet the conditions of theorems 2.6 and 2.7,

and test if it serves as the Nash equilibrium in the meta game.

Now, we consider the following demand function:

G(p) +D = 2400p−1.2 + 1600, (2.24)

along with the cost functions described above.

The function (2.24) is not concave and its derivative is not Lipschitz, but we can

still compute the corresponding interior equilibrium. The corresponding data is shown in

table 2.9.

i 1 2 3 4 5 6
ωi 0.086234 0.088004 0.083674 0.083674 0.077221 0.10112
qi 317.77 363.63 231.17 231.17 132.16 479.30
πi 1467.8 1769.1 903.22 903.22 616.76 2179.9
p 9.7968
G 1755.2

Table 2.9: Interior equilibrium for the electricity market with the demand function from
(2.24)

Finally, we vary the consistent influence coefficient of one of the producers and

compute the corresponding exterior equilibrium to see how their profits change. These

results are shown in table 2.10.

i 1 2 3 4 5 6

ωi

0.060438 0.076765 0.035183 0.079306 0.074729 0.093522
0.086234 0.088004 0.083674 0.083674 0.077221 0.10112
0.11277 0.10719 0.095928 0.12058 0.079999 0.1033

πi

1464.0 1768.1 897.04 903.18 616.76 2178.5
1467.8 1769.1 903.22 903.22 616.76 2179.9
1464.3 1766.4 902.88 900.35 616.76 2179.8

Table 2.10: Net profits when producers change unilaterally their consistent strategy
with the demand function from (2.24)

In table 2.10 one can see that each time one of the producers changes (unilaterally)

its consistent influence coefficient, its profit decreases (each column i, i ∈ {1, ..., 6}, shows
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the profit of producer i for the respective influence coefficient while the other producers

remain stuck to their consistent conjectures). Thus, the results from theorems 2.6 and

2.7 can hold true for a wider set of functions than the ones satisfying the theorems’

requirements.

2.7 Conclusions and Future Research

This chapter logically completes the previous papers Kalashnikov, Bulavsky, Kalashnyko-

va and Castillo-Pérez (2011) and Kalashnikov, Bulavsky, Kalashnykova and López-Ramos

(2017) by providing in section 2.5 three results establishing (under certain rather mild

conditions) the equivalence of the consistent conjectural variations equilibrium (CCVE) in

an original oligopoly model to the classical Cournot-Nash equilibrium in the meta-model.

The latter comprises the same agents of the original oligopoly but with their conjectures

(about the possible price variations) as their strategies.

These results seem to be very interesting in two aspects. First, they could be consi-

dered as a good justification of the CVE concept as being tightly related to the classical

Nash equilibrium. Second, this equivalence occurring in the oligopoly can help one develop

a concept similar to the CVE but in application to other kinds of economic and financial

models that lack some attributes of the oligopoly and thus do not allow one to introduce

the (consistent) CVE directly. In other words, one could define the (consistent) CVE in

such a model via the Nash equilibrium in the corresponding meta-model.

In our future research, we plan to implement the above-mentioned ideas, as well as

extend the developed constructions to the cases of mixed oligopolies, where at least one

agent endeavors to maximize not its net profit but some other function related to the

social surplus. Another important extension could be related to more general economic

models with not necessarily differentiable (even discontinuous) inverse demand and/or

cost functions.



Chapter 3

Bilevel Tolls Optimization

Problem with Quadratic Costs

3.1 Introduction

One of the problems affecting megapolises is the traffic congestion in highway networks,

the said congestion being a direct consequence of all drivers trying to run the “shortest”

path. One can think that a simple solution to this problem might be the construction

of more roads in the network, which, however, is usually very expensive. Moreover, this

often has the opposite effect of increasing traffic congestion even more (cf., the well-

known Braess’s paradox published first in Braess (1969) and then republished in English

in Braess et al. (2005)). On the other hand, highway toll pricing has proved to be a

convenient tool for decreasing traffic congestion since the drivers now minimize not only

their travel time but also its cost. The fees charged on the roads help maintain the highway

networks in good conditions. The Tolls Optimization Problem (TOP) deals with selecting

and assigning the optimal tolls to the toll arcs in the highway graph. The nature of

this problem is generically bilevel because of the existence of multiple decision-makers:

(at least) one at the upper-level making decisions concerning the tolls selected with aim

to maximize its net profit, and the lower-level highway users (followers) each trying to

find the best way along its origin-destination (O-D) path that can include both toll and

free arcs. As all the drivers (followers) have to share the same resources (highways) with

probably limited capacities, and moreover, their (quadratic) transportation costs might

involve flows of the other agents, too, then the lower-level program is, in fact, a typical case

of the general Nash equilibrium problem. Therefore, the problem of the leader is to find

equilibrium among the toll values that provide high revenues while being attractive enough

to the users (followers). The Tolls Optimization Problem has attracted the attention of

numerous prominent researchers. In this Introduction, we mention only a few publications

that have dealt with the problem in question.

35



Chapter 3. Bilevel Tolls Optimization Problem with Quadratic Costs 36

Magnanti and Wong (1984) were the first who provided a theoretical structure for

the decision-makers at both levels, based on integer programming. They also presented a

scheme for uniforming similar network design models and the ways of developing network

design algorithms.

Marcotte (1986) pointed out that the Network Design Problem deals with the op-

timal balance of the transportation, the investment and the maintenance costs of the

network subject to the congestion, where the network’s users behave according to War-

drop’s first principle of traffic equilibrium. Also, in Marcotte (1986), the Network Design

Problem is described for the first time as a bilevel programming problem.

Dempe and Lohse (2005) handled the Network Design Problem by the analysis of

another optimization problem being reverse to the Network Design Problem.

Didi-Biha et al. (2006) proposed a primal-dual algorithm generating lower and upper

bounds for the maximum profit collected from tolls of the highway network.

Dempe and Starostina (2009) developed fuzzy-set-theory methods to approximate

the solution to the Tolls Optimization Problem.

Labbé et al. (2000) also treated the Tolls Optimization Problem by means of bilevel

optimization, considering the firm in charge of the tolls as the leader and the drivers as the

followers. This problem was also studied by Brotcorne (1998) for deciding tariffs on cargo

trucks running the highways. In this case, the leader is a group of competing companies

whose profit is yielded from the tolls they establish, while the (unique) follower is a carrier

minimizing its travel expenses.

Another instance of the TOP was examined in Kalashnikov, Kalashnykova and He-

rrera (2011), where the leader is a highway administrator maximizing the turnover from

the tolls on a subset of the arcs of a network with the drivers as the followers seeking for

the “fastest” route (taking into account both the running time and the expenses on the

tolls) uniting their origin and destination (O-D) points.

The Tolls Optimization Problem is also set as a combinatorial program which implies

it belongs to the class of NP-hard problems (cf. Labbé et al. (1998)). Apart from the

already known NP-hardness proofs, Roch et al. (2005) obtained new results about the

computational complexity of some popular algorithms.

Brotcorne et al. (2011) treated the TOP with the premise that the network could be

supplied with a subsidy thus permitting the tolls to have unlimited values. In this paper,

they develop an algorithm first constructing paths and then forming columns to reveal

the optimal values of the tolls for the current path, which then serve as lower bounds.
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After that, the upper bound for the leader’s profit is updated and finally, a diversification

step is applied. The authors continued working on this problem in Brotcorne et al. (2012)

where they apply a tabu search procedure to conclude that their heuristics produced

better results than other combinatorial algorithms.

Dempe and Zemkoho (2012) restated the TOP by using of the optimal-value-function

technique which works better than the Karush-Kuhn-Tucker optimality conditions. The

optimality conditions for this recasting were deduced and other theoretical properties were

exploited.

An innovative approach to solving the TOP was proposed in Kalashnikov, Herrera,

Camacho and Kalashnykova (2016): as the lower-level equilibrium problem was easily

reducible to a (large) linear program, the prospective direction of increase for the upper-

level objective functions can be determined with the efficient tool of Sensitivity Analysis.

This technique allowed the authors Kalashnikov, Herrera, Camacho and Kalashnykova

(2016) to significantly accelerate the solution of the highly nonconvex TOP in comparison

to the previous well-known algorithm.

In the works mentioned above, all the bilevel Tolls Optimization Problems treat

linear problems at the lower-level. Thus, the main objective of this thesis’ chapter is to

extend the previous formulations and the promising results from Kalashnikov, Herrera,

Camacho and Kalashnykova (2016) by considering quadratic problems at the lower-level

(the latter reflect more accurately the traffic congestion on the roads). We also present

an efficient algorithm to solve this new form of the TOP making again use of a method

based on the Sensitivity Analysis in convex quadratic optimization presented by Hadigheh

et al. (2007). This sensitivity analysis, similar to the technique described in Kalashnikov,

Herrera, Camacho and Kalashnykova (2016) helps determine the allowable variations of

the tolls values that do not mess up the optimality of a solution.

In addition to this method based on Sensitivity Analysis, the proposed algorithm also

applies a filled function (FF) technique adapted to our case from Renpu (1990), Wan et al.

(2012), and Wu et al. (2007). This method is quite efficient when a local optimum is found.

The filled function procedure allows to either “jump” to another region of the feasible set

which could lead to a better local optimum, or conclude that a good approximation of

the global optimum has been found.

To show the efficiency of our proposed heuristic algorithm, its performance is compa-

red with that of other well-known heuristic algorithms from Kalashnikov, Camacho, Askin

and Kalashnykova (2010) in a series of numerical experiments with several instances for

the bilevel formulation of the TOP with a quadratic lower-level. Moreover, since the al-

gorithms from Kalashnikov, Camacho, Askin and Kalashnykova (2010) were designed for
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the bilevel formulation of the Tolls Optimization Problem with a linear lower-level, about

half of the instances have almost zero coefficients of the quadratic terms of the lower-level,

thus, imitating the linear lower-level formulation from the previous works.

3.2 The Bilevel Tolls Optimization Problem’s

Formulation

As usual, we formulate the Tolls Optimization Problem (TOP) as a single-leader-multi-

follower game that occurs in a multi-commodity highway network. The usual parameters

for this formulation are the following:

The multi-commodity network is defined by a set of directed arcs A = {1, 2, . . . ,M}
representing the roads, a set of nodesN = {1, 2, . . . , η} selected as the origins, transit

points, and final destinations, as well as a set of commodities K = {1, 2, . . . , κ}
reflecting the groups of drivers sharing the same origins and destinations. The co-

rresponding set powers are denoted as |A| = M , |N | = η, and |K| = κ.

The set of arcs A is split into a nonempty proper subset A1 ⊂ A of toll arcs and its

complementary subset A2 = A \ A1 of toll-free arcs, where |A1| = M1, |A1| = M2

and M1 +M2 = M .

The subset i+ ⊂ A of arcs having the node i ∈ N as their head and the subset

i− ⊂ A of arcs having the node i ∈ N as their tail.

Every arc a ∈ A has a fixed travel delay cost ca and a capacity upper bound qa.

Each toll arc a ∈ A1 has also a maximum toll value tmax
a that can be charged being

still attractive enough for the drivers.

The commodity group k ∈ K is assigned a demand value of nk and arranges trans-

portation from the origin node o(k) ∈ N to the destination node δ(k) ∈ N .

Thus, the demand for each commodity k ∈ K at every node i ∈ N of the network

is given by:

bki =





−nk if i = o(k),

nk if i = δ(k),

0 otherwise.

(3.1)

The decision variables for the bilevel TOP are as follows:
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The toll values ta for each toll-arc a ∈ A1 which has to be decided by the leader at

the upper-level. These variables are stored in the vector t = {ta | a ∈ A1}.

The flows xk
a along every arc a ∈ A which has to be decided by the commodity

k ∈ K at the lower-level. Each commodity k ∈ K stores its variables in the vector

xk = {xk
a | a ∈ A} and all the variables of the lower-level are combined into the

vector x = {xk
a | a ∈ A, k ∈ K}. We also define the vectors x−k = {xℓ | ℓ ∈ K \{k}}

and x−k
a = {xℓ

a | ℓ ∈ K \ {k}} as it is usually done in Game Theory.

In Didi-Biha et al. (2006) and Kalashnikov, Herrera, Camacho and Kalashnykova

(2016) the delay cost for a single unit to travel through arc a ∈ A is the constant ca, then,

the travel delay cost for each commodity k ∈ K to travel through arc a is given by the

linear function ca(x
k
a) = cax

k
a.

However, the travel delay cost (for a single driver) being a fixed constant value, is

unrealistic in the presence of congestion. In fact, the travel delay for each driver increases

with the total amount of drivers sharing the same road, so the next approach would be

to use a linear approximation for the travel delay depending upon the total amount of

drivers traveling along the same arc.

For our new formulation of the TOP, the following parameter is introduced:

For a single arc a ∈ A the travel delay generated due to the traffic congestion is

given by a nonnegative factor da.

Then, for a single unit to travel through arc a, the travel delay cost will be given by

the linear function ca + daξ, where ξ is the total amount of drivers traveling through the

same arc a. Hence, for each arc a ∈ A, the travel delay cost for each commodity k ∈ K

traveling through arc a is given by the (nonlinear) function

ca(x
k
a; x

−k
a ) =

(
ca + da

∑

ℓ∈K
xℓ
a

)
xk
a = cax

k
a +

∑

ℓ∈K\{k}
dax

k
ax

ℓ
a + da(x

k
a)

2
, (3.2)

which leads to the quadratic structure of the lower-level objective functions (instead of the

linear structure as it was assumed in all previous papers mentioned in the introduction).

The travel delay costs, the tolls values, and the congestion factors are all measured

in some equivalent units for the sake of consistency.
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Using the notation listed above, our extended bilevel formulation for the Tolls Op-

timization Problem is given by the following single-leader-multi-follower game:

Maximize
t

F (t) =
∑

k∈K

∑

a∈A1

tax
k
a, (3.3)

subject to ta ≤ tmax
a , ∀a ∈ A1, (3.4)

ta ≥ 0, ∀a ∈ A1, (3.5)

xk ∈ Ψk(t, x
−k), ∀k ∈ K, (3.6)

where

Ψk(t, x
−k) = Argmin

xk

fk(x
k) =

∑

a∈A1

tax
k
a +

∑

a∈A
cax

k
a

+
∑

ℓ∈K\{k}

∑

a∈A
dax

k
ax

ℓ
a +

∑

a∈A
da(x

k
a)

2
,

(3.7)

subject to
∑

a∈i+
xk
a −

∑

a∈i−
xk
a = bki , ∀i ∈ N, (3.8)

xk
a ≤ qa −

∑

ℓ∈K\{k}
xℓ
a, ∀a ∈ A, (3.9)

xk
a ≥ 0, ∀a ∈ A. (3.10)

Now we describe in more details the bilevel program (3.3)-(3.10):

The leader’s objective function (3.3) reflects its goal of maximizing its profit which

is the sum of every toll charged times the total flow of drivers in the respective arc.

The constraints (3.4) and (3.5) bound the tolls values to be nonnegative and not

greater than the maximum tolls that can be charged to the drivers.

The constraints (3.6) represents that the follower’s variable xk must be a solution

for its respective quadratic programming problem (3.7)-(3.10) for all commodities

k ∈ K. This means that the lower-level variables xk, k ∈ K, must provide a Nash

equilibrium for the non-cooperative game (3.6)-(3.10).

The objective or payoff functions (3.7) of the followers represent their desire to

minimize the total travel cost given by the tolls charges, the fixed travel delays

of the roads and the travel delays caused by the traffic congestion produced by the

transported commodities. It is also important to notice that in the objective function

(3.7) of commodity k ∈ K, while the terms corresponding to (xk
a)

2
are quadratic,

the terms corresponding to xk
ax

ℓ
a are in fact linear since the values xℓ

a are fixed when

ℓ 6= k.
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The constraints (3.8) are the flow conservation constraints for each commodity th-

rough the network.

The constraints (3.9) and (3.10) are the nonnegativity and capacity constraints for

each of the commodities flows.

Finally, in order to exclude trivial solutions, we make the following assumptions as

in Didi-Biha et al. (2006):

1. There is no profitable vector that induces a negative cost cycle in the network. This

condition is satisfied if all the travel costs and congestion factors are nonnegative.

2. For every commodity, there is always at least one path composed solely of toll-free

arcs connecting its origin and destination nodes.

3.3 Linear-Quadratic Bilevel Program

reformulation

The bilevel formulation of the Tolls Optimization Problem described in the previous sec-

tion might be inconsistent since the lower-level’s Nash equilibrium required in constraints

(3.6) might not be unique, thus, making the upper-level’s feasible region ill-defined.

In the previous works which consider linear travel delay costs ca(x
k
a) = cax

k
a, this

situation was handled taking advantage that the lower-level game was separable (if da = 0

for all a, then, the objective function fk doesn’t have variables from the other commodities

ℓ 6= k), which allowed them to replace the lower-level’s problem with a linear program-

ming problem where the objective function to minimize was the sum of all the followers’

objective functions and the constraints were all the constraints of the followers gathered

together. The latter linear programming problem always provided the Nash equilibrium

for the original lower-level game since the followers’ problems were separable. Moreover,

if the linear lower-level still had multiple solutions, considering the optimistic approach

guaranteed the leader’s feasible region to be well-defined.

In our formulation (3.3)-(3.10) the followers’ problems are no longer separable, thus,

minimizing the sum of their objective functions subject to all their constraints might

not provide the Nash equilibrium for the lower-level game (3.6)-(3.10). However, we were

able to show that a solution for the lower-level problem (3.6)-(3.10) can be obtained as a



Chapter 3. Bilevel Tolls Optimization Problem with Quadratic Costs 42

solution for the following quadratic programming problem:

x ∈ Ψ(t), (3.11)

where

Ψ(t) = Argmin
x

f(x) =
∑

k∈K

∑

a∈A1

tax
k
a +

∑

k∈K

∑

a∈A
cax

k
a

+
∑

k∈K

∑

ℓ∈K\{k}

∑

a∈A

1

2
dax

k
ax

ℓ
a +

∑

k∈K

∑

a∈A
da(x

k
a)

2
,

(3.12)

subject to
∑

a∈i+
xk
a −

∑

a∈i−
xk
a = bki , ∀i ∈ N, ∀k ∈ K, (3.13)

∑

k∈K
xk
a ≤ qa, ∀a ∈ A, (3.14)

xk
a ≥ 0, ∀a ∈ A, ∀k ∈ K. (3.15)

In the latter reformulation, the constraints (3.13)-(3.15) are all the constraints (3.8)-

(3.10) of the followers combined together, but the objective function (3.12) is not the sum

of all the followers’ objective functions (3.7) since the coefficient corresponding to the term

xk
ax

ℓ
a in (3.12) is 1

2
da while the corresponding coefficient in (3.7) is da whenever k 6= ℓ.

This result is stated in the following theorem:

Theorem 3.1. The quadratic programming problem (3.11)-(3.15) is convex and any of

its solutions provides the Nash equilibrium for the non-cooperative game (3.6)-(3.10).

Proof. See appendix C.

From the proof of theorem 3.1 we also have the following corollary:

Corollary 3.1. If the capacity constraints (3.9) and (3.14) are removed, then, the pro-

blems (3.6)-(3.10) and (3.11)-(3.15) are equivalent.

If all the congestion factors da, a ∈ A, are strictly positive, then, the quadratic

programming problem (3.12)-(3.15) is strictly convex and its solution is unique; otherwise,

multiple solutions might appear. If that’s the case, as in the previous works, the optimistic

solution is accepted in order to evaluate the leader’s objective function.

Then, the bilevel single-leader-multi-follower game describing the TOP is reformu-

lated as the following linear-quadratic bilevel programming problem:

Maximize
t,x

F (t, x) =
∑

k∈K

∑

a∈A1

tax
k
a, (3.16)
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subject to ta ≤ tmax
a , ∀a ∈ A1, (3.17)

ta ≥ 0, ∀a ∈ A1, (3.18)

x ∈ Ψ(t), (3.19)

where

Ψ(t) = Argmin
x

f(x) =
∑

k∈K

∑

a∈A1

tax
k
a +

∑

k∈K

∑

a∈A
cax

k
a

+
∑

k∈K

∑

ℓ∈K\{k}

∑

a∈A

1

2
dax

k
ax

ℓ
a +

∑

k∈K

∑

a∈A
da(x

k
a)

2
,

(3.20)

subject to
∑

a∈i+
xk
a −

∑

a∈i−
xk
a = bki , ∀i ∈ N, ∀k ∈ K, (3.21)

∑

k∈K
xk
a ≤ qa, ∀a ∈ A, (3.22)

xk
a ≥ 0, ∀a ∈ A, ∀k ∈ K. (3.23)

Thus, theorem 3.1 allows us to find a solution for the bilevel single-leader-multi-

follower game (3.3)-(3.10), which requires solving an equilibrium problem to compute the

leader’s objective function, by solving the simpler linear-quadratic bilevel programming

problem (3.16)-(3.23), thus reducing the complexity to compute the leader’s objective

function.

3.4 The Solution Methodology

To find a solution for the Tolls Optimization Problem, we propose a heuristic algorithm

processing the linear-quadratic bilevel programming problem (3.16)-(3.23). The main idea

behind this heuristic is to obtain the allowable increases or decreases in the coefficients

corresponding to the linear terms in the objective function such that the sets of basic

variables for the solution of the original problem and the solution of the perturbed problem

are the same. The procedure to compute these allowable ranges to stay basic (ARSB) is

described in the sensitivity analysis for convex quadratic programming from Hadigheh

et al. (2007). An adaptation of the procedure to find the ARSB for the bilevel TOP is

presented in section 3.5.

Similar to the heuristic based on the allowable ranges to stay optimal (ARSO)

described in Kalashnikov, Herrera, Camacho and Kalashnykova (2016), given an upper-

level feasible solution t, we solve the lower-level quadratic problem with the aid of the

Wolfe-Dual to compute the allowable ranges to stay basic {∆−
a ,∆

+
a } for the leader’s



Chapter 3. Bilevel Tolls Optimization Problem with Quadratic Costs 44

decision variables ta, a ∈ A1, which are the coefficients corresponding to the linear terms

for the lower-level objective function. If the flow along an arc a ∈ A1 is positive we increase

the toll value ta slightly less than the allowable increase ∆+
a (which may decrease the flow

in the arc a but not drop to zero since the basic variables xk
a, k ∈ K, will stay basic) in

an attempt to increase the profit generated by the flow along the arc a. Otherwise, if the

flow along the arc a ∈ A1 is zero, it means that the toll assigned ta is too high. Thus, we

decrease its value by slightly more than the allowable decrease ∆−
a so the toll can become

attractive to the users again. In order to maximize the leader’s objective function, we

implement three different rules to decide which tolls will increase and which tolls will

decrease; they are described in section 3.7.

If the use of the allowable ranges to stay basic does not provide a better feasible solu-

tion, it could be because the current solution is a local maximum for the leader’s objective

function. In this case, we make use of the filled function technique first proposed in Renpu

(1990), then, developed in Wan et al. (2012) and Wu et al. (2007) and widely discussed in

Kalashnikov, Kreinovich, Flores-Muñiz and Kalashnykova (2016) and Flores-Muñiz et al.

(2017). However, since the filled function method was developed for minimization, we

adapted the methodology from Wu et al. (2007) to the problem of maximization. The

theory corresponding to this adaptation is presented in section 3.6

The filled function method smooths the original upper-level function (3.16) by trans-

forming the current local maximum into a local minimum. Moreover, the modified fun-

ction’s structure is such that when it is maximized again, the algorithm makes a jump

to a different region of the feasible set which has a good chance to lead to a better local

maximum (if such exists) for the upper-level.

Once we have a new toll vector t generated by the filled function method, we proceed

to maximize the leader’s objective function again with the help of the allowable ranges to

stay basic. When a local maximum is found again, we proceed once again with the filled

function method. After several fruitless attempts in a row, say 5 to 10, the algorithm is

stopped, and the best local maximum found is accepted as a good approximation of the

global maximum solution.
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3.5 The Allowable Ranges to Stay Basic

Procedure

First, for the current solution t find the set Ψ(t) of minimum solutions x = {xk
a | a ∈

A, k ∈ K} of the quadratic program (3.20)-(3.23). For each x ∈ Ψ(t) define x0
a =

qa −
∑
k∈K

xk
a ≥ 0, a ∈ A.

Second, find the set Φ(t) of complementary solutions (x, y, s) for the Wolfe-Dual of

the quadratic program (3.20)− (3.23), which is given by:

Φ(t) = Argmax
x,y,s

φ(x, y, s) =
∑

k∈K

∑

i∈N
bki y

k
i −

∑

a∈A
qas

0
a

−
∑

k∈K

∑

ℓ∈K\{k}

∑

a∈A

1

2
dax

k
ax

ℓ
a −

∑

k∈K

∑

a∈A
da(x

k
a)

2
, (3.24)

subject to
∑

i∈a+
yki −

∑

i∈a−
yki − s0a + ska −

∑

ℓ∈K\{k}
dax

ℓ
a

−2dax
k
a = ta + ca, ∀a ∈ A1, ∀k ∈ K, (3.25)∑

i∈a+
yki −

∑

i∈a−
yki − s0a + ska −

∑

ℓ∈K\{k}
dax

ℓ
a

−2dax
k
a = ca, ∀a ∈ A2, ∀k ∈ K, (3.26)

x ∈ Ψ(t), (3.27)

yki ∈ R, ∀i ∈ N, ∀k ∈ K, (3.28)

ska ≥ 0, ∀a ∈ A, ∀k ∈ K ∪ {0}, (3.29)

where y = {yki | i ∈ N, k ∈ K}, s = {ska | a ∈ A, k ∈ K ∪ {0}}, a+ = {i ∈ N | a ∈ i+},
a− = {i ∈ N | a ∈ i−}, a ∈ A.

Next, for the index set I = {(a, k) | a ∈ A, k ∈ K ∪ {0}}, define the partition:

B =

{
(a, k) ∈ I

∣∣∣∣∣ sup
x∈Ψ(t)

{xk
a} > 0

}
, (3.30)

N =

{
(a, k) ∈ I

∣∣∣∣∣ sup
(x,y,s)∈Φ(t)

{ska} > 0

}
, (3.31)

T = I \ (B ∪ N ). (3.32)
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Then, for every â ∈ A1, find the maximum λâ
u and minimum λâ

ℓ of the following

linear programming problem:

Maximize/Minimize
λ,x,y,s

λâ(λ) = λ, (3.33)

subject to
∑

a∈i+
xk
a −

∑

a∈i−
xk
a = bki , ∀i ∈ N, ∀k ∈ K, (3.34)

∑

k∈K
xk
a + x0

a = qa, ∀a ∈ A, (3.35)

∑

i∈â+
yki −

∑

i∈â−
yki − s0â + skâ −

∑

ℓ∈K\{k}
dâx

ℓ
a

−2dâx
k
a − λ = tâ + câ, ∀k ∈ K, (3.36)∑

i∈a+
yki −

∑

i∈a−
yki − s0a + ska −

∑

ℓ∈K\{k}
dax

ℓ
a

−2dax
k
a = ta + ca, ∀a ∈ A1 \ {â}, ∀k ∈ K, (3.37)∑

i∈a+
yki −

∑

i∈a−
yki − s0a + ska −

∑

ℓ∈K\{k}
dax

ℓ
a

−2dax
k
a = ca, ∀a ∈ A2, ∀k ∈ K, (3.38)

xk
a ≥ 0, ∀(a, k) ∈ B, (3.39)

xk
a = 0, ∀(a, k) ∈ N ∪ T , (3.40)

ska ≥ 0, ∀(a, k) ∈ N , (3.41)

ska = 0, ∀(a, k) ∈ B ∪ T , (3.42)

−tmax
â ≤ λ ≤ tmax

â . (3.43)

Finally, the allowable ranges to stay basic are given by ∆+
a = λa

u and ∆−
a = −λa

ℓ ,

a ∈ A1.

3.6 The Filled Function Adaptation

Let u = u(t) be a differentiable function defined over a box T ⊂ R
n such that any local

maximum point of the latter function is strictly positive.

Definition 3.1. Let β > α > 1. A continuously differentiable function Qt∗(t) is said to

be a filled function for the maximization problem

maximize
t

u(t), (3.44)

subject to t ∈ T, (3.45)
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at the point t∗ ∈ T with u(t∗) > 0, if:

1. t∗ is a strict local minimizer of Qt∗(t) on T .

2. Any local maximizer t of Qt∗(t) on T satisfies u(t) > αu(t∗) or t is a vertex of T .

3. Any local maximizer t of the optimization problem (3.44)-(3.45) with u(t) > βu(t∗)

is a local maximizer of Qt∗(t) on T .

4. Any t ∈ T \ {t∗} with ∇Qt∗(t) = 0 implies u(t) > αu(t∗).

Now, to construct a filled function in the sense of definition 3.1, define two auxiliary

functions as follows. For arbitrary t and t∗ ∈ T , denote b = u(t∗) > 0 and v = u(t), define:

gb(v) =





1, if v ≤ 0,

2
v3

b3
− 3

v2

b2
+ 1, if 0 ≤ v ≤ b,

0, if v ≥ b,

(3.46)

and

sb(v) =





2, if v ≤ 0,

125v3

4b2
− 75v2

4b2
+ 2, if 0 ≤ v ≤ 2

5
b,

1, if
2

5
b ≤ v ≤ 4

5
b,

(250− 25b)
v3

b2
+ (65b− 675)

v2

b2

+(600− 56b)v
b
+ (16b+ 175), if

4

5
b ≤ v ≤ b,

b− v, if v ≥ b.

