
AAllmmaa MMaatteerr SSttuuddiioorruumm –– UUnniivveerrssiittàà ddii BBoollooggnnaa

DOTTORATO DI RICERCA IN

INGEGNERIA ELETTRONICA, TELECOMUNICAZIONI E

TECNOLOGIE DELL'INFORMAZIONE

Ciclo XXXII

Settore Concorsuale: 09/E3

Settore Scientifico Disciplinare: ING-INF/01

DESIGN TECHNIQUES TO ENHANCE LOW-POWER

WIRELESS COMMUNICATION SOC WITH

RECONFIGURABILITY AND WAKE UP RADIO

Presentata da: Francesco Renzini

Coordinatore Dottorato Supervisore

Prof.ssa Alessandra Costanzo Prof.ssa Eleonora Franchi Scarselli

Esame finale anno 2020

i

UNIVERSITÀ DI BOLOGNA

Abstract
ARCES-DEI

Doctor of Philosophy

Design Techniques to Enhance Low-Power Wireless Communication SoC with
Reconfigurability and Wake Up Radio

by Francesco RENZINI

Nowadays, Internet of things applications are increasing, and each end-node has
more demanding requirements such as energy efficiency and speed. The thesis pro-
poses a heterogeneous elaboration unit for smart power applications, that consists
of an ultra-low-power microcontroller coupled with a small (around 1k equivalent
gates) soft-core of embedded FPGA. This digital system is implemented in 90-nm
BCD technology of STMicroelectronics, and through the analysis presented in this
thesis proves to have good performance in terms of power consumption and latency.
The idea is to increase the system performance exploiting the embedded FPGA to
managing smart power tasks. For the intended applications, a remarkable computa-
tional load is not required, it is just required the implementation of simple finite state
machines, since they are event-driven applications. In this way, while the microcon-
troller deals with other system computations such as high-level communications,
the eFPGA can efficiently manage smart power applications. An added value of the
proposed elaboration unit is that a soft-core approach is applied to the whole digital
system including the eFPGA, and hence, it is portable to different technologies. On
the other hand, the configurability improvement has a straightforward drawback of
about a 20–27% area overhead. The eFPGA usage to manage smart power applica-
tions, allows the system to reduce the required energy per task from about 400 to
around 800 times compared to a processor implementation. The eFPGA utilization
improves also the latency performance of the system reaching from 8 to 145 times
less latency in terms of clock cycles. The thesis also introduces the architecture of
a nano-watt wake-up radio integrated circuit implemented in 90-nm BCD technol-
ogy of STMicroelectronics. The wake-up radio is an auxiliary always-on radio for
medium-range applications that allows the IoT end-nodes to drastically reduce the
power consumption during the node idle-listening communication phase.

iii

Contents

Abstract i

1 Introduction 1

2 SoC Architectures for Smart Power Applications 7
2.1 Introduction . 7
2.2 Smart Power Technology . 9
2.3 ULP Techniques . 10
2.4 Programmable Device Scenario . 11

2.4.1 Microcontrollers . 13
2.4.2 FPGAs . 14
2.4.3 Embedded FPGAs . 15
2.4.4 System-on-Chips . 15

2.5 Proposed SoC . 16

3 SoC Elaboration Unit 19
3.1 Microcontroller . 19
3.2 Embedded FPGA Sub-System . 20

3.2.1 Embedded FPGA Architecture 21
3.2.2 Prescaler . 23
3.2.3 Configuration Loader . 23
3.2.4 Configuration Registers . 23
3.2.5 eFPGA Software Tools . 24

3.3 Application Programming Interface . 24

4 eFPGA Architecture Details 27
4.1 Introduction . 27
4.2 Embedded FPGA Interconnection Network 31

4.2.1 Proposed eFPGA Interconnection Network 34
MSSN with Bypass Enhancement 36

4.2.2 MSSN Programming Strategy . 37

5 Application Analysis 41
5.1 Implementation Choices . 41

5.1.1 Proposed Reconfigurable SoC . 41
5.1.2 ASIC . 43

iv

5.1.3 STM32 Microcontroller . 43
5.2 Energy and Latency Model . 44

5.2.1 eFPGA - Efficiency Model . 44
5.2.2 PULPino - Efficiency Model . 45
5.2.3 ASIC - Efficiency Model . 46
5.2.4 STM32 - Efficiency Model . 46
5.2.5 Energy Gain and Latency . 48

5.3 Application Results . 49
5.3.1 Control Applications . 49

Pulse-Width Modulation . 51
RGB LED Controller . 53
Brushed Motor Controller . 53
Stepper Motor Controller . 55

5.3.2 Bitwise Streaming Applications 57
Cyclic Redundancy Check . 57
Pseudo-Random Number Generation 58

5.3.3 Ultra Low-Power Applications 59
5.4 Results and Discussion . 60

5.4.1 Energy Efficiency Consideration 60
5.4.2 Latency Consideration . 64
5.4.3 Implementation Solutions Under Analysis 65

Microcontroller Implementation 66
eFPGA Implementation . 69
ASIC Implementation . 70
Proposed SoC Implementation 70

6 Wake Up Radio 73
6.1 ULP Communication Techniques . 73
6.2 Wake Up Radio Architecture . 75

6.2.1 Demodulator-Amplifier Architecture 78
6.3 Schmitt Trigger Design . 81
6.4 Results and Comparison . 84

7 Conclusions 87

A eFPGA Interconnection Network Details 89
A.1 Multicast Radix-2 MSSN Proprierties . 89
A.2 Multicast Radix-k MSSN Proprierties . 91
A.3 Hierarchical MSSN Performance . 92

A.3.1 MSSN Delay Model and Validation 93
A.3.2 MSSN Effective Frequency Versus Bypass Exploitation 95
A.3.3 Hierarchical MSSN Radix Comparison 97

v

List of Figures

2.1 Smart power system diagram. 7
2.2 BCD technology [9]. 10
2.3 Programmable devices scenario. Picture reused from [1]. 13
2.4 Proposed SoC architecture. 16

3.1 PULPino architecture scheme [38]. 20
3.2 The eFPGA subsystem interfaced through APB bus. Picture reused

from [1]. 21
3.3 Diagram of the eFPGA. Picture reused from [1]. 22
3.4 eFPGA CLB structure [3]. 22

4.1 FPGA structures: island-style (a) and hierarchical (b) [4]. 28
4.2 Bidirectional (a) and unidirectional (b) wires [4]. 28
4.3 Example of both CLB architecture (a) and BLE (b). 29
4.4 CLB internal Crossbar architecture (a). Multiplexer 12:1 structure (b). . 30
4.5 BLE architecture [4]. 30
4.6 BLE architecture [4]. 31
4.7 An N×N (with N = 16) Banyan multistage switching network (MSSN)

featuring butterfly topology. Picture reused from [40]. 32
4.8 An N × N (with N = 8) flat version of the proposed MSSN: original

architecture (a) and rearrangeably non-blocking (RNB)-proof unicast
topologically equivalent version (b). Picture reused from [40]. 35

4.9 Folded bypassed MSSN enhanced with U-turn bypasses [3]. 36
4.10 MSSN with bypass enhancement: unfolded view and U-switch struc-

ture description [4]. 37
4.11 Three different multi-fanout paths connecting IN2 to OUT0, OUT1,

and OUT2 in order of cost: with bypass enhancement (a), with the as-
straight-as-possible policy (b), and using diagonal wires (c). Picture
reused from [40]. 39

5.1 Proposed SoC implemented in BCD 90 nm. Reused from [1]. 42
5.2 RGB LED controller ASIC layout. 43
5.3 Measurement setup and current profile. Reused from [1]. 47
5.4 PWM signals and corresponding average value with different duty

cycles: 25%, 50% and 75%. 52

vi

5.5 Brushed controller H-bridge operating modes. (a) forward - red - and
reverse - blue - mode. (b) coast - red - and brake - blue - mode. Picture
reused from [1]. 54

5.6 Driver circuits for stepper motors. Two full H-bridges - respectively
red and blue inputs - for bipolar stepper motors (a). Transistor scheme
for unipolar stepper motors (b). Picture reused from [1]. 55

5.7 Signals patterns for unipolar - red - and bipolar - blue - for: full-step
(a), half-step (b) and wave-drive control modes. Picture reused from
[1]. 56

5.8 Wake up radio correlator architecture. Picture reused from [1]. 59
5.9 The energy efficiency derived from equations (5.2), (5.4), (5.6) and

(5.10) - in log scale - and related by number of both CLBs and instruc-
tions to carry out the required functionalities. Picture resued from [1]. 61

5.10 Energy gain - in log scale - defined by equation (5.11) for applications
implemented in both eFPGA and PULPino. Picture reused from [1]. . . 63

5.11 PULPino and eFPGA latency (in clock cycles) for the applications un-
der analysis. Picture reused from [1]. 65

5.12 Microcontroller PULPino and STM32 implementation features. 67
5.13 Proposed eFPGA implementation features. 68
5.14 ASIC implementation features. 69
5.15 Proposed SoC implementation features. 70

6.1 System architecture with WUR. 74
6.2 Wake up radio architecture. 75
6.3 Bias circuit function. 76
6.4 Digital potentiometer structures used to generate the Schmitt Trigger

voltage references. 77
6.5 Demodulator-amplifier architecture. Picture reused from [69]. 78
6.6 Frequency response of the proposed circuit. Picture reused from [69]. . 80
6.7 Schmitt trigger schematic. 81
6.8 Equivalent offset model of the Schmitt trigger differential pair. 82
6.9 Wake up radio test chip layout. 83
6.10 WUR system transient noise simulation. Picture reused from [69]. . . . 84

A.1 Example of construction of Multi-log2 N networks: with horizontal
cascading (a) and vertical stacking (b) technique [40]. 90

A.2 An example of radix-4 16× 16 flat MSSN. Picture reused from [40]. . . 91
A.3 1024× 1024 I/Os radix-2 MSSN in-to-out delays (with bypass exploita-

tion at different stages) compared to model (A.10) varying the MSSN
stage S in which the U-turn connection is exploited. Picture reused
from [40]. 95

vii

A.4 1024 × 1024 I/Os radix-2 MSSN effective frequency versus area for
different frequency gain thanks to bypass exploitation: flat vs. half-
bypassed (a) and fully-bypassed (b). Picture reused from [40]. 96

A.5 Example of fully-bypassed MSSN connectivity with 16× 16 I/Os: radix-
2 (a) and radix-4 (b). Picture reused from [40]. 98

A.6 Max-speed implementations: delay vs. topological distance between
two I/Os for a 1024× 1024 fully-bypassed and half-bypassed MSSN. Pic-
ture reused from [40]. 99