(3.47)

Now, given a point t∗ ∈ T such that u(t∗) > 0, we define the following filled function:

Qρ,α,β,t∗(t) =− exp(−‖t− t∗‖2)g(β−α)u(t∗)(u(t)− αu(t∗))

− ρs(β−α)u(t∗)(u(t)− αu(t∗)),
(3.48)

where ρ > 0 is a parameter.

Based on Wu et al. (2007) we have the following theorem:

Theorem 3.2. Assume that the function u(t) is continuously differentiable in the box

T ⊂ R
n and t∗ is a local maximum with u(t∗) > 0. Then, for any β > α > 1 and ρ > 0, the

function Qρ,α,β,t∗(t) from (3.48) is a filled function for the maximization problem (3.44)-

(3.45) at the point t∗.
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Demostración. The proof of this theorem is analogous to the one from Wu et al. (2007).

3.7 The Algorithm’s Description

In this section, we describe the proposed heuristic algorithm in detail.

3.7.1 The Main Algorithm

The main procedure of the heuristic algorithm is presented below as algorithm 3.1.

Algorithm 3.1 The Main Algorithm

Step 0: Set m = 1, tma = 0, a ∈ A1, ρ = 1, α = 1.5, β = 2, mFF = 0, m̃ = 1 and

FFmax = 5.

Step 1: Update the current iteration m with the ARSB version 1 algorithm.

Step 2: Set m̂ = m and update the current iteration m with the ARSB version 2

algorithm. If F (tm, x(tm)) > F (tm̂, x(tm̂)), return to Step 1.

Step 3: Set m̂ = m and update the current iteration m with the ARSB version 3

algorithm. If F (tm, x(tm)) > F (tm̂, x(tm̂)), return to Step 1.

Step 4: If F (tm, x(tm)) > F (tm̃, x(tm̃)), set α = 1.5, β = 2, mFF = 0, and m̃ = m.

Otherwise, set β = α, α = (α + 1)/2, mFF = mFF + 1, and m = m̃.

Step 5: If mFF ≤ FFmax, update the current iteration m with the FF method algorithm

using the current values of the parameters ρ, α, β, and return to Step 1.

Step 6: Return the toll vector tm as an approximate maximum solution.

In Step 0 of the main algorithm, we start by defining the initial solution with all tolls

set to zero, the initial iteration counter m = 1 and the initial values for the parameters

ρ, α and β required for the FF method algorithm. We also define another counter mFF

to track how many times in a row we have applied the FF method algorithm without

improving the best solution and FFmax is the maximum number of fruitless attempts in

a row allowed. The iteration where the best solution was found is stored in m̃, so we can

retrieve it when needed.

In Step 1, we update the current best solution tm with the first version of the

algorithms based on the allowable ranges to stay basic (which are described later).
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When making Step 2 and Step 3, we update the current best solution tm with the

ARSB version 2 and ARSB version 3 algorithms, respectively. In both cases, if a better

solution is found, we try to update the solution again with the ARSB version 1 algorithm,

otherwise, we proceed to the next step. The three algorithms based on the allowable ranges

to stay basic only update a previous iteration if the objective function is improved and

they stop when they can’t find a better solution.

In Step 4, we check if the current solution tm is better than the up-to-now best

solution tm̃. If so, the parameters α and β, and the counter mFF (corresponding to the

filled function algorithm used in Step 5 ) are reset to its original values and the iteration

of the new best current solution is stored (m̃ = m). Otherwise, the parameters α and β

are adjusted, the filled function counter mFF increases by 1, and the iteration from the

best current solution is restored (m = m̃).

In Step 5, we update the current best solution tm with the FF method algorithm

and return to Step 1 even if the new solution is worse, since the objective is to jump to

another region of the feasible set (this is the reason why we need to store the iteration

corresponding to the best current solution found). However, if the filled function algorithm

does not find a better solution in a while (when mFF > FFmax), then, the last solution

found tm (which is the best current solution found) is accepted as a good approximation

of the global maximum solution (Step 6 ).

It is also important to mention that in order to compute the objective function

value of a solution tm, we first have to solve the quadratic program (3.20)-(3.23) to find

the (optimistic) solution x(tm) for the lower-level and, then, evaluate F (tm, x(tm)) in the

upper-level function given by (3.16).

3.7.2 The ARSB Algorithms

The three algorithms based on the allowable ranges to stay basic are described in algo-

rithms 3.2-3.4.

Algorithm 3.2 ARSB version 1

Step 0: Set m = m, t̂a = 0, a ∈ A1, G = ∅ and ε = 1× 10−3.

Step 1: For the current solution tm find the allowable ranges to stay basic {∆−
a ,∆

+
a |

a ∈ A1}. Define the set

A+
1 =

{
a ∈ A1

∣∣∣∣
∑

k∈K
xk
a(t

m) > 0

}
,
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the values ∆
+

a = mı́n{tma +∆+
a , t

max
a } − tma , a ∈ A+

1 , and find

e ∈ Argmax
a∈A+

1

{
∆

+

a · ∑
k∈K

xk
a(t

m)

}
.

Step 2: If A+
1 = ∅ or ∆+

e ≤ ε, go to Step 4. Otherwise, set

tm+1
a =

{
mı́n{tma +∆+

a − ε, tmax
a } if a = e,

tma if a 6= e,
∀a ∈ A1.

Step 3: If F (tm+1, x(tm+1)) > F (tm, x(tm)), set m = m+ 1 and return to Step 1.

Step 4: If F (tm, x(tm)) > F (tm, x(tm)), set m = m and go to Step 6.

Step 5: If m = m, go to Step 14. Otherwise, set m = m and return to Step 1.

Step 6: Define the set

E+
1 =

{
a ∈ A1

∣∣∣∣
∑

k∈K
xk
a(t

m) > 0, tma < tmax
a

}

and find e ∈ Argmax
a∈E+

1

{
tma · ∑

k∈K
xk
a(t

m)

}
.

Step 7: If E+
1 = ∅, go to Step 9. Otherwise, set

tm+1
a =

{
tmax
a if a = e,

tma if a 6= e,
∀a ∈ A1,

t̂e = tme , G = G ∪ {e} and m = m+ 1.

Step 8: If F (tm, x(tm)) > F (tm, x(tm)), set m = m. Go to Step 11.

Step 9: Set

tm+1
a =

{
t̂a if a ∈ G,

tma if a /∈ G,
∀a ∈ A1,

m = m+ 1, t̂a = 0, a ∈ A1, and G = ∅.
Step 10: If F (tm, x(tm)) > F (tm, x(tm)), set m = m. Return to Step 1.

Step 11: For the current solution tm find the allowable ranges to stay basic {∆−
a ,∆

+
a |

a ∈ A1}. Define the set

A+
1 =

{
a ∈ A1

∣∣∣∣
∑

k∈K
xk
a(t

m) > 0

}
,

the values ∆
+

a = mı́n{tma +∆+
a , t

max
a } − tma , a ∈ A+

1 , and find
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e ∈ Argmax
a∈A+

1

{
∆

+

a · ∑
k∈K

xk
a(t

m)

}
.

Step 12: If A+
1 = ∅ or ∆+

e ≤ ε, return to Step 6. Otherwise, set

tm+1
a =

{
mı́n{tma +∆+

a − ε, tmax
a } if a = e,

tma if a 6= e,
∀a ∈ A1.

Step 13: If F (tm+1, x(tm+1)) > F (tm, x(tm)), set m = m + 1 and return to Step 8.

Otherwise, return to Step 6.

Step 14: Return the last iteration m and the best solution found tm to the main algo-

rithm.

For this first version of the ARSB algorithms, in Step 0, we first store the initial

iteration (m = m), an auxiliary vector t̂ = {t̂a | a ∈ A1}, an auxiliary set G, and a small

tolerance value ε.

From Step 1 to Step 5, we find the allowable ranges to stay basic and try to improve

the current solution tm by increasing the tolls a ∈ A1 a little less than the allowable

increase (∆+
a − ε) so that the flow on the arc a don’t drop to zero. The tolls are increased

one by one, choosing first those with the highest expected profit increase which is given

by ∆
+

a

∑
k∈K

xk
a(t

m). If an improvement can’t be done with this method, we go to Step 6.

Also, we keep track of the iteration m corresponding to the best solution that has been

found.

From Step 6 to Step 10, we increase the tolls to its maximum values, one by one, in

each of the roads that have a nonzero flow, so that the drivers search for another path that

will or will not include toll arcs. If, after a single toll increases to its maximum value, the

drivers’ new path includes a toll arc, then, after improving the new tolls vector with the

idea of Step 1 to Step 5, the profit will likely be higher. This time, the tolls are increased

choosing first those that have the highest profit which is given by tma
∑
k∈K

xk
a(t

m). If there

is any improvement, we proceed to Step 1 if the current solution tm is better than the

best solution found tm. Otherwise, we go to Step 11. We continue this procedure until no

improvement is done. By this time, it may happen that there are no drivers in any of the

toll-arcs because of the expensive costs. If the latter occurs, we reset every toll to its value

before being maximized (these values are stored in the variables t̂a, a ∈ G) which should

generate a better solution than the previous one. Then, we return to Step 1 to repeat the

process.

Step 11 to Step 13 are auxiliary steps that mirror the procedure of Step 1 to Step

5 but adapted to return to Step 6, instead of Step 1, when an improvement is reached.
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The final Step 14 returns the iteration m, corresponding to the best solution tm that

was found, to be used in the main algorithm.

Algorithm 3.3 ARSB version 2

Step 1: For the current solution tm, define

A+
1 =

{
a ∈ A1

∣∣∣∣
∑

k∈K
xk
a(t

m) > 0

}
,

M+
a = |A+

1 |, and enumerate its elements A+
1 = {a1, a2, . . . , aM+

1
}.

Step 2: If A+
1 = ∅, go to Step 6. Otherwise, set j = 1.

Step 3: If j > M+
a , go to Step 6.

Step 4: Set

tm+1
a =

{
tmax
a if a = aj,

tma if a 6= aj,
∀a ∈ A1.

Step 5: If F (tm+1, x(tm+1)) > F (tm, x(tm)), set m = m + 1 and return to Step 1.

Otherwise, set j = j + 1 and return to Step 3.

Step 6: Return the last iterationm and the best solution found tm to the main algorithm.

For the second version of the ARSB algorithms, we use the same idea from ARSB

version 1 algorithm’s Step 6 to Step 10. We first identify the toll-arcs with positive flows

and increase their tolls to the maximum one by one, but this time, only if this move

provides a better solution than the previous one. After all the arcs have been tried, we

return to the main algorithm with the updated solution.

Algorithm 3.4 ARSB version 3

Step 1: For the current solution tm, define

E−
1 =

{
a ∈ A1

∣∣∣∣
∑

k∈K
xk
a(t

m) = 0, tma > 0

}
,

M−
a = |E−

1 |, and enumerate its elements E−
1 = {a1, a2, . . . , aM−

1
}.

Step 2: If E−
1 = ∅, go to Step 6. Otherwise, set

tm+1
a =

{
tmax
a if a ∈ E−

1 ,

tma if a /∈ E−
1 ,

∀a ∈ A1,

m = m+ 1 and i = 1.
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Step 3: If i > M−
a , go to Step 6. Otherwise, for the current solution tm find the allowable

ranges to stay basic {∆−
a ,∆

+
a | a ∈ A1}.

Step 4: Set

tm+1
a =

{
máx{tma −∆−

a − ε, 0} if a = ai,

tma if a 6= ai,
∀a ∈ A1.

Step 5: If F (tm+1, x(tm+1)) > F (tm, x(tm)), set m = m+ 1. Set i = i+ 1 and return to

Step 3.

Step 6: Return the last iterationm and the best solution found tm to the main algorithm.

For the third version of the ARSB algorithms, we first identify the set E−
1 of toll-arcs

with zero flow, which is the consequence of the toll being too high. Then, we maximize all

these tolls (which will not change the solution since the toll will be even higher) and find

the allowable ranges to stay basic. Next, we select each arc of this set E−
1 one by one to

decrease its value by a little more than the allowable decrease, so that the flow becomes

positive. If this procedure increases the profit, we update the iteration m and the solution

tm. Otherwise, we undo this change and try with the next arc. This procedure ends when

all the arcs have been tested, then, we return to the main algorithm with the updated

solution.

3.7.3 The FF Method Algorithm

Finally, we present the FF method’s procedures as algorithm 3.5. The auxiliary function

that will be used are the ones defined in section 3.6.

Algorithm 3.5 The FF Method

Step 0: Define the function u(t) = F (t, x(t)) and set t0 = tm.

Step 1: Find a local maximum t∗ of the auxiliary problem:

Maximize
t

Qρ,α,β,t0(t) = − exp(−‖t− t0‖2)g(β−α)u(t0)(u(t)− αu(t0))

−ρs(β−α)u(t0)(u(t)− αu(t0)), (3.49)

subject to ta ≤ tmáx
a , ∀a ∈ A1, (3.50)

ta ≥ 0, ∀a ∈ A1. (3.51)

Step 2: Set tm+1 = t∗ and m = m+ 1.

Step 3: Return the iteration m and the solution found tm to the main algorithm.
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The FF method is very simple but it helps the main algorithm not to get stuck at a

local maximum. Moreover, the auxiliary function Qρ,α,β,t0(t) was designed in such a way

that if an interior local maximum is found, then, u(t) > αu(t0), where α > 1.

3.8 Numerical Results

To test the efficiency of our heuristic algorithm, its performance is compared with two al-

gorithms from Kalashnikov, Camacho, Askin and Kalashnykova (2010), and the function

fmincon from Matlab. The algorithms from Kalashnikov, Camacho, Askin and Kalashny-

kova (2010) are the quasi-Newton algorithm and the sharpest ascent method. Although

these two algorithms were designed for the linear bilevel formulation of the Tolls Opti-

mization Problem, they can still be used for our linear-quadratic bilevel formulation. In

addition, for this comparison to be as natural as possible, half of the instances are tested

with the congestion coefficients near zero to mirror the linear behavior of the lower-level

from the previous formulations. The function fmincon from Matlab was designed to solve

optimization problems with nonlinear objective functions and constraints in general, so

it is worthwhile to compare its performance with other algorithms. Moreover, since the

quasi-Newton, sharpest ascent and fmincon algorithms are designed for local optimiza-

tion, the filled function method was added as an extra step to all these algorithms not to

get stuck at a local maximum.

The numerical experiments were run on a computer with an Intel(R) Core(TM)

i7-8750H CPU @ 2.20 GHz processor and 8.00 GB of RAM memory. The codes were

compiled in Matlab R2017b making use of the linear and quadratic programming tools in

the “Optimization Toolbox”.

For this comparison, we used two different networks, which are shown in figures 3.1

and 3.2. In each of the networks, the toll arcs are represented with regular straight lines

and the toll-free arcs are depicted with dotted lines.

Each of these networks was tested with 5 different instances and each of them with

2 different sets of congestion parameters; the first of them mirroring the linear behavior of

the Tolls Optimization Problem formulation. The sets of commodities K = {1, 2, . . . , κ}
along with the origin and destination nodes o(k) and δ(k) are represented together as:

Ω = {(o(1), δ(1)), (o(2), δ(2)), . . . , (o(κ), δ(κ))}. The parameters for network 1 are shown

in table 3.1 and the parameters for network 2 are shown in table 3.2.
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Figure 3.1: Network 1 with 7 nodes and 12 arcs where 7 are toll arcs

Figure 3.2: Network 2 with 20 nodes and 35 arcs where 15 are toll arcs

Instance Parameters
1 c = (1, 2, 5, 4, 3, 3, 2, 7, 4, 3, 8, 12), Ω = {(1, 6), (2, 7)}, n = (10, 9).
2 c = (3, 4, 2, 2, 3, 3, 4, 9, 9, 5, 6, 15), Ω = {(1, 6), (2, 7)}, n = (15, 5).
3 c = (4, 3, 2, 1, 1, 3, 2, 5, 6, 3, 1, 5), Ω = {(1, 6), (2, 7)}, n = (5, 8).
4 c = (1, 3, 1, 2, 3, 1, 1, 5, 4, 2, 4, 13), Ω = {(1, 6), (2, 7)}, n = (5, 12).
5 c = (3, 4, 5, 3, 3, 6, 2, 7, 7, 8, 10, 9), Ω = {(1, 6), (2, 7)}, n = (10, 9).

Vector of maximum toll values that can be charged
tmax = (20, 20, 20, 20, 20, 20, 20)

Table 3.1: Parameters for network 1
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Instance Parameters

1
c = (1, 3, 4, 2, 1, 2, 2, 2, 2, 2, 4, 5, 1, 7, 9, 2, 4, 8, 7, 4, 4, 10, 12, 11, 11, 12, 9, 4,
10, 9, 13, 16, 12, 10, 13), Ω = {(1, 15), (3, 18), (3, 20)}, n = (12, 24, 30).

2
c = (9, 3, 7, 1, 5, 3, 4, 4, 4, 9, 1, 4, 6, 5, 6, 1, 6, 7, 7, 4, 6, 5, 2, 4, 7, 7, 8, 6,
10, 6, 5, 3, 8, 6, 11), Ω = {(1, 15), (3, 18), (1, 20)}, n = (31, 41, 120).

3
c = (4, 8, 1, 7, 3, 9, 5, 5, 2, 7, 6, 6, 4, 9, 5, 5, 9, 5, 1, 4, 9, 5, 1, 4, 9, 3, 9, 1,
8, 4, 6, 3, 9, 1, 1), Ω = {(3, 19), (3, 18), (1, 15)}, n = (48, 50, 31).

4
c = (1, 5, 2, 6, 3, 5, 2, 3, 7, 2, 5, 1, 6, 9, 3, 1, 3, 8, 1, 1, 10, 8, 9, 11, 6, 9, 10, 7,

7, 7, 6, 9, 10, 6, 10), Ω = {(1, 20), (3, 18), (3, 20)}, n = (84, 45, 71).

5
c = (4, 3, 6, 4, 4, 3, 2, 3, 3, 2, 7, 3, 4, 5, 7, 1, 6, 4, 4, 5, 7, 3, 5, 10, 10, 9, 10, 10,

10, 7, 7, 8, 11, 10, 10), Ω = {(1, 20), (3, 19), (3, 20)}, n = (10, 6, 8).
Vector of maximum toll values that can be charged
tmax = (50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50)

Table 3.2: Parameters for network 2

Networks 1 and 2 along with the instances of table 3.1 and 3.2 were taken from Ka-

lashnikov, Herrera, Camacho and Kalashnykova (2016), however, the instances of network

2 were adjusted a little to prevent trivial solutions.

The sets of congestion parameters for both networks are shown in table 3.3.

Set 1 of congestion parameters for network 1
d = (0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001)

Set 2 of congestion parameters for network 1
d = (0.3779, 0.3815, 0.3817, 0.3799, 0.3840, 0.3772, 0.3804,

0.3796, 0.3770, 0.3804, 0.3785, 0.3771)
Set 1 of congestion parameters for network 2

d = (0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001,
0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001,
0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001).

Set 2 of congestion parameters for network 2
d = (0.1117, 0.1115, 0.1114, 0.1114, 0.1113, 0.1115, 0.1117, 0.1115, 0.1113, 0.1115, 0.1115,
0.1116, 0.1116, 0.1116, 0.1117, 0.1115, 0.1115, 0.1116, 0.1113, 0.1116, 0.1116, 0.1116, 0.1113,
0.1115, 0.1115, 0.1118, 0.1117, 0.1115, 0.1113, 0.1113, 0.1114, 0.1115, 0.1118, 0.1116, 0.1115).

Table 3.3: Congestion parameters

All the instances were solved 10 times by each algorithm, to have a better compa-

rison. The initial solution was the zero vector for all the algorithms.

The results are shown in the following tables where each column is tagged according

to the algorithm used. The tags are ARSB for the here developed algorithm, QN for
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the quasi-Newton algorithm, SA for the sharpest ascent algorithm, and fmincon for the

Matlab function.

For the first comparison, we took the best values found by each algorithm and

compute the relative error with the best value found overall. This is shown in tables

3.4-3.11.

N1D1 ARSB QN SA fmincon Best
1 162.74 144.74 162.74 162.74 162.74
2 274.72 264.72 264.72 274.72 274.72
3 58.85 58.85 34.97 53.82 58.85
4 171.69 171.69 131.56 95.71 171.69
5 136.74 110.25 109.80 109.90 136.74

Table 3.4: Best upper-level objective function found for network 1 with the congestion
parameters from set 1

N1D1 ARSB QN SA fmincon
1 0.00% 11.06% 0.00% 0.00%
2 0.00% 3.64% 3.64% 0.00%
3 0.00% 0.00% 40.57% 8.54%
4 0.00% 0.00% 23.37% 44.25%
5 0.00% 19.37% 19.70% 19.63%

Table 3.5: Relative error for network 1 with the congestion parameters from set 1

N1D2 ARSB QN SA fmincon Best
1 97.89 91.72 22.09 83.33 97.89
2 197.22 152.83 152.87 191.96 197.22
3 35.38 25.57 15.76 35.38 35.38
4 97.45 34.27 69.23 97.45 97.45
5 86.10 75.88 75.88 80.12 86.10

Table 3.6: Best upper-level objective function found for network 1 with the congestion
parameters from set 2

N1D2 ARSB QN SA fmincon
1 0.00% 6.31% 77.44% 14.88%
2 0.00% 22.51% 22.49% 2.67%
3 0.00% 27.73% 55.46% 0.00%
4 0.00% 64.83% 28.96% 0.00%
5 0.00% 11.87% 11.87% 6.94%

Table 3.7: Relative error for network 1 with the congestion parameters from set 2
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N2D1 ARSB QN SA fmincon Best
1 1760.57 1673.51 1673.28 1673.51 1760.57
2 2088.29 1532.96 1430.99 2088.29 2088.29
3 1122.81 1048.14 999.23 1122.84 1122.84
4 2166.00 2085.39 2085.26 2085.53 2166.00
5 345.91 193.96 189.60 189.97 345.91

Table 3.8: The best upper-level objective function value found for network 2 with the
congestion parameters from set 1

N2D1 ARSB QN SA fmincon
1 0.00% 4.95% 4.96% 4.95%
2 0.00% 26.59% 31.48% 0.00%
3 0.00% 6.65% 11.01% 0.00%
4 0.00% 3.72% 3.73% 3.72%
5 0.00% 43.93% 45.19% 45.08%

Table 3.9: Relative errors for network 2 with the congestion parameters from set 1

N2D2 ARSB QN SA fmincon Best
1 1307.87 503.88 503.89 823.04 1307.87
2 2660.24 1730.59 1820.78 1976.87 2660.24
3 803.81 402.43 402.58 419.32 803.81
4 2183.01 274.04 455.14 1845.23 2183.01
5 262.53 110.49 110.80 225.92 262.53

Table 3.10: The best upper-level objective function value for network 2 with the conges-
tion parameters from set 2

N2D2 ARSB QN SA fmincon
1 0.00% 61.47% 61.47% 37.07%
2 0.00% 34.95% 31.56% 25.69%
3 0.00% 49.93% 49.92% 47.83%
4 0.00% 87.45% 79.15% 15.47%
5 0.00% 57.91% 57.80% 13.95%

Table 3.11: Relative errors for network 2 with the congestion parameters from set 2
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In tables 3.4 and 3.11, we can see that the best values of the objective functions in

all the instances were provided by our algorithm. In some cases, the same best solutions

was also found by some of the other algorithms.

Also, from table 3.4, we can see that the best maximum values for the objective

functions found are very similar to those found in the numerical results in Kalashnikov,

Herrera, Camacho and Kalashnykova (2016) for the previous linear formulation of the

TOP, which confirms that the linear behavior is modelled correctly, too. This also means

that our quadratic formulation illustrates the continuity of the solution with respect to

the parameters, i.e., when the congestion parameters tend to zero, the solution of our

quadratic formulation tends to the solution of the linear setup.

In tables 3.4 and 3.5 corresponding to the first network and the congestion coeffi-

cients near to zero, we see that in most of the instances, the other algorithms found an

objective value near the best found. However, in tables 3.6 and 3.7 corresponding to the

first network and greater congestion coefficients, we see that the performance of the other

algorithms is better than ours only in a few cases.

The same behavior can be seen in tables 3.8-3.11 corresponding to network 2. When

the congestion coefficients are near to zero the performance of the other algorithms is

good, but when the congestion coefficients are greater, the best solution found by the

other algorithms has a relative error greater than 13% compared with the best solution

found by our algorithm.

However, finding better solutions is not enough for an algorithm: we also have to

see if the time required to find that solution is feasible. Then, for our next comparison,

we show the average solution found and the average time (in seconds) required by all the

algorithms in each instance for the 10 tests. These results are shown in tables 3.12-3.19.

N1D1 ARSB QN SA fmincon
1 19.34 4.66 6.35 10.89
2 12.06 4.68 5.48 6.22
3 12.98 7.39 4.90 8.45
4 12.82 7.14 4.19 4.69
5 14.20 4.16 4.03 5.91

Table 3.12: The average execution time (seconds) for network 1 with the congestion pa-
rameters from set 1

In tables 3.12-3.15 corresponding to network 1, we can see that in most of the cases

the average objective function value found is very similar for all the algorithms with set
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N1D1 ARSB QN SA fmincon
1 160.72 126.69 138.12 162.71
2 274.72 229.06 240.07 231.60
3 51.44 48.06 34.97 53.82
4 170.96 160.48 131.43 95.71
5 130.99 109.00 109.57 109.90

Table 3.13: The average objective function value found for network 1 with the conges-
tion parameters from set 1

N1D2 ARSB QN SA fmincon
1 6.59 7.28 7.45 5.18
2 6.54 7.33 6.15 18.96
3 8.86 4.18 7.90 8.58
4 7.61 4.51 5.73 22.63
5 6.83 4.35 8.78 3.60

Table 3.14: The average execution time (seconds) for network 1 with the congestion pa-
rameters from set 2

N1D2 ARSB QN SA fmincon
1 95.81 61.10 22.09 83.33
2 196.70 149.76 152.87 191.96
3 35.01 15.59 15.76 35.38
4 97.45 34.26 69.22 91.81
5 85.84 69.33 75.88 80.12

Table 3.15: The average objective function value found for network 1 with the conges-
tion parameters from set 2

N2D1 ARSB QN SA fmincon
1 92.20 14.07 15.59 15.92
2 84.96 18.57 8.08 33.92
3 88.16 14.32 11.68 28.27
4 110.81 10.07 7.35 19.78
5 130.88 21.92 10.54 25.55

Table 3.16: The average execution time (seconds) for network 2 with the congestion pa-
rameters from set 1
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N2D1 ARSB QN SA fmincon
1 1538.35 1279.04 1656.39 1673.23
2 2022.19 1114.04 1430.99 2004.43
3 989.02 1001.25 963.29 1122.77
4 2003.80 2081.96 2083.69 1953.31
5 288.22 138.45 158.51 189.97

Table 3.17: The average objective function value found for network 2 with the conges-
tion parameters from set 1

N2D2 ARSB QN SA fmincon
1 105.20 11.82 18.82 52.27
2 67.94 17.88 41.67 17.54
3 44.60 10.13 21.73 19.17
4 107.85 10.72 19.09 18.05
5 161.30 9.65 16.89 68.72

Table 3.18: The average execution time (seconds) for network 2 with the congestion pa-
rameters from set 2

N2D2 ARSB QN SA fmincon
1 1270.42 503.79 503.89 823.04
2 2346.52 1229.51 1820.78 1976.87
3 739.64 401.11 402.58 419.32
4 1287.49 274.02 455.14 1845.23
5 204.53 102.38 110.79 225.92

Table 3.19: The average objective function value found for network 2 with the conges-
tion parameters from set 2
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1 of the congestion parameters, whereas, with set 2 of the congestion parameters, the

average objective function value found is slightly better with our algorithm than with the

other methods.

On the other hand, we also see that for set 1 of congestion parameters, the average

execution time of our algorithm is almost the double of the average execution time of

the other 3 algorithms. However, with set 2 of the congestion parameters, this average

execution time decreases with our algorithm, while the execution time of the other 3

algorithms slightly increases.

The better performance of our algorithm with the second set of congestion parame-

ters can be explained by the fact that it was designed specifically for the case when the

lower-level is quadratic.

The same behavior can be seen in tables 3.16-3.19 for network 2. The average ob-

jective function value is similar in most of the instances with set 1 of the congestion

parameters, while with set 2 of those parameters, the average objective function value is

better in almost all the cases than the same found with the other algorithms. Also, we

can see that for set 1 of the congestion parameters, the average time of our algorithms

it’s about 5 to 10 times higher than the time required for the other algorithms, but these

times are similar for set 2 of the congestion parameters.

Thus, we can notice that the extra time taken by our algorithm results in an impro-

vement in the objective function. However, even though our algorithm can be 10 times

slower, the maximum execution time does not exceed 3 minutes which is still very fast.

For the last comparison, we calculate how many times each algorithm found a solu-

tion with less than 10% relative error with respect to the best solution found by all the

algorithms. Next, we do the same comparison as to the average time required by each

algorithm to find the solution with less than 10% relative error with respect to the best

solution found by all the algorithms. These results are shown in tables 3.20-3.27.

N1D1 ARSB QN SA fmincon
1 10 0 3 10
2 10 1 4 2
3 3 5 0 10
4 10 7 0 0
5 10 0 0 0

Table 3.20: Number of final objective functions found with less than 10% relative error
for network 1 with the congestion parameters in set 1



Chapter 3. Bilevel Tolls Optimization Problem with Quadratic Costs 63

N1D1 ARSB QN SA fmincon
1 9.99 N/A 6.90 7.39
2 1.27 5.93 4.40 6.17
3 12.19 5.15 N/A 5.89
4 2.06 5.60 N/A N/A
5 1.30 N/A N/A N/A

Table 3.21: Average time to find the first objective function with less than 10% relative
error for network 1 with the congestion parameters in set 1

N1D2 ARSB QN SA fmincon
1 9 1 0 0
2 10 0 0 10
3 10 0 0 10
4 10 0 0 8
5 10 0 0 10

Table 3.22: Number of final objective functions found with less than 10% relative error
for network 1 with the congestion parameters in set 2

N1D2 ARSB QN SA fmincon
1 1.03 4.64 N/A N/A
2 2.18 N/A N/A 2.48
3 2.40 N/A N/A 2.56
4 1.95 N/A N/A 9.44
5 1.14 N/A N/A 0.42

Table 3.23: Average time to find the first objective function with less than 10% relative
error for network 1 with the congestion parameters in set 2

N2D1 ARSB QN SA fmincon
1 4 4 10 10
2 8 0 0 8
3 5 1 0 10
4 7 10 10 4
5 3 0 0 0

Table 3.24: Number of final objective functions found with less than 10% relative error
for network 2 with the congestion parameters in set 1
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N2D1 ARSB QN SA fmincon
1 18.77 8.96 7.97 6.84
2 10.06 N/A N/A 23.20
3 6.93 13.13 N/A 15.93
4 52.41 0.94 0.57 9.75
5 19.91 N/A N/A N/A

Table 3.25: Average time to find the first objective function with less than 10% relative
error for network 2 with the congestion parameters in set 1

N2D2 ARSB QN SA fmincon
1 10 0 0 0
2 7 0 0 0
3 8 0 0 0
4 2 0 0 0
5 1 0 0 0

Table 3.26: Number of final objective functions found with less than 10% relative error
for network 2 with the congestion parameters in set 2

N2D2 ARSB QN SA fmincon
1 28.07 N/A N/A N/A
2 14.34 N/A N/A N/A
3 4.10 N/A N/A N/A
4 5.30 N/A N/A N/A
5 129.66 N/A N/A N/A

Table 3.27: Average time to find the first objective function with less than 10% relative
error for network 2 with the congestion parameters in set 2



Appendix 3. Bilevel Tolls Optimization Problem with Quadratic Costs65

From tables 3.20-3.27, we can see again that the performance of our algorithm is

better for set 2 of the congestion parameters since the other algorithms most of the

times cannot find a solution with less than 10% relative error. We also can see that the

average time required by our algorithm is reduced drastically for almost all the instances

in network 2. This means that our algorithm is able to find a good solution within the

average time of the other algorithms, and the rest is invested to find an even better

solution.

3.9 Conclusions and Future Research

In this chapter, we propose a new formulation of the Tolls Optimization Problem with

quadratic congestion terms and develop an efficient algorithm for its solution based on

Sensitivity Analysis for quadratic programming. This algorithm also makes use of the

filled function technique adapted for maximization in order to prevent the algorithm from

getting stuck at a local maximum.

A series of numerical experiments were conducted with two different networks and

two different sets of congestion parameters (one of them imitating the linear structures

of previous formulations). These numerical results lead to two conclusions.

The first is that while our algorithm performs well along with the other 3 algorithms

tested for small instances, our algorithm shows better results as the size of the instance

increases and the congestion of the network is comparatively large (which is usually the

case).

The second is that our model presents a natural extension of the linear formula-

tion because when the congestion parameters tend to zero, the solution of our quadratic

formulation tends to the solution of the linear model.

For our future research, we plan to develop efficient numerical algorithms for the

cases in which the network’s toll-free arcs capacity limits prevent finding the purely toll-

free paths competing with the other feasible routes. These new restrictions may give birth

to some theoretically novel results as well.

Finally, as an important link between this and the previous chapter, the idea inside

the proof of theorem 3.1 can be useful to reduce the many-person game from the lower

level of the meta-game into a single optimization problem in future works.
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Proofs of chapter 1

Lemma 1.1. Let assumptions A1.1-A1.3 be valid. Then, for all nonnegative values of

νi, i = 0, 1, supply values qi are strictly positive (i.e., qi > 0, i = 0, 1) at any exterior

equilibrium if and only if p > p0.

Proof. If p > p0 = b1, then, the inequalities p ≤ −βν0q1 + b0 and p ≤ b1, from

the optimality conditions (1.11) and (1.13), respectively, never apply, which implies that

no (equilibrium) value qi, i = 0, 1, can vanish. Conversely, if all the equilibrium outputs

are positive, i.e., qi > 0, i = 0, 1, then, the optimality condition (1.13) directly entails

p = q1ν1 + a1q1 + b1 > b1. Hence, p > p0 = b1, and the proof is complete�

Theorem 1.1. Under assumptions A1.1-A1.3, for any β ∈ (0, 1], D ≥ 0 and νi ≥ 0,

i = 0, 1, there exists uniquely the exterior equilibrium (p, q0, q1) depending continuously

upon the parameters (D, ν0, ν1). The equilibrium price p as a function of these parameters

is continuously differentiable with respect to D and νi, i = 0, 1. Moreover p(D, ν0, ν1) > p0

and
∂p

∂D
=

1

1

(1− β)ν0 + a0
+

ν0 + a0
(1− β)ν0 + a0

(
1

ν1 + a1

)
−G′(p)

. (1.15)

Proof. Let ν0, ν1 ≥ 0. By using the optimality conditions (1.11) and (1.13), we

can find the output volume functions qi = qi(p, ν0, ν1), i = 0, 1, defined on the interval

[p0,+∞). These functions are differentiable with respect to p and νi, i = 0, 1, and they

are given by:

q0 =
p− b0

(1− β)ν0 + a0
+

βν0
(1− β)ν0 + a0

(
p− b1
ν1 + a1

)
, (A.1)

q1 =
p− b1
ν1 + a1

. (A.2)
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Now we introduce the following function:

Q(p, ν0, ν1) =q0(p, ν0, ν1) + q1(p, ν0, ν1)

=
p− b0

(1− β)ν0 + a0
+

βν0
(1− β)ν0 + a0

(
p− b1
ν1 + a1

)
+

p− b1
ν1 + a1

=p

[
1

(1− β)ν0 + a0
+

βν0
(1− β)ν0 + a0

(
1

ν1 + a1

)
+

1

ν1 + a1

]

−
[

b0
(1− β)ν0 + a0

+
βν0

(1− β)ν0 + a0

(
b1

ν1 + a1

)
+

b1
ν1 + a1

]

=p

[
1

(1− β)ν0 + a0
+

(
βν0

(1− β)ν0 + a0
+ 1

)(
1

ν1 + a1

)]

−
[

b0
(1− β)ν0 + a0

+

(
βν0

(1− β)ν0 + a0
+ 1

)(
b1

ν1 + a1

)]

=p

[
1

(1− β)ν0 + a0
+

βν0 + (1− β)ν0 + a0
(1− β)ν0 + a0

(
1

ν1 + a1

)]

−
[

b0
(1− β)ν0 + a0

+
βν0 + (1− β)ν0 + a0

(1− β)ν0 + a0

(
b1

ν1 + a1

)]

=p

[
1

(1− β)ν0 + a0
+

ν0 + a0
(1− β)ν0 + a0

(
1

ν1 + a1

)]

−
[

b0
(1− β)ν0 + a0

+
ν0 + a0

(1− β)ν0 + a0

(
b1

ν1 + a1

)]
.

(A.3)

As we can see from (A.3), the function Q is linear in p with positive slope. Therefore,

Q(p, ν0, ν1) strictly increases with respect to p, and tends to +∞ when p → +∞. By

assumption A1.3, one has that for all νi ≥ 0, i = 0, 1,

Q(p0, ν0, ν1) =q0(p0, ν0, ν1) + q1(p0, ν0, ν1)

=
p0 − b0

(1− β)ν0 + a0
≤ p0 − b0

a0
< G(p0) ≤ G(p0) +D.

(A.4)

Hence, Q(p, ν0, ν1) strictly increases with respect to p, the function G(p) is non-

increasing by p and D is constant, so by inequality (A.4), there exists a unique value

p∗ > p0 such that

Q(p∗, ν0, ν1) = G(p∗) +D. (A.5)

For this value p∗, using (A.1) and (A.2), we compute uniquely the equilibrium output

volumes q∗i = qi(p
∗, ν0, ν1), i = 0, 1. So we have established the existence and uniqueness

of the exterior equilibrium (p∗, q∗0, q
∗
1) for any D ≥ 0 and νi ≥ 0, i = 0, 1.
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Now we are going to show that the equilibrium price p∗ of the exterior equilibrium is

differentiable with respect to the parameters (D, ν0, ν1). From (A.5) we get the following

relationships:

Q(p∗, ν0, ν1)−G(p∗)−D = 0, (A.6)

and we introduce the following function:

Γ(p∗, D, ν0, ν1) =Q(p∗, ν0, ν1)−G(p∗)−D

=p∗
[

1

(1− β)ν0 + a0
+

ν0 + a0
(1− β)ν0 + a0

(
1

ν1 + a1

)]

−
[

b0
(1− β)ν0 + a0

+
ν0 + a0

(1− β)ν0 + a0

(
b1

ν1 + a1

)]

−G(p∗)−D.

(A.7)

Thus, we can rewrite (A.6) as a functional equation

Γ(p∗, D, ν0, ν1) = 0 (A.8)

and compute its partial derivative with respect to p∗:

∂Γ

∂p∗
=

1

(1− β)ν0 + a0
+

ν0 + a0
(1− β)ν0 + a0

(
1

ν1 + a1

)
−G′(p∗)

≥ 1

(1− β)ν0 + a0
> 0.

(A.9)

From (A.9) we can see that the partial derivative of Γ with respect to p∗ is positive.

Because of that, Implicit Function Theorem implies that the equilibrium price p∗ can be

considered as a function p∗ = p∗(D, ν0, ν1), which is differentiable with respect to D and

νi, i = 0, 1. Moreover, the partial derivative of the price p∗ with respect to D can be found

from the equation
∂Γ

∂p∗
∂p∗

∂D
+

∂Γ

∂D
= 0. (A.10)

The latter leads to

∂p∗

∂D
= −

∂Γ

∂D
∂Γ

∂p∗

=
1

1

(1− β)ν0 + a0
+

ν0 + a0
(1− β)ν0 + a0

(
1

ν1 + a1

)
−G′(p∗)

. (A.11)
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Finally, since the function p∗ depends upon (D, ν0, ν1) and is differentiable with

respect to D and νi, i = 0, 1, the functions q∗i , i = 0, 1, also depend on (D, ν0, ν1) and

are differentiable with respect to D and νi, i = 0, 1. Therefore, the equilibrium (p∗, q∗0, q
∗
1)

continuously depends on the parameters (D, ν0, ν1). The proof of the theorem is complete�

Proposition 1.1. For all τ ≤ 0, there exists a unique solution νi = νi(τ), i = 0, 1, of

system (1.20) and (1.21), which continuously depends upon τ . In addition, νi(τ) → 0

whenever τ → −∞, and νi(τ) strictly grows and tends to νi(0) as τ → 0, i = 0, 1.

Proof. The variables νi, i = 0, 1, given by (1.20) and (1.21) are considered on their

domains: νi ≥ 0, ai > 0, i = 0, 1, β ∈ (0, 1], and τ ∈ (−∞, 0].

Substituting (1.21) in (1.20) we get the following equation:

ν0 =
1

1


1
1

(1− β)ν0 + a0
− τ


+ a1

− τ

=
1

1(
(1− β)ν0 + a0

1− [(1− β)ν0 + a0] τ

)
+ a1

− τ

=
1

1(
(1− β)ν0 + a0

−(1− β)τν0 + (1− a0τ)

)
+ a1

− τ

=
1

−(1− β)τν0 + (1− a0τ)

(1− β)ν0 + a0 + a1 [−(1− β)τν0 + (1− a0τ)]
− τ

=
1

−(1− β)τν0 + (1− a0τ)

(1− β) (1− a1τ) ν0 + (a0 + a1 − a0a1τ)
− τ

=
(1− β) (1− a1τ) ν0 + (a0 + a1 − a0a1τ)

−(1− β)τν0 + (1− a0τ)− [(1− β) (1− a1τ) ν0 + (a0 + a1 − a0a1τ)] τ

=
(1− β) (1− a1τ) ν0 + (a0 + a1 − a0a1τ)

(1− β) (−2τ + a1τ 2) ν0 + (1− 2a0τ − a1τ + a0a1τ 2)
.

(A.12)
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Then, we can multiply (A.12) by [(1− β) (−2τ + a1τ
2) ν0 + (1− 2a0τ − a1τ + a0a1τ

2)]

to obtain [
(1− β)

(
−2τ + a1τ

2
)
ν0 +

(
1− 2a0τ − a1τ + a0a1τ

2
)]

ν0

= (1− β) (1− a1τ) ν0 + (a0 + a1 − a0a1τ) .
(A.13)

Move all the terms of (A.13) to the left-hand side and get

[
(1− β)

(
−2τ + a1τ

2
)
ν0 +

(
1− 2a0τ − a1τ + a0a1τ

2
)]

ν0

−(1− β) (1− a1τ) ν0 − (a0 + a1 − a0a1τ) = 0.
(A.14)

By extracting a common factors in (A.14) we obtain the following quadratic equation

for ν0:

(1−β)
(
−2τ + a1τ

2
)
ν2
0+
(
β − 2a0τ − βa1τ + a0a1τ

2
)
ν0−(a0 + a1 − a0a1τ) = 0. (A.15)

Now, in order to simplify the notation, we rewrite (A.15) as follows:

Aν2
0 +Bν0 − C = 0, (A.16)

where

A = A(τ) = (1− β)
(
−2τ + a1τ

2
)
≥ 0, (A.17)

B = B(τ) = β − 2a0τ − βa1τ + a0a1τ
2 > 0, (A.18)

C = C(τ) = a0 + a1 − a0a1τ > 0. (A.19)

If τ = 0 or β = 1, then, A = 0 and (A.16) is linear, so we can find the unique

solution for ν0 given by:

ν0(τ) =
C

B
=





a0 + a1
β

if τ = 0,

a0 + a1 − a0a1τ

1− 2a0τ − a1τ + a0a1τ 2
if β = 1.

(A.20)

If β ∈ (0, 1) and τ < 0, then, A 6= 0 and we can find both roots of (A.16), which

are:

ν0(τ) =
−B +

√
B2 + 4AC

2A
, (A.21)

ν0(τ) =
−B −

√
B2 + 4AC

2A
. (A.22)
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However, since ν0 ≥ 0, the root (A.22) is impossible; that is, (A.21) is the unique

solution of (A.16).

Moreover, (A.20) and (A.21) can be combined in a single equation for all β ∈ (0, 1]

and τ ∈ (−∞, 0] as follows:

ν0(τ) =ν0 =
2C

B +
√
B2 + 4AC

= 2(a0+a1−a0a1τ)

(β−2a0τ−βa1τ+a0a1τ2)+
√

(β−2a0τ−βa1τ+a0a1τ2)
2+4(1−β)(−2τ+a1τ2)(a0+a1−a0a1τ)

,
(A.23)

where

B +
√
B2 + 4AC > 0, (A.24)

and so (A.23) is the unique solution for ν0.

We can see that the solution (A.23) for any parameter β ∈ (0, 1] satisfies the condi-

tion ν0 → 0 as τ → −∞. Hence, there exits a positive value ν0(β) such that ν0(τ) ≤ ν0(β)

for all τ ≤ 0.

From (1.21) and (A.23), we can see that ν1 also has a unique solution, which is given

by

ν1(τ) = ν1 =
1

1

(1− β)ν0(τ) + a0
− τ

. (A.25)

For any parameter β ∈ (0, 1], the conditions ν1 → 0 as τ → −∞ and ν1(τ) ≤
a0 + (1− β)ν0(β) for all τ ≤ 0, are satisfied.

Now, it is apparent that the functions (A.17)-(A.19) are continuously differentiable

with respect to τ , τ ∈ (−∞, 0], and

A′ = (1− β) (−2 + 2a1τ) ≤ 0, (A.26)

B′ = −2a0 − βa1 + 2a0a1τ < 0, (A.27)

C ′ = −a0a1 < 0. (A.28)
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Thus, from (A.23), we have that ν0(τ) is continuously differentiable and

ν ′0 =
2C ′

(
B +

√
B2 + 4AC

)
− 2C

(
B′ + 2BB′+4A′C+4AC′

2
√
B2+4AC

)

(
B +

√
B2 + 4AC

)2

=
2C ′

(
B +

√
B2 + 4AC

)√
B2 + 4AC − 2C

(
B′√B2 + 4AC + 2BB′+4A′C+4AC′

2

)

(
B +

√
B2 + 4AC

)2√
B2 + 4AC

=
2C ′

(
B
√
B2 + 4AC +B2 + 4AC

)
− 2C

(
B′√B2 + 4AC +BB′ + 2A′C + 2AC ′

)

(
B +

√
B2 + 4AC

)2√
B2 + 4AC

=
2C ′B

√
B2 + 4AC + 2C ′B2 + 4ACC ′ − 2CB′√B2 + 4AC − 2CBB′ − 4A′C2

(
B +

√
B2 + 4AC

)2√
B2 + 4AC

=
2 (C ′B − CB′)

√
B2 + 4AC + 2 (C ′B − CB′)B + 4 (AC ′ −A′C)C
(
B +

√
B2 + 4AC

)2√
B2 + 4AC

=
2 (C ′B − CB′)

(
B +

√
B2 + 4AC

)
+ 4 (AC ′ −A′C)C

(
B +

√
B2 + 4AC

)2√
B2 + 4AC

.

(A.29)

Now, we estimate the values of (A.29) in order to reveal the behavior of ν0(τ) as the

function of τ .

From (A.17)-(A.19), it is evident that the denominator of (A.29) is positive:

(
B +

√
B2 + 4AC

)2 √
B2 + 4AC > 0. (A.30)

Thus, plugging (A.17)-(A.19) and (A.26)-(A.28) in (A.29), we can find that

C ′B − CB′ =(−a0a1)
(
β − 2a0τ − βa1τ + a0a1τ

2
)

− (a0 + a1 − a0a1τ) (−2a0 − βa1 + 2a0a1τ)

= (−a0a1)
(
β − a0a1τ

2
)
+ (−a0a1)

(
−2a0τ − βa1τ + 2a0a1τ

2
)

− [(a0 + a1) (−2a0 − βa1 + 2a0a1τ) + (−a0a1τ) (−2a0 − βa1 + 2a0a1τ)]

=a0a1
(
−β + a0a1τ

2
)
− a0a1

(
−2a0τ − βa1τ + 2a0a1τ

2
)

+ a0a1
(
−2a0τ − βa1τ + 2a0a1τ

2
)
+ (a0 + a1) (2a0 + βa1 − 2a0a1τ)

=a0a1
(
−β + a0a1τ

2
)
+ (a0 + a1) (2a0 + βa1 − 2a0a1τ)

=a0a1 (−β) + a0a1
(
a0a1τ

2
)
+ (a0 + a1) (2a0 − 2a0a1τ) + (a0 + a1) (βa1)

=− a0 (βa1) + (a0 + a1) (βa1) + a0a1
(
a0a1τ

2
)
+ (a0 + a1) (2a0 − 2a0a1τ)

=βa21 + a20a
2
1τ

2 + (a0 + a1) (2a0 − 2a0a1τ) > 0,

(A.31)
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and

AC ′ − A′C =(1− β)
(
−2τ + a1τ

2
)
(−a0a1)

− (1− β) (−2 + 2a1τ) (a0 + a1 − a0a1τ)

=(1− β)
(
−2τ + 2a1τ

2
)
(−a0a1) + (1− β)

(
−a1τ

2
)
(−a0a1)

− (1− β) (−2 + 2a1τ) (a0 + a1)− (1− β) (−2 + 2a1τ) (−a0a1τ)

=(1− β)a0a
2
1τ

2 − (1− β)
(
−2τ + 2a1τ

2
)
(a0a1)

+ (1− β)
(
−2τ + 2a1τ

2
)
(a0a1) + (1− β) (2− 2a1τ) (a0 + a1)

=(1− β)a0a
2
1τ

2 + (1− β) (2− 2a1τ) (a0 + a1) ≥ 0.

(A.32)

Therefore, given the values of (A.17)-(A.19), (A.24) and (A.30)-(A.32), we can con-

clude that

ν ′
0 =

2 (C ′B − CB′)
(
B +

√
B2 + 4AC

)
+ 4 (AC ′ − A′C)C

(
B +

√
B2 + 4AC

)2 √
B2 + 4AC

≥2 (C ′B − CB′)
(
B +

√
B2 + 4AC

)
(
B +

√
B2 + 4AC

)2 √
B2 + 4AC

> 0.

(A.33)

Therefore, ν0(τ) is strictly increasing with respect to τ, τ ∈ (−∞, 0]. Since the

function ν0 = ν0(τ) is continuous, it tends to ν0(0) as τ goes to 0.

Now, from (A.25) we have

ν1 =
1

1

(1− β)ν0 + a0
− τ

. (A.34)

Since, ν0(τ) is continuously differentiable with respect to τ , the same is true for

ν1(τ), and

ν ′
1 =− 1

(
1

(1− β)ν0 + a0
− τ

)2

(
− 1

[(1− β)ν0 + a0]
2 (1− β)ν ′

0 − 1

)

=ν2
1

(
(1− β)ν ′

0

[(1− β)ν0 + a0]
2 + 1

)
,

(A.35)

where ν ′
0 > 0, On account of that,

ν ′
1 = ν2

1

(
(1− β)ν ′

0

[(1− β)ν0 + a0]
2 + 1

)
≥ ν2

1 > 0. (A.36)
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Therefore, ν1(τ) strictly increases with respect to τ, τ ∈ (−∞, 0]. Since the function

ν1 = ν1(τ) is continuous, it tends to ν1(0) as τ goes to 0. The proof of the theorem is

complete.�

Theorem 1.2. Under assumptions A1.1-A1.3, there exists the interior equilibrium.

Proof. We are going to show that there exist ν∗
i ≥ 0, q∗i ≥ 0, i = 0, 1, and p∗ > p0

such that the vector (p∗, q∗0, q
∗
1) is the exterior equilibrium, and the influence coefficients

(ν∗
0 , ν

∗
1) are consistent, i.e., equations (1.18) and (1.19) hold.

As it was proved in proposition 1.1, ν0 and ν1 solve uniquely equations (1.20) and

(1.21), and continuously depend on τ = G′(p). Moreover, G′(p) continuously depends on

p, hence, the functions ν0 and ν1 are continuous with respect to p.

Recall the function (A.3) introduced when proving theorem 1.1:

Q(p, ν0(p), ν1(p)) = Q(p) = q0(p, ν0(p), ν1(p)) + q1(p, ν0(p), ν1(p))

=
p− b0

(1− β)ν0(p) + a0
+

βν0(p)

(1− β)ν0(p) + a0

(
p− b1

ν1(p) + a1

)
+

p− b1
ν1(p) + a1

= p

[
1

(1− β)ν0(p) + a0
+

ν0(p) + a0
(1− β)ν0(p) + a0

(
1

ν1(p) + a1

)]

−
[

b0
(1− β)ν0(p) + a0

+
ν0(p) + a0

(1− β)ν0(p) + a0

(
b1

ν1(p) + a1

)]
.

(A.37)

which continuously depends on p and tends to +∞ as p → +∞ since ν0(p) and ν1(p) are

bounded. Thus, by assumption A1.3, we have that

Q(p0) =q0(p0, ν0(p0), ν1(p0)) + q1(p0, ν0(p0), ν1(p0))

=
p0 − b0

(1− β)ν0(p0) + a0
≤ p0 − b0

a0
< G(p0) ≤ G(p0) +D.

(A.38)

Therefore, there exists the value p∗ > p0 such that

Q(p∗) = G(p∗) +D. (A.39)

For this value p∗, we compute the influence coefficients ν∗
i = νi(G

′(p∗)), i = 0, 1,

using (A.23) and (A.25), as well as the output volumes q∗i = qi(p
∗, ν∗

0 , ν
∗
1), i = 0, 1, given by

(A.1) and (A.2). Thus, ν∗
0 and ν∗

1 satisfy (1.18) and (1.19), whereas the vector (p∗, q∗0, q
∗
1)

is the exterior equilibrium. As a consequence, the extended vector (p∗, q∗0, q
∗
1, ν

∗
0 , ν

∗
1) is the

interior equilibrium. The proof of the theorem is complete.�
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Corollary 1.1. Under assumptions A1.1-A1.3, for all β ∈ (0, 1], the demand function

of type (1.22) implies the uniqueness of the interior equilibrium.

Proof. Consider an arbitrary β ∈ (0, 1]. Since G′(p) = −K, then, by proposition 1.1,

for τ = −K there exists a unique solution (ν∗
0 , ν

∗
1) of equations (1.20) and (1.21):

ν∗
0 = 2(a0+a1+a0a1K)

(β+2a0K+βa1K+a0a1K2)+
√

(β+2a0K+βa1K+a0a1K2)2+4(1−β)(2K+a1K2)(a0+a1+a0a1K)
, (A.40)

and

ν∗
1 =

1
1

(1− β)ν∗
0 + a0

+K
=

(1− β)ν∗
0 + a0

1 + [(1− β)ν∗
0 + a0]K

. (A.41)

Moreover, from (1.20), we can rewrite (A.40) as follows:

ν∗
0 =

1
1

ν∗
1 + a1

+K
. (A.42)

It is not difficult to see that the influence coefficients ν∗
0 and ν∗

1 don’t depend on p,

therefore, by theorem 1.1, there exists the unique exterior equilibrium (p∗, q∗0, q
∗
1) with the

influence coefficients (ν∗
0 , ν

∗
1). Hence, the vector

(p∗, q∗0, q
∗
1, ν

∗
0 , ν

∗
1) = (p∗(β), q∗0(β), q

∗
1(β), ν

∗
0(β), ν

∗
1(β))

is the unique interior equilibrium for β ∈ (0, 1]. The proof of the corollary is complete.�

Theorem 1.3. For the affine demand function G(p) from (1.22), the price p∗(β), the

supply outputs q∗i (β), i = 0, 1, and the influence coefficients ν∗
i (β), i = 0, 1, characterizing

the interior equilibrium, together with total market supply G∗(β) = q∗0(β) + q∗1(β), are

continuously differentiable by β ∈ (0, 1]. Furthermore, q∗0(β) and G∗(β) strictly increase,

whereas p∗(β), ν∗
0(β), ν

∗
1(β) and q∗1(β) strictly decrease.

Proof. First, we are going to show that the functions ν∗
i (β), i = 0, 1, are continuously

differentiable and strictly decreasing with respect to β. Let us consider the functions

A =A(β) = (1− β)
(
2K + a1K

2
)
≥ 0, (A.43)

B =B(β) = β + 2a0K + βa1K + a0a1K
2 > 0, (A.44)

C =C(β) = a0 + a1 + a0a1K > 0, (A.45)
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which are continuously differentiable with respect to β, with

A′ = −
(
2K + a1K

2
)
< 0, (A.46)

B′ = 1 + a1K > 0, (A.47)

C ′ = 0. (A.48)

Using (A.43)-(A.45) we rewrite (A.40) as follows:

ν∗
0(β) = ν∗

0 =
2C

B +
√
B2 + 4AC

, (A.49)

where

B +
√
B2 + 4AC > 0. (A.50)

Then, ν∗
0(β) is continuously differentiable with respect to β and, similarly to (A.29),

ν∗
0
′ =

2 (C ′B − CB′)
(
B +

√
B2 + 4AC

)
+ 4 (AC ′ −A′C) C

(
B +

√
B2 + 4AC

)2 √B2 + 4AC
. (A.51)

Since C ′ = 0, then,

ν∗
0
′ =

2 (−CB′)
(
B +

√
B2 + 4AC

)
+ 4 (−A′C) C

(
B +

√
B2 + 4AC

)2 √B2 + 4AC

=
−2C

[
B′ (B +

√
B2 + 4AC

)
+ 2A′C

]
(
B +

√
B2 + 4AC

)2 √B2 + 4AC
.

(A.52)

Now we are going to estimate the value of (A.52) in order to describe the behavior

of ν∗
0(β) as a function of β.