A.7 Iso-area implementations: delay vs. topological distance between two
I/Os for a 1024× 1024 fully-bypassed and half-bypassed MSSN. Picture
reused from [40]. 100

ix

List of Tables

2.1 Programmable Device Scenario. Reused from [1]. 12

3.1 API Function Prototypes. Reused from [1]. 24

5.1 Proposed SoC implementation Results. Reused from [1]. 42
5.2 Applications Results. Reused from [1]. 50
5.3 eFPGA - PULPino Energy Gain. Reused from [1]. 63

6.1 Wake up radio performance comparison. Reused from [69]. 85

A.1 CMOS 65 nm 1024× 1024 radix-2 MSSN post-synthesis results [40]. . 93
A.2 CMOS 65 nm 1024× 1024 radix-4 MSSN post-synthesis results [40]. . 93

xi

List of Abbreviations

AMBA Advanced Microcontroller Bus Architecture
APB Advanced Peripheral Bus
ASIC Application-Specific Integrated Circuit
ASIP Application Specific Instruction-set Processor
ASSP Application Specific Standard Product
AXI Advanced eXtensible Interface
BCD Bipolar CMOS DMOS
CAD Computer Aided Design
CLB Configurable Logic Block
CMOS Complementary MOS
CRC Cyclic Redundancy Check
CTS Clock Tree Synthesis
DMOS Double-diffused MOS
DSP Digital Signal Processor
DTI Deep Trench Isolation
eFPGA embedded FPGA
FD-SOI Fully Depleted Silicon On Insulator
FET Field Effect Transistor
FPGA Field Programmable Gate Array
FPU Floating Point Unit
FSM Finite State Machine
GPIO General Purpose Input/Output
HDL Hardware Description Language
IC Integrated Circuit
IoT Internet of Things
ISR Interrupt Service Routine
LB Logic Block
LCD Liquid Crystal Display
LFSR Linear Feedback Shift Register
MAC Multiplier ACcumulator
MOS Metal Oxide Semiconductor
MSSN MultiStage Swithing Network
NRE Non-Recurring Engineering
OOK On-Off Keying
PLD Programmable Logic Device

xii

PWM Pulse Width Modulation
RF Radio Frequency
RISC Reduced Instruction Set Computer
RNB Rearrangeable Non-Blocking
RTL Register Transfer Language
SE Switching Element
SoC System on Chip
SRAM Static Random Access Memory
uC, µC MicroController
ULP Ultra Low-Power
uP, µP MicroProcessor
VCD Value Change Dump
VTR Verilog-To-Routing
WSN Wireless Sensor Network
WUR Wake Up Radio

1

Chapter 1

Introduction

The well known Internet-of-Things (IoT) domain is becoming one of the most popu-
lar scenarios in every human activity field. In the IoT arena, everything, each object
is connected to the others, composing a network. For instance, Wireless Sensor Net-
works (WSNs) are constantly growing in every kind of monitoring activities such as
biomedical, structural, etc. IoT devices are becoming popular in many different ap-
plications for example domotic, industrial, automotive, etc. Hence, every network
node should be able to carry out its native tasks and besides communicate with the
other network elements. Thus, they can sense physical quantity, actuate some con-
trol policies and elaborate data based on the application requirements. In addition,
they have a communication channel typically wireless (for obvious necessities) to in-
teract with the other end-nodes. The development of these systems is subordinate to
classical electronic system constraints such as energy efficiency, small size, and low
cost. The energy restrictions and especially the required low power consumption,
are due to both “green” environmental policies and evident technical issues since
each element of the network could have battery power supply. Then, the research
aims to improve both energy performance and energy efficiency in every end-node
component. For instance, this thesis presents an architecture that provides config-
urability to the elaboration unit increasing its energy efficiency. It is also presented
an additional circuit that allows the end-nodes to drastically reduce its power con-
sumption during the idle-listening phase.

These systems are typically realized in printed circuit board systems combining
many different integrated circuits as Application Specific Standard Products (AS-
SPs), but nowadays, the technology scaling allows one to integrate as much as pos-
sible in a unique integrated circuit resulting system-on-chip. These system-on-chips
can integrate different kinds of programmable and non-programmable elaboration
units, communication systems and a huge variety of dedicated peripherals. The
elaboration unit can be non-programmable like Application-Specific Integrated Cir-
cuit (ASIC) allowing the best performances but implying both non-negligible Non-
Recurring Engineering (NRE) costs and the impossibility to reuse the same SoC in
different applications. On the other hand, there exist programmable elaboration
units such as Application Specific Instruction-set Processors (ASIPs), CPUs or Pro-
grammable Logic Devices (PLDs) which allow one to drastically reduce NRE costs

2 Chapter 1. Introduction

and thanks to programmability to reuse the same SoC for different applications. Typ-
ically, the communication protocols between each end-node can vary from the trans-
mission medium (wired or wireless), data distribution (serial or parallel) and clock
behavior (synchronous or asynchronous), etc. For instance, SoCs can have either
industrial or automotive fieldbus interfaces, otherwise low-power wireless commu-
nication systems.

Communication interfaces have not negligible impact on the overall system power
consumption, hence, are requested optimization design procedures at each layer of
the communication system. For instance, every network node has an idle-listening
phase where the node turns on the RF receiving circuit waiting for instruction or
data from other network elements. In order to avoid data package lost, this phase
should be well extended and may be redundant, which results in a non-negligible
extra power consumption. Therefore, to increase energy efficiency could be neces-
sary an architectural change of the classical system structure. Thus, semiconductor
companies are designing different kinds of SoCs for different types of applications,
to optimize the offered capabilities and hence, the performances. These ICs are liter-
ally system-on-chips, since they can also have embedded sensors and in some cases
power devices necessary to the cyber-physical interaction.

In this thesis, we are focusing on the smart power arena which is an excellent
scenario for the SoC development, since smart power combines all the SoC features,
from physical quantity sensing, both data elaboration and communication, and de-
cision actuation to power circuits. Thus, in these systems, there is a coexistence of
analog, digital and power circuits. In this kind of application, the elaboration unit
does not need extremely high computation performance, since smart power tasks
require just simple finite state machines as a computational base model instead of
complex parallel computing structures. Thus, the elaboration unit should generate
output patterns based on inputs and not intensively process data. This type of con-
troller is very diffused for example in motion control, lighting control, and power
management. In order to realize integrated circuits provided with analog, digital
and power transistors there exists the BCD (Bipolar CMOS DMOS) technology. Cer-
tainly, this coexistence implicates numerous issues in terms of isolation, reliability,
etc. addressed by both process and circuit designers, making this technology ap-
pealing for widespread usage in the IoT arena. Moreover, CMOS technology node
of BCD technology is not too scaled as standard CMOS technologies, historically
targeting ASIC solutions, whereas currently, BCD is becoming appealing for higher
complexity CMOS programmable circuits since it can have 130 nm and 90 nm tran-
sistors even if it provides just few metal layers for the routing.

In this scenario, the core of my research is to design and evaluate the perfor-
mance of an elaboration unit that consists of a microcontroller and an embedded
FPGA (eFPGA). Starting from the system HDL code, to the layout generation, the
elaboration unit is implemented in 90 nm BCD technology of STMicroelectronics.

Chapter 1. Introduction 3

The performance evaluation is performed comparing data from back-annotate sim-
ulation and measurements (when possible) of different elaboration unit implementa-
tions, to carry out various kinds of applications. Starting from both microcontroller
HDL code and eFPGA HDL code (presented by a previous Ph.D. student), through a
standard cell-based digital design flow the system is implemented in BCD technol-
ogy, which is, to the best of our knowledge the first reconfigurable heterogeneous
system targeting smart power applications. The performance evaluation is carried
out comparing both energy and latency data of different devices, in carrying out
different kinds of applications, corresponding to different kinds of computational
models.

Besides, the research work has also contributed to design a wake up radio inte-
grated circuit in 90 nm BCD technology of STMicroelectronics, sent to fabrication. In
this collaboration, the PhD work focuses on the design of some blocks of the wake
up radio system at the transistor level, performing a full custom layout.

The proposed elaboration unit is a heterogeneous system (presented in [1]) com-
posed of PULPino, which is an open-source ultra low-power microcontroller [2],
coupled with a very small fully-synthesizable embedded FPGA [3], [4]. The idea
is to use the eFPGA as a smart power application dedicated peripheral, while mi-
croprocessor can manage other kinds of more complex computations such as data
processing, communication interface management, etc., or can be switched in sleep
mode to reduce power consumption. This is also a new point of view for the eF-
PGA usage, typically used for high-density parallel computing and hence, usually
designed with a hard-macro approach, optimizing the circuit at the transistor level
to optimize density, performances and thus costs. On the other hand, the reconfig-
urability addition has a non-negligible area overhead which is around 20%.

In order to justify the area overhead due to the eFPGA addition, it is evaluated
an energy-aware analysis comparing the performance of PULPino, of the eFPGA, of
a very common commercial microcontroller (STM32) and an ASIC implementation
to carry out different applications. The resulting data show that using the eFPGA
to perform smart power tasks, hence implementing simple finite state machines, is
possible to obtain better performance in terms of energy consumption. Obviously,
the eFPGA does not have the same performances of an ASIC implementation but
it allows the system to be reused in different applications without integrated circuit
refabrication. The energy gain reason is located in the nature of the different ar-
chitecture circuits. eFPGA directly maps in hardware circuit a finite state machine
whereas processor needs to execute many load/store, jump/branch instructions just
to update few bits of both finite state machine state and outputs. There is also an ad-
vantage in terms of circuit latency, in fact, the eFPGA updates its output at every
clock cycle and hence, in this case, the latency depends on the eFPGA clock fre-
quency. Then, the SoC user can program the eFPGA clock frequency based on the
application latency requirements. Using a processor implementation, the latency is

4 Chapter 1. Introduction

related to both the number of instructions needed to update the microprocessor out-
puts and the processor frequency (supposing the optimistic case that the processor
can execute one instruction per clock cycle).

As already mentioned, the communication interface has a notable impact on sys-
tem power consumption. Therefore, in order to improve the system-on-chip energy
performance, we propose an additional always-on ultra low-power circuit for the
wireless communication unit. The additional circuit aims to wake up the rest of the
system after the receiving of a wake up radio signal transmitted from another ele-
ment of the network. In this way, one can switch in sleep mode both the elaboration
and the main radio transceiver, to reduce the power consumption, while keeping
active just the wake up radio which is an ultra low-power circuit.