From (A.43)-(A.45), it is evident that the denominator of (A.52) is positive:

(
B +

√
B2 + 4AC

)2 √
B2 + 4AC > 0. (A.53)

Suppose that the numerator of (A.52) is nonnegative for some β0 ∈ (0, 1], i.e,

− 2C
[
B′
(
B +

√
B2 + 4AC

)
+ 2A′C

]
≥ 0. (A.54)
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Since C > 0, by (A.45), we have that

B′
(
B +

√
B2 + 4AC

)
+ 2A′C ≤ 0. (A.55)

Moreover, B′ > 0, by (A.47), therefore,

√
B2 + 4AC ≤ −2A′C

B′ − B (A.56)

where
√
B2 + 4AC > 0. Now squaring both sides of (A.56) we have

B2 + 4AC ≤ 4A′2C2

B′2 +
4A′CB
B′ + B2. (A.57)

Solving (A.57) for A we get

A ≤ A′2C
B′2 +

A′B
B′ . (A.58)

Multiplying both sides of (A.58) by B2 we deduce

AB′2 ≤ A′2C +A′BB′ = A′ (A′C + BB′) . (A.59)

Now, we substitute the values of A and A′ given by (A.43) and (A.46) in (A.59) to

obtain:

(1− β)
(
2K + a1K

2
)
B′2 ≤ −

(
2K + a1K

2
) [

−
(
2K + a1K

2
)
C + BB′] , (A.60)

and since (2K + a1K
2) > 0, we have that

(1− β)B′2 ≤ −
[
−
(
2K + a1K

2
)
C + BB′] =

(
2K + a1K

2
)
C − BB′. (A.61)

The latter implies

(1− β)B′2 + BB′ −
(
2K + a1K

2
)
C = [(1− β)B′ + B]B′ −

(
2K + a1K

2
)
C ≤ 0. (A.62)
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Plugging equations (A.44), (A.45) and (A.47) in (A.62) we yield

[(1− β)B′ + B]B′ −
(
2K + a1K

2
)
C =

=
[
(1− β) (1 + a1K) +

(
β + 2a0K + βa1K + a0a1K

2
)]

(1 + a1K)

−
(
2K + a1K

2
)
(a0 + a1 + a0a1K)

=
(
1 + 2a0K + a1K + a0a1K

2
)
(1 + a1K)

− (2 + a1K)
(
a0K + a1K + a0a1K

2
)

= 1 + (a1K) +
(
2a0K + a1K + a0a1K

2
)
+
(
2a0K + a1K + a0a1K

2
)
(a1K)

− (2 + a1K)
(
a0K + a1K + a0a1K

2
)

= 1 + 2
(
a0K + a1K + a0a1K

2
)
+
(
a0K + a1K + a0a1K

2
)
(a1K)

− (2 + a1K)
(
a0K + a1K + a0a1K

2
)

= 1 + (2 + a1K)
(
a0K + a1K + a0a1K

2
)

− (2 + a1K)
(
a0K + a1K + a0a1K

2
)

= 1 > 0,

(A.63)

which contradicts (A.62). Hence, (A.54) cannot hold for any β ∈ (0, 1], which implies

− 2C
[
B′
(
B +

√
B2 + 4AC

)
+ 2A′C

]
< 0 (A.64)

for all β ∈ (0, 1].

Therefore, from (A.53) and (A.64), we conclude that

ν∗
0
′ =

−2C
[
B′ (B +

√
B2 + 4AC

)
+ 2A′C

]
(
B +

√
B2 + 4AC

)2 √B2 + 4AC
< 0 (A.65)

for all β ∈ (0, 1]. On account of the latter, ν∗
0(β) is continuously differentiable and strictly

decreasing with respect β, β ∈ (0, 1].

From (A.41), it is clear that ν∗
1 is continuously differentiable with respect to ν∗

0 and,

since ν∗
0(β), on its own, is also smooth as a function of β, then, ν∗

1(β), is continuously

differentiable by β.

Differentiating (A.42) with respect to β we get

ν∗
0
′ =

1
(

1

ν∗
1 + a1

+K

)2

(
1

(ν∗
1 + a1)

2ν
∗
1
′
)

= ν∗
0
2

(
ν∗
1
′

(ν∗
1 + a1)

2

)
=

(
ν∗
0

ν∗
1 + a1

)2

ν∗
1
′. (A.66)
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Since ν∗
0
′ < 0, then, (A.66) implies that ν∗

1
′ < 0, for all β ∈ (0, 1]. Thus, ν∗

1(β) is

continuously differentiable and strictly decreasing with respect to β, β ∈ (0, 1]. Before

continuing the proof, we are going to establish the following inequality:

ν∗
0 + βν∗

0
′ > 0. (A.67)

Substituting (A.49) and (A.52) in (A.67), we get

ν∗0 + βν∗0
′ =

2C
B +

√
B2 + 4AC

+ β
−2C

[
B′
(
B +

√
B2 + 4AC

)
+ 2A′C

]

(
B +

√
B2 + 4AC

)2√
B2 + 4AC

=
2C

(
B +

√
B2 + 4AC

)2√
B2 + 4AC

·
{(

B +
√
B2 + 4AC

)√
B2 + 4AC − β

[
B′
(
B +

√
B2 + 4AC

)
+ 2A′C

]}

=
2C

(
B +

√
B2 + 4AC

)2√
B2 + 4AC

·
[(

−βB′ +
√
B2 + 4AC

)(
B +

√
B2 + 4AC

)
− 2βA′C

]
.

(A.68)

By (A.45), (A.46) and (A.53),

2C
(
B +

√
B2 + 4AC

)2 √B2 + 4AC
> 0 (A.69)

and

− 2βA′C > 0. (A.70)

Then, to prove inequality (A.67), it suffices to show that

(
−βB′ +

√
B2 + 4AC

)(
B +

√
B2 + 4AC

)
> 0, (A.71)

which, by (A.50), is equivalent to show that

− βB′ +
√
B2 + 4AC > 0. (A.72)

Suppose, on the contrary, that

− βB′ +
√
B2 + 4AC ≤ 0. (A.73)
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Then, √
B2 + 4AC ≤ βB′ (A.74)

where
√
B2 + 4AC > 0. Hence, by squaring both sides of (A.74) we have

B2 + 4AC ≤ β2B′2. (A.75)

Plugging (A.44) and (A.47) in (A.75) yields

(
β + 2a0K + βa1K + a0a1K

2
)2

+ 4AC ≤ β2 (1 + a1K)2 , (A.76)

which implies

[
(β + βa1K) + 2a0K + a0a1K

2
]2

+ 4AC ≤ (β + βa1K)2 . (A.77)

However, by (A.43) and (A.45),

4AC ≥ 0, (A.78)

that is, [
(β + βa1K) + 2a0K + a0a1K

2
]2 ≤ (β + βa1K)2 . (A.79)

On the other hand,

2a0K + a0a1K
2 > 0, (A.80)

whence

(β + βa1K) < (β + βa1K) + 2a0K + a0a1K
2 (A.81)

where (β + βa1K) > 0. Now by squaring both sides of (A.74) we have

(β + βa1K)2 <
[
(β + βa1K) + 2a0K + a0a1K

2
]2
. (A.82)

Nevertheless, inequality (A.82) contradicts (A.79), which means that (A.72) must

hold and thus prove (A.67).

Now, coming back to the proof of the theorem, we are going to show that the

equilibrium price p∗(β) is continuously differentiable and strictly decreasing with respect

to β. Consider again the function (A.3) and by plugging it in G(p∗) = −Kp∗ + T get the
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following relationships:

Q(p∗, ν∗
0 , ν

∗
1)−G(p∗)−D =

= p∗
[

1

(1− β)ν∗
0 + a0

+
ν∗
0 + a0

(1− β)ν∗
0 + a0

(
1

ν∗
1 + a1

)]

−
[

b0
(1− β)ν∗

0 + a0
+

ν∗
0 + a0

(1− β)ν∗
0 + a0

(
b1

ν∗
1 + a1

)]

+Kp∗ − T −D = 0.

(A.83)

Consider the function

F(p∗, β) =p∗
[

1

(1− β)ν∗
0 + a0

+
ν∗
0 + a0

(1− β)ν∗
0 + a0

(
1

ν∗
1 + a1

)]

−
[

b0
(1− β)ν∗

0 + a0
+

ν∗
0 + a0

(1− β)ν∗
0 + a0

(
b1

ν∗
1 + a1

)]

+Kp∗ − T −D,

(A.84)

having in mind that ν∗
0 and ν∗

1 depend on β, but not on p∗. Now, we rewrite (A.83) using

(A.84) as a functional equation:

F(p∗, β) = 0. (A.85)

Now we are in a position to estimate the value of the partial derivative of the function

F(p∗, β) with respect to p∗:

∂F
∂p∗

=
1

(1− β)ν∗
0 + a0

+
ν∗
0 + a0

(1− β)ν∗
0 + a0

(
1

ν∗
1 + a1

)
+K ≥ K > 0. (A.86)

We observe that the partial derivative F with respect to p∗ is positive. Hence, by

the Implicit Function Theorem, the function p∗ = p∗(β) is differentiable with respect to

β, and its partial derivative with respect to β can be found from the equation

∂F
∂p∗

dp∗

dβ
+

∂F
∂β

= 0, (A.87)

which leads to

dp∗

dβ
= −

∂F
∂β
∂F
∂p∗

. (A.88)
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From (A.86), we have
∂F
∂p∗

> 0. (A.89)

Therefore, to prove that p∗ is strictly increasing, we have to show that

∂F
∂β

> 0. (A.90)

Indeed,

∂F
∂β

=
∂

∂β
(Q(p∗, ν∗

0 , ν
∗
1)−G(p∗)−D) =

∂

∂β
Q(p∗, ν∗

0 , ν
∗
1)

=
∂

∂β
(q0(p

∗, ν∗
0 , ν

∗
1) + q1(p

∗, ν∗
0 , ν

∗
1))

=
∂

∂β

[
p∗ − b0

(1− β)ν∗
0 + a0

+
βν∗

0

(1− β)ν∗
0 + a0

(
p∗ − b1
ν∗
1 + a1

)
+

p∗ − b1
ν∗
1 + a1

]

=− p∗ − b0

[(1− β)ν∗
0 + a0]

2

[
−ν∗

0 + (1− β)ν∗
0
′]

+
(ν∗

0 + βν∗
0
′) [(1− β)ν∗

0 + a0]− βν∗
0 [−ν∗

0 + (1− β)ν∗
0
′]

[(1− β)ν∗
0 + a0]

2

(
p∗ − b1
ν∗
1 + a1

)

+
βν∗

0

(1− β)ν∗
0 + a0

(
− p∗ − b1

(ν∗
1 + a1)

2ν
∗
1
′
)
+

(
− p∗ − b1

(ν∗
1 + a1)

2ν
∗
1
′
)

=
p∗ − b0

[(1− β)ν∗
0 + a0]

2

[
ν∗
0 + (1− β)

(
−ν∗

0
′)]

+
(ν∗

0 + βν∗
0
′) [(1− β)ν∗

0 + a0] + βν∗
0 [ν

∗
0 + (1− β) (−ν∗

0
′)]

[(1− β)ν∗
0 + a0]

2

(
p∗ − b1
ν∗
1 + a1

)

+
βν∗

0

(1− β)ν∗
0 + a0

[
p∗ − b1

(ν∗
1 + a1)

2

(
−ν∗

1
′)
]
+

[
p∗ − b1

(ν∗
1 + a1)

2

(
−ν∗

1
′)
]
.

(A.91)

Given the values of a0, a1, b0, b1, β, ν
∗
0 , ν

∗
1 , ν

∗
0
′, ν∗

1
′, p∗ and equation (A.67), it isn’t

difficult to see that (A.91) is nonnegative. Moreover,

∂F
∂β

=
p∗ − b0

[(1− β)ν∗
0 + a0]

2

[
ν∗
0 + (1− β)

(
−ν∗

0
′)]

+
(ν∗

0 + βν∗
0
′) [(1− β)ν∗

0 + a0] + βν∗
0 [ν

∗
0 + (1− β) (−ν∗

0
′)]

[(1− β)ν∗
0 + a0]

2

(
p∗ − b1
ν∗
1 + a1

)

+
βν∗

0

(1− β)ν∗
0 + a0

[
p∗ − b1

(ν∗
1 + a1)

2

(
−ν∗

1
′)
]
+

[
p∗ − b1

(ν∗
1 + a1)

2

(
−ν∗

1
′)
]

≥ p∗ − b1

(ν∗
1 + a1)

2

(
−ν∗

1
′) > 0,

(A.92)
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which proves (A.90). On account of that,

dp∗

dβ
= −

∂F
∂β
∂F
∂p∗

< 0, (A.93)

where
∂F
∂β

and
∂F
∂p∗

are continuous with respect to β. Hence p∗(β) is continuously diffe-

rentiable and strictly decreasing with respect to β, β ∈ (0, 1].

Now, since

G∗(β) = G(p∗(β)) = −Kp∗(β) + T, (A.94)

and p∗(β) is continuously differentiable and strictly decreasing with respect to β, and

K and T are positive constants, then, G∗(β) is continuously differentiable and strictly

increasing with respect to β, β ∈ (0, 1].

Now, we are going to show that q∗1(β) is continuously differentiable and strictly

decreasing with respect to β. To do that, we first solve equation (A.83) for p∗ to obtain

the following equality:

p∗ =

b0
(1− β)ν∗

0 + a0
+

ν∗
0 + a0

(1− β)ν∗
0 + a0

(
b1

ν∗
1 + a1

)
+ T +D

1

(1− β)ν∗
0 + a0

+
ν∗
0 + a0

(1− β)ν∗
0 + a0

(
1

ν∗
1 + a1

)
+K

=

b0 + (ν∗
0 + a0)

(
b1

ν∗
1 + a1

)
+ [(1− β)ν∗

0 + a0] (T +D)

1 + (ν∗
0 + a0)

(
1

ν∗
1 + a1

)
+ [(1− β)ν∗

0 + a0]K

=
(ν∗

0 + a0)b1 + (ν∗
1 + a1) b0 + [(1− β)ν∗

0 + a0] (ν
∗
1 + a1) (T +D)

(ν∗
0 + a0) + (ν∗

1 + a1) + [(1− β)ν∗
0 + a0] (ν∗

1 + a1)K
.

(A.95)
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We substitute (A.95) in q∗1 = q1(p
∗, ν∗

0 , ν
∗
1), to deduce

q∗1 =
p∗ − b1
ν∗
1 + a1

=

(ν∗
0 + a0) b1 + (ν∗

1 + a1) b0 + [(1− β)ν∗
0 + a0] (ν

∗
1 + a1) (T +D)

(ν∗
0 + a0) + (ν∗

1 + a1) + [(1− β)ν∗
0 + a0] (ν∗

1 + a1)K
− b1

ν∗
1 + a1

=
(ν∗

0 + a0) b1 + (ν∗
1 + a1) b0 + [(1− β)ν∗

0 + a0] (ν
∗
1 + a1) (T +D)

(ν∗
1 + a1) {(ν∗

0 + a0) + (ν∗
1 + a1) + [(1− β)ν∗

0 + a0] (ν∗
1 + a1)K}

− {(ν∗
0 + a0) + (ν∗

1 + a1) + [(1− β)ν∗
0 + a0] (ν

∗
1 + a1)K} b1

(ν∗
1 + a1) {(ν∗

0 + a0) + (ν∗
1 + a1) + [(1− β)ν∗

0 + a0] (ν∗
1 + a1)K}

=
(ν∗

1 + a1) b0 + [(1− β)ν∗
0 + a0] (ν

∗
1 + a1) (T +D)

(ν∗
1 + a1) {(ν∗

0 + a0) + (ν∗
1 + a1) + [(1− β)ν∗

0 + a0] (ν∗
1 + a1)K}

− (ν∗
1 + a1) b1 + [(1− β)ν∗

0 + a0] (ν
∗
1 + a1)Kb1

(ν∗
1 + a1) {(ν∗

0 + a0) + (ν∗
1 + a1) + [(1− β)ν∗

0 + a0] (ν∗
1 + a1)K}

=
b0 + [(1− β)ν∗

0 + a0] (T +D)

(ν∗
0 + a0) + (ν∗

1 + a1) + [(1− β)ν∗
0 + a0] (ν∗

1 + a1)K

− b1 + [(1− β)ν∗
0 + a0]Kb1

(ν∗
0 + a0) + (ν∗

1 + a1) + [(1− β)ν∗
0 + a0] (ν∗

1 + a1)K

=
−b1 + b0 + [(1− β)ν∗

0 + a0] (−Kb1 + T +D)

(ν∗
0 + a0) + (ν∗

1 + a1) + [(1− β)ν∗
0 + a0] (ν∗

1 + a1)K

=
−(b1 − b0) + [(1− β)ν∗

0 + a0] (G(b1) +D)

(ν∗
0 + a0) + (ν∗

1 + a1) {1 + [(1− β)ν∗
0 + a0]K} .

(A.96)

By plugging (A.41) in (A.96) we have that

q∗1 =
−(b1 − b0) + [(1− β)ν∗

0 + a0] (G(b1) +D)

(ν∗
0 + a0) +

[
(1− β)ν∗

0 + a0
1 + [(1− β)ν∗

0 + a0]K
+ a1

]
{1 + [(1− β)ν∗

0 + a0]K}

=
−(b1 − b0) + [(1− β)ν∗

0 + a0] (G(b1) +D)

(ν∗
0 + a0) + [(1− β)ν∗

0 + a0] + a1 {1 + [(1− β)ν∗
0 + a0]K}

=
−(b1 − b0) + [(1− β)ν∗

0 + a0] (G(b1) +D)

(ν∗
0 + a0 + a1) + [(1− β)ν∗

0 + a0] (1 + a1K)
=

M

N
,

(A.97)

where

M = M(β) = −(b1 − b0) + [(1− β)ν∗
0 + a0] (G(b1) +D) (A.98)

and

N = N(β) = (ν∗
0 + a0 + a1) + [(1− β)ν∗

0 + a0] (1 + a1K) . (A.99)
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It is easy to see that M and N are continuously differentiable with respect to β with

M ′ =
[
−ν∗

0 + (1− β)ν∗
0
′] (G(b1) +D) , (A.100)

N ′ =ν∗
0
′ +
[
−ν∗

0 + (1− β)ν∗
0
′] (1 + a1K) . (A.101)

Moreover, N > 0, so q∗1 is continuously differentiable with respect to β and

q∗1
′ =

M ′N −MN ′

N2
. (A.102)

Thus, to find the value of q∗1
′ it suffices to estimate the value of the numerator of

(A.102).

M ′N −MN ′ =

=
[
−ν∗0 + (1− β)ν∗0

′
]
(G(b1) +D) {(ν∗0 + a0 + a1) + [(1− β)ν∗0 + a0] (1 + a1K)}

− {−(b1 − b0) + [(1− β)ν∗0 + a0] (G(b1) +D)}
{
ν∗0

′ +
[
−ν∗0 + (1− β)ν∗0

′
]
(1 + a1K)

}

= (ν∗0 + a0 + a1)
[
−ν∗0 + (1− β)ν∗0

′
]
(G(b1) +D)

+ [(1− β)ν∗0 + a0]
[
−ν∗0 + (1− β)ν∗0

′
]
(1 + a1K) (G(b1) +D)

+
{
ν∗0

′ +
[
−ν∗0 + (1− β)ν∗0

′
]
(1 + a1K)

}
(b1 − b0)

−
{
ν∗0

′ +
[
−ν∗0 + (1− β)ν∗0

′
]
(1 + a1K)

}
[(1− β)ν∗0 + a0] (G(b1) +D)

= (ν∗0 + a0)
[
−ν∗0 + (1− β)ν∗0

′
]
(G(b1) +D)

+ a1
[
−ν∗0 + (1− β)ν∗0

′
]
(G(b1) +D)

+ [(1− β)ν∗0 + a0]
[
−ν∗0 + (1− β)ν∗0

′
]
(1 + a1K) (G(b1) +D)

+
{
ν∗0

′ +
[
−ν∗0 + (1− β)ν∗0

′
]
(1 + a1K)

}
(b1 − b0)

− ν∗0
′ [(1− β)ν∗0 + a0] (G(b1) +D)

− [(1− β)ν∗0 + a0]
[
−ν∗0 + (1− β)ν∗0

′
]
(1 + a1K) (G(b1) +D)

= (ν∗0 + a0)
[
−ν∗0 + (1− β)ν∗0

′
]
(G(b1) +D)

+ a1
[
−ν∗0 + (1− β)ν∗0

′
]
(G(b1) +D)

+
{
ν∗0

′ +
[
−ν∗0 + (1− β)ν∗0

′
]
(1 + a1K)

}
(b1 − b0)

− ν∗0
′ [(1− β)ν∗0 + a0] (G(b1) +D)

=
{
(ν∗0 + a0)

[
−ν∗0 + (1− β)ν∗0

′
]
− ν∗0

′ [(1− β)ν∗0 + a0]
}
(G(b1) +D)

+ a1
[
−ν∗0 + (1− β)ν∗0

′
]
(G(b1) +D)

+
{
ν∗0

′ +
[
−ν∗0 + (1− β)ν∗0

′
]
(1 + a1K)

}
(b1 − b0)

=
[
(ν∗0 + a0)

(
−ν∗0 − βν∗0

′
)
+ βν∗0ν

∗

0
′
]
(G(b1) +D)

+ a1
[
−ν∗0 + (1− β)ν∗0

′
]
(G(b1) +D)

+
{
ν∗0

′ +
[
−ν∗0 + (1− β)ν∗0

′
]
(1 + a1K)

}
(b1 − b0).

(A.103)
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Given the values of a0, a1, b0, b1, β, ν
∗
0 , ν

∗
0
′, G(p), D and equation (A.67), it is clear

that (A.103) is non-positive. Moreover,

M ′N −MN ′ =
[
(ν∗

0 + a0)
(
−ν∗

0 − βν∗
0
′)+ βν∗

0ν
∗
0
′] (G(b1) +D)

+ a1
[
−ν∗

0 + (1− β)ν∗
0
′] (G(b1) +D)

+
{
ν∗
0
′ +
[
−ν∗

0 + (1− β)ν∗
0
′] (1 + a1K)

}
(b1 − b0)

≤a1
[
−ν∗

0 + (1− β)ν∗
0
′] (G(b1) +D) < 0.

(A.104)

Thus,

M ′N −MN ′ < 0, (A.105)

which proves that q∗1
′ < 0, so q∗1(β) is continuously differentiable and strictly decreasing

with respect to β, β ∈ (0, 1].

Finally, since

q∗0(β) + q∗1(β) = G∗(β) +D, (A.106)

then,

q∗0(β) = −q∗1(β) +G∗(β) +D. (A.107)

And since G∗(β) is continuously differentiable and strictly increasing with respect

to β, the function q∗1(β) is continuously differentiable and strictly decreasing with respect

to β. Because D is constant, we have that q∗0(β) is continuously differentiable and strictly

increasing with respect to β, β ∈ (0, 1] The proof of the theorem is complete�

Theorem 1.4. For the affine demand function G(p) described in (1.22), the price pc(β)

and the supply values qci (β), i = 0, 1, from the Cournot-Nash equilibrium, are continuously

differentiable with respect to β ∈ (0, 1]. Moreover, pc(β) and qc1(β) strictly decrease, whe-

reas qc0(β) strictly increase.

Proof. Let’s consider the exterior equilibrium (pc, qc0, q
c
1), i.e., such a vector that the

following equalities hold:

qc0 + qc1 = G(pc) +D, (A.108)

qc0 =
pc − b0

(1− β)
1

K
+ a0

+
β
1

K

(1− β)
1

K
+ a0


 pc − b1

1

K
+ a1


 , (A.109)

qc1 =
pc − b1
1

K
+ a1

, (A.110)
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where

G(pc) = −Kpc + T. (A.111)

From equation (A.108) one has

qc0 + qc1 −G(pc)−D = 0. (A.112)

By substituting (A.109), (A.110) and (A.111) in (A.112), similarly to (A.3), we have

qc0 + qc1 −G(pc)−D =
pc − b0

(1− β)
1

K
+ a0

+
β
1

K

(1− β)
1

K
+ a0


 pc − b1

1

K
+ a1




+
pc − b1
1

K
+ a1

+Kpc − T −D

=pc


 1

(1− β)
1

K
+ a0

+

1

K
+ a0

(1− β)
1

K
+ a0


 1

1

K
+ a1







−


 b0

(1− β)
1

K
+ a0

+

1

K
+ a0

(1− β)
1

K
+ a0


 b1

1

K
+ a1







+Kpc − T −D = 0.

(A.113)

Solving (A.113) for pc, similarly to (A.95), we get the equation

pc =

b0

(1− β)
1

K
+ a0

+

1

K
+ a0

(1− β)
1

K
+ a0


 b1

1

K
+ a1


+ T +D

1

(1− β)
1

K
+ a0

+

1

K
+ a0

(1− β)
1

K
+ a0


 1

1

K
+ a1


+K

=

(
1

K
+ a0

)
b1 +

(
1

K
+ a1

)
b0 +

[
(1− β)

1

K
+ a0

](
1

K
+ a1

)
(T +D)

(
1

K
+ a0

)
+

(
1

K
+ a1

)
+

[
(1− β)

1

K
+ a0

](
1

K
+ a1

)
K

=
X

Y
,

(A.114)
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where

X(β) =

(
1

K
+ a0

)
b1 +

(
1

K
+ a1

)
b0 +

[
(1− β)

1

K
+ a0

](
1

K
+ a1

)
(T +D) (A.115)

and

Y (β) =

(
1

K
+ a0

)
+

(
1

K
+ a1

)
+

[
(1− β)

1

K
+ a0

](
1

K
+ a1

)
K. (A.116)

It’s easy to see that X and Y are continuously differentiable with respect to β with

X ′ =− 1

K

(
1

K
+ a1

)
(T +D) , (A.117)

Y ′ =−
(

1

K
+ a1

)
. (A.118)

Moreover, Y > 0, whence pc is continuously differentiable with respect to β with

pc′ =
X ′Y −XY ′

Y 2
. (A.119)
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To compute the value of pc′ it is sufficient to calculate the value of the numerator of

(A.119):

X ′Y −XY ′ =

= − 1
K

(
1
K

+ a1
)
(T +D)

{(
1
K

+ a0
)
+
(
1
K

+ a1
)
+
[
(1− β) 1

K
+ a0

] (
1
K

+ a1
)
K
}

−
{(

1
K

+ a0
)
b1 +

(
1
K

+ a1
)
b0 +

[
(1− β) 1

K
+ a0

] (
1
K

+ a1
)
(T +D)

} [
−
(
1
K

+ a1
)]

= − 1
K

(
1
K

+ a1
)
(T +D)

{(
1
K

+ a0
)
+
(
1
K

+ a1
)
+
[
(1− β) 1

K
+ a0

] (
1
K

+ a1
)
K
}

+
(
1
K

+ a1
) {(

1
K

+ a0
)
b1 +

(
1
K

+ a1
)
b0 +

[
(1− β) 1

K
+ a0

] (
1
K

+ a1
)
(T +D)

}

= − 1
K

(
1
K

+ a0
) (

1
K

+ a1
)
(T +D)

− 1
K

(
1
K

+ a1
)2

(T +D)

−
[
(1− β) 1

K
+ a0

] (
1
K

+ a1
)2

(T +D)

+
(
1
K

+ a0
) (

1
K

+ a1
)
b1

+
(
1
K

+ a1
)2

b0

+
[
(1− β) 1

K
+ a0

] (
1
K

+ a1
)2

(T +D)

=
(
1
K

+ a0
) (

1
K

+ a1
)
b1 − 1

K

(
1
K

+ a0
) (

1
K

+ a1
)
(T +D)

+
(
1
K

+ a1
)2

b0 − 1
K

(
1
K

+ a1
)2

(T +D)

= − 1
K

(
1
K

+ a0
) (

1
K

+ a1
)
(−Kb1 + T +D)

− 1
K

(
1
K

+ a1
)2

(−Kb0 + T +D)

= − 1
K

(
1
K

+ a0
) (

1
K

+ a1
)
(G(b1) +D)

− 1
K

(
1
K

+ a1
)2

(G(b0) +D) .

(A.120)

Given the values of a0, a1, K, G(p) and D, it is clear that (A.120) is non-positive.

Moreover,

X ′Y −XY ′ =− 1

K

(
1

K
+ a0

)(
1

K
+ a1

)
(G(b1) +D)

− 1

K

(
1

K
+ a1

)2

(G(b0) +D)

≤− 1

K

(
1

K
+ a0

)(
1

K
+ a1

)
(G(b1) +D) < 0.

(A.121)

Then,

X ′Y −XY ′ < 0, (A.122)

which proves that pc′ < 0, so pc(β) is continuously differentiable and strictly decreasing

with respect to β, β ∈ (0, 1].
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Since

qc1(β) =
pc(β)− b1
1

K
+ a1

, (A.123)

and pc(β) is continuously differentiable and strictly decreasing with respect to β, and

a1, b1 and K re positive constants, then, qc1(β) is continuously differentiable and strictly

decreasing with respect to β, β ∈ (0, 1].