We propose a nano-watts wake up radio for On-Off Keying modulation working
at 868 MHz, which consists of a demodulator/amplifier and a Schmitt trigger with
5-bits programmable threshold to generate a digital signal. The operating point of
the overall wake up radio system is designed to be in subthreshold region. Then,
exploiting the non-linearities of subthreshold MOSFET, the demodulator can detect
the envelope of the received signal and provides the right amplification. Then, the
detected envelope is digitalized through the Schmitt trigger. Thanks to enough level
of amplification, the system performances are not restricted to the Schmitt trigger
input offset voltage.

As already said, my research aims to analyze the proposed heterogeneous recon-
figurable SoC in the smart power arena and to present our wake up radio integrated
circuit. Therefore, the thesis is organized following a system top-down approach as
follows:

• Chapter 2 provides an introduction to the smart power arena. In particular, are
explained the typical features of smart power applications and microelectronic
technology which targets this kind of applications. In addition, are introduced
different architectures to realize elaboration units.

• Chapter 3 presents our proposed solution to implement the elaboration unit
in the smart power arena, combining both an ultra low-power microcontroller
and a fully-synthesizable embedded FPGA.

• Chapter 4 reports our embedded FPGA architecture description.

• Chapter 5 describes an energy-aware analysis in order to compare the perfor-
mance of different digital units, such as eFPGA, PULPino, ASIC and STM32 to
perform different kinds of applications. This chapter also addresses some con-
siderations regarding the latency performance of the previous digital circuits.

• Chapter 6 provides the architecture of our nano-watts wake up radio IC in-
troducing the working principle of the demodulator/amplifier (designed by a
colleague of mine) and analyzing blocks designed by me.

Chapter 1. Introduction 5

• Chapter 7 finally summarizes the conclusions.

• Appendix A focuses on the proprieties of a multi-stage switching network
used as an interconnection network of our proposed eFPGA.

7

Chapter 2

SoC Architectures for Smart Power
Applications

Most of the material reported in this chapter is reused from [1] (©2019 IEEE), in agreement
with IEEE copyright policy on theses and dissertations.

IoT, as introduced in the previous chapter is going to be one of the dominant
scenarios of the next generation electronic systems. There exist many different kinds
of connected applications, and the smart power area is entering among them thanks
to the technology evolution as shown in the following of this chapter. This chapter
provides an introduction to the smart power area and an extensive elaboration unit
state of the art analysis, concluding with a system-on-chip architecture proposal.

2.1 Introduction

One of the definitions of smart power application is introduced from one of its in-
ventors in [5], and it is the coexistence of both “force” - power electronic - and “in-
telligence” - digital circuits - in the same chip. Evidently, the cooperation between
“force” and “intelligence” requires analog circuits too.

SENSOR ELABORATION ACTUATION

COMMUNICATION

Intelligence ForceAcq. Data

Share Data

Figure 2.1: Smart power system diagram.

8 Chapter 2. SoC Architectures for Smart Power Applications

In Figure 2.1 is reported the basic diagram of a smart power system in the IoT
scenario. Sensor and actuator allow the system to interact with the physical world.
Sensors acquire data, an elaboration unit computes data based on the application
specifications, hence a control policy for the actuation circuits. These three blocks
constitute the classical feedback control system. For the IoT scenario, is needed a
communication interface in order to share both data and instructions with the rest
of the network. Sometimes the feedback control loop could be open or pass through
the communication interface resulting in:

• monitoring activities where the system acquires, elaborates and shares data in
the network (which could close the control loop) without local actuation cir-
cuits.

• actuation activities without local sensors, the system receives commands from
the network as inputs.

Classical smart power applications are in the field of:

• power management

• motion control [6]

• lighting control [7]

where the end-nodes have to handle control policies and interact with the real world.
As reported in Chapter 5, for instance, a common case is the application of the Pulse
Width Modulation (PWM) in switching power converters and in both brushed mo-
tor and LED controllers.

In this scenario, the elaboration unit is relatively simple because the application
computational complexity requirement is not extreme, which means that is not re-
quired high-performance computing. Typically in this kind of application, the elabo-
ration unit decides some outputs for the actuators based on inputs from both sensors
and input user. Hence, in this case, the computational base model of the elaboration
unit is a Finite State Machine (FSM).

Generally, the elaboration unit can be either software-programmable, hardware-
programmable or hardwired in an Application Specific Integrated Circuit (ASIC) as
well as a combination of these solutions. The software-programmable solution exe-
cutes software code and it is the most flexible and it allows one to use microprocessor
(µP) or Digital Signal Processor (DSP). The hardware-programmable devices are Pro-
grammable Logic Devices (PLDs), and nowadays led by Field Programmable Gate
Arrays (FPGAs). These devices have configurable architecture which is adapted
based on the required functionality. PLDs are typically more powerful and efficient
than software-programmable solutions to compute-intensive and parallel tasks since

2.2. Smart Power Technology 9

their architecture is configured to optimized the specific task, contrary to software-
based devices which have a fixed architecture. The drawback of the PLD exploita-
tion is the development time compared to the more easy of use software-based de-
vices. ASIC implementations have the best performance in terms of power con-
sumption and area occupation; however, the hardwired structure does not allow
the device reuse in different applications involving substantial Non-Recurring En-
gineering (NRE) costs. The miniaturization of the devices allowed by the micro-
electronic technology, offers the possibility to realize microcontrollers (µCs) that in-
tegrate software-programmable solution such as DSPs and/or µPs with hardwired
circuits used as dedicated peripherals. These peripherals, which are ASICs, are for
example General Purpose I/Os (GPIOs), Pulse Width Modulation (PWM) controller,
analog-to-digital and digital-to-analog converters, are necessary to interact with the
real physical world. More complex devices are System-on-Chips (SoCs), which typ-
ically consist of high-performance computing microcontroller coupled with embed-
ded FPGA (eFPGA). Usually, the elaboration unit of smart power ICs is based on
ASIC implementation due to the relatively low computing complexity, but the con-
stantly increase of application requirements and the reusability necessity are moving
the smart power IC architecture to programmable solutions which are supported by
technology evolution.

2.2 Smart Power Technology

Following the application evolution, microelectronics technologies are evolving too,
specializing for the specific application requirements. For example, FinFET technol-
ogy allows the extreme transistor scaling supporting the advanced digital circuit de-
velopment. Regarding smart power applications, the best microelectronic technol-
ogy is BCD technology. The BCD technology allows one to integrate into a unique
die bipolar transistor (typically used in analog circuits), standard CMOS circuits for
both digital and analog circuits, and DMOS transistors for high-power electronics
[8] as reported in Figure 2.2.

BCD technology has proven to be suitable for sensors [10] and actuators [11].
Traditionally, the systems realized in BCD technologies were implemented as ASICs
(without any programmable functionalities) due to the less scaled features of this
technology with respect to traditional CMOS and to the limited amount of metal
layers, which increase the overhead of the routing. However, the scaling of BCD’s
CMOS transistors, down to 90 nm and beyond, makes this technology suitable for
the integration of mid-complexity digital circuits like µCs. This allows one to en-
able BCD utilization in the IoT arena [12], which requires additional features such as
wireless stack implementation, radio interfaces, etc. The ICs realized in BCD tech-
nology are designed using an analog-on-top methodology, since the area occupation
is usually dominated by both power and analog circuits. Hence, digital CMOS cir-
cuits are typically synthesizable in standard cell libraries, in order to adapt the digital

10 Chapter 2. SoC Architectures for Smart Power Applications

Figure 2.2: BCD technology [9].

circuit floorplan between the other more critically analog and power circuit layouts.
For this reason, a hard-macro approach should be avoidable. In order to optimize
the IC area occupation, led by both analog and power circuits, the smart power IC
elaboration unit should be adaptable and hence synthesizable in standard cells. The
limited amount of metal layers makes the device area density lower than standard
CMOS technology. Besides, the coexistence of both, high power devices like DMOS
and low power devices such as MOSFETs and bipolar transistors, requires very safe
isolation technique, since power transistors can work kilovolts. In STMicroelectron-
ics BCD technology the isolation is made through Deep Trench Isolation (DTI) which
requires not negligible area overhead. Since smart power applications are very com-
mon in further scenarios such as automotive, BCD technology is qualified also for
high temperatures, for example up to 150 °C for automotive.

Therefore, the digital circuit for smart power applications should be flexible, syn-
thesizable and of course low-power. Next section shows some techniques to reduce
the circuit power consumption.

2.3 ULP Techniques

On top of that, in the “green” era of the energy-saving, especially needed in the IoT
scenario, Ultra Low-Power (ULP) strategies can be applied at every level (permitted
by available technologies) from transistor level to system architecture level. Some of
these ULP methodologies are for instance [13]:

• Multi-Vth allows one to use transistors with different threshold voltage in order
to decrease the leakage current. Different threshold voltage can be realized, for

2.4. Programmable Device Scenario 11

instance, using transistors with different channel lengths.

• Multi-L is typically a technique for digital circuits, where are available different
kinds of standard cells with different transistor channel length L. The usage of
bigger channel lengths, reduces the power consumption related to the leakage
current, but on the other hand, decreases the standard cell timing performance.

• Multi-VDD permits to have different circuits with different supply voltages to
optimize power consumption. The drawback of this technique is that it is nec-
essary to use level shifter circuits between the different voltage islands.

• Frequency scaling allows one to modulate the operating clock frequency and
hence, the dynamic power consumption, based on the application require-
ments, avoiding high dynamic power consumption when it is not needed. In
the case of multi-frequency domains, at the interfaces of each clock domain are
required synchronizer circuits.

• Clock gating allows one to switch off the block clock lines in order to eliminate
the dynamic power consumption when the block activity is not required. In
this case, are necessary clock gating circuits between clock sources and input
clock lines of the blocks.

• Power gating consists of switching off the power supply of some circuits when
they are not required. In this way, one can optimize the power consumption
avoiding energy waste. On the other hand, are required both transistors prop-
erly design as power switches and a good power distribution network.

If it is possible they can be applied to every block of the electronic system of Figure
2.1. For instance, in BCD technology one can use some of the mentioned techniques,
but we used just multi-L and clock gating methods since they are available in the
standard cell libraries. The other techniques require additional and often complex
supplementary circuits to manage them.

2.4 Programmable Device Scenario

In this section is provided an analysis of the available solutions to implement pro-
grammable elaboration units. In Table 2.1 is reported a summary of the programmable
devices scenario, from a classical microcontroller (µC) to complex SoC enhanced
with eFPGAs that allows one to implement a custom digital elaboration unit. Table
2.1 reports the field application of the programmable devices, the microelectronic
technology used, its corresponding number of metal layers and the operating tem-
perature range. It is also reported the used design technique which can be based
on either a soft-core approach “soft” hence synthesizable in standard cell libraries,
or a hard-macro approach “hard” optimizing the circuit at the transistor level. The
area, coupled with both technological information and application scenario gives an

12 Chapter 2. SoC Architectures for Smart Power Applications

Table
2.1:Program

m
able

D
evice

Scenario.R
eused

from
[1].