Finally, since

qc0(β) + qc1(β) = G(pc(β)) +D = −Kpc(β) + T +D, (A.124)

then,

qc0(β) = −qc1(β)−Kpc(β) + T +D. (A.125)

And as qc1(β) is continuously differentiable and strictly decreasing with respect to

β, the function pc(β) also has the same property, and K, T and D are non-negative

constants, then, q∗0(β) is continuously differentiable and strictly increasing with respect

to β, β ∈ (0, 1]. The proof of the theorem is complete�

Theorem 1.5. For the affine demand function G(p) described in (1.22), the price pt(β)

and the output volumes qti(β), i = 0, 1, related to the perfect competition equilibrium, are

invariant for all β ∈ (0, 1] and are described by the clear-cut expressions:

pt =
a0b1 + a1b0 + a0a1(T +D)

a0 + a1 + a0a1K
, (1.27)

qt0 =
a1 (G(b0) +D) + (b1 − b0)

a0 + a1 + a0a1K
, (1.28)

qt1 =
a0 (G(b1) +D)− (b1 − b0)

a0 + a1 + a0a1K
. (1.29)

Proof. Let us consider the exterior equilibrium (pt, qt0, q
t
1), i.e., such a vector that the

following equalities hold:

qt0 + qt1 = G(pt) +D, (A.126)

qt0 =
pt − b0
a0

, (A.127)

qt1 =
pt − b1
a1

, (A.128)

where

G(pt) = −Kpt + T. (A.129)
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From (A.108) one gets that

qt0 + qt1 −G(pt)−D = 0. (A.130)

Next, by plugging (A.127), (A.128) and (A.129) in (A.130), we deduce that

qt0 + qt1 −G(pt)−D =
pt − b0
a0

+
pt − b1
a1

+Kpt − T −D

=pt
(

1

a0
+

1

a1

)
−
(
b1
a1

+
b0
a0

)
+Kpc − T −D = 0.

(A.131)

By solving equation (A.131) for pt, we obtain the equality

pt =

b1
a1

+
b0
a0

+ T +D

1

a0
+

1

a1
+K

=
a0b1 + a1b0 + a0a1(T +D)

a0 + a1 + a0a1K
, (A.132)

showing that the function pt(β) is constant for all β ∈ (0, 1].

Moreover, since

qt0 =
pt − b0
a0

=

a0b1 + a1b0 + a0a1(T +D)

a0 + a1 + a0a1K
− b0

a0

=
a0b1 + a1b0 + a0a1(T +D)− (a0 + a1 + a0a1K) b0

a0 (a0 + a1 + a0a1K)

=
a0 (b1 − b0) + a0a1 (−Kb0 + T +D)

a0 (a0 + a1 + a0a1K)

=
a1 (G(b0) +D) + (b1 − b0)

a0 + a1 + a0a1K
,

(A.133)

and

qt1 =
pt − b1
a1

=

a0b1 + a1b0 + a0a1(T +D)

a0 + a1 + a0a1K
− b1

a1

=
a0b1 + a1b0 + a0a1(T +D)− (a0 + a1 + a0a1K) b1

a1 (a0 + a1 + a0a1K)

=
−a1 (b1 − b0) + a0a1 (−Kb1 + T +D)

a1 (a0 + a1 + a0a1K)

=
a0 (G(b1) +D)− (b1 − b0)

a0 + a1 + a0a1K
,

(A.134)
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the functions qt0(β) and qt1(β) are constant for all β ∈ (0, 1], too. The proof of the theorem

is complete�

Theorem 1.6. For the affine demand function G(p) from (1.22), the price functions

in the CCVE, p∗(β), the Cournot-Nash equilibrium, pc(β), and the perfect competition

equilibrium, pt, satisfy the following inequalities:

pt < ĺım
β→0

p∗(β), (1.30)

and

p∗(β) < pc(β), ∀β ∈ (0, 1]. (1.31)

Proof. First, we prove inequality (1.30):

pt < ĺım
β→0

p∗(β).

Introduce the following notation:

ν̂∗
0 = ĺım

β→0
ν∗
0(β)

= 2(a0+a1+a0a1K)

(2a0K+a0a1K2)+
√

(2a0K+a0a1K2)2+4(2K+a1K2)(a0+a1+a0a1K)
> 0,

(A.135)

ν̂∗
1 = ĺım

β→0
ν∗
1(β) = ĺım

β→0

(1− β)ν∗
0 + a0

1 + [(1− β)ν∗
0 + a0]K

=
ν̂∗
0 + a0

1 +
(
ν̂∗
0 + a0

)
K

> 0. (A.136)

Therefore,

ĺım
β→0

p∗(β) = ĺım
β→0

(ν∗
0 + a0) b1 + (ν∗

1 + a1) b0 + [(1− β)ν∗
0 + a0] (ν

∗
1 + a1) (T +D)

(ν∗
0 + a0) + (ν∗

1 + a1) + [(1− β)ν∗
0 + a0] (ν∗

1 + a1)K

=

(
ν̂∗
0 + a0

)
b1 +

(
ν̂∗
1 + a1

)
b0 +

(
ν̂∗
0 + a0

)(
ν̂∗
1 + a1

)
(T +D)

(
ν̂∗
0 + a0

)
+
(
ν̂∗
1 + a1

)
+
(
ν̂∗
0 + a0

)(
ν̂∗
1 + a1

)
K

.

(A.137)
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Now, we compute the difference

ĺım
β→0

p∗(β)− pt =

=

(
ν̂∗0 + a0

)
b1 +

(
ν̂∗1 + a1

)
b0 +

(
ν̂∗0 + a0

)(
ν̂∗1 + a1

)
(T +D)

(
ν̂∗0 + a0

)
+
(
ν̂∗1 + a1

)
+
(
ν̂∗0 + a0

)(
ν̂∗1 + a1

)
K

− a0b1 + a1b0 + a0a1(T +D)

a0 + a1 + a0a1K

=

[(
ν̂∗0 + a0

)
b1 +

(
ν̂∗1 + a1

)
b0 +

(
ν̂∗0 + a0

)(
ν̂∗1 + a1

)
(T +D)

]
(a0 + a1 + a0a1K)

[(
ν̂∗0 + a0

)
+
(
ν̂∗1 + a1

)
+
(
ν̂∗0 + a0

)(
ν̂∗1 + a1

)
K
]
(a0 + a1 + a0a1K)

−

[(
ν̂∗0 + a0

)
+
(
ν̂∗1 + a1

)
+
(
ν̂∗0 + a0

)(
ν̂∗1 + a1

)
K
]
[a0b1 + a1b0 + a0a1(T +D)]

[(
ν̂∗0 + a0

)
+
(
ν̂∗1 + a1

)
+
(
ν̂∗0 + a0

)(
ν̂∗1 + a1

)
K
]
(a0 + a1 + a0a1K)

=
R1

R2
,

(A.138)

where

R1 =
[(

ν̂∗0 + a0

)
b1 +

(
ν̂∗1 + a1

)
b0 +

(
ν̂∗0 + a0

)(
ν̂∗1 + a1

)
(T +D)

]
(a0 + a1 + a0a1K)

−
[(

ν̂∗0 + a0

)
+
(
ν̂∗1 + a1

)
+
(
ν̂∗0 + a0

)(
ν̂∗1 + a1

)
K
]
[a0b1 + a1b0 + a0a1(T +D)]

(A.139)

and

R2 =
[(

ν̂∗0 + a0

)
+
(
ν̂∗1 + a1

)
+
(
ν̂∗0 + a0

)(
ν̂∗1 + a1

)
K
]
(a0 + a1 + a0a1K) . (A.140)
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Given the values of a0, a1, ν̂∗0 , ν̂
∗
1 , and K, it is easy to see that R2 > 0. Hence, to calculate

the value of (A.138), it is enough to estimate the value of (A.139). That is,

R1 =
[(

ν̂∗0 + a0

)
b1 +

(
ν̂∗1 + a1

)
b0 +

(
ν̂∗0 + a0

)(
ν̂∗1 + a1

)
(T +D)

]
(a0 + a1 + a0a1K)

−
[(

ν̂∗0 + a0

)
+
(
ν̂∗1 + a1

)
+
(
ν̂∗0 + a0

)(
ν̂∗1 + a1

)
K
]
[a0b1 + a1b0 + a0a1(T +D)]

= (a0 + a1 + a0a1K)
(
ν̂∗0 + a0

)
b1

+ (a0 + a1 + a0a1K)
(
ν̂∗1 + a1

)
b0

+ (a0 + a1 + a0a1K)
(
ν̂∗0 + a0

)(
ν̂∗1 + a1

)
(T +D)

− a0

[(
ν̂∗0 + a0

)
+
(
ν̂∗1 + a1

)
+
(
ν̂∗0 + a0

)(
ν̂∗1 + a1

)
K
]
b1

− a1

[(
ν̂∗0 + a0

)
+
(
ν̂∗1 + a1

)
+
(
ν̂∗0 + a0

)(
ν̂∗1 + a1

)
K
]
b0

− a0a1

[(
ν̂∗0 + a0

)
+
(
ν̂∗1 + a1

)
+
(
ν̂∗0 + a0

)(
ν̂∗1 + a1

)
K
]
(T +D)

=
{
(a1 + a0a1K)

(
ν̂∗0 + a0

)
− a0

[(
ν̂∗1 + a1

)
+
(
ν̂∗0 + a0

)(
ν̂∗1 + a1

)
K
]}

b1

+
{
(a0 + a0a1K)

(
ν̂∗1 + a1

)
− a1

[(
ν̂∗0 + a0

)
+
(
ν̂∗0 + a0

)(
ν̂∗1 + a1

)
K
]}

b0

+
{
(a0 + a1)

(
ν̂∗0 + a0

)(
ν̂∗1 + a1

)
− a0a1

[(
ν̂∗0 + a0

)
+
(
ν̂∗1 + a1

)]}
(T +D)

=
[
a1ν̂∗0 − a0ν̂∗1 − a0ν̂∗1

(
ν̂∗0 + a0

)
K
]
b1

+
[
a0ν̂∗1 − a1ν̂∗0 − a1ν̂∗0

(
ν̂∗1 + a1

)
K
]
b0

+
[
a0ν̂∗1

(
ν̂∗0 + a0

)
+ a1ν̂∗0

(
ν̂∗1 + a1

)]
(T +D)

=− a0ν̂∗1

(
ν̂∗0 + a0

)
Kb1 + a0ν̂∗1

(
ν̂∗0 + a0

)
(T +D)

− a1ν̂∗0

(
ν̂∗1 + a1

)
Kb0 + a1ν̂∗0

(
ν̂∗1 + a1

)
(T +D)

+
(
a1ν̂∗0 − a0ν̂∗1

)
b1 +

(
a0ν̂∗1 − a1ν̂∗0

)
b0

=a0ν̂∗1

(
ν̂∗0 + a0

)
(−Kb1 + T +D)

+ a1ν̂∗0

(
ν̂∗1 + a1

)
(−Kb0 + T +D)

+
(
a1ν̂∗0 − a0ν̂∗1

)
(b1 − b0)

=a0ν̂∗1

(
ν̂∗0 + a0

)
(G(b1) +D)− a0ν̂∗1 (b1 − b0)

+ a1ν̂∗0

(
ν̂∗1 + a1

)
(G(b0) +D) + a1ν̂∗0 (b1 − b0)

=a0ν̂∗1

[(
ν̂∗0 + a0

)
(G(b1) +D)− (b1 − b0)

]

+ a1ν̂∗0

[(
ν̂∗1 + a1

)
(G(b0) +D) + (b1 − b0)

]
.

(A.141)
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Given the values of a0, a1, b0, b1, ν̂∗0 , ν̂
∗
1 , G(p), D and assumption A1.3, it is trivial that

(A.141) is nonnegative. Moreover,

R1 =a0ν̂∗1

[(
ν̂∗0 + a0

)
(G(b1) +D)− (b1 − b0)

]

+ a1ν̂∗0

[(
ν̂∗1 + a1

)
(G(b0) +D) + (b1 − b0)

]

≥a1ν̂∗0

[(
ν̂∗1 + a1

)
(G(b0) +D) + (b1 − b0)

]
≥ a1ν̂∗0

(
ν̂∗1 + a1

)
(G(b0) +D)

≥a21ν̂
∗
0 (G(b0) +D) ≥ a21ν̂

∗
0G(b0) > 0.

(A.142)

And since R1 > 0, by (A.142), then,

ĺım
β→0

p∗(β)− pt > 0, (A.143)

which proves inequality (1.30).

Now, we establish inequality (1.31):

p∗(β) < pc(β) para todo β ∈ (0, 1].

In order to do that, we introduce the following notation:

ν∗i = ν∗i (β), i = 0, 1.

From equations (A.41) and (A.42) it’s easy to see that the following inequality hold for

all β ∈ (0, 1]:

ν∗i <
1

K
, i = 0, 1. (A.144)
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Now, we compute the difference

(pc − p∗) (β) =

=

(
1
K

+ a0
)
b1 +

(
1
K

+ a1
)
b0 +

[
(1− β) 1

K
+ a0

] (
1
K

+ a1
)
(T +D)(

1
K

+ a0
)
+
(
1
K

+ a1
)
+
[
(1− β) 1

K
+ a0

] (
1
K

+ a1
)
K

− (ν∗0 + a0) b1 + (ν∗1 + a1) b0 + [(1− β)ν∗0 + a0] (ν
∗
1 + a1) (T +D)

(ν∗0 + a0) + (ν∗1 + a1) + [(1− β)ν∗0 + a0] (ν∗1 + a1)K

=

〈{(
1

K
+ a0

)
b1 +

(
1

K
+ a1

)
b0 +

[
(1− β)

1

K
+ a0

](
1

K
+ a1

)
(T +D)

}
×

{(ν∗0 + a0) + (ν∗1 + a1) + [(1− β)ν∗0 + a0] (ν
∗
1 + a1)K}

−
{(

1

K
+ a0

)
+

(
1

K
+ a1

)
+

[
(1− β)

1

K
+ a0

](
1

K
+ a1

)
K

}
×

{(ν∗0 + a0) b1 + (ν∗1 + a1) b0 + [(1− β)ν∗0 + a0] (ν
∗
1 + a1) (T +D)}

〉/

〈{(
1

K
+ a0

)
+

(
1

K
+ a1

)
+

[
(1− β)

1

K
+ a0

](
1

K
+ a1

)
K

}
×

{(ν∗0 + a0) + (ν∗1 + a1) + [(1− β)ν∗0 + a0] (ν
∗
1 + a1)K}

〉

=
S1

S2
,

(A.145)

where

S1 =

{(
1

K
+ a0

)
b1 +

(
1

K
+ a1

)
b0 +

[
(1− β)

1

K
+ a0

](
1

K
+ a1

)
(T +D)

}
×

{(ν∗0 + a0) + (ν∗1 + a1) + [(1− β)ν∗0 + a0] (ν
∗
1 + a1)K}

−
{(

1

K
+ a0

)
+

(
1

K
+ a1

)
+

[
(1− β)

1

K
+ a0

](
1

K
+ a1

)
K

}
×

{(ν∗0 + a0) b1 + (ν∗1 + a1) b0 + [(1− β)ν∗0 + a0] (ν
∗
1 + a1) (T +D)}

(A.146)

and
S2 =

{(
1
K

+ a0
)
+
(
1
K

+ a1
)
+
[
(1− β) 1

K
+ a0

] (
1
K

+ a1
)
K
}
×

{(ν∗0 + a0) + (ν∗1 + a1) + [(1− β)ν∗0 + a0] (ν
∗
1 + a1)K} .

(A.147)
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For any fixed values of a0, a1, β, ν
∗
0 , ν

∗
1 , and K, it is apparent that S2 > 0. Because of

that, in order to find the value of (A.145), it suffices to calculate the value of (A.146). So,

S1 = {(ν∗0 + a0) + (ν∗1 + a1) + [(1− β)ν∗0 + a0] (ν
∗
1 + a1)K}

(
1
K

+ a0
)
b1

+ {(ν∗0 + a0) + (ν∗1 + a1) + [(1− β)ν∗0 + a0] (ν
∗
1 + a1)K}

(
1
K

+ a1
)
b0

+ {(ν∗0 + a0) + (ν∗1 + a1) + [(1− β)ν∗0 + a0] (ν
∗
1 + a1)K}

[
(1− β) 1

K
+ a0

] (
1
K

+ a1
)
(T +D)

−
{(

1
K

+ a0
)
+
(
1
K

+ a1
)
+
[
(1− β) 1

K
+ a0

] (
1
K

+ a1
)
K
}
(ν∗0 + a0) b1

−
{(

1
K

+ a0
)
+
(
1
K

+ a1
)
+
[
(1− β) 1

K
+ a0

] (
1
K

+ a1
)
K
}
(ν∗1 + a1) b0

− {(
1
K

+ a0
)
+
(
1
K

+ a1
)
+
[
(1− β) 1

K
+ a0

] (
1
K

+ a1
)
K
}
[(1− β)ν∗0 + a0] (ν

∗
1 + a1) (T +D)

=
[
(1− β) 1

K
+ a0

]
(ν∗0 + a0)

(
1
K

+ a1
)
(−Kb1 + T +D)

− [(1− β)ν∗0 + a0] (ν
∗
1 + a1)

(
1
K

+ a0
)
(−Kb1 + T +D)

+
[
(1− β) 1

K
+ a0

]
(ν∗1 + a1)

(
1
K

+ a1
)
(−Kb0 + T +D)

− [(1− β)ν∗0 + a0] (ν
∗
1 + a1)

(
1
K

+ a1
)
(−Kb0 + T +D)

+ (ν∗1 + a1)
(
1
K

+ a0
)
(b1 − b0)− (ν∗0 + a0)

(
1
K

+ a1
)
(b1 − b0)

=
{[

(1− β) 1
K

+ a0
]
(ν∗0 + a0)

(
1
K

+ a1
)
− [(1− β)ν∗0 + a0] (ν

∗
1 + a1)

(
1
K

+ a0
)}

(−Kb1 + T +D)

+
{[

(1− β) 1
K

+ a0
]
(ν∗1 + a1)

(
1
K

+ a1
)
− [(1− β)ν∗0 + a0] (ν

∗
1 + a1)

(
1
K

+ a1
)}

(−Kb0 + T +D)

+
[
(ν∗1 + a1)

(
1
K

+ a0
)
− (ν∗0 + a0)

(
1
K

+ a1
)]

(b1 − b0)

=
{[
(1− β) 1

K
+ a0

]
(ν∗0 + a0)

(
1
K

+ a1
)
− [(1− β)ν∗0 + a0] (ν

∗
1 + a1)

(
1
K

+ a0
)}

(G(b1) +D)

+
{[
(1− β) 1

K
+ a0

]
(ν∗1 + a1)

(
1
K

+ a1
)
− [(1− β)ν∗0 + a0] (ν

∗
1 + a1)

(
1
K

+ a1
)}

(G(b0) +D)

+
[
(ν∗1 + a1)

(
1
K

+ a0
)
− (ν∗0 + a0)

(
1
K

+ a1
)]

(b1 − b0)

=X1(G(b1) +D) +X2(G(b0) +D) +X3(b1 − b0),

(A.148)

where

X1 =
[
(1− β) 1

K
+ a0

]
(ν∗0 + a0)

(
1
K

+ a1
)
− [(1− β)ν∗0 + a0] (ν

∗
1 + a1)

(
1
K

+ a0
)
, (A.149)

X2 =
[
(1− β) 1

K
+ a0

]
(ν∗1 + a1)

(
1
K

+ a1
)
− [(1− β)ν∗0 + a0] (ν

∗
1 + a1)

(
1
K

+ a1
)

(A.150)

and

X3 = (ν∗1 + a1)
(
1
K

+ a0
)
− (ν∗0 + a0)

(
1
K

+ a1
)
. (A.151)

Now, for any given values of a0, a1, β, ν
∗
0 , ν

∗
1 , K and (A.144), one finds

X2 =
[
(1− β) 1

K
+ a0

]
(ν∗1 + a1)

(
1
K

+ a1
)
− [(1− β)ν∗0 + a0] (ν

∗
1 + a1)

(
1
K

+ a1
)

=(1− β)pbra 1
K

− ν∗0 (ν
∗
1 + a1)

(
1
K

+ a1
)
≥ 0

(A.152)

for all β ∈ (0, 1].
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Now, we are going to show that X1 > 0 for all β ∈ (0, 1]. Plugging (A.41) in X1, we obtain

X1 =
[
(1− β) 1

K
+ a0

]
(ν∗0 + a0)

(
1
K

+ a1
)

− [(1− β)ν∗0 + a0]

(
(1− β)ν∗0 + a0

1 + [(1− β)ν∗0 + a0]K
+ a1

)(
1
K

+ a0
)

=

[
(1− β) 1

K
+ a0

]
(ν∗0 + a0)

(
1
K

+ a1
)
{1 + [(1− β)ν∗0 + a0]K}

1 + [(1− β)ν∗0 + a0]K

− [(1− β)ν∗0 + a0] [(1− β)ν∗0 + a0 + a1 {1 + [(1− β)ν∗0 + a0]K}]
(
1
K

+ a0
)

1 + [(1− β)ν∗0 + a0]K

=
T1

T2
,

(A.153)

where

T1 =
[
(1− β) 1

K
+ a0

]
(ν∗0 + a0)

(
1
K

+ a1
)
{1 + [(1− β)ν∗0 + a0]K}

− [(1− β)ν∗0 + a0] [(1− β)ν∗0 + a0 + a1 {1 + [(1− β)ν∗0 + a0]K}]
(
1
K

+ a0
) (A.154)

and

T2 = 1 + [(1− β)ν∗0 + a0]K. (A.155)

For any fixed values of a0, β, ν
∗
0 , and K, it is clear that T2 > 0. Therefore, to compute

the value of (A.153), we need to calculate the value of T1.

T1 =
[
(1− β) 1

K
+ a0

]
(ν∗0 + a0)

(
1
K

+ a1
)
{1 + [(1− β)ν∗0 + a0]K}

− [(1− β)ν∗0 + a0] [(1− β)ν∗0 + a0 + a1 {1 + [(1− β)ν∗0 + a0]K}]
(
1
K

+ a0
)

=
[
(1− β) 1

K
+ a0

] (
1
K

+ a1
)
(ν∗0 + a0)

+
[
(1− β)2 1

K
ν∗0 + (1− β)a0

(
1
K

+ ν∗0
)
+ a20

] (
1
K

+ a1
)
(ν∗0 + a0)K

− a1 [(1− β)ν∗0 + a0]
(
1
K

+ a0
)

−
[
(1− β)2ν∗0

2 + 2(1− β)a0ν
∗
0 + a20

]
(1 + a1K)

(
1
K

+ a0
)

=(1− β)2ν∗0
[(

1
K

+ a1
)
(ν∗0 + a0)−

(
1
K

+ a0
)
(1 + a1K) ν∗0

]

+ (1− β)
[(

1
K

+ a1
)
(ν∗0 + a0)

1
K

+
(
1
K

+ a1
)
(ν∗0 + a0)

(
1
K

+ ν∗0
)
a0K

−
(
1
K

+ a0
)
a1ν

∗
0 − 2

(
1
K

+ a0
)
(1 + a1K) a0ν

∗
0

]

+ a0
[(

1
K

+ a1
)
(ν∗0 + a0) a0K +

(
1
K

+ a1
)
(ν∗0 + a0)

−
(
1
K

+ a0
)
a1 −

(
1
K

+ a0
)
(1 + a1K) a0

]

=(1− β)2
(
1
K

+ a1
) (

1
K

− ν∗0
)
a0Kν∗0

+ (1− β)
[(

1
K

+ a1
)
(ν∗0 + a0)

1
K

+
(
1
K

+ a1
)
(ν∗0 + a0)

(
1
K

+ ν∗0
)
a0K

−
(
1
K

+ a0
)
a1ν

∗
0 − 2

(
1
K

+ a0
)
(1 + a1K) a0ν

∗
0

]

+
(
1
K

+ a0
)
a0
[(

1
K

+ a1
)
Kν∗0 − a1

]

=(1− β)2Y1 + (1− β)Y2 +
(
1
K

+ a0
)
a0Y3,

(A.156)



Appendix A. Proofs of chapter 1 99

where

Y1 =
(
1
K

+ a1
) (

1
K

− ν∗0
)
a0Kν∗0 , (A.157)

Y2 =
(
1
K

+ a1
)
(ν∗0 + a0)

1
K

+
(
1
K

+ a1
)
(ν∗0 + a0)

(
1
K

+ ν∗0
)
a0K

−
(
1
K

+ a0
)
a1ν

∗
0 − 2

(
1
K

+ a0
)
(1 + a1K) a0ν

∗
0

(A.158)

and

Y3 =
(
1
K

+ a1
)
Kν∗0 − a1. (A.159)

For any fixed values of a0, a1, ν∗0 , K, and (A.144), one concludes that Y1 > 0, and

Y3 = Y3(β) strictly decreases by β, since ν∗0 = ν∗0(β) is strictly decreasing with respect to β, and(
1
K

+ a1
)
K > 0. Thus,

Y3 =Y3(β) ≥ Y3(1) =
(
1
K

+ a1
)
Kν∗0(1)− a1

=
(
1
K

+ a1
)
K

a0 + a1 + a0a1K

1 + 2a0K + a1K + a0a1K2
− a1

=
a0 + a1 + a0a1K

1 + 2a0K + a1K + a0a1K2
(1 + a1K)− a1

=
(a0 + a1 + a0a1K) (1 + a1K)−

(
1 + 2a0K + a1K + a0a1K

2
)
a1

1 + 2a0K + a1K + a0a1K2

=
[(1 + a1K) a0 + a1] (1 + a1K)− [(1 + a1K) + (2 + a1K) a0K] a1

1 + 2a0K + a1K + a0a1K2

=
(1 + a1K)2 a0 + (1 + a1K) a1 − (1 + a1K) a1 − (2 + a1K) a0a1K

1 + 2a0K + a1K + a0a1K2

=

[
(1 + a1K)2 − (2 + a1K) a1K

]
a0

1 + 2a0K + a1K + a0a1K2

=
a0

1 + 2a0K + a1K + a0a1K2
> 0.

(A.160)

Then, Y3 > 0 for all β ∈ (0, 1].
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Now, we are going to show that Y2 > 0 for all β ∈ (0, 1]:

Y2 =
(
1
K

+ a1
)
(ν∗0 + a0)

1
K

+
(
1
K

+ a1
)
(ν∗0 + a0)

(
1
K

+ ν∗0
)
a0K

−
(
1
K

+ a0
)
a1ν

∗
0 − 2

(
1
K

+ a0
)
(1 + a1K) a0ν

∗
0

=
(
1
K

+ a1
)
ν∗0

1
K

+
(
1
K

+ a1
)
a0

1
K

+
(
1
K

+ a1
)
a0K

[
ν∗0

2 +
(
1
K

+ a0
)
ν∗0 + a0

1
K

]

−
(
1
K

+ a0
)
a1ν

∗
0 − 2

(
1
K

+ a0
)
(1 + a1K) a0ν

∗
0

=
(
1
K

+ a1
)
ν∗0

1
K

+
(
1
K

+ a1
)
a0

1
K

+
(
1
K

+ a1
)
a0Kν∗0

2 +
(
1
K

+ a0
) (

1
K

+ a1
)
a0Kν∗0 +

(
1
K

+ a1
)
a20

−
(
1
K

+ a0
)
a1ν

∗
0 − 2

(
1
K

+ a0
)
(1 + a1K) a0ν

∗
0

=
(
1
K

+ a1
)
a0Kν∗0

2 +
(
1
K

+ a1
)
ν∗0

1
K

−
(
1
K

+ a0
)
a1ν

∗
0

+
(
1
K

+ a1
)
a0

1
K

+
(
1
K

+ a1
)
a20

+
(
1
K

+ a0
) (

1
K

+ a1
)
a0Kν∗0 − 2

(
1
K

+ a0
)
(1 + a1K) a0ν

∗
0

=
(
1
K

+ a1
)
a0Kν∗0

2 +
[(

1
K

+ a1
)

1
K

−
(
1
K

+ a0
)
a1
]
ν∗0

+
(
1
K

+ a0
) (

1
K

+ a1
)
a0 −

(
1
K

+ a0
) (

1
K

+ a1
)
a0Kν∗0

=
(
1
K

+ a1
)
a0Kν∗0

2 +
(

1
K2 − a0a1

)
ν∗0 +

(
1
K

+ a0
) (

1
K

+ a1
)
a0K

(
1
K

− ν∗0
)

=
[(

1
K

+ a1
)
a0Kν∗0 +

(
1
K2 − a0a1

)]
ν∗0 +

(
1
K

+ a0
) (

1
K

+ a1
) (

1
K

− ν∗0
)
a0K

=Z1ν
∗
0 + Z2,

(A.161)

where

Z1 =
(
1
K

+ a1
)
a0Kν∗0 +

(
1
K2 − a0a1

)
(A.162)

and

Z2 =
(
1
K

+ a0
) (

1
K

+ a1
) (

1
K

− ν∗0
)
a0K. (A.163)

Given the values of a0, a1, ν
∗
0 , K, and (A.144), one has that Z2 > 0 for all β ∈ (0, 1], and

Z1 = Z1(β) is strictly decreasing with respect to β, because ν∗0(β) strictly decreases by β, and
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(a1 +
1
K
)a0K > 0. Thus,

Z1 =Z1(β) ≥ Z1(1) =
(
1
K

+ a1
)
a0Kν∗0(1) +

(
1
K2 − a0a1

)

=
(
1
K

+ a1
)
a0K

a0 + a1 + a0a1K

1 + 2a0K + a1K + a0a1K2
+
(

1
K2 − a0a1

)

=
(a0 + a1 + a0a1K)

(
1
K

+ a1
)
a0K +

(
1 + 2a0K + a1K + a0a1K

2
) (

1
K2 − a0a1

)

1 + 2a0K + a1K + a0a1K2

=
(a0 + a1 + a0a1K) (1 + a1K) a0 +

(
1 + 2a0K + a1K + a0a1K

2
) (

1
K2 − a0a1

)

1 + 2a0K + a1K + a0a1K2

=

(
a0 + a1 + 2a0a1K + a21K + a0a

2
1K

2
)
a0

1 + 2a0K + a1K + a0a1K2

+

(
1 + 2a0K + a1K + a0a1K

2
) (

1
K2 − a0a1

)

1 + 2a0K + a1K + a0a1K2

=
a20 +

(
1 + 2a0K + a1K + a0a1K

2
)
a0a1

1 + 2a0K + a1K + a0a1K2

+

(
1 + 2a0K + a1K + a0a1K

2
)

1
K2 −

(
1 + 2a0K + a1K + a0a1K

2
)
a0a1

1 + 2a0K + a1K + a0a1K2

=
a20 +

(
1 + 2a0K + a1K + a0a1K

2
)

1
K2

1 + 2a0K + a1K + a0a1K2

=
a20

1 + 2a0K + a1K + a0a1K2
+

1

K2
> 0.