A
pplications

Technology
M

etal
Tem

p.
IP

A
rea

em
bedded

eq.
Layers

R
ange

[°C
]

[m
m

2]
M

C
U

/FPG
A

gates

µC
STM

32
[14]

G
en.Purpose

C
M

O
S

n.a.
-40–125

soft
m

edium
3

/
7

n.a.
PU

LPino
a[2]

G
en.Purpose

C
M

O
S

65
nm

9
-40–125

b
soft

m
edium

3
/

7
n.a.

FPG
A

X
ilinx

[15]
G

en.Purpose
A

dv.C
M

O
S

>
10

-55–125
hard

huge
7/

3
≤

M
Intel[16]

G
en.Purpose

A
dv.C

M
O

S
>

10
-40–130

hard
huge

7/
3

≤
M

Q
uickLogic

[17]
G

en.Purpose
A

dv.C
M

O
S

>
10

-55–125
hard

huge
7/

3
<

M

µFPG
A

iC
E40

[18]
R

ec.I/O
s/A

ccel.
C

M
O

S
40

nm
n.a.

-55–125
hard

sm
all

7/
3

0.4–8
k

IG
LO

O
2

[19]
R

ec.I/O
s/A

ccel.
C

M
O

S
65

nm
n.a.

-55–125
hard

sm
all

7/
3

<
150

k

eFPG
A

[17],[20],[21],[22]
A

ccelerator
A

dv.C
M

O
S

n.a.
-40–125

hard
big

7/
3

<
M

K
im

2017
[23]

A
ccelerator

C
M

O
S

65
nm

n.a.
n.a.

soft
n.a.

7/
3

n.a.
C

uppini2015
[3]

A
ccelerator

C
M

O
S

65
nm

7
-40–125

soft
0.4/0.2

c
7/

3
1

k
C

uppini2015
[3]

Sm
artPow

er
BC

D
110

nm
4

-40–150
soft

1.2/0.7
c

7/
3

1
k

SoC

Borgatti2003
[24]

R
econf.I/O

s
C

M
O

S
180

nm
6

n.a.
hard

20
(8.2) d

3
/

3
15

k
X

iSystem
[25]

Periph/A
cceler

C
M

O
S

130
nm

6
-40–125

b
hard

42
(6) d

3
/

3
15

k
M

orpheus
[26]

Periph/A
cceler

C
M

O
S

90
nm

7
-40–125

b
hard

110
3

/
3

15–100
k

[15],[16]
G

en.Purpose
A

dv.C
M

O
S

>
10

n.a.
hard

huge
3

/
3

≤
M

Proposed
SoC

Sm
artPow

er
BC

D
90

nm
5

-40–150
soft

1.78
(0.347) d

3
/

3
1

k
a

Im
perio

im
plem

entation
(http://asic.ethz.ch/2015/Imperio.html)

b
Personalcom

m
unication

c
M

ax
speed/M

in
area

im
plem

entations
d

System
area

(eFPG
A

area)

http://asic.ethz.ch/2015/Imperio.html

2.4. Programmable Device Scenario 13

Figure 2.3: Programmable devices scenario. Picture reused from [1].

idea of the system complexity. In addition, it is reported which one between soft-
ware and hardware programmable feature is present. The last column of Table 2.1
“eq. gates”, expresses the computational capability of the hardware-programmable
device if it is present in the device. In Figure 2.3 is showed a qualitative analysis of
the manufacturing costs, stated as process complexity, versus system complexity for
different programmable device solutions.

2.4.1 Microcontrollers

Nowadays, microcontrollers are probably the most diffused programmable devices
thanks to their ease of software programmability. They integrate a classical micro-
processor architecture coupled with a variety of different peripherals. Every semi-
conductor companies provide microcontrollers for different application requirements,
from 8-bit core for simple applications to high-end 32-bit multi-core µC [27] tailored
for high-performance computing. The application needs drive also both the amount
and the complexity of the peripherals; almost every microcontrollers have a stan-
dard set of peripheral for instance programmable PWM controller, GPIOs, timers,
etc. There are also available µC equipped for example with Floating Point Unit
(FPU), camera controller, fieldbus interfaces, LCD controller, etc. [28] since the main
idea is to move the computational task for a specific application from the processor
to a more efficient peripheral/IP connected to the microcontroller bus. Microcon-
trollers have also been developed for either specific sensing activities for instance
for ultrasonic applications [29], or actuation activities equipped with brushless mo-
tor controller [30] or for radio communication tasks providing the microcontroller
of RF circuits [31]. In Table 2.1 we refer to a family of widespread commercial
µC [14] and to an open-source solution [2] based on the RISC-V architecture. For
their nature, they are general-purpose devices and both of them are realized in stan-
dard CMOS technology using a soft-core approach. As already explained one of the

14 Chapter 2. SoC Architectures for Smart Power Applications

most attractive features of microcontrollers is the ease of programmability, but on
the other hand, µCs do not allow one to design an ad-hoc dedicated controller. Mi-
crocontrollers are ASICs provided of software-programmability characteristics and
then they have a non-reconfigurable hardware structure. Hence, if it is necessary
to design an own custom controller it must be implemented in software (maybe
interacting with peripherals) which results in possible energy waste and latency is-
sues. As reported in Figure 2.3, the microcontroller manufacturing costs is obviously
growing with the microcontroller complexity.

2.4.2 FPGAs

Nowadays FPGAs, the most diffused PLDs, are widely used in a wide range of ap-
plications. They were typically used for extreme computing thanks to their available
parallel structure, which allows one to maps in a reconfigurable hardware structure
a specific computing accelerator. In this way, one can design a custom and paral-
lel accelerator instead of serialize the task in a microprocessor code execution. An
example of parallel structure exploitation is a neural network accelerator [32]. In
addition, FPGAs are used in power electronic applications in order to compensate
for the increasing demand of reactivity [33]. Generally, FPGAs are designed follow-
ing a hard-macro approach, which consists of the optimized basic block repetition.
In order to optimize the FPGA performance in terms of power consumption, area
occupation, and timing performance, one designs the basic block optimized at the
transistor level. The area optimization is a key factor especially for this kind of de-
vice because the goal is to realize huge dimension FPGAs (order magnitude of mega
equivalent gates) and hence, expensive technologies are used such as 130 to 40 nm
CMOS, 22 nm FD-SOI ot advanced FinFET CMOS technology. In addition, these
advanced technologies have a greater number of metal layers (more than 10) than
standard technologies for both routing (which make the place and route easier) and
power distribution. Therefore, as reported in Figure 2.3, FPGAs are very complex
and for that reason very expensive devices. In Table 2.1 FPGAs are reported as de-
vices for general purpose applications since they have huge computational capa-
bility even if they do not have embedded microprocessors. However, it is possible
to add software-programmability features to FPGAs implementing soft-processors,
which means configure the FPGA with a processor architecture. On the other hand,
the adoption of soft-processor doesn’t guarantee high energy efficiency because the
processor is mapped in programmable-hardware and not in custom circuits. Thus,
FPGAs are oversized for smart power applications which typically don’t require
high-density and parallel computing. Another drawback is that extremely advanced
technologies used to fabricate FPGAs generally are not qualified for high tempera-
tures such as 150 °C as shown in Table 2.1. In order to avoid some of the previous
issues, some semiconductor companies such as [18] and [19] have designed small
FPGAs, µFPGA, in non-advanced CMOS technologies in order to reduce the device
costs. This kind of FPGAs targets both reconfigurable I/Os and simple accelerators

2.4. Programmable Device Scenario 15

and their computational capability goes from 0.4 kilo equivalent gates to less than
150 kilo equivalent gates as reported in Table 2.1. Just as reported in Figure 2.3,
µFPGAs can be the right size for smart power applications, but they are still without
processors limiting the flexibility.

2.4.3 Embedded FPGAs

Embedded FPGAs are useful to increase the system flexibility to have a hardware-
programmable IP. In this way, one can design the own custom digital circuit to spe-
cific tasks, improving the performance in terms of speed and efficiency. They are
typically used as hardware accelerators, for instance, specific algorithms sensor in-
terface preprocessors for machine learning, etc. Several semiconductor companies
are developing embedded FPGA IPs, such as [17], [20]–[22]. These commercial eF-
PGAs are large-size devices (up to 1 mega equivalent gates) usually designed with
a hard-macro approach, optimizing the eFPGA at transistor level, obviously to op-
timize the area density and maximize speed performance as reported in Table 2.1.
Vendors design eFPGAs based on the customers’ needs which can be both a spe-
cific technology and needed device size. Since eFPGAs have typically big dimen-
sions, the used technologies are from standard to advanced CMOS technologies as
reported in Figure 2.3, in order to both employ as few metal layers as possible to
reduce the manufacturing costs and increase density to improve the yield. Smart
power ICs are generally analog-on-top because area occupation is dominated by
both power and analog circuits, hence the use of a hard-macro eFPGA could be
unworkable and therefore a soft-core approach is mandatory. There exist then syn-
thesizable eFPGAs such as the one proposed in [23], which uses Verilog-to-Routing
(VTR) CAD flow. VTR is an open-source tool that allows one to map a digital circuit
on an island-style FPGA that consists of two-dimensional arrays of LB with verti-
cal and horizontal routing channels. In addition, one can also find synthesizable
eFPGAs based on a datapath-oriented architecture [34]. As shown in the following
chapter and Table 2.1, our proposed eFPGA is fully-synthesizable [3] and it has a
very small computational dimension (1 kilo equivalent gates) and can fit both stan-
dard CMOS technology at 65 nm with 7 metal layers and BCD technology with just
4 metal layers. Hence, the proposed eFPGA fits smart power application needs. As
it is provided in Chapter 3 and Chapter 4, the interconnection network is based on a
multi-stage switching network that allows full-routability and provides sustainable
area overhead in small-size devices.

2.4.4 System-on-Chips

System-on-Chips (SoCs) provide the best system flexibility since they combine both
software- (microprocessors) and hardware- (eFPGAs) programmability in a unique
integrated circuit. Thus, they are attractive as digital elaboration unit. Theoretically
SoCs can cover all the area of Figure 2.3, however, they are usually used as either

16 Chapter 2. SoC Architectures for Smart Power Applications

Figure 2.4: Proposed SoC architecture.

reconfigurable I/Os (as proposed in the pioneering work [24]) or both hardware
and peripheral accelerators such as Ethernet MAC, binarization, etc. as presented
in [25] and [35]. Nowadays, semiconductor companies such as [15] and [16] which
historically produced high-end standalone FPGAs are now also producing high-end
SoCs in advanced CMOS technologies provided with huge computational capabil-
ities. Then, all the cited SoCs are really too complex, and hence expensive, for the
smart power arena. In addition, at least the embedded hardware-programmable
IPs are designed following a hard-macro approach and thus, most of the previous
considerations made in Section 2.4.2 for standalone FPGAs are still applicable, as
reported in Table 2.1.

2.5 Proposed SoC

In the smart power arena, we imagine the system-on-chip represented in Figure 2.4
which integrates the features of Figure 2.1. The proposed SoC elaboration unit is
a heterogeneous system composed of a microcontroller and an eFPGA interfaced
through the microcontroller peripheral bus. In this way, the eFPGA acts as a recon-
figurable peripheral of the microcontroller and it should manage a specific task by
itself, but also if it is required, the processor can easily interact with the eFPGA. For
instance, in the smart power scenario, the eFPGA can implement some control policy
and can directly manage the power devices for the actuation and receive feedback
from sensors. For connected applications, the proposed SoC should also have a com-
munication interface in order to interact with the other network elements. Therefore,
the idea is to have a configurable peripheral that handle the smart power task with-
out any cooperation with the processor. Thus, the microprocessor can manage both
other kinds of computation useful to the system and the communication interface to

2.5. Proposed SoC 17

send/receive data and instructions to/from the network. Besides, the microproces-
sor can be switched in sleep mode to reduce the power consumption while its pe-
ripherals are working on their specific tasks, and vice versa, the processor can switch
off the eFPGA clock when it is not required for the application. In this case, the
system designer can partition tasks addressing both latency and energy efficiency
requirements as explained in the following of the thesis. The full-programmability
of the elaboration unit allows one to reuse the same system-on-chip for different
applications with a considerable impact on the costs.

As provided in Chapter 3, the proposed SoC has both software- and hardware-
programmability features, in fact, it has a microcontroller and an eFPGA. The over-
all system-on-chip elaboration unit is fully-synthesizable in standard cell libraries
and hence, it is designed using a soft-core approach. The system-on-chip is im-
plemented in BCD technology at 90 nm of STMicroelectronics with 5 metal layers,
as shown in Table 2.1. Considering the computational dimension of our SoC’s eF-
PGA, which is 1 kilo equivalent gates, the proposed SoC elaboration unit fits the
simpler smart power application requirements, becoming an interesting solution for
the smart power scenario. The proposed elaboration unit for system-on-chip com-
bines both system flexibility due to the fully-system-programmability and medium-
complexity (as shown in Figure 2.3) since the elaboration unit integrates a “small”
heterogeneous system. Indeed our proposed elaboration unit combines a 32-bit mi-
crocontroller coupled with our eFPGA, which, on the computational point of view,
is comparable to a µFPGA described before. Nevertheless, the overall system is im-
plemented in a smart power technology and not standard CMOS technology as the
previous solutions.

Regarding the communication interface of Figure 2.4, Chapter 6 provides a de-
scription of the proposed technique to decrease the power consumption of the com-
munication interface.

19

Chapter 3

SoC Elaboration Unit

Most of the material reported in this chapter is reused from [36] and [1] (©2018, 2019 IEEE),
in agreement with IEEE copyright policy on theses and dissertations.

In this chapter is described the proposed elaboration unit architecture for smart
power applications. The proposed digital system is an heterogeneous system, as in-
troduced in [36] and highlighted in blue in Figure 2.4, which consists of the PULPino
microcontroller [2] coupled with an embedded FPGA [3] [4]. The whole system-on-
chip is fully-synthesizable which means that it is designed in synthesizable HDL
code. The microcontroller is the master of the system and the eFPGA is interfaced
through the Advanced Peripheral Bus (APB) of the Advanced Microcontroller Bus
Architecture (AMBA) which is an open standard of digital system bus architecture.
In this way, the embedded FPGA acts as a microcontroller peripheral since micropro-
cessor is able to fully-manage the embedded FPGA writing and reading registers at
the addresses defined in the RTL code. For instance, the microprocessor can program
both the eFPGA clock frequency and the destination and the source of the embedded
FPGA inputs/outputs. The idea is to have in the system a reconfigurable peripheral
which can be programmed based on the application requirements, in order to handle
the smart power tasks adopting only the eFPGA without any cooperation with the
processor. Hence, microcontroller programs the eFPGA to manage the smart power
application needs and then the processor can handle for instance high-level system
communication, other computations or switches in sleep-mode to reduce the power
consumption.

3.1 Microcontroller

The microcontroller used in the proposed reconfigurable SoC of Figure 2.4 is PULPino
[2]. PULPino is an open-source ultra low-power microcontroller. Therefore, PULPino
has a microprocessor unit and some standard peripherals such as general-purpose
I/Os, timers, interrupt controller, serial communication interfaces. PULPino has a
32-bit single-core processor based on an implementation of the RISC-V instruction
set architecture optimized for low-power and high-energy-efficient computing. Re-
garding processor implementation, it is possible to use:

20 Chapter 3. SoC Elaboration Unit

Figure 3.1: PULPino architecture scheme [38].

• 4-stage RI5CY pipeline

• 2-stage Zero-riscy pipeline

• 2-stage Micro-riscy pipeline without any hardware multiplier.

In this work, we used the 4-stage processor core because it is the one more similar to
widespread commercial processor architecture such as ARM Cortex-M [37] and also
because it allows the system to have good computing performance. As visible in
Figure 3.1 the microcontroller is based on Harvard architecture since it has two dif-
ferent memory for both data (Data RAM) and instructions (Instr. RAM). Our realiza-
tion of the proposed system has two 32-bit 4k-word static RAM, one for instructions
and one for data memory. PULPino has two buses, one high-performance bus (Ad-
vanced eXtensible Interface AXI) for processor-memory communications and one at
lower performance (APB) for processor-peripheral communications. The cited pe-
ripherals are connected to the APB bus, as reported in Figure 3.1.

3.2 Embedded FPGA Sub-System

Since eFPGA should be a microcontroller peripheral, it is connected to the APB with
the other system peripherals. In addition to the actual eFPGA (PLD in Figure 3.2),
there are also further digital blocks necessary to configure for instance the eFPGA
clock frequency, eFPGA inputs, and outputs and program the eFPGA. Microcon-
troller interacts with the eFPGA system writing and reading registers located in the

3.2. Embedded FPGA Sub-System 21

Figure 3.2: The eFPGA subsystem interfaced through APB bus. Pic-
ture reused from [1].

memory map. Hence, the eFPGA system, as reported in Figure 3.2 is provided of the
actual eFPGA, a prescaler, a configuration loader, and some configuration registers.

3.2.1 Embedded FPGA Architecture

The embedded FPGA (PLD block of Fig. 3.2) is a soft-core Intellectual Property
(IP), and hence fully-synthesizable in standard cell libraries, unlike the eFPGA avail-
able on the market (as shown in the previous chapter) which are designed using a
hard-macro approach optimizing performance at transistor level. The eFPGA has
a standard FPGA structure as presented in [3] and [4] which consists of an array
of logic blocks connected via an interconnection network. As described in Figure
3.3, the proposed eFPGA has 16 Configurable Logic Blocks (CLBs) and the intercon-
nection network is a Multi-Stage Switching Network (MSSN). The eFPGA has 64
inlets/outlets and the device dimension is about 100k equivalent gates. The eFPGA
configuration memory is made of lathes replacing traditional SRAM cells (optimized
at transistor level) to guarantee synthesizability. Each CLB has a structure reported
in Figure 3.4, it has 12 inputs/outputs and 3 Basic Logic Elements (BLEs). The Basic
Logic Element, as described in Chapter 4, can be configured as either 2×LookUp
Table (LUT) 4:2, 2×LUT 5:1 or 1×LUT 6:1, as well as either sequential or combi-
national circuit. As analyzed in the next chapter, the interconnection network is a
Multi-Stage Switching Network with a butterfly-oriented topology, which provides

22 Chapter 3. SoC Elaboration Unit

Figure 3.3: Diagram of the eFPGA. Picture reused from [1].

Figure 3.4: eFPGA CLB structure [3].

3.2. Embedded FPGA Sub-System 23

synthesizability and non-blocking routing features. The computational capability
of the eFPGA is about 1k equivalent gates while the area occupation is about 100k
equivalent gates. This under exploitation of the occupied area is obviously due to
the reconfigurability. More details regarding the embedded FPGA architecture are
provided in Chapter 4.

3.2.2 Prescaler

Prescaler (Figure 3.2) is an additional block that configures or switches off the eF-
PGA clock frequency. It takes the microcontroller clock line and divides it by a factor
ndiv = 1–216. It divides the system clock frequency for the eFPGA based on appli-
cation reactivity needs, or it turns-off the eFPGA clock frequency when the eFPGA
is not required, in order to reduce the dynamic power consumption. The processor
fully-handles the prescaler configuration acting on its configuration register. The
frequency division is simply performed programming the count of a digital counter.

3.2.3 Configuration Loader

The configuration loader configure the eFPGA CLBs and the interconnection net-
work, putting the configuration bit-stream into the configuration memory of the
eFPGA. Therefore, the configuration loader consists of a finite state machine that
manages the PLD scan-chains which program the configuration memory. Since the
eFPGA configuration phase is not both timing and power critical, because it occurs
just one time at the system startup, it can be not too optimized. The easiest way is
to serialize the bit-stream for the scan-chain, hence, the processor handles the pro-
gramming phase, loading a byte of the configuration bit-stream in a configuration
register. Then, activating a bit in the configuration register, the processor enables
the configuration loader to put data into the scan-chain. Iterating the procedure the
eFPGA is programmed.

3.2.4 Configuration Registers

Configuration registers are 32-bit registers used by the processor to both configure
(writing) all the digital circuits of the eFPGA subsystem and check (reading) the
status of the blocks or the eFPGA outputs. The configuration register addresses are
organized in the address space designated to the peripherals. The configuration
registers are:

• CONFIG-PRESCALER REG based on the application requirements in terms
of responsiveness (latency) is configured by the processor. It programs the
prescaler putting the value of the counter. Acting to an enable bit, the processor
can switch off the PLD clock frequency if is not required.

24 Chapter 3. SoC Elaboration Unit

Table 3.1: API Function Prototypes. Reused from [1].

Function Name Description

reset_efpga() resets the efpga
setup_efpga(efpga_addr, data_ptr) manages configuration registers
set_in_efpga(bank_addr, value) writes eFPGA inputs
read_out_efpga(bank_addr) reads eFPGA outputs

• CONFIG-LOADER REG is used to program the configuration loader. The pro-
cessor writes a byte of the configuration bit-stream in the register, and activat-
ing a bit flag notifies the configuration loader that the data are ready to be put
in the configuration memory. Then, the configuration loader notifies the pro-
cessor that the last byte it is correctly programmed and hence, the processor
can load another byte of the configuration bit-stream until the final notifica-
tion from the configuration loader. Since the eFPGA configuration procedure
is a software procedure, it can be done at every time.