(A.164)

Then, Z1 > 0 for all β ∈ (0, 1], which proves that Y2 = ν∗0Z1 + Z2 > 0 for all β ∈ (0, 1].

Now, since Y1, Y2, Y3 > 0, we have that

T1 = (1− β)2Y1 + (1− β)Y2 +
(
1
K

+ a0
)
a0Y3 > 0, (A.165)

which proves that

X1 =
T1

T2
> 0. (A.166)

Since X1 > 0 and X2 ≥ 0, then, if X3 ≥ 0 for β0 ∈ (0, 1], we have that

S1 = X1(G(b1) +D) +X2(G(b0) +D) +X3(b1 − b0) > 0, (A.167)

for β0 ∈ (0, 1].
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On the other hand, if X3 < 0, for β0 ∈ (0, 1], then,

S1 =X1(G(b1) +D) +X2(G(b0) +D) +X3(b1 − b0)

=
[
(1− β) 1

K
+ a0

]
(ν∗0 + a0)

(
1
K

+ a1
)
(G(b1) +D)

− [(1− β)ν∗0 + a0] (ν
∗
1 + a1)

(
1
K

+ a0
)
(G(b1) +D)

+X2(G(b0) +D) +X3(b1 − b0)

=(1− β)
[
1
K
(ν∗0 + a0)

(
1
K

+ a1
)
− ν∗0 (ν

∗
1 + a1)

(
1
K

+ a0
)]

(G(b1) +D)

− a0
[
(ν∗1 + a1)

(
1
K

+ a0
)
− (ν∗0 + a0)

(
1
K

+ a1
)]

(G(b1) +D)

+X2(G(b0) +D) +X3(b1 − b0)

=(1− β)X4(G(b1) +D)− a0X3(G(b1) +D) +X2(G(b0) +D) +X3(b1 − b0)

=(1− β)X4(G(b1) +D)−X3 [a0(G(b1) +D)− (b1 − b0)] +X2(G(b0) +D),

(A.168)

where

X4 =
1
K
(ν∗0 + a0)

(
1
K

+ a1
)
− ν∗0 (ν

∗
1 + a1)

(
1
K

+ a0
)
. (A.169)

Applying inequalities (A.144)-(A.169), we see that

X4 =
1
K
(ν∗0 + a0)

(
1
K

+ a1
)
− ν∗0 (ν

∗
1 + a1)

(
1
K

+ a0
)

> 1
K
(ν∗0 + a0) (ν

∗
1 + a1)− ν∗0 (ν

∗
1 + a1)

(
1
K

+ a0
)

=(ν∗1 + a1)
[
1
K
(ν∗0 + a0)− ν∗0

(
1
K

+ a0
)]

=(ν∗1 + a1)
(
a0

1
K

− a0ν
∗
0

)

=a0 (ν
∗
1 + a1)

(
1
K

− ν∗0
)
> 0.

(A.170)

Thus, X4 > 0 for β0 ∈ (0, 1], and since X2 ≥ 0, X3 < 0 and assumption A1.3, we have

that

S1 =(1− β)X4(G(b1) +D)−X3 [a0(G(b1) +D)− (b1 − b0)] +X2(G(b0) +D)

≥−X3 [a0(G(b1) +D)− (b1 − b0)] > 0,
(A.171)

for β0 ∈ (0, 1].

Therefore, S1 > 0 for all β ∈ (0, 1], that is,

(pc − p∗) (β) =
S1

S2
> 0, (A.172)

which finally proves (1.31). The proof of the theorem is complete.�

Theorem 1.7. The functions π∗
1(β) and πc

1(β) are strictly decreasing with respect to β ∈ (0, 1].

Moreover, the following inequalities hold:

π∗
1(1) > πc

1(1) (1.34)



Appendix A. Proofs of chapter 1 103

and

ĺım
β→0

π∗
1(β) < ĺım

β→0
πc
1(β). (1.35)

Proof. First, we are going to show that π∗
1 and πc

1 strictly decrease by β.

The function π∗
1 is differentiable with respect to β and

π∗
1
′ =

(
p∗q∗1 −

1

2
a1q

∗
1
2 − b1q

∗
1

)′
= p∗′q∗1 + p∗q∗1

′ − a1q
∗
1q

∗
1
′ − b1q

∗
1
′

=p∗′q∗1 + (p∗ − a1q
∗
1 − b1) q

∗
1
′

=p∗′q∗1 +

(
p∗ − b1 − a1

p∗ − b1
ν∗1 + a1

)
q∗1

′

=p∗′q∗1 +

(
1− a1

ν∗1 + a1

)
(p∗ − b1) q

∗
1
′

=p∗′q∗1 +
ν∗1

ν∗1 + a1
(p∗ − b1) q

∗
1
′.

(A.173)

Given the values of a1, b1, ν
∗
1 , p

∗, q∗1, p
∗′ and q∗1

′, it’s easy to see that

π∗
1
′ = p∗′q∗1 +

ν∗1
ν∗1 + a1

(p∗ − b1) q
∗
1
′ < 0. (A.174)

Similarly,

πc
1
′ = pc′qc1 +

1
K

1
K

+ a1
(pc − b1) q

c
1
′ < 0. (A.175)

Because of that, π∗
1 and πc

1 strictly decrease with respect to β ∈ (0, 1].

Now consider the difference of the functions π∗
1 and πc

1 as follows:

πc
1 − π∗

1 =

(
pcqc1 −

1

2
a1q

c
1
2 − b1q

c
1

)
−
(
p∗q∗1 −

1

2
a1q

∗
1
2 − b1q

∗
1

)

=

(
pc − b1 −

1

2
a1q

c
1

)
qc1 −

(
p∗ − b1 −

1

2
a1q

∗
1

)
q∗1

=

[(
1

K
+ a1

)
pc − b1
1
K

+ a1
− 1

2
a1q

c
1

]
qc1 −

[
(ν∗1 + a1)

p∗ − b1
ν∗1 + a1

− 1

2
a1q

∗
1

]
q∗1

=

[(
1

K
+ a1

)
qc1 −

1

2
a1q

c
1

]
qc1 −

[
(ν∗1 + a1) q

∗
1 −

1

2
a1q

∗
1

]
q∗1

=

(
1

K
+

1

2
a1

)
qc1

2 −
(
ν∗1 +

1

2
a1

)
q∗1

2.

(A.176)
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From (A.96) we have that

q∗1 =
− (b1 − b0) + [(1− β)ν∗0 + a0] (G(b1) +D)

(ν∗0 + a0) + (ν∗1 + a1) {1 + [(1− β)ν∗0 + a0]K}

=
[(1− β)ν∗0 + a0] (G(b1) +D)− (b1 − b0)

(ν∗0 + a0) + (ν∗1 + a1) + [(1− β)ν∗0 + a0] (ν∗1 + a1)K
,

(A.177)

and similarly to (A.96) and (A.177),

qc1 =
pc − b1
1
K

+ a1
=

(
1
K

+ a0
)
b1 +

(
1
K

+ a1
)
b0 +

[
(1− β) 1

K
+ a0

] (
1
K

+ a1
)
(T +D)(

1
K

+ a0
)
+
(
1
K

+ a1
)
+
[
(1− β) 1

K
+ a0

] (
1
K

+ a1
)
K

− b1

1
K

+ a1

=

(
1
K

+ a0
)
b1 +

(
1
K

+ a1
)
b0 +

[
(1− β) 1

K
+ a0

] (
1
K

+ a1
)
(T +D)(

1
K

+ a1
) [(

1
K

+ a0
)
+
(
1
K

+ a1
)
+
[
(1− β) 1

K
+ a0

] (
1
K

+ a1
)
K
]

−
[(

1
K

+ a0
)
+
(
1
K

+ a1
)
+
[
(1− β) 1

K
+ a0

] (
1
K

+ a1
)
K
]
b1(

1
K

+ a1
) [(

1
K

+ a0
)
+
(
1
K

+ a1
)
+
[
(1− β) 1

K
+ a0

] (
1
K

+ a1
)
K
]

=
−
(
1
K

+ a1
)
(b1 − b0) +

[
(1− β) 1

K
+ a0

] (
1
K

+ a1
)
(−Kb1 + T +D)(

1
K

+ a1
) [(

1
K

+ a0
)
+
(
1
K

+ a1
)
+
[
(1− β) 1

K
+ a0

] (
1
K

+ a1
)
K
]

=
− (b1 − b0) +

[
(1− β) 1

K
+ a0

]
(−Kb1 + T +D)(

1
K

+ a0
)
+
(
1
K

+ a1
)
+
[
(1− β) 1

K
+ a0

] (
1
K

+ a1
)
K

=

[
(1− β) 1

K
+ a0

]
(G(b1) +D)− (b1 − b0)(

1
K

+ a0
)
+
(
1
K

+ a1
)
+
[
(1− β) 1

K
+ a0

] (
1
K

+ a1
)
K

.

(A.178)

By substituting the expression of ν∗1 given by (A.41) in equation (A.177) we have that

q∗1 =
[(1− β)ν∗0 + a0] (G(b1) +D)− (b1 − b0)

(ν∗0 + a0) + (ν∗1 + a1) + [(1− β)ν∗0 + a0] (ν∗1 + a1)K

=
[(1−β)ν∗0+a0](G(b1)+D)−(b1−b0)

(ν∗0+a0)+
(

(1−β)ν∗0+a0

1+[(1−β)ν∗0+a0]K
+a1

)
+[(1−β)ν∗0+a0]

(
(1−β)ν∗0+a0

1+[(1−β)ν∗0+a0]K
+a1

)
K

=
(1 + [(1− β)ν∗0 + a0]K) {[(1− β)ν∗0 + a0] (G(b1) +D)− (b1 − b0)}

(1 + [(1− β)ν∗0 + a0]K) {(ν∗0 + a0) + a1 + (1 + a1K) [(1− β)ν∗0 + a0]}

=
[(1− β)ν∗0 + a0] (G(b1) +D)− (b1 − b0)

(ν∗0 + a0 + a1) + (1 + a1K) [(1− β)ν∗0 + a0]
.

(A.179)

By equation (A.41),

ν∗1 =
(1− β)ν∗0 + a0

1 + [(1− β)ν∗0 + a0]K
,
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therefore,

ν∗1 +
1

2
a1 =

(1− β)ν∗0 + a0
1 + [(1− β)ν∗0 + a0]K

+
1

2
a1

=
(1− β)ν∗0 + a0 +

1
2a1 (1 + [(1− β)ν∗0 + a0]K)

1 + [(1− β)ν∗0 + a0]K

=
1
2a1 +

(
1 + 1

2a1K
)
[(1− β)ν∗0 + a0]

1 + [(1− β)ν∗0 + a0]K
.

(A.180)

On the other hand, from the expression for qc1 obtained from (A.178) we have that

qc1 =

[
(1− β) 1

K
+ a0

]
(G(b1) +D)− (b1 − b0)(

1
K

+ a0
)
+
(
1
K

+ a1
)
+
[
(1− β) 1

K
+ a0

] (
1
K

+ a1
)
K

=

[
(1− β) 1

K
+ a0

]
(G(b1) +D)− (b1 − b0)

1
K
(1 + a0K) + 1

K
(1 + a1K) + 1

K
[(1− β) + a0K] (1 + a1K)

=

{[
(1− β) 1

K
+ a0

]
(G(b1) +D)− (b1 − b0)

}
K

(1 + a0K) + (1 + a1K) [(2− β) + a0K]
.

(A.181)

Plugging equations (A.179), (A.180) and (A.181) in equation (A.176) we deduce

πc
1 − π∗

1 =
(
1
K

+ 1
2a1
)
qc1

2 −
(
ν∗1 + 1

2a1
)
q∗1

2

=
(
1
K

+ 1
2a1
)({[(1−β) 1

K
+a0](G(b1)+D)−(b1−b0)}K

(1+a0K)+(1+a1K)[(2−β)+a0K]

)2

−
(

1
2
a1+(1+ 1

2
a1K)[(1−β)ν∗0+a0]

1+[(1−β)ν∗0+a0]K

)(
[(1−β)ν∗0+a0](G(b1)+D)−(b1−b0)

(ν∗0+a0+a1)+(1+a1K)[(1−β)ν∗0+a0]

)2

=1
2K (2 + a1K)

(
[(1−β) 1

K
+a0](G(b1)+D)−(b1−b0)

(1+a0K)+(1+a1K)[(2−β)+a0K]

)2

− 1
2

(
a1+(2+a1K)[(1−β)ν∗0+a0]

1+[(1−β)ν∗0+a0]K

)(
[(1−β)ν∗0+a0](G(b1)+D)−(b1−b0)

(ν∗0+a0+a1)+(1+a1K)[(1−β)ν∗0+a0]

)2

.

(A.182)

Then, to prove the inequalities (A.4) and (A.5) the following conditions has to be met:

πc
1(1)− π∗

1(1) = (πc
1 − π∗

1)(1) < 0 (A.183)

and

ĺım
β→0

πc
1(β)− ĺım

β→0
π∗
1(β) = ĺım

β→0
(πc

1 − π∗
1)(β) > 0. (A.184)
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Evaluating the expression of ν∗0 , given by (A.40), for β = 1 and using the notation ν∗0 =

ν∗0(1), one has

ν∗0 = ν∗0(1) =
2 (a0 + a1 + a0a1K)

(1 + 2a0K + a1K + a0a1K2) +

√
(1 + 2a0K + a1K + a0a1K2)2

=
a0 + a1 + a0a1K

1 + 2a0K + a1K + a0a1K2
.

(A.185)

Now, we evaluate (A.182) for β = 1 to obtain

(πc
1 − π∗

1)(1) =
1

2
K (2 + a1K)

(
[a0] (G(b1) +D)− (b1 − b0)

(1 + a0K) + (1 + a1K) [1 + a0K]

)2

− 1

2

(
a1 + (2 + a1K) [a0]

1 + [a0]K

)(
[a0] (G(b1) +D)− (b1 − b0)(
ν∗0 + a0 + a1

)
+ (1 + a1K) [a0]

)2

=
1

2
K (2 + a1K)

(
a0 (G(b1) +D)− (b1 − b0)

(1 + a0K) (2 + a1K)

)2

− 1

2

(
a1 + a0 (2 + a1K)

1 + a0K

)(
a0 (G(b1) +D)− (b1 − b0)(
ν∗0 + a0 + a1

)
+ a0 (1 + a1K)

)2

=
1

2

[a0 (G(b1) +D)− (b1 − b0)]
2

1 + a0K

K

(1 + a0K) (2 + a1K)

− 1

2

[a0 (G(b1) +D)− (b1 − b0)]
2

1 + a0K

a1 + a0 (2 + a1K)
[(
ν∗0 + a0 + a1

)
+ a0 (1 + a1K)

]2

=
1

2

[a0 (G(b1) +D)− (b1 − b0)]
2

1 + a0K

K

2 + 2a0K + a1K + a0a1K2

− 1

2

[a0 (G(b1) +D)− (b1 − b0)]
2

1 + a0K

2a0 + a1 + a0a1K(
ν∗0 + 2a0 + a1 + a0a1K

)2

=U1
V1

W1
,

(A.186)

where

U1 =
1

2

[a0 (G(b1) +D)− (b1 − b0)]
2

1 + a0K
, (A.187)

V1 = K
(
ν∗0 + 2a0 + a1 + a0a1K

)2 − (2a0 + a1 + a0a1K)
(
2 + 2a0K + a1K + a0a1K

2
)
(A.188)

and

W1 =
(
2 + 2a0K + a1K + a0a1K

2
) (

ν∗0 + 2a0 + a1 + a0a1K
)2

. (A.189)

Given the values of a0, a1, ν∗0 and K, it isn’t difficult to see that U1 > 0 and W1 > 0.

Hence, to prove (A.183) it is enough to show that V1 > 0. Indeed, plugging the expression of ν∗0
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given by (A.185) in (A.188), we have that

V1 =K
(
ν∗0 + 2a0 + a1 + a0a1K

)2 − (2a0 + a1 + a0a1K)
(
2 + 2a0K + a1K + a0a1K

2
)

=K

(
a0 + a1 + a0a1K

1 + 2a0K + a1K + a0a1K2
+ 2a0 + a1 + a0a1K

)2

− (2a0 + a1 + a0a1K)
(
2 + 2a0K + a1K + a0a1K

2
)

=K
[
a0 + a1 + a0a1K + (2a0 + a1 + a0a1K)

(
1 + 2a0K + a1K + a0a1K

2
)]2

− (2a0 + a1 + a0a1K)
(
2 + 2a0K + a1K + a0a1K

2
) (

1 + 2a0K + a1K + a0a1K
2
)2

<K
[
(2a0 + a1 + a0a1K) + (2a0 + a1 + a0a1K)

(
1 + 2a0K + a1K + a0a1K

2
)]2

− (2a0 + a1 + a0a1K)
(
2 + 2a0K + a1K + a0a1K

2
) (

1 + 2a0K + a1K + a0a1K
2
)2

=K
[
(2a0 + a1 + a0a1K)

(
2 + 2a0K + a1K + a0a1K

2
)]2

− (2a0 + a1 + a0a1K)
(
2 + 2a0K + a1K + a0a1K

2
) (

1 + 2a0K + a1K + a0a1K
2
)2

=
[
K (2a0 + a1 + a0a1K)

(
2 + 2a0K + a1K + a0a1K

2
)

−
(
1 + 2a0K + a1K + a0a1K

2
)2]

(2a0 + a1 + a0a1K)
(
2 + 2a0K + a1K + a0a1K

2
)

=
[(
2a0K + a1K + a0a1K

2
) (

2 + 2a0K + a1K + a0a1K
2
)

−
(
1 + 2a0K + a1K + a0a1K

2
)2]

(2a0 + a1 + a0a1K)
(
2 + 2a0K + a1K + a0a1K

2
)

=
[(
1 + 2a0K + a1K + a0a1K

2 − 1
) (

1 + 2a0K + a1K + a0a1K
2 + 1

)

−
(
1 + 2a0K + a1K + a0a1K

2
)2]

(2a0 + a1 + a0a1K)
(
2 + 2a0K + a1K + a0a1K

2
)

=
[(
1 + 2a0K + a1K + a0a1K

2
)2 − 1

−
(
1 + 2a0K + a1K + a0a1K

2
)2]

(2a0 + a1 + a0a1K)
(
2 + 2a0K + a1K + a0a1K

2
)

=− (2a0 + a1 + a0a1K)
(
2 + 2a0K + a1K + a0a1K

2
)
< 0.

(A.190)

Therefore V1 < 0. Then, since U1 > 0 and W1 > 0, we have that

(πc
1 − π∗

1)(1) =U1
V1

W1
< 0, (A.191)

which proves (A.183).
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Now, we need only to prove (A.184). Using the notation ν̂∗0 = ĺım
β→0

ν∗0(β) given by (A.135),

from (A.182) we have that

ĺım
β→0

(πc
1 − π∗

1)(β) =

=
1

2
K (2 + a1K)

([
1
K

+ a0
]
(G(b1) +D)− (b1 − b0)

(1 + a0K) + (1 + a1K) [2 + a0K]

)2

− 1

2



a1 + (2 + a1K)

[
ν̂∗0 + a0

]

1 +
[
ν̂∗0 + a0

]
K






[
ν̂∗0 + a0

]
(G(b1) +D)− (b1 − b0)

(
ν̂∗0 + a0 + a1

)
+ (1 + a1K)

[
ν̂∗0 + a0

]




2

=
1

2
K (2 + a1K)

( (
1
K

+ a0
)
(G(b1) +D)− (b1 − b0)

(1 + a0K) + (1 + a1K) + (1 + a0K) (1 + a1K)

)2

− 1

2



a1 + (2 + a1K)

(
ν̂∗0 + a0

)

1 +
(
ν̂∗0 + a0

)
K






(
ν̂∗0 + a0

)
(G(b1) +D)− (b1 − b0)

a1 + (2 + a1K)
(
ν̂∗0 + a0

)




2

=
1

2
K (2 + a1K)

((
1
K

+ a0
)
(G(b1) +D)− (b1 − b0)

(1 + a1K) + (1 + a0K) (2 + a1K)

)2

− 1

2

1

1 +
(
ν̂∗0 + a0

)
K

[(
ν̂∗0 + a0

)
(G(b1) +D)− (b1 − b0)

]2

a1 + (2 + a1K)
(
ν̂∗0 + a0

)

=
1

2

V2

W2
,

(A.192)

where

V2 =K (2 + a1K)

[(
1

K
+ a0

)
(G(b1) +D)− (b1 − b0)

]2
×

[
1 +

(
ν̂∗0 + a0

)
K
] [

a1 + (2 + a1K)
(
ν̂∗0 + a0

)]

− [(1 + a1K) + (1 + a0K) (2 + a1K)]2×
[(

ν̂∗0 + a0

)
(G(b1) +D)− (b1 − b0)

]2

(A.193)

and
W2 = [(1 + a1K) + (1 + a0K) (2 + a1K)]2×

[
1 +

(
ν̂∗0 + a0

)
K
] [

a1 + (2 + a1K)
(
ν̂∗0 + a0

)]
.

(A.194)
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For arbitrary fixed values of a0, a1, ν̂∗0 and K, it is evident that W2 > 0. Hence, to prove

(A.184) it lacks only to show that V2 > 0. Indeed,

V2 =

([
(1 + a1K) + (2 + a1K)

(
ν̂∗0 + a0

)
K
]2

− 1

)[(
1
K

+ a0
)
(G(b1) +D)− (b1 − b0)

]2

− [(1 + a1K) + (1 + a0K) (2 + a1K)]
2
[(

ν̂∗0 + a0

)
(G(b1) +D)− (b1 − b0)

]2

=
[
(1 + a1K) +

(
ν̂∗0 + a0

)
(2 + a1K)K

]2 [(
1
K

+ a0
)
(G(b1) +D)− (b1 − b0)

]2

−
[
(1 + a1K) +

(
1
K

+ a0
)
(2 + a1K)K

]2 [(
ν̂∗0 + a0

)
(G(b1) +D)− (b1 − b0)

]2

−
[(

1
K

+ a0
)
(G(b1) +D)− (b1 − b0)

]2
.

(A.195)

Now introduce the following notation:

η = 1 + a1K > 0, (A.196)

ξ = K (1 + η) = K (2 + a1K) > 0, (A.197)

Z = η + a0ξ = (1 + a1K) + a0K (2 + a1K) > 0, (A.198)

G1 = G(b1) +D > 0 (A.199)

and

G3 = a0G1− (b1 − b0) = a0 (G(b1) +D)− (b1 − b0) > 0. (A.200)
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Based on that, we can rewrite (A.195) as follows:

V2 =
[
(1 + a1K) +

(
ν̂∗0 + a0

)
(2 + a1K)K

]2 [(
1
K

+ a0
)
(G(b1) +D)− (b1 − b0)

]2

−
[
(1 + a1K) +

(
1
K

+ a0
)
(2 + a1K)K

]2 [(
ν̂∗0 + a0

)
(G(b1) +D)− (b1 − b0)

]2

−
[(

1
K

+ a0
)
(G(b1) +D)− (b1 − b0)

]2

=
(
ν̂∗0ξ + Z

)2 (
1
K
G1 +G3

)2 −
(
1
K
ξ + Z

)2 (
ν̂∗0G1 +G3

)2
−
(
1
K
G1 +G3

)2

=
(

1
K
ν̂∗0ξG1 + 1

K
ZG1 + ν̂∗0ξG3 + ZG3

)2
−
(

1
K
ν̂∗0ξG1 + ν̂∗0ZG1 + 1

K
ξG3 + ZG3

)2

−
(

1

K2
G12 + 2 1

K
G1G3 +G32

)

=
[
2
(

1
K
ν̂∗0ξG1 + ZG3

)
+
(

1
K

+ ν̂∗0

)
(ZG1 + ξG3)

] [(
1
K

− ν̂∗0

)
(ZG1− ξG3)

]

−
(

1

K2
G12 + 2 1

K
G1G3

)
−G32

=2
(

1
K
ν̂∗0ξG1 + ZG3

)(
1
K

− ν̂∗0

)
(ZG1− ξG3) +

(
1
K2 − ν̂∗0

2
) (

Z2G12 − ξ2G32
)

− 1
K
G1
(
1
K
G1 + 2G3

)
−G32

=
(

1
K2 − ν̂∗0

2
) (

Z2G12 − ξ2G32
)
− 1

K
G1
(
1
K
G1 + 2G3

)

+ 2ZG3
(

1
K

− ν̂∗0

)
(ZG1− ξG3)−G32

+ 2 1
K
ν̂∗0ξG1

(
1
K

− ν̂∗0

)
(ZG1− ξG3)

=P1 +Q1 +R1,

(A.201)

where

P1 =
(

1
K2 − ν̂∗0

2
) (

Z2G12 − ξ2G32
)
− 1

K
G1
(
1
K
G1 + 2G3

)
, (A.202)

Q1 = 2ZG3
(

1
K

− ν̂∗0

)
(ZG1− ξG3)−G32 (A.203)

and

R1 = 2 1
K
ν̂∗0ξG1

(
1
K

− ν̂∗0

)
(ZG1− ξG3) . (A.204)

Now, we are going to show that

ZG1− ξG3 > 0. (A.205)

Using (A.198) and (A.200) we have that

ZG1− ξG3 = (η + a0ξ)G1− ξ (a0G1− (b1 − b0))

=ηG1 + ξ(b1 − b0) ≥ ηG1 > 0,
(A.206)

which proves (A.205).
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Thus, given the values of ν̂∗0 , K, equations (A.197), (A.199), (A.144) and (A.205), we can

conclude that R1 > 0.

Now,

Q1 =2ZG3
(

1
K

− ν̂∗0

)
(ZG1− ξG3)−G32

=
[
2Z
(

1
K

− ν̂∗0

)
(ZG1− ξG3)−G3

]
G3,

(A.207)

and using (A.200) we can rewrite (A.207)as follows:

Q1 =
[
2Z
(

1
K

− ν̂∗0

)
(ZG1− ξG3)−G3

]
G3

=
{
2Z
(

1
K

− ν̂∗0

)
(ZG1− ξ [a0G1− (b1 − b0)])− [a0G1− (b1 − b0)]

}
G3

=
{
2Z
(

1
K

− ν̂∗0

)
[ZG1− a0ξG1 + ξ(b1 − b0)]− a0G1 + (b1 − b0)

}
G3

=
{
2Z
(

1
K

− ν̂∗0

)
[(Z − a0ξ)G1 + ξ(b1 − b0)]− a0G1 + (b1 − b0)

}
G3

=
{
2Z (Z − a0ξ)

(
1
K

− ν̂∗0

)
G1 + 2ξZ

(
1
K

− ν̂∗0

)
(b1 − b0)− a0G1 + (b1 − b0)

}
G3

=
{[

2Z (Z − a0ξ)
(

1
K

− ν̂∗0

)
− a0

]
G1 +

[
2ξZ

(
1
K

− ν̂∗0

)
+ 1
]
(b1 − b0)

}
G3.

(A.208)

Moreover, from (A.198), we have that

η = Z − a0ξ = 1 + a1K. (A.209)

Substituting (A.209) in (A.208) we have that

Q1 =
{[

2Z (Z − a0ξ)
(

1
K

− ν̂∗0

)
− a0

]
G1 +

[
2ξZ

(
1
K

− ν̂∗0

)
+ 1
]
(b1 − b0)

}
G3

=
{[

2Z (1 + a1K)
(

1
K

− ν̂∗0

)
− a0

]
G1 +

[
2ξZ

(
1
K

− ν̂∗0

)
+ 1
]
(b1 − b0)

}
G3

=
{[

2a1KZ
(

1
K

− ν̂∗0

)
+ 2Z

(
1
K

− ν̂∗0

)
− a0

]
G1 +

[
2ξZ

(
1
K

− ν̂∗0

)
+ 1
]
(b1 − b0)

}
G3

= [(V3 +W3)G1 + U3(b1 − b0)]G3,

(A.210)

where

V3 = 2a1KZ
(

1
K

− ν̂∗0

)
, (A.211)

W3 = 2Z
(

1
K

− ν̂∗0

)
− a0 (A.212)

and

U3 = 2ξZ
(

1
K

− ν̂∗0

)
+ 1. (A.213)

For any given values of a1, K, ξ and Z, one easily deduces that V3 > 0 and U3 > 0. Now,

we are going to show that W3 > 0. In order to do that, we first substitute (A.198) in (A.212) to
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get:

W3 =2Z
(

1
K

− ν̂∗0

)
− a0

=2 [(1 + a1K) + a0K (2 + a1K)]
(

1
K

− ν̂∗0

)
− a0

>a0K (2 + a1K)
(

1
K

− ν̂∗0

)
− a0

=a0

[
K (2 + a1K)

(
1
K

− ν̂∗0

)
− 1
]
.

(A.214)

Now, making use of the expression of ν̂∗0 given by (A.135) we have that

1
K

− ν̂∗0 = 1
K

− 2(a0+a1+a0a1K)

(2a0K+a0a1K2)+
√

(2a0K+a0a1K2)2+4(2K+a1K2)(a0+a1+a0a1K)

=
(2a0K+a0a1K

2)+
√

(2a0K+a0a1K2)2+4(2K+a1K2)(a0+a1+a0a1K)−2K(a0+a1+a0a1K)

K
[
(2a0K+a0a1K2)+

√
(2a0K+a0a1K2)2+4(2K+a1K2)(a0+a1+a0a1K)

]

=

√
(2a0K+a0a1K2)2+4(2K+a1K2)(a0+a1+a0a1K)−(2a1K+a0a1K

2)
K
[
(2a0K+a0a1K2)+

√
(2a0K+a0a1K2)2+4(2K+a1K2)(a0+a1+a0a1K)

]

=

√
(2a0K+a0a1K2)2+4(2K+a1K2)(a0+a1+a0a1K)−a1K(2+a0K)

K
[
(2a0K+a0a1K2)+

√
(2a0K+a0a1K2)2+4(2K+a1K2)(a0+a1+a0a1K)

] .

(A.215)
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Now plugging (A.215) in (A.214) we get:

W3 > a0

[
K (2 + a1K)

(
1
K

− ν̂∗0

)
− 1
]

=a0

[
K (2 + a1K)

√
(2a0K+a0a1K2)2+4(2K+a1K2)(a0+a1+a0a1K)−a1K(2+a0K)

K
[
(2a0K+a0a1K2)+

√
(2a0K+a0a1K2)2+4(2K+a1K2)(a0+a1+a0a1K)

] − 1

]

=a0

[
(2 + a1K)

√
(2a0K+a0a1K2)2+4(2K+a1K2)(a0+a1+a0a1K)−a1K(2+a0K)

(2a0K+a0a1K2)+
√

(2a0K+a0a1K2)2+4(2K+a1K2)(a0+a1+a0a1K)
− 1

]

= a0

(2a0K+a0a1K2)+
√

(2a0K+a0a1K2)2+4(2K+a1K2)(a0+a1+a0a1K)

[

(2 + a1K)

√
(2a0K + a0a1K2)2 + 4 (2K + a1K2) (a0 + a1 + a0a1K)

− a1K (2 + a0K) (2 + a1K)−
(
2a0K + a0a1K

2
)

−
√

(2a0K + a0a1K2)2 + 4 (2K + a1K2) (a0 + a1 + a0a1K)

]

= a0

(2a0K+a0a1K2)+
√

(2a0K+a0a1K2)2+4(2K+a1K2)(a0+a1+a0a1K)

[

[(2 + a1K)− 1]

√
(2a0K + a0a1K2)2 + 4 (2K + a1K2) (a0 + a1 + a0a1K)

− a1K (2 + a0K) (2 + a1K)− a0K (2 + a1K)

]

= a0

(2a0K+a0a1K2)+
√

(2a0K+a0a1K2)2+4(2K+a1K2)(a0+a1+a0a1K)

{

(1 + a1K)

√
(2a0K + a0a1K2)2 + 4 (2K + a1K2) (a0 + a1 + a0a1K)

−K (2 + a1K) [a1 (2 + a0K) + a0]

}

= a0

(2a0K+a0a1K2)+
√

(2a0K+a0a1K2)2+4(2K+a1K2)(a0+a1+a0a1K)

{

(1 + a1K)

√
(2a0K + a0a1K2)2 + 4 (2K + a1K2) (a0 + a1 + a0a1K)

−K (2 + a1K) [a0 (1 + a1K) + 2a1]

}

=a0
V4

W4
,

(A.216)

where

V4 =(1 + a1K)

√
(2a0K + a0a1K2)2 + 4 (2K + a1K2) (a0 + a1 + a0a1K)

−K (2 + a1K) [a0 (1 + a1K) + 2a1]
(A.217)

and

W4 =
(
2a0K + a0a1K

2
)
+

√
(2a0K + a0a1K2)2 + 4 (2K + a1K2) (a0 + a1 + a0a1K). (A.218)
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For any values of a0, a1 and K, we see that W4 > 0, thus, to compute the value of (A.216)

we need only to estimate the value of V4. Suppose that

V4 =(1 + a1K)

√
(2a0K + a0a1K2)2 + 4 (2K + a1K2) (a0 + a1 + a0a1K)

−K (2 + a1K) [a0 (1 + a1K) + 2a1] ≤ 0.
(A.219)

Then, we would have

(1 + a1K)

√
(2a0K + a0a1K2)2 + 4 (2K + a1K2) (a0 + a1 + a0a1K)

≤ K (2 + a1K) [a0 (1 + a1K) + 2a1] .
(A.220)

Both sides of (A.220) are positive, then, by squaring them we have that

(1 + a1K)2
[(
2a0K + a0a1K

2
)2

+ 4
(
2K + a1K

2
)
(a0 + a1 + a0a1K)

]

≤ K2 (2 + a1K)2 [a0 (1 + a1K) + 2a1]
2 .

(A.221)

Thus,

(1 + a1K)2
[
a20K

2 (2 + a1K)2 + 4K (2 + a1K) (a0 + a1 + a0a1K)
]

≤ K2 (2 + a1K)2 [a0 (1 + a1K) + 2a1]
2 ,

(A.222)

which leads to

K (2 + a1K) (1 + a1K)2
[
a20K (2 + a1K) + 4 (a0 + a1 + a0a1K)

]

≤ K2 (2 + a1K)2 [a0 (1 + a1K) + 2a1]
2 ,

(A.223)

where, K (2 + a1K) > 0. Therefore,

(1 + a1K)2
[
a20K (2 + a1K) + 4 (a0 + a1 + a0a1K)

]

≤ K (2 + a1K) [a0 (1 + a1K) + 2a1]
2 .

(A.224)

Now, expanding the squares we find that:

(1 + a1K)2
[
a20K (2 + a1K) + 4 (a0 + a1 + a0a1K)

]

≤ K (2 + a1K)
[
a20 (1 + a1K)2 + 4a0a1 (1 + a1K) + 4a21

]
,

(A.225)

and by distributing some terms:

a20K (2 + a1K) (1 + a1K)2 + 4 (a0 + a1 + a0a1K) (1 + a1K)2

≤ a20K (2 + a1K) (1 + a1K)2 + 4a0a1K (2 + a1K) (1 + a1K) + 4a21K (2 + a1K) .
(A.226)
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Thus,

4 (a0 + a1 + a0a1K) (1 + a1K)2

≤ 4a0a1K (2 + a1K) (1 + a1K) + 4a21K (2 + a1K) ,
(A.227)

and distributing again:

4 (a0 + a1) (1 + a1K)2 + 4a0a1K (1 + a1K)2

≤ 4a0a1K (1 + a1K) + 4a0a1K (1 + a1K)2 + 4a21K (2 + a1K) ,
(A.228)

which leads to
4 (a0 + a1) (1 + a1K)2

≤ 4a0a1K (1 + a1K) + 4a21K (2 + a1K) .
(A.229)

Finally,

(a0 + a1) (1 + a1K)2

≤ a0a1K (1 + a1K) + a21K (2 + a1K) ,
(A.230)

and by distributing some terms and expanding the squares again we deduce that

(a0 + a1)
(
1 + 2a1K + a21K

2
)

≤ a0a1K (1 + a1K) + a21K (1 + a1K) + a21K,
(A.231)

thus,

(a0 + a1)
(
1 + 2a1K + a21K

2
)

≤ (a0 + a1) a1K (1 + a1K) + a21K,
(A.232)

which leads to
(a0 + a1)

(
1 + 2a1K + a21K

2
)

≤ (a0 + a1)
(
a1K + a21K

2
)
+ a21K.

(A.233)

Hence,

(a0 + a1) (1 + a1K) ≤ a21K, (A.234)

which finally leads to

a0 + a1 + a0a1K + a21K ≤ a21K, (A.235)

which is impossible since a0 + a1 + a0a1K > 0.

On a base of that, we conclude that

V4 > 0, (A.236)

so,

W3 > a0
V4

W4
> 0. (A.237)
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Now, since V3 > 0, W3 > 0 and U3 > 0, and given the values of b0, b1, G1 and G3, we

have that

Q1 = [(V3 +W3)G1 + U3(b1 − b0)]G3 > 0. (A.238)

So we need only to estimate the value of P1.

P1 =
(

1
K2 − ν̂∗0

2
) (

Z2G12 − ξ2G32
)
− 1

K
G1
(
1
K
G1 + 2G3

)

=
(

1
K

+ ν̂∗0

)
(ZG1 + ξG3)

(
1
K

− ν̂∗0

)
(ZG1− ξG3)− 1

K
G1
(
1
K
G1 + 2G3

)

=
(

1
K
ZG1 + 1

K
ξG3 + ν̂∗0ZG1 + ν̂∗0ξG3

)(
1
K

− ν̂∗0

)
(ZG1− ξG3)

− 1
K
G1
(
1
K
G1 + 2G3

)
.

(A.239)

By equations (A.197), (A.200) and (A.209), we have that

ξ = K (2 + a1K) > 2K, (A.240)

ZG1− ξG3 = ZG1− ξ [a0G1− (b1 − b0)] ≥ ZG1− a0ξG1 = ηG1, (A.241)

Z = η + a0ξ > η (A.242)

and

ν̂∗0ξG3 > 0. (A.243)

Using inequalities (A.240)-(A.243) in (A.239) we get:

P1 =
(

1
K
ZG1 + 1

K
ξG3 + ν̂∗0ZG1 + ν̂∗0ξG3

)(
1
K

− ν̂∗0

)
(ZG1− ξG3)

− 1
K
G1
(
1
K
G1 + 2G3

)

>
(

1
K
ZG1 + 2G3 + ν̂∗0ηG1

)(
1
K

− ν̂∗0

)
ηG1

− 1
K
G1
(
1
K
G1 + 2G3

)

=
[
η
(

1
K
ZG1 + 2G3 + ν̂∗0ηG1

)(
1
K

− ν̂∗0

)

− 1
K

(
1
K
G1 + 2G3

) ]
G1

=
{[(

1
K
Z + ν̂∗0η

)
ηG1 + 2ηG3

] (
1
K

− ν̂∗0

)

− 1
K

(
1
K
G1 + 2G3

)}
G1.

(A.244)

Now, making use of (A.196), (A.198) and (A.240), we come to

η = 1 + a1K > 1 (A.245)
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and

Z = η + a0ξ > η + 2a0K. (A.246)

Then, applying inequalities (A.245) and (A.246) to (A.244) one gets:

P1 =
{[(

1
K
Z + ν̂∗0η

)
ηG1 + 2ηG3

] (
1
K

− ν̂∗0

)

− 1
K

(
1
K
G1 + 2G3

)}
G1

>
{[(

1
K
(η + 2a0K) + ν̂∗0

)
G1 + 2ηG3

] (
1
K

− ν̂∗0

)

− 1
K

(
1
K
G1 + 2G3

)}
G1

=
{[(

1
K
η + 2a0 + ν̂∗0

)
G1 + 2ηG3

] (
1
K

− ν̂∗0

)

− 1
K

(
1
K
G1 + 2G3

)}
G1.

(A.247)

Substituting the value of G3 given by (A.200) in (A.247), we have:

P1 >
{[(

1
K
η + 2a0 + ν̂∗0

)
G1 + 2ηG3

] (
1
K

− ν̂∗0

)

− 1
K

(
1
K
G1 + 2G3

)}
G1.

=
{[(

1
K
η + 2a0 + ν̂∗0

)
G1 + 2η [a0G1− (b1 − b0)]

] (
1
K

− ν̂∗0

)

− 1
K

{
1
K
G1 + 2 [a0G1− (b1 − b0)]

}}
G1.

=
{[(

1
K
η + 2a0 + ν̂∗0

)
G1 + 2a0ηG1− 2η(b1 − b0)

] (
1
K

− ν̂∗0

)

− 1
K

[
1
K
G1 + 2a0G1− 2(b1 − b0)

] }
G1.

=
{[(

1
K
η + 2a0 + 2a0η + ν̂∗0

)
G1− 2η(b1 − b0)

] (
1
K

− ν̂∗0

)

− 1
K

[(
1
K

+ 2a0
)
G1− 2(b1 − b0)

] }
G1.

=
{(

1
K
η + 2a0 + 2a0η + ν̂∗0

)(
1
K

− ν̂∗0

)
G1− 2η

(
1
K

− ν̂∗0

)
(b1 − b0)

− 1
K

(
1
K

+ 2a0
)
G1 + 2 1

K
(b1 − b0)

}
G1.

=
{[(

1
K
η + 2a0 + 2a0η + ν̂∗0

)(
1
K

− ν̂∗0

)
− 1

K

(
1
K

+ 2a0
)]

G1

+ 2
[

1
K

− η
(

1
K

− ν̂∗0

)]
(b1 − b0)

}
G1.

(A.248)
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Next, we substitute the value of η given by (A.196) in (A.248) to obtain:

P1 >
{[(

1
K
η + 2a0 + 2a0η + ν̂∗0

)(
1
K

− ν̂∗0

)
− 1

K

(
1
K

+ 2a0
)]

G1

+ 2
[

1
K

− η
(

1
K

− ν̂∗0

)]
(b1 − b0)

}
G1.

=
{[(

1
K
(1 + a1K) + 2a0 + 2a0η + ν̂∗0

)(
1
K

− ν̂∗0

)
− 1

K

(
1
K

+ 2a0
)]

G1

+ 2
[

1
K

− (1 + a1K)
(

1
K

− ν̂∗0

)]
(b1 − b0)

}
G1.

=
{[(

1
K

+ a1 + 2a0 + 2a0η + ν̂∗0

)(
1
K

− ν̂∗0

)
− 1

K

(
1
K

+ 2a0
)]

G1

+ 2
[

1
K

−
(

1
K

− ν̂∗0

)
− a1K

(
1
K

− ν̂∗0

)]
(b1 − b0)

}
G1.

=
{[

−ν̂∗0
(
1
K

+ 2a0
)
+ (a1 + 2a0η)

(
1
K

− ν̂∗0

)
+ ν̂∗0

(
1
K

− ν̂∗0

)]
G1

+ 2
[
(1 + a1K) ν̂∗0 − a1

]
(b1 − b0)

}
G1.

=
{[

(a1 + 2a0η)
(

1
K

− ν̂∗0

)
− ν̂∗0

(
2a0 + ν̂∗0

)]
G1

+ 2
[
(1 + a1K) ν̂∗0 − a1

]
(b1 − b0)

}
G1.

= [V5G1 + 2W5(b1 − b0)]G1,

(A.249)

where

V5 = (a1 + 2a0η)
(

1
K

− ν̂∗0

)
− ν̂∗0

(
2a0 + ν̂∗0

)
(A.250)

and

W5 = (1 + a1K) ν̂∗0 − a1. (A.251)

Now, we only need to show that V5 > 0 and W5 > 0.

First, since ν∗0(β) is strictly decreasing, we have ν̂∗0 = ĺım
β→0

ν∗0(β) > ν∗0(1) = ν∗0 , thus,

W5 = (1 + a1K) ν̂∗0 − a1 > (1 + a1K) ν∗0 − a1. (A.252)

Substituting the value of ν∗0 given by (A.185) in (A.252) we have that:

W5 > (1 + a1K) ν∗0 − a1

=(1 + a1K)

(
a0 + a1 + a0a1K

1 + 2a0K + a1K + a0a1K2

)
− a1

=
(1 + a1K) (a0 + a1 + a0a1K)− a1

(
1 + 2a0K + a1K + a0a1K

2
)

1 + 2a0K + a1K + a0a1K2

=
V6

W6
,

(A.253)
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where

V6 = (1 + a1K) (a0 + a1 + a0a1K)− a1
(
1 + 2a0K + a1K + a0a1K

2
)

(A.254)

and

W6 = 1 + 2a0K + a1K + a0a1K
2. (A.255)

Given the values of a0, a1 and K, it’s easy to see that W6 > 0. Now, we calculate the value

of V6:

V6 =(1 + a1K) (a0 + a1 + a0a1K)− a1
(
1 + 2a0K + a1K + a0a1K

2
)

=(a0 + a1 + a0a1K) + a1K (a0 + a1 + a0a1K)− a1
(
1 + 2a0K + a1K + a0a1K

2
)

=a0 + a1 (1 + a0K) + a1
(
a0K + a1K + a0a1K

2
)
− a1

(
1 + 2a0K + a1K + a0a1K

2
)

=a0 + a1
(
1 + 2a0K + a1K + a0a1K

2
)
− a1

(
1 + 2a0K + a1K + a0a1K

2
)

=a0 > 0.

(A.256)

Therefore V6 > 0 and

W5 >
V6

W6
> 0. (A.257)

So we only lack showing that V5 > 0:

V5 =(a1 + 2a0η)
(

1
K

− ν̂∗0

)
− ν̂∗0

(
2a0 + ν̂∗0

)

=(a1 + a0η)
(

1
K

− ν̂∗0

)
+ a0η

(
1
K

− ν̂∗0

)
− ν̂∗0

(
a0 + ν̂∗0

)
− a0ν̂∗0

=
[
(a1 + a0η)

(
1
K

− ν̂∗0

)
− ν̂∗0

(
a0 + ν̂∗0

)]
+ a0

[
η
(

1
K

− ν̂∗0

)
− ν̂∗0

]

=V7 + a0W7,

(A.258)

where

V7 = (a1 + a0η)
(

1
K

− ν̂∗0

)
− ν̂∗0

(
a0 + ν̂∗0

)
(A.259)

and

W7 = η
(

1
K

− ν̂∗0

)
− ν̂∗0 . (A.260)
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Finally, we will demonstrate that V7 > 0 and W7 > 0. Substituting the value of η given

by (A.196) in V7 we get:

V7 =(a1 + a0η)
(

1
K

− ν̂∗0

)
− ν̂∗0

(
a0 + ν̂∗0

)

= [a1 + a0 (1 + a1K)]
(

1
K

− ν̂∗0

)
− ν̂∗0

(
a0 + ν̂∗0

)

=(a1 + a0 + a0a1K)
(

1
K

− ν̂∗0

)
− ν̂∗0

(
a0 + ν̂∗0

)

= 1
K
(a1 + a0 + a0a1K)− ν̂∗0 (a1 + a0 + a0a1K)− a0ν̂∗0 − ν̂∗0

2

= 1
K
(a1 + a0 + a0a1K)− ν̂∗0 (a1 + 2a0 + a0a1K)− ν̂∗0

2
.

(A.261)

we get:

(1− β)
(
−2τ + a1τ

2
)
ν20 +

(
β − 2a0τ − βa1τ + a0a1τ

2
)
ν0 − (a0 + a1 − a0a1τ) = 0,

given by (A.15), for τ = −K. Now by applying the limit when β → 0, one obtains the following

equality:

(
2K + a1K

2
)
ν̂∗0

2
+
(
2a0K + a0a1K

2
)
ν̂∗0 − (a0 + a1 + a0a1K) = 0. (A.262)

Therefore,

(
2K + a1K

2
)
ν̂∗0

2
+
(
2a0K + a0a1K

2
)
ν̂∗0 − (a0 + a1 + a0a1K)

= (2 + a1K)Kν̂∗0
2
+ (2a0 + a0a1K)Kν̂∗0 − 1

K
(a0 + a1 + a0a1K)K

=
[
(2 + a1K) ν̂∗0

2
+ (2a0 + a0a1K) ν̂∗0 − 1

K
(a0 + a1 + a0a1K)

]
K

=
[
(1 + 1 + a1K) ν̂∗0

2
+ (a1 + 2a0 + a0a1K − a1) ν̂∗0 − 1

K
(a0 + a1 + a0a1K)

]
K

=
[
ν̂∗0

2
+ (a1 + 2a0 + a0a1K) ν̂∗0 − 1

K
(a0 + a1 + a0a1K) + (1 + a1K) ν̂∗0

2 − a1ν̂∗0

]
K

= 0.

(A.263)

Since K > 0, we have that

ν̂∗0
2
+ (a1 + 2a0 + a0a1K) ν̂∗0 − 1

K
(a0 + a1 + a0a1K) + (1 + a1K) ν̂∗0

2 − a1ν̂∗0 = 0, (A.264)

thus,

(1 + a1K) ν̂∗0
2 − a1ν̂∗0 = 1

K
(a0 + a1 + a0a1K)− (a1 + 2a0 + a0a1K) ν̂∗0 − ν̂∗0

2
. (A.265)
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Applying equality (A.265) to (A.261) we have that:

V7 =
1
K
(a0 + a1 + a0a1K)− (a1 + 2a0 + a0a1K) ν̂∗0 − ν̂∗0

2

=(1 + a1K) ν̂∗0
2 − a1ν̂∗0

=
[
(1 + a1K) ν̂∗0 − a1

]
ν̂∗0

=W5ν̂∗0 .

(A.266)

Now recalling that W5 > 0 and ν̂∗0 > 0, we have:

V7 = W5ν̂∗0 > 0. (A.267)

So we only need to show that W7 > 0. To do this, we plug the value of η given by (A.196)

in W7 to get:

W7 =η
(

1
K

− ν̂∗0

)
− ν̂∗0

=(1 + a1K)
(

1
K

− ν̂∗0

)
− ν̂∗0

= 1
K
(1 + a1K)− (1 + a1K) ν̂∗0 − ν̂∗0

= 1
K
(1 + a1K)− (2 + a1K) ν̂∗0 .

(A.268)

Using relationship (A.262) we have that:

(
2K + a1K

2
)
ν̂∗0

2
+
(
2a0K + a0a1K

2
)
ν̂∗0 − (a0 + a1 + a0a1K)

=
[
(2 + a1K) ν̂∗0

2
+ (2a0 + a0a1K) ν̂∗0 − 1

K
(a0 + a1 + a0a1K)

]
K

=
{
(2 + a1K) ν̂∗0

2
+ a0 (2 + a1K) ν̂∗0 − 1

K
[a1 + a0 (1 + a1K)]

}
K

=
{
(2 + a1K) ν̂∗0

2
+ a0 (2 + a1K) ν̂∗0 − 1

K
a1 − 1

K
a0 (1 + a1K)

}
K

=
{
(2 + a1K) ν̂∗0

2 − 1
K
a1 + a0

[
(2 + a1K) ν̂∗0 − 1

K
(1 + a1K)

]}
K.

(A.269)

Since K > 0, we have that:

(2 + a1K) ν̂∗0
2 − 1

K
a1 + a0

[
(2 + a1K) ν̂∗0 − 1

K
(1 + a1K)

]
= 0, (A.270)

which implies

(2 + a1K) ν̂∗0
2 − 1

K
a1 = −a0

[
(2 + a1K) ν̂∗0 − 1

K
(1 + a1K)

]
. (A.271)

As a0 > 0, one gets:

1
a0

[
(2 + a1K) ν̂∗0

2 − 1
K
a1

]
= 1

K
(1 + a1K)− (2 + a1K) ν̂∗0 . (A.272)
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Now, applying equality (A.272) to (A.268), we deduce:

W7 =
1
K
(1 + a1K)− (2 + a1K) ν̂∗0

= 1
a0

[
(2 + a1K) ν̂∗0

2 − 1
K
a1

]

=
U8

a0
,

(A.273)

where

U8 = (2 + a1K) ν̂∗0
2 − 1

K
a1. (A.274)

Finally, let’s suppose that

U8 ≤ 0. (A.275)

Substituting the value of ν̂∗0 , given by (A.135), in U8 we have:

U8 =(2 + a1K) ν̂∗0
2 − 1

K
a1

=(2 + a1K)

[
2(a0+a1+a0a1K)

(2a0K+a0a1K
2)+

√
(2a0K+a0a1K

2)2+4(2K+a1K
2)(a0+a1+a0a1K)

]2
− 1

K
a1

=

{
(2 + a1K) [2 (a0 + a1 + a0a1K)]

2 − 1
K
a1

[(
2a0K + a0a1K

2
)

+

√
(2a0K + a0a1K2)

2
+ 4 (2K + a1K2) (a0 + a1 + a0a1K)

]2}

/

[(
2a0K + a0a1K

2
)
+

√
(2a0K + a0a1K2)

2
+ 4 (2K + a1K2) (a0 + a1 + a0a1K)

]2

=
V9

W9
≤ 0,

(A.276)

where

V9 =(2 + a1K) [2 (a0 + a1 + a0a1K)]2 − 1
K
a1

[(
2a0K + a0a1K

2
)

+

√
(2a0K + a0a1K2)2 + 4 (2K + a1K2) (a0 + a1 + a0a1K)

]2 (A.277)

and

W9 =

[(
2a0K + a0a1K

2
)
+

√
(2a0K + a0a1K2)

2
+ 4 (2K + a1K2) (a0 + a1 + a0a1K)

]2
. (A.278)

For any given values of a0, a1 and K, one has W9 > 0. Therefore, equations (A.276)

implies

V9 ≤ 0. (A.279)
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Hence

V9 =(2 + a1K) [2 (a0 + a1 + a0a1K)]2 − 1
K
a1

[(
2a0K + a0a1K

2
)

+

√
(2a0K + a0a1K2)2 + 4 (2K + a1K2) (a0 + a1 + a0a1K)

]2

=4 (2 + a1K) [a1 + a0 (1 + a1K)]2 − 1
K
a1

[
a0K (2 + a1K)

+
√
K (2 + a1K)

{
a20K (2 + a1K) + 4 [a1 + a0 (1 + a1K)]

}]2

=4a21 (2 + a1K) + 8a0a1 (2 + a1K) (1 + a1K) + 4a20 (2 + a1K) (1 + a1K)2

− a1a
2
0K (2 + a1K)2 − a1 (2 + a1K)

{
a20K (2 + a1K) + 4 [a1 + a0 (1 + a1K)]

}

− 2a0a1 (2 + a1K)
√
K (2 + a1K)

{
a20K (2 + a1K) + 4 [a1 + a0 (1 + a1K)]

}

=(2 + a1K)
[
4a21 + 8a0a1 (1 + a1K) + 4a20 (1 + a1K)2

− a1a
2
0K (2 + a1K)− a1a

2
0K (2 + a1K)− 4a1 [a1 + a0 (1 + a1K)]

]

− 2a0a1 (2 + a1K)
√
K (2 + a1K)

{
a20K (2 + a1K) + 4 [a1 + a0 (1 + a1K)]

}

=(2 + a1K)
[
4a0a1 (1 + a1K) + 4a20 (1 + a1K)2 − 2a1a

2
0K (2 + a1K)

]

− 2a0a1 (2 + a1K)
√
K (2 + a1K)

{
a20K (2 + a1K) + 4 [a1 + a0 (1 + a1K)]

}

=a0 (2 + a1K)
[
4a1 (1 + a1K) + 4a0

(
1 + 2a1K + a21K

2
)
− 2a0a1K (2 + a1K)

]

− 2a0a1 (2 + a1K)
√
K (2 + a1K)

{
a20K (2 + a1K) + 4 [a1 + a0 (1 + a1K)]

}

=a0 (2 + a1K)
(
4a0 + 4a1 + 4a0a1K + 4a21K + 2a0a

2
1K

2
)

− 2a0a1 (2 + a1K)
√
K (2 + a1K)

{
a20K (2 + a1K) + 4 [a1 + a0 (1 + a1K)]

}

=2a0 (2 + a1K)

[ (
2a0 + 2a1 + 2a0a1K + 2a21K + a0a

2
1K

2
)

− a1

√
K (2 + a1K)

{
a20K (2 + a1K) + 4 [a1 + a0 (1 + a1K)]

}]

=2a0 (2 + a1K)

[
2a0 + a1K

(
2 1
K

+ 2a0 + 2a1 + a0a1K
)

− a1

√
K (2 + a1K)

{
a20K (2 + a1K) + 4 [a1 + a0 (1 + a1K)]

}]
≤ 0.

(A.280)

Since 2a0 (2 + a1K) > 0, then, from (A.280) the following condition must be met:

2a0 + a1K
(
2 1
K

+ 2a0 + 2a1 + a0a1K
)

− a1

√
K (2 + a1K)

{
a20K (2 + a1K) + 4 [a1 + a0 (1 + a1K)]

}
≤ 0.