• CONFIG-PLD REG is used by the processor to both reset the eFPGA and con-
figure the eFPGA inlets to be connected to either primary inputs or eFPGA-IN
REG with 8-bit banks.

• eFPGA-OUT REG [1:0] are two registers containing the eFPGA outputs. The
processor can read the register if it wants to either check or interact with the
eFPGA activities.

• eFPGA-IN REG [1:0] are connected to an array of multiplexers, as shown in
Figure 3.2, whose selectors are programmed in CONFIG-PLD REG. Depending
on the CONFIG-PLD REG configuration, the eFPGA inputs can be connected
either to primary inputs or to internal registers.

3.2.5 eFPGA Software Tools

A complete CAD flow for the proposed eFPGA was implemented as explained in
[3] and [4]. The flow starts with an HDL code technology independent pre-synthesis
in logic operators and flip-flop functionalities using Synopsys Design Compiler [39].
Then VTR provides the logic synthesis and LUT mapping and Versatile Place and
Route (VPR) tool provides LUT packing and placement, while a custom tool is used
to configure routing.

3.3 Application Programming Interface

In the proposed heterogeneous system, the task partitioning between eFPGA and
microprocessor is arranged by the application designer, considering the eFPGA as
a peripheral of the microcontroller. We developed the procedures for the PULPino
code and they summarized in Table 3.1. These procedures use both read-memory

3.3. Application Programming Interface 25

and write-memory instructions at the corresponding eFPGA peripheral addresses.
The reset_efpga procedure resets the eFPGA, which is necessary after the eFPGA
configuration. The setup_efpga function can configure both the PLD (writing data
into the CONFIG-PLD REG) and the prescaler (writing data into the CONFIG-PRESCALER
REG) settings. The function iteration is used to program both the interconnection
network and the CLB configuration memories writing in the CONFIG-LOADER
REG. Using the set_in_efpga function microcontroller can manage the eFPGA inlets
writing in the eFPGA-IN REG, while with the read_out_efpga function the processor
can read the eFPGA outputs connected to the eFPGA-OUT REG.

27

Chapter 4

eFPGA Architecture Details

This chapter provides an architectural description of our embedded FPGA (designed
by a previous Ph.D. student) already presented in [4] and [3]. A mathematical anal-
ysis of the eFPGA interconnection network properties is proposed in [40] and re-
ported in this chapter and Appendix A.

4.1 Introduction

Field Programmable Gate Arrays (FPGAs) as embedded FPGAs are essentially ar-
rays of some Computational Logic Blocks (CLBs) connected through some kind of
interconnection network. The interconnection network plays an important role in
the overall FPGA performances, in terms of area occupation and energy.

In Figure 4.1 are reported two typically field programmable gate array struc-
tures. In the island-style FPGAs (Figure 4.1(a)) the CLBs are distributed in a two-
dimensional array, while in hierarchical FPGAs the CLBs are organized in different
clusters as reported in Figure 4.1(b). In the island-style architecture the available
interconnections are a notable diversity, and hence, usually used in commercial FP-
GAs. On the other hand, hierarchical FPGAs offer a very efficient connection be-
tween CLBs of the same cluster, but not if it is required to cross a considerable num-
ber of main connections between different clusters.

The red dots in Figure 4.1 are the switches that can connect the interconnection
network wires, typically realized combining pass-transistors, multiplexers and tri-
state buffers in order to create either unidirectional or bidirectional wires as depicted
in Figure 4.2. Figure 4.2(a) reports a bidirectional switch composed of two back-to-
back tri-state buffers. Since bidirectional switches require pass-transistors or tri-state
circuits, they have been replaced by unidirectional switches, as for instance the one
shown in Figure 4.2(b) [4].

CLBs are the computational elements of the FPGA and they can have various
kinds of architectures, including different types of both storage and computational
elements. Based on the design constraints, they can be implemented using different
kinds of circuits such as standard logic gates, multiplexers, LookUp Tables (LUTs),
pass-transistors, etc. Figure 4.3(a) depicts an example of a CLB architecture com-
posed of various sub-blocks called Basic Logic Elements (BLEs) with I inlets and N

28 Chapter 4. eFPGA Architecture Details

Figure 4.1: FPGA structures: island-style (a) and hierarchical (b) [4].

Figure 4.2: Bidirectional (a) and unidirectional (b) wires [4].

4.1. Introduction 29

Figure 4.3: Example of both CLB architecture (a) and BLE (b).

outlets. Each BLE has K inputs directly connected to a lookup table as reported in
Figure 4.3(b). In addition, a BLE has a Flip-Flop D to generate a sequential signal and
a multiplexer that can be programmed to select either sequential or combinational
path. In order to increase the versatility of the computational blocks, in some cases is
possible to find specific blocks such as adders, multipliers, Digital Signal Processor
(DSP) units.

As already said, FPGAs are arrays of CLBs connected using somehow programmable
routing [41]. The overall field programmable gate array efficiency is strongly im-
pacted by routing since it deeply affects area occupation and performances and is
responsible for the efficiency of the interconnection [42], [43]. Due to the constant
complexity application growth, researches try to mitigate the penalties due to both
routing congestion issues and bit-level programmability.

In order to address our aim of portability to different technology, the only pos-
sible way is to design the eFPGA using standard logic gates from standard cell li-
braries.

As introduced in Chapter 3, our embedded FPGA is a small eFPGA with a com-
putational capability of around 1 k equivalent gates and it is fully synthesizable. It
has 16 CLBs and its architecture is based on a hierarchical organization of Figure
4.1(b). As presented in Chapter 3, each configurable logic block has a structure de-
picted in Figure 3.4. Each crossbar internal to CLB consists of an array of ten 12:1
multiplexers as shown in Figure 4.4(a). In Figure 4.4(b) is reported the structure of
each 12:1 multiplexer of the crossbar. Each Basic Logic Element of the CLB has two
lookup tables that can be configured as a LUT 6:1 or two fractured LUTs as depicted
in Figure 4.5. It is still present the possibility to generate either sequential or combi-
national signal acting on the specific multiplexer selector of Figure 4.5.

As already mentioned, the interconnection network is based on a Multi-Stage
Switching Network (MSSN), and in the following section, its proprieties are de-
scribed.

30 Chapter 4. eFPGA Architecture Details

Figure 4.4: CLB internal Crossbar architecture (a). Multiplexer 12:1
structure (b).

Figure 4.5: BLE architecture [4].

4.2. Embedded FPGA Interconnection Network 31

Figure 4.6: BLE architecture [4].

In order to preserve the fully-synthesizability of the embedded FPGA, the con-
figuration memory is implemented through standard latches instead of RAM. In
this way, the eFPGA block portability to different technology is guaranteed. For
each CLB and MSSN level there is a configuration memory organized in a cluster of
latches. The configuration memory is configured through two scan-chains as shown
in Figure 4.6. One scan-chain is used to put data into latch memory, while the second
one is used to select the row that should be programmed as a row write enable. Each
Bit Cell (BC) of Figure 4.6 is driven to the enable signal by a clock-gating (CG) cell
enabled by a configuration clock, which is substantially asynchronous with respect
to the functional clock.

4.2 Embedded FPGA Interconnection Network

In order to both decrease complexity issues and enable a programmable routing area
overhead reduction, hierarchical interconnection networks based on local crossbars
and exploiting Rent’s rules were studied [44]–[46]. Therefore, the eFPGA intercon-
nection network that connects inputs, outputs and CLBs is a Multi-Stage Switching
Network (MSSN). This network is a hierarchical interconnection network built com-
bining many small crossbars, usually called switch elements (SE) (Figure 4.7). For
instance, in Figure 4.7 is depicted a N × N Banyan MSSN with N = 16 inlets and
outlets exploiting 2 × 2 switch elements, where it is possible to identify different
sub-networks.

32 Chapter 4. eFPGA Architecture Details

Figure 4.7: An N × N (with N = 16) Banyan multistage switching
network (MSSN) featuring butterfly topology. Picture reused from

[40].

A Multi-Stage Switching Network, depending on its topology and/or its ability
to perform connection between inlets and outlets can be classified as:

• non-blocking, if the MSSN can connect each I/O pair regardless of the existing
connections on the network.

• Blocking, if it cannot connect all the requests.

Besides, a non-blocking network can be further classified as:

• strictly non-blocking (SNB) if any connection can be set up incrementally with-
out the need to rearrange (i.e., reroute) any of the connections already in place.

• Rearrangeable non-blocking (RNB) if one or more existing connections may have
to be rearranged to permit a new required connection between one input and
one or more outputs.

All the previous definition can be used for different kinds of traffic:

• unicast where a network input needs to be connected only to an output. For
that reason is typically called one-to-one.

• Multicast connections are connections where a input is connected to many out-
puts (one-to-many).

4.2. Embedded FPGA Interconnection Network 33

• Broadcast connections require to connect an interconnect input to all the net-
work outlets (one-to-all).

An eFPGA Multi-Stage Switching Network has to support multicast connectiv-
ity addressing rearrangeable non-blocking feature, since the device has static con-
nections and hence, RNB characteristic is equivalent to strictly non-blocking. The
required RNB property allows the interconnection network to reduce congestion us-
ing fewer resources. The usage of a MSSN as an eFPGA interconnection network
has straightforward benefits in terms of:

1. network modularity which fits well a soft-core approach, since each switching
element can be either implemented by standard digital circuits available in
standard cell libraries or optimized at circuit level as a single coarse-grained
cell, without affecting synthesizability.

2. Interconnection network routability properties, and hence, eFPGA design flex-
ibility. A hierarchical interconnect allows one to customize the eFPGA size and
the number of inlets/outlets following the same congestion analysis.

3. The routability analysis is simplified, since the blocking properties of an MSSN
are well-defined and predictable in terms of topology, as discussed in Ap-
pendix A.1 [40].

Examples of hierarchical interconnection networks in eFPGA applications are
M2000 (Abound Logic) which proposes an MSSN with local crossbars based on a
Clos network [47], Leopard Logic proposed a butterfly-based hierarchical network
[48]. In [43], [49] is discussed an MSSN based on butterfly topology with depopula-
tion of the upper stages of the network and an isomorphic transformation to solve
the radix-boundary problem [50], which is a limiting factor of MSSN exploitation in
FPGAs. Nevertheless, area saving is balanced by the fact that this network is no
more proven to be RNB, although authors indicate the availability of enough band-
width based on Rent’s rule. Another example of the application of Rent’s rule to
sizing a multi-level interconnection network is provided in [51], which overcomes
the boundary-radix problem by adding shortcuts and staggering.

RNB multicast network theme is a quite extended topic [52], whereas for eFPGA
application is restricted to architectures that provide a small area overhead for a
number of inputs/outputs N that can reach some thousands of units. Among the
variety of MSSNs used in telecommunication area [52]–[55], for embedded FPGA
the starting point is the Banyan network [56], and its topological equivalent ver-
sions [56], [57] such as Omega, Shuffle, Butterfly, since they are low-latency multi-
stage networks. Figure 4.7 shows an N × N Banyan network (with N = 16) built
combining 2× 2 switch elements (called radix-2) [58]. Due to its structure, a Banyan
network is also called log2 N-network [59]. As visible in Figure 4.7, thanks to its

34 Chapter 4. eFPGA Architecture Details

hierarchical structure, the Banyan network can be recursively decomposed into sub-
networks, besides its low-latency feature makes Banyan networks attractive for em-
bedded FPGA. On the other hand, the main drawback of Banyan networks is that
they are blocking also for unicast traffic. To improve the Banyan network blocking
feature, additional resources to the baseline structure are mandatory (as explained
in Appendix A.1), resulting in a network called Multi-log2 N networks [59].

4.2.1 Proposed eFPGA Interconnection Network

The interconnection network architecture proposed in both [3] and [4], and inten-
sively analyzed in [40] is a Multi-Stage Switching Network based on 2× 2 switches,
and it is shown in Figure 4.8(a) with 8 I/Os. The proposed network has a Benes-
like topology with a butterfly connectivity. A topologically equivalent network [60],
which means a network with the same graph, is depicted in Figure 4.8(b). The pro-
posed interconnection network architecture has:

• NS = N switch elements per stage, where stage states as the number of columns
composed by switches.

• nS = 2 log2 (N) + 1 stages due to:

– 1 input stage (INstage) that consists of NS demultiplexers or 1× 2 switches.

– 1 output stage (OUTstage) consisting of NS multiplexers or 2× 1 switches.

– 2 log2 (N)− 1 middle stages (MIDstage) with NS 2× 2 switches each. The
middle stages are composed of:

* n stages which are due to a N × N baseline log2 N network, and
hence, n = log2 N.

* x extra stages to improve the blocking capability of the Banyan net-
work (as shown in Appendix A.1) defined as x = log2 N − 1.

Hence, ns = 1INstage + 1OUTstage + (2 log2 (N)− 1)MIDstage.

The resulting Multi-Stage Switching Network has rearrangeable non-blocking fea-
ture has reported in Appendix A.1 and resulting from the intensive eFPGA testing.
The proposed MSSN, as better visible in Figure 4.8(b), consists of two sub-network
called planes (p1 and p2) connected to both inputs and outputs through both demul-
tiplexing and multiplexing stages. Each sub-network or plane consists of a N × N
Banyan network with x extra stages.

Considering our embedded FPGA composed of 16 CLBs with 12 inputs each, and
targeting 64 primary eFPGA inputs/outputs, the necessary interconnection network
has 256 I/Os, 17 total stages of 256 switch elements each.

The proposed MSSN architecture can be also generalized to a generic radix-k, us-
ing switch elements with a radix different to 2. If it is required by the application,
one can design the interconnection network with a higher radix, like 4 for instance,

4.2. Embedded FPGA Interconnection Network 35

Figure 4.8: An N × N (with N = 8) flat version of the proposed
MSSN: original architecture (a) and rearrangeably non-blocking
(RNB)-proof unicast topologically equivalent version (b). Picture

reused from [40].

36 Chapter 4. eFPGA Architecture Details

Figure 4.9: Folded bypassed MSSN enhanced with U-turn bypasses
[3].

preserving the rearrangeable non-blocking proprieties, thanks to the network hierar-
chical structure. In Appendix A.2 are extended the consideration done for the radix-2
MSSN to a generic radix-k MSSN.

MSSN with Bypass Enhancement

Thanks to the hierarchical interconnect structure, one can also improve the switch
element features. The addition of x extra stages in the interconnection network to
obtain rearrangeable non-blocking proprieties, impacts on the overall network la-
tency. In addition, butterfly topology interconnects are not able to exploit local traf-
fic. Therefore, an alternative hierarchy-aware folded MSSN version is introduced.
Exploiting the network symmetry of the flat view of Figure 4.8(a), it is possible to
fold the network at the central stage, creating a bypassed architecture shown in Fig-
ure 4.9 [3]. In this case, the addition of dedicated switches provided with a U-turn
connection, allows the network to connect U-switches of the HS group at the stage
S. The U-turn exploitation allows the network to be divided into butterfly-based
sub-networks, potentially allowing the upper-levels of the hierarchy to be bypassed.
This enhancement permits the network to better exploit local connectivity without
impacting on congestion. As an example, in Figure 4.9 the sub-network obtained
grouping the H2 upper switches allows any connections between I/O from 0 to 3 to
be performed bypassing the upper level H3 of switches [40].

The bypassed version of the interconnection network inherits the rearrangeable
non-blocking properties from the flat interconnect architecture. Exploiting U-turn

4.2. Embedded FPGA Interconnection Network 37

Figure 4.10: MSSN with bypass enhancement: unfolded view and
U-switch structure description [4].

bypasses is possible to obtain more routing paths and available connections, inherit-
ing the non-blocking features of the flat version to each bypassed sub-network (Figure
4.9). In this way, in an unfolded view of Figure 4.10, non-adjacent stages are bridged
thanks to the addition of dedicated logic, and hence, additional resources.

The bypass exploitation results in a straightforward area overhead due to the ad-
ditional circuits, interconnections and configuration bits. However, the area penalty
is balanced by an improvement in performances, as analyzed in Appendix A.3.

4.2.2 MSSN Programming Strategy

The embedded FPGA software tool provides both the Register-Transfer-Level (RTL)
description of the interconnection network and the network configuration bitstream
as presented in [4]. One can describe the desired architecture specifying interconnect
parameters, such as:

• number N of I/Os;

• number ns of stages;

• switch element architecture i.e. radix

• enhanced stages with the bypass as in Figure 4.10.

Following [3], the MSSN routing engine is an iteration-based path-finding algo-
rithm and the routing process split multi-fanout tracks into independently single-
fanout nets sharing switch elements. After a net organization, the routing is sequen-
tial, and it takes into account the available resources, and thus, the available switch

38 Chapter 4. eFPGA Architecture Details

elements. The net sorting is based on their critical issue, which means that is listed
the history of which nets have difficulty to be routed, and hence, the routing itera-
tion success or fail, updating the list after each routing iteration. The process stops
when all the tracks are successfully routed.

The path-finding strategy is based on Dijkstra’s algorithm for weighted graphs
[61]. The switch elements represent the graph nodes connected through weighted
edges, which correspond to the wires used to connect interconnection network stages.
The algorithm aims to find the cheapest path among the overall available ones, and
the path cost is the sum of the weights of the traversed wires. In Figure 4.11 are
reported three different ways to connect IN2 to OUT0, OUT1, and OUT2 sorted
in order of cost. The considered multi-fanout connection can be implemented in
the cheapest way of Figure 4.11(a) exploiting bypass, in as-straight-as-possible policy
Figure 4.11(b) and using diagonal wires Figure 4.11(c). Clearly, the first two cases
allow the algorithm to improve its convergence, and an as-straight-as-possible pol-
icy tends to increase the utilization of the bypasses. Therefore, both bypasses and
straight links have lower weights in order to drive the router to maximize bypass
and straight path usage. Thanks to this approach, we found that, on networks with
dimensions up to 4K I/Os, the number of iterations needed to solve the routing lies
on average between 5 and 10 [40].

The butterfly-based interconnection network usage changes the distance met-
ric used on the placement algorithms. Traditional placement algorithms for both
FPGAs and Application-Specific Integrated Circuits (ASICs) address the distance
minimization between used logic blocks or standard cells, where the distance is
measured in a 2D space (be it the L1 Manhattan distance or L2 distance) strictly
related to the Elmore delay associated to the wire. On the other hand, in a butterfly-
based interconnection network enhanced through bypasses, the delay is related to
the number of stages to be crossed to connect an input to an output. Exploiting by-
passes, as shown in Figure 4.11, is possible to reduce the number of crossed stages
(path in Figure 4.11(a) traverses less stage than the path in both Figure 4.11(b) and
Figure 4.11(c)), and hence, the delay. However, as shown in Figure 4.9, the distance
between network I/Os is not linear but follows a step trend related to the network
radix. Referencing to Figure 4.9, to connect the third input to the fourth output must
be crossed only switches up to H1, whereas to connect the fourth input to the fifth
output is required to cross switches up to H3. This topic is called the boundary-radix
problem [43] and it is the main drawback of this kind of network usage in large di-
mension FPGA (eFPGA). In our case, of a small embedded FPGA, this problem is
alleviated considering a wire length defined for a generic radix-k as:

wire length =

{
2 · Smin, for Smin = logk N
2 · Smin + 1, otherwise

(4.1)

instead of a 2D distance metric. In equation (4.1) Smin (included from 1 to logk N) is
the minimum stage S subtending all the points that must be connected as introduced

4.2. Embedded FPGA Interconnection Network 39

Figure 4.11: Three different multi-fanout paths connecting IN2 to
OUT0, OUT1, and OUT2 in order of cost: with bypass enhancement
(a), with the as-straight-as-possible policy (b), and using diagonal

wires (c). Picture reused from [40].

40 Chapter 4. eFPGA Architecture Details

in [3]. The “+1” term is due to the bypass connection. Therefore, the placement tool
tries to limit the number of switches to be crossed to Smin in order to achieve the
best enhanced hierarchical structure exploitation, and hence, to improve the eFPGA
performance.

41

Chapter 5

Application Analysis

Most of the material reported in this chapter is reused from [1] (©2019 IEEE), in agreement
with IEEE copyright policy on theses and dissertations.

This chapter provides an energy comparison of different implementations of the
elaboration unit. Some considerations regarding the latency performance of the dif-
ferent solutions are also presented. The considered elaboration units are the eFPGA,
PULPino and ASIC implemented in 90 nm BCD technology of STMicroelectronics
and an STM32 microcontroller. Through an energy evaluation, are evaluated the
energy performance of the different solutions to carry out different kinds of applica-
tion. Hence, the goal of this chapter is to provide a proof in terms of performance of
the validity of the proposed SoC (composed of both microcontroller and the eFPGA)
in the smart power arena.

5.1 Implementation Choices

We present the different implementation units considered to evaluate both energy
and latency performances. The first presented device is the proposed system-on-
chip, then a general ASIC implementation and in the end a microcontroller of the
STM32 family.