(A.281)
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Therefore,

2a0 + a1K
(
2 1
K

+ 2a0 + 2a1 + a0a1K
)

≤ a1

√
K (2 + a1K)

{
a20K (2 + a1K) + 4 [a1 + a0 (1 + a1K)]

}
.

(A.282)

Since both sides of inequality (A.282) are positive, then,

[
2a0 + a1K

(
2 1
K

+ 2a0 + 2a1 + a0a1K
)]2

≤ a21
[
K (2 + a1K)

{
a20K (2 + a1K) + 4 [a1 + a0 (1 + a1K)]

}]
,

(A.283)

which leads to

0 ≤a21
[
K (2 + a1K)

{
a20K (2 + a1K) + 4 [a1 + a0 (1 + a1K)]

}]

−
[
2a0 + a1K

(
2 1
K

+ 2a0 + 2a1 + a0a1K
)]2

=a21K (2 + a1K)
(
2a20K + a20a1K

2 + 4a1 + 4a0 + 4a0a1K
)

−
(
2a0 + 2a1 + 2a0a1K + 2a21K + a0a

2
1K

2
)2

=a21K (2 + a1K)
[
4 (a0 + a1 + a0a1K) + a20K (2 + a1K)

]

−
[
2 (a0 + a1 + a0a1K) + a21K (2 + a0K)

]2

=4a21K (a0 + a1 + a0a1K) [(2 + a1K)− (2 + a0K)]

+ a21K
2
[
a20 (2 + a1K)2 − a21 (2 + a0K)2

]

− 4 (a0 + a1 + a0a1K)2

=4a21K
2 (a0 + a1 + a0a1K) (a1 − a0)

+ a21K
2 (2a0 + a0a1K + 2a1 + a0a1K) (2a0 + a0a1K − 2a1 − a0a1K)

− 4 (a0 + a1 + a0a1K)2

=4a21K
2 (a0 + a1 + a0a1K) (a1 − a0)

− 4a21K
2 (a0 + a1 + a0a1K) (a1 − a0)

− 4 (a0 + a1 + a0a1K)2

=− 4 (a0 + a1 + a0a1K)2 .

(A.284)

Thus,

−4 (a0 + a1 + a0a1K)2 ≥ 0,

which cannot happen due to a0 + a1 + a0a1K > 0.

Therefore, the assumption was false, so U8 > 0. Thus,

W7 =
U8

a0
> 0, (A.285)
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then,

V5 = V7 + a0W7 > 0, (A.286)

which proves that

P1 > [V5G1 + 2W5(b1 − b0)]G1 ≥ V5G12 > 0. (A.287)

So we have that P1 > 0, Q1 > 0 and R1 > 0, then,

V2 = P1 +Q1 +R1 > 0, (A.288)

and therefore,

ĺım
β→0

(πc
1 − π∗

1)(β) =
1

2

V2

W2
> 0, (A.289)

which proves (A.184). The proof of the theorem is complete�



Appendix B

Proofs of chapter 2

Theorem 2.2. Let the number of oligopoly producers be at least three, i.e., n ≥ 3, then,

under assumptions A2.1-A2.3, there exists an interior equilibrium. Moreover, if the

number of producers is two, i.e., n = 2, in addition to assumptions A2.1-A2.3, suppose

that there exists an ε > 0 such that G′(p) ≤ −ε for all p > 0, then, there exists interior

equilibrium.

Proof. For any given set of influence coefficients ν = (ν1 . . . νn) ≥ 0, by theorem 2.1,

there exists the unique exterior equilibrium (p(ν), q1(ν), . . . , qn(ν)).

Now, we define the following functions:

Fi(ν) =
1

n∑

j=1
j 6=i

1

νj + f ′′
j (qj(ν))

−G′(p(ν))

, i = 1, . . . , n. (B.1)

These functions are well-defined and continuous with respect to ν = (ν1 . . . νn) ≥ 0,

due to assumptions A2.1 and A2.2.

Therefore, the function H = (F1 . . . , Fn) : R
n
+ → R

n
+ is also continuous.

Next, we define the value s = max{f ′′
i (qi) | 0 ≤ qi ≤ G(p0), i = 1, . . . , n} > 0.

126
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For n ≥ 3, if 0 ≤ νi ≤
s

n− 2
for all i = 1, . . . , n, we have:

0 ≤ Fi(ν) =
1

n∑

j=1
j 6=i

1

νj + f ′′
j (qj(ν))

−G′(p(ν))

≤ 1
n∑

j=1
j 6=i

1

νj + f ′′
j (qj(ν))

≤ 1
n∑

j=1
j 6=i

1
s

n− 2
+ s

=
1

n− 1
s

n− 2
+ s

=
s

n− 2
, i = 1, . . . , n.

(B.2)

Thus, the function H = (F1 . . . , Fn) maps the convex compact subset

[
0,

s

n− 2

]n

onto itself. Therefore, by Brouwer’s fixed-point theorem, H has a fixed point, i.e., there

exists ν∗ = (ν∗
1 . . . ν

∗
n) ≥ 0 such that Fi(ν

∗) = ν∗
i for all i = 1, . . . , n.

On the other hand, for n = 2 and G′(p) ≤ −ε for some ε > 0, if 0 ≤ νi ≤
1

ε
for all

i = 1, . . . , n, we have:

0 ≤ F1(ν) =
1

1

ν2 + f ′′
2 (q2(ν))

−G′(p(ν))
≤ 1

−G′(p(ν))
≤ 1

ε
,

0 ≤ F2(ν) =
1

1

ν1 + f ′′
1 (q1(ν))

−G′(p(ν))
≤ 1

−G′(p(ν))
≤ 1

ε
.

(B.3)

Thus, the function H = (F1, F2) maps the convex compact subset

[
0,

1

ε

]2
onto itself,

then, again by Brouwer’s fixed-point theorem, H has a fixed point Fi(ν
∗) = ν∗

i , i = 1, 2.

By the definition of the functions (B.1), the influence coefficients ν∗ = (ν∗
1 . . . ν

∗
n) ≥ 0,

given by Brouwer’s fixed-point theorem, satisfy the consistency criterion 2.2 and, therefore,

the vector (p(ν∗), q1(ν
∗), . . . , qn(ν

∗), ν∗
1 , . . . , ν

∗
n) is the interior equilibrium. The proof is

complete�

Theorem 2.6. Suppose that the stronger assumption A2.4 is true, together with A2.1

and A2.3, and suppose that the function G is concave. Then, the consistency criterion for

the original oligopoly is a necessary and sufficient condition for the collection of influence

conjectures ν = (ν1, . . . , νn) to produce Nash equilibrium in the meta-game.

Proof. Note that the necessity is a particular case of theorem 2.5, thus, to prove

theorem 2.6, we just need to establish the sufficiency.
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We assume A2.4, that is, for all i, the cost functions fi are quadratic (and strictly

convex) with fi(0) = 0, f ′
i(0) > 0, and f ′′

i (0) > 0, i.e.,

fi(qi) =
1

2
aiqi

2 + biqi,

where ai > 0, bi > 0, i = 1, . . . , n. Now we are in a position to demonstrate that in this

specific case, each interior equilibrium (p∗; q∗1, . . . , q
∗
n; ν

∗
1 , . . . , ν

∗
n) of the original oligopoly

provides the Nash equilibrium in the meta-game Γ = (N, V,Π, D). Namely, the consis-

tent conjectures (influence coefficients) ν∗ = (ν∗
1 , . . . , ν

∗
n) satisfying (2.15) form the Nash

equilibrium in the meta-game.

Indeed, first of all, equations (2.15) in this particular case are reduced to the system

ν∗
i =

1
n∑

k=1
k 6=i

1

ν∗
k + ak

−G′(p∗)

, i = 1, . . . , n, (B.4)

which clearly implies that all components of the vector ν∗ are positive: ν∗
i > 0, i = 1, . . . , n.

Next, equations

∂πi

∂νi
=

q2i
νi + f ′′

i (qi)




1
n∑

k=1

1

νk + f ′′
k (qk)

−G′(p)

−

n∑

k=1
k 6=i

1

νk + f ′′
k (qk)

−G′(p)

n∑

k=1

1

νk + f ′′
k (qk)

−G′(p)

νi




=
q2i

νi + f ′′
i (qi)

n∑

k=1
k 6=i

1

νk + f ′′
k (qk)

−G′(p)

n∑

k=1

1

νk + f ′′
k (qk)

−G′(p)




1
n∑

k=1
k 6=i

1

νk + f ′′
k (qk)

−G′(p)

− νi




= 0, i = 1, . . . , n.

(B.5)

guarantee that the first-order optimality conditions for the meta-game payoff functions

hold:
∂πi

∂νi
(ν∗) = 0, i = 1, . . . , n. (B.6)
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Therefore, the value ν∗
i may be the maximum point of the i-th producer’s payoff

function

π̃i(νi) ≡ π(νi, ν
∗
−i), i = 1, . . . , n, (B.7)

where ν∗
−i = (ν∗

1 , . . . , ν
∗
i−1, ν

∗
i+1, . . . , ν

∗
n). In order to establish the maximum point property,

we are going to fix an arbitrary i and to show that the function π̃i = π̃i(νi):

(a) doesn’t increase along the ray (ν∗
i ,+∞),

(b) doesn’t decrease in the interval (0, ν∗
i ).

In order to prove (a), taking into account (B.5), it suffices to show that

1
n∑

k=1
k 6=i

1

ν∗
k + ak

−G′(p(ν∗
i + δ, ν∗

−i))

− (ν∗
i + δ) ≤ 0, ∀δ > 0. (B.8)

By inverting both sides of the consistency equation (B.4) one gets

1

ν∗
i

=
n∑

k=1
k 6=i

1

ν∗
k + ak

−G′(p∗), (B.9)

which clearly implies the relationships

n∑

k=1
k 6=i

1

ν∗
k + ak

=
1

ν∗
i

+G′(p∗) =
1 + ν∗

i G
′(p∗)

ν∗
i

> 0. (B.10)
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Making use of (B.10), rewrite the left-hand side of (B.8) in the form

1
n∑

k=1
k 6=i

1

ν∗k + ak
−G′(p(ν∗i + δ, ν∗−i))

− (ν∗i + δ)

=
1

1

ν∗i
+G′(p∗)−G′(p(ν∗i + δ, ν∗−i))

− (ν∗i + δ)

=
ν∗i

1 + ν∗i G
′(p∗)− ν∗i G

′(p(ν∗i + δ, ν∗−i))
− (ν∗i + δ)

=
(ν∗i )

2 [G′(p(ν∗i + δ, ν∗−i))−G′(p∗)
]
− δ + ν∗i δ

[
G′(p(ν∗i + δ, ν∗−i))−G′(p∗)

]

1 + ν∗i G
′(p∗)− ν∗i G

′(p(ν∗i + δ, ν∗−i))

=
ν∗i
[
G′(p(ν∗i + δ, ν∗−i))−G′(p∗)

]
(ν∗i + δ)− δ

1 + ν∗i G
′(p∗)− ν∗i G

′(p(ν∗i + δ, ν∗−i))
.

(B.11)

Since 1 + ν∗
i G

′(p∗) > 0 from (B.10), and −ν∗
i G

′(p(ν∗
i + δ, ν∗

−i)) ≥ 0 by assum-

ption A2.1, then the denominator of (B.11) is strictly positive, thus the sign of ra-

tio (B.11) is determined by that of its numerator. Now since the derivative G′(p) is

non-increasing by hypothesis, and
∂p

∂νi
> 0 by (2.11), it isn’t difficult to show that

[
G′(p(ν∗

i + δ, ν∗
−i))−G′(p∗)

]
≤ 0, hence the numerator of (B.11) is strictly negative for

any δ > 0:

ν∗
i

[
G′(p(ν∗

i + δ, ν∗
−i))−G′(p∗)

]
(ν∗

i + δ)− δ < 0, ∀δ > 0. (B.12)

The latter brings about the desired inequality

dπ̃i

dνi
(νi, ν

∗
−i) < 0, ∀νi > ν∗

i , (B.13)

which finishes the proof of (a).

Now to demonstrate that (b) is also true, again taking into account (B.5), it is

enough to check that

1
n∑

k=1
k 6=i

1

ν∗
k + ak

−G′(p(ν∗
i − δ, ν∗

−i))

− (ν∗
i − δ) ≥ 0, ∀δ such that 0 < δ < ν∗

i . (B.14)
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Again employing (B.10) yields the following transformation of the left-hand side of

(B.14):

1
n∑

k=1
k 6=i

1

ν∗k + ak
−G′(p(ν∗i − δ, ν∗−i))

− (ν∗i − δ)

=
1

1

ν∗i
+G′(p∗)−G′(p(ν∗i − δ, ν∗−i))

− (ν∗i − δ)

=
ν∗i

1 + ν∗i G
′(p∗)− ν∗i G

′(p(ν∗i − δ, ν∗−i))
− (ν∗i − δ)

=
(ν∗i )

2 [G′(p(ν∗i − δ, ν∗−i))−G′(p∗)
]
+ δ − ν∗i δ

[
G′(p(ν∗i − δ, ν∗−i))−G′(p∗)

]

1 + ν∗i G
′(p∗)− ν∗i G

′(p(ν∗i − δ, ν∗−i))

=
ν∗i
[
G′(p(ν∗i − δ, ν∗−i))−G′(p∗)

]
(ν∗i − δ) + δ

1 + ν∗i G
′(p∗)− ν∗i G

′(p(ν∗i − δ, ν∗−i))
.

(B.15)

Similar to the proof of case (a), the denominator of the fraction (B.15) is strictly

positive, hence, the fraction’s sign coincides with that of its numerator. Again, since the

derivative G′(p) is non-increasing by hypothesis, and
∂p

∂νi
> 0 by (2.11), it is evident that

[
G′(p(ν∗

i − δ, ν∗
−i))−G′(p∗)

]
≥ 0, hence, the numerator of (B.15) is strictly positive for

any 0 < δ < ν∗
i :

ν∗
i

[
G′(p(ν∗

i − δ, ν∗
−i))−G′(p∗)

]
(ν∗

i − δ) + δ > 0, ∀δ that 0 < δ < ν∗
i , (B.16)

which deduces the desired inequality:

dπ̃i

dνi
(νi, ν

∗
−i) > 0, ∀νi < ν∗

i . (B.17)

Therefore, the proof of (b) is also completed.

Now we can conclude that the Nash equilibrium condition has been established:

πi(ν
∗) = max

νi>0
πi(νi, ν

∗
−i), for any i ∈ {1 . . . , n}, (B.18)

which finishes the proof of theorem 2.6�

Theorem 2.7. Suppose that apart from assumptions A2.1, A2.3 and A2.4, the regular

demand function’s derivative is Lipschitz continuous. In more detail, for n ≥ 3 assume
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that for any p1 > 0 and p2 > 0 the following inequality holds:

|G′(p1)−G′(p2)| ≤
1

2s2G(p0)
|p1 − p2|, (2.19)

where s = max{a1, . . . , an}, and the price p0 is the one defined in the assumption A2.3.

Next, if n = 2 (duopoly), we again suppose that there exists ε > 0 such that G′(p) ≤ −ε

for all p > 0, and the Lipschitz continuity of the demand function is described in the form:

|G′(p1)−G′(p2)| ≤
2

(
a1 + a2

εmin{a1, a2}
+ 3max{a1, a2}

)2

G(p0)

|p1−p2|, ∀p1, p2 > 0. (2.20)

Then, the consistency criterion for the original oligopoly is a necessary and sufficient con-

dition for the collection of influence conjectures ν = (ν1 . . . νn) to be the Nash equilibrium

in the meta-game.

Proof. Again, the necessity is just a particular case of theorem 2.5, then, we proceed

to show the sufficiency.

Just like in the proof of theorem 2.6, we need to establish that the i-th producer’s

payoff function

π̃i(νi) ≡ π(νi, ν
∗
−i), i = 1, . . . , n, (B.7)

has a maximum point at νi = ν∗
i for a fixed value of i, for which, again, it will suffice to

show that:

(a) ν∗
i

[
G′(p(ν∗

i + δ, ν∗
−i))−G′(p∗)

]
(ν∗

i + δ)− δ < 0, ∀0 < δ < s, (B.19)

(b) ν∗
i

[
G′(p(ν∗

i − δ, ν∗
−i))−G′(p∗)

]
(ν∗

i − δ) + δ > 0, ∀0 < δ < ν∗
i , (B.20)

where s = max{a1, . . . , an} > 0. From the proof of theorem 2.2 (Bulavsky (1997)) we

have:

0 ≤ ν∗
i ≤ s

n− 2
, i = 1, . . . , n. (B.21)
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Now, from assumption (2.19) and the fact that
∂p

∂νi
> 0, it follows that

ν∗
i

[
G′(p(ν∗

i + δ, ν∗
−i))−G′(p∗)

]
(ν∗

i + δ)− δ

≤ ν∗
i

∣∣G′(p(ν∗
i + δ, ν∗

−i))−G′(p∗)
∣∣ (ν∗

i + δ)− δ

≤ ν∗
i (ν

∗
i + δ)

1

2s2G(p0)
|p(ν∗

i + δ, ν∗
−i)− p∗| − δ

≤ ν∗
i (ν

∗
i + δ)

1

2s2G(p0)
(p(ν∗

i + δ, ν∗
−i)− p∗)− δ.

(B.22)

By the mean value theorem here exists a value ν̂i such that νi < ν̂i < νi + δ and

p(ν∗
i + δ, ν∗

−i)− p∗ = δ
∂p

∂νi
(ν̂i, ν

∗
−i). (B.23)

Using (2.11) we get

∂p

∂νi
(ν̂i, ν

∗
−i) =

qi(p(ν̂i, ν
∗
−i), (ν̂i, ν

∗
−i))

ν̂i + ai
n∑

k=1
k 6=i

1

ν∗
k + ak

+
1

ν̂i + ai
−G′(p(ν̂i, ν

∗
−i))

≤
qi(p(ν̂i, ν

∗
−i), (ν̂i, ν

∗
−i))

ν̂i + ai
n∑

k=1
k 6=i

1

ν∗
k + ak

+
1

ν̂i + ai

≤
qi(p(ν̂i, ν

∗
−i), (ν̂i, ν

∗
−i))

ν̂i + ai
1

ν̂i + ai

= qi(p(ν̂i, ν
∗
−i), (ν̂i, ν

∗
−i)) ≤ G(p0).

(B.24)

Applying (B.23) and (B.24) to (B.22) we find:

ν∗
i

[
G′(p(ν∗

i + δ, ν∗
−i))−G′(p∗)

]
(ν∗

i + δ)− δ ≤ν∗
i (ν

∗
i + δ)

1

2s2
δ − δ

=

[
ν∗
i (ν

∗
i + δ)

1

2s2
− 1

]
δ,

(B.25)

moreover, since 0 < ν∗
i ≤ s and 0 < δ < s, it follows that

ν∗
i

[
G′(p(ν∗

i + δ, ν∗
−i))−G′(p∗)

]
(ν∗

i + δ)− δ ≤
[
ν∗
i (ν

∗
i + δ)

1

2s2
− 1

]
δ < 0, (B.26)

which proves (a).
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Analogous to the previous case, we can find that

ν∗
i

[
G′(p∗)−G′(p(ν∗

i − δ, ν∗
−i))

]
(ν∗

i − δ)− δ ≤
[
ν∗
i (ν

∗
i − δ)

1

2s2
− 1

]
δ, (B.27)

and, since 0 < δ < ν∗
i ≤ s, we have

ν∗
i

[
G′(p∗)−G′(p(ν∗

i − δ, ν∗
−i))

]
(ν∗

i − δ)− δ ≤
[
ν∗
i (ν

∗
i − δ)

1

2s2
− 1

]
δ < 0, (B.28)

then

ν∗
i

[
G′(p(ν∗

i − δ, ν∗
−i)−G′(p∗))

]
(ν∗

i − δ) + δ > 0. (B.29)

Therefore, the vector ν∗ is Nash equilibrium for n ≥ 3.

Finally, let n = 2. We can repeat the steps for the case n ≥ 3 to get the following

inequality:

ν∗
i

[
G′(p(ν∗

i + δ, ν∗
−i))−G′(p∗)

]
(ν∗

i + δ)− δ

≤


ν

∗
i (ν

∗
i + δ)

2
(

a1 + a2
εmin{a1, a2}

+ 3max{a1, a2}
)2 − 1


 δ.

(B.30)

From

νi ≤
1

2

(
a1 + a2

εmin{a1, a2}
+max{a1, a2}

)
+max{a1, a2}

=
1

2

(
a1 + a2

εmin{a1, a2}
+ 3max{a1, a2}

)
, i = 1, 2.

(B.31)

we have

0 < ν∗
i ≤ 1

2

(
a1 + a2

εmin{a1, a2}
+ 3max{a1, a2}

)
(B.32)

and

0 < δ < max{a1, a2} <
1

2

(
a1 + a2

εmin{a1, a2}
+ 3max{a1, a2}

)
, (B.33)

thus

ν∗
i

[
G′(p(ν∗

i + δ, ν∗
−i))−G′(p∗)

]
(ν∗

i + δ)− δ

≤


ν

∗
i (ν

∗
i + δ)

2
(

a1 + a2
εmin{a1, a2}

+ 3max{a1, a2}
)2 − 1


 δ < 0.

(B.34)
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which finally proves (a).

Analogously, to prove (b), it is easy to show that

ν∗
i

[
G′(p(ν∗

i − δ, ν∗
−i))−G′(p∗)

]
(ν∗

i − δ) + δ

≥


1− ν∗

i (ν
∗
i − δ)

2
(

a1 + a2
εmin{a1, a2}

+ 3max{a1, a2}
)2


 δ > 0.

(B.35)

The theorem has been proved�



Appendix C

Proofs of chapter 3

Theorem 3.1. The quadratic programming problem (3.11)-(3.15) is convex and any of

its solutions provides the Nash equilibrium for the non-cooperative game (3.6)-(3.10).

Proof. First, in order to prove that the quadratic programming problem (3.11)-(3.15)

is convex, we only need to prove that the symmetric matrix associated with the quadratic

objective function (3.12) is positive semidefinite, i.e., we need to prove that

∑

k∈K

∑

ℓ∈K\{k}

∑

a∈A

1

2
dax

k
ax

ℓ
a +

∑

k∈K

∑

a∈A
da(x

k
a)

2 ≥ 0, ∀x ∈ R
Mκ. (C.1)

Indeed, let x ∈ R
Mκ, then, we have that

∑

k∈K

∑

ℓ∈K\{k}

∑

a∈A

1

2
dax

k
ax

ℓ
a +

∑

k∈K

∑

a∈A
da(x

k
a)

2

=
∑

k∈K

∑

a∈A

1

2
da(x

k
a)

2
+
∑

k∈K

∑

ℓ∈K

∑

a∈A

1

2
dax

k
ax

ℓ
a

=
∑

k∈K

∑

a∈A

1

2
da(x

k
a)

2
+
∑

a∈A

1

2
da

(∑

k∈K

∑

ℓ∈K
xk
ax

ℓ
a

)

=
∑

k∈K

∑

a∈A

1

2
da(x

k
a)

2
+
∑

a∈A

1

2
da

(∑

k∈K
xk
a

)2

.

(C.2)

Since all of the congestion coefficients da are nonnegative, we can easily see that (C.2)

is also nonnegative. Moreover, if all congestion coefficients da are strictly positive, then,

(C.2) is also strictly positive and the quadratic programming problem (3.11)-(3.15) is

strictly convex so it has a unique solution.

Now, we will prove that any solution of (3.11)-(3.15) provides the Nash equilibrium

for (3.6)-(3.10). In order to do this, we rewrite both problems in their matrix forms.

136
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Let {ta | a ∈ A1} satisfy (3.4) and (3.5), then, we can consider the vector z ∈ RM

whose a-th component is given by ca if a ∈ A2 and by ta + ca if a ∈ A1. Thus, the Nash

equilibrium problem (3.6)-(3.10) is given as follows:

xk ∈ Ψk(t, x
−k), ∀k ∈ K, (C.3)

where

Ψk(t, x
−k) = Argmin

xk

fk(x
k) = zTxk +

∑

ℓ∈K\{k}
xkTHxℓ + xkTHxk, (C.4)

subject to Bxk = bk, (C.5)

xk ≤ q −
∑

ℓ∈K\{k}
xℓ, (C.6)

xk ≥ 0. (C.7)

Here, the matrix H is the diagonal matrix M × M matrix corresponding to the

congestion factors, i.e., the a-th diagonal element of H is da. The matrix B ∈ R
η×M and

the vector bk ∈ R
η corresponds to the equality constraints (3.8) (the matrix B depends

solely upon the network so it is the same for any commodity k), and the vector q ∈ R
M

has the capacity upper bounds qa, a ∈ A, as its components. Using the above notation,

the quadratic programming problem (3.11)-(3.15) is given by:

x ∈ Ψ(t), (C.8)

where

Ψ(t) = Argmin
x

f(x) =
∑

k∈K
zTxk +

∑

k∈K

∑

ℓ∈K\{k}

1

2
xkTHxℓ +

∑

k∈K
xkTHxk, (C.9)

subject to Bxk = bk, ∀k ∈ K, (C.10)∑

ℓ∈K
xℓ ≤ q, (C.11)

x ≥ 0. (C.12)

The matrix D is a Mκ×Mκ symmetric block matrix whose κ×κ block components

are the matrixH in its diagonal blocks and the matrix 1
2
H in its non-diagonal blocks. Since

all the values da are nonnegative, both, the matrix H and the matrix D are symmetric

and positive semi-definite, and if all the values da are strictly positive, the matrices H

and D will be positive definite.
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The programs appearing in (C.3)-(C.7) and program (C.8)-(C.12) are differentiable

and convex (with linear constraints) quadratic programming problems, so these problems

can be equivalently transformed into a nonlinear system of equations and inequalities

using the Lagrange multipliers and Karush-Kuhn-Tucker conditions. Therefore, in or-

der to show that a solution of (C.8)-(C.12) generates Nash-equilibrium for (C.3)-(C.7),

it will suffice to demonstrate that a solution for the Lagrange multipliers and Karush-

Kuhn-Tucker conditions of (C.3)-(C.7) lead to a solution for the Lagrange multipliers and

Karush-Kuhn-Tucker conditions of (C.3)-(C.7). The Lagrange multipliers and Karush-

Kuhn-Tucker condition for problem (C.3)-(C.7) are as follows:

dfk
dxk

+ µk +BTλk = z +
∑

ℓ∈K\{k}
Hxℓ + 2Hxk + µk +BTλk ≥ 0, (C.13)

xk


z +

∑

ℓ∈K\{k}
Hxℓ + 2Hxk + µk +BTλk


 = 0, (C.14)

Bxk = bk, (C.15)

xk ≤ q −
∑

ℓ∈K\{k}
xℓ, (C.16)

µk

(∑

ℓ∈K
xℓ − q

)
= 0, (C.17)

xk, µk ≥ 0, (C.18)

where µk ∈ R
M and λk ∈ R

η, for all k ∈ K. And the Lagrange multipliers and Karush-

Kuhn-Tucker conditions for problem (C.8)-(C.12) are:

∂f

∂xk
+ µ+BTλk = z +

∑

ℓ∈K\{k}
Hxℓ + 2Hxk + µ+BTλk ≥ 0, ∀k ∈ K, (C.19)

xk


z +

∑

ℓ∈K\{k}
Hxℓ + 2Hxk + µ+BTλk


 = 0, ∀k ∈ K, (C.20)

Bxk = bk, ∀k ∈ K, (C.21)∑

ℓ∈K
xℓ ≤ q, (C.22)

µ

(∑

ℓ∈K
xℓ − q

)
= 0, (C.23)

x, µ ≥ 0, (C.24)



Appendix C. Proofs of chapter 3 139

where µ ∈ R
M and λk ∈ R

η, k ∈ K. Now let xk, µ ∈ R
M and λk ∈ R

η, k ∈ K, satisfy

(C.19)-(C.24). Then, for a fixed k ∈ K, we have that:

z +
∑

ℓ∈K\{k}
Hxℓ + 2Hxk + µ+BTλk ≥ 0, (C.25)

xk


z +

∑

ℓ∈K\{k}
Hxℓ + 2Hxk + µ+BTλk


 = 0, (C.26)

Bxk = bk, (C.27)

xk ≤ q −
∑

ℓ∈K\{k}
xℓ, (C.28)

µ

(∑

ℓ∈K
xℓ − q

)
= 0, (C.29)

xk, µ ≥ 0. (C.30)

Therefore, the vectors xk, µ ∈ R
M and λk ∈ R

η satisfy (C.13)-(C.18), for all k ∈ K,

which proves the theorem.

Finally, if we remove the capacity constraints, we can easily see that the KKT condi-

tions (C.13)-(C.18) imply the KKT conditions (C.19)-(C.24) taking µ := máx
{
µk
∣∣ k ∈ K

}
,

which proves corollary 3.1�
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Brotcorne, L. and Labbé, M., eds, ‘Proceedings of the 2nd International Workshop

Bilevel Programming’, France, 6–9.

Kalashnikov, V. V., Kalashnykova, N. I. and Flores-Muñiz, J. G. (2018c), Toll optimi-
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