5.1.1 Proposed Reconfigurable SoC

The first considered elaboration unit is the proposed reconfigurable SoC (introduced
in Chapter 3) composed of PULPino microcontroller and the eFPGA. This system has
been implemented in 130 nm BCD technology of STMicroelectronics [36] and then
presented in 90 nm BCD technology of STMicroelectronics in [1]. This technology is
provided of 5 metal layers for the routing and a full-set of standard cell libraries with
logic gates realized through transistors with two different channel lengths (multi-L
technique). Figure 5.1 shows the whole digital reconfigurable system-on-chip floor-
plan and both the soft-core eFPGA sub-system and PULPino are highlighted target-
ing an implementation frequency of 50 MHz. In the floorplan, one can see two static
RAM of 16 kB each for data and instructions (two rectangles in the bottom side of

42 Chapter 5. Application Analysis

Figure 5.1: Proposed SoC implemented in BCD 90 nm. Reused from
[1].

the picture). The bigger area of the PULPino system is the PULPino CPU which is
the 4-stage RI5Y pipeline core, while the other smaller areas are the various micro-
controller peripherals and bridge. The overall area occupation of the system-on-chip
is 1.78 mm2 with about 75 % of row utilization and 1.3 mm2 without taking into ac-
count the memory area. The area overhead due to the eFPGA is about 20 % of the
overall area and around 27 % without considering the memory area. The imple-
mentation results are summarized in Table 5.1 where the values in brackets do not
consider the memory area. Figure 5.1 depicts the soft-core approach of the whole
system-on-chip (except the two static RAMs which are hard-macros) and hence, the
fully-synthesizability of the system. In the remainder of the chapter, all the evalua-
tions for the proposed SoC are based on this physical implementation.

Table 5.1: Proposed SoC implementation Results. Reused from [1].

Implementation

Technology BCD 90 nm
Frequency 50 MHz
System Area 1.78 (1.3) mm2

eFPGA Area 0.347 mm2

eFPGA Area % 20 (27) %

5.1. Implementation Choices 43

Figure 5.2: RGB LED controller ASIC layout.

5.1.2 ASIC

The ASIC implementation of the elaboration unit is obviously connected to the spe-
cific application. The considered applications are explained in the following para-
graphs. For each application, starting from the HDL code, we have implemented the
circuit in 90 nm BCD technology of STMicroelectronics, using a design flow based
on standard cell libraries, and hence, the same as the previous case. The ASIC esti-
mation area can be also expressed in equivalent gates, which is the ratio between the
effective area occupation and the area of four transistors (typically a NAND gate).
Figure 5.2 reports an example of an ASIC implementation in 90 nm BCD technology.
In this example, the ASIC is a controller for RGB LED and it is better analyzed in the
following.

5.1.3 STM32 Microcontroller

STM32 is a family of microcontrollers produced by STMicroelectronics. These mi-
crocontrollers are provided of many different ARM processors based on the appli-
cation field of the microcontroller. In this work, we use an STM32L152RE which
is equipped with an ARM Cortex-M3 [14]. The choice of this microcontroller was
driven to find a commercial solution as much as possible similar to the PULPino

44 Chapter 5. Application Analysis

microcontroller. Indeed, the ARM Cortex-M3 is a 32-bit RISC core with a 3-stage
pipeline targeting embedded system applications [37]. The STM32 is also provided
with numerous peripherals for interaction with the physical world. Microcontrollers
can be configured to optimize either computing performance or reduce power con-
sumption. For instance, one can reduce the operating clock frequency to reduce
the dynamic power consumption, reduce the supply voltage to decrease power con-
sumption and use different kinds of sleep mode. The STM32L1 microcontrollers are
realized in 130 nm ultra low-leakage process [62], in order to address low-power
consumption.

5.2 Energy and Latency Model

In this section we analyze the methodology used to a fair comparison between the
different elaboration unit solutions. Hence, the way to figure out how different given
circuits work is looking for the used energy to perform a specific task and in how
much time. Thus, it is first evaluated the energy efficiency of the proposed eFPGA,
PULPino, STM32 and, ASIC solutions, in carrying out various kinds of application
and resulting also in a latency analysis. ASIC solutions implemented in 90 nm BCD
technology give an idea of the best achievable performances that this technology can
reach for these applications and hence, how the programmability deteriorates them.
Since STM32 is realized in a different technology, its energy performance must be
adapted to our reference technology, BCD at 90 nm.

5.2.1 eFPGA - Efficiency Model

The energy performance of the proposed eFPGA is based on the estimation of the
average power consumption PeFPGA. This estimation is performed on post-physical
synthesis with a parasitic back-annotation, using Synopsys PrimeTime-PX, while
the physical synthesis is performed in 90 nm BCD (LBCD) technology of STMicro-
electronics using Synopsys Design Compiler Graphical. The physical synthesis flow
adopted is industrially qualified by the foundry to correlate well with implementa-
tion (presented in Section 5.1.1) and silicon. In order to have a power consumption
really correlated with the application, it is considered a real switching activity, anno-
tating Value Change Dump (VCD) files during the device simulation and including
also Clock Tree Synthesis (CTS) power estimation. The power estimation PeFPGA is
performed considering 1.2 V of supply voltage VDDBCD at room temperature of 25
°C. Therefore, from the average power estimation PeFPGA, following the model in-
troduced in [36], we define the power density PdeFPGA as:

PdeFPGA =
PeFPGA

feFPGA
(5.1)

5.2. Energy and Latency Model 45

where feFPGA is the eFPGA operating clock frequency. The power density represents
the average energy per clock cycle of the eFPGA. Since all the simulations are per-
formed using the system introduced in Section 5.1.1, and reminding the proposed
system-on-chip architecture from Chapter 3, the eFPGA clock frequency feFPGA is
the PULPino clock frequency fPULP scaled by a factor ndiv. Consequently, multiply-
ing the power density for the number of clock cycles ntick needed to execute the task,
we obtain the eFPGA energy per task:

EeFPGA = PdeFPGA · ntick =
PeFPGA

feFPGA
· ntick (5.2)

In hardware programmable devices, ntick represents the latency in terms of clock
cycles and typically this kind of device updates the outputs in one clock cycle. Hence,
the latency in terms of time is the number of clock cycles per task times the clock pe-
riod.

5.2.2 PULPino - Efficiency Model

The energy performance of PULPino is estimate as the previous case of the eFPGA
since they are in the same hardware physical implementation. Thus, starting from
the PULPino average power estimation PPULP to execute a specific task, we define
the power density PdPULP as the power consumption and operating clock frequency
fPULP ratio:

PdPULP =
PPULP

fPULP
(5.3)

Considering the optimistic case that the processor executes one instruction per clock
cycle and hence, without considering possible pipeline stalls, the power density
PdPULP represents the average energy per instruction. Therefore, considering that the
processor executes ninsn number of instructions to execute e certain task, the average
energy per task is:

EPULP = PdPULP · ninsn =
PPULP

fPULP
· ninsn (5.4)

supposing the mentioned optimistic case of one instruction per clock cycle. Typi-
cally, in a microcontroller implementation, one tries to use as much as possible the
available peripherals in order to both reduce the power consumption and allow the
processor to execute other computations. Since peripherals are specific and slightly
configurable ASIC that they carry out their tasks more efficiently than a processor,
application designers tend to move the computation over them. But, usually pe-
ripherals are not able to perform tasks without any cooperation with the processor,
hence, interrupt-based paradigm is the most efficient way to manage the coopera-
tion between both. However, in an Interrupt Service Routine (ISR) there are both
prologue and epilogue to preserve the computation consistency, which means that
the processor has to save and/or reload relevant registers, manage the stack pointer
to avoid interrupt nesting.

46 Chapter 5. Application Analysis

From the assumption of one instruction per clock cycle, the PULPino latency in
terms of clock cycles is the number of instructions ninsn to be executed, and hence in
terms of time, the latency is the number of instructions times the clock period.

5.2.3 ASIC - Efficiency Model

The energy performances of the ASIC solutions are estimated as in the previous two
cases, starting from the ASIC power consumption estimation PASIC, based on a real
switching activity and annotating both parasitic and clock tree power consumption.
Then, the ASIC power density PdASIC is defined as:

PdASIC =
PASIC

fASIC
(5.5)

where fASIC is the ASIC operating working frequency. The power density represents
the average energy per clock cycle of the specific ASIC implementation. Hence,
similar to the eFPGA case, the ASIC average energy per task EASIC is the power
density times the number of required clock cycles to carry the task ntick:

EASIC = PdASIC · ntick =
PASIC

fASIC
· ntick (5.6)

For the ASIC latency are still valid the eFPGA considerations, hence, the ASIC
latency in terms of clock cycles is ntick, while in terms of time is the number of re-
quired clock cycles times clock period. Generally, in ASIC implementations, the
required clock cycle to perform a task is just one.

5.2.4 STM32 - Efficiency Model

The STM32 energy performances are performed from experimental measurements.
Figure 5.3 reports the measurement setup which is mostly based on the STMicro-
electronics X-NUCLEO-LPM01A. LPM01A is a dedicated system that provides the
power supply to the STM32 and it is also capable of measuring the current consump-
tion of STM32. Hence, as reported in Figure 5.3, we measure the average supply
current to execute the task, waking up the processor from sleep mode, and thus,
knowing the supply voltage, it is possible to compute the average power consump-
tion of the specific task PMEAS. Microcontroller is configured in low-power mode,
using a Multi-Speed Internal (MSI) clock in Range 3 at 524.288 kHz, with a supply
voltage of 1.8 V which corresponds to a core supply voltage of 1.2 V [14]. Since the
STM32 is realized in different technology compared to the solutions implemented in
BCD technology, it is needed to normalized the STM32 measurement data to BCD
technology. In this way, it will be possible to compare all the four implementations.
The STM32L152RE with the previous configuration works with a supply voltage of
1.8 V and its technology node LMEAS is at 130 nm. Whereas, BCD technology has a

5.2. Energy and Latency Model 47

Figure 5.3: Measurement setup and current profile. Reused from [1].

supply voltage VDDBCD of 1.2 V and the technology node LBCD is at 90 nm. There-
fore, through the generalized scaling theory [63] it is possible to scale the STM32
measured power consumption to the BCD, defining two scaling parameters, one
electrical κ, and one geometrical λ:

κ =
VDDMEAS

VDDBCD

=
1.8 V
1.2 V

λ =
LMEAS

LBCD
=

130 nm
90 nm

(5.7)

Hence, the STM32 measured power consumption PMEAS scaled to BCD technology
power consumption PSTM32 is:

PSTM32 =
PMEAS

λ · κ2 (5.8)

Again is possible to define the power density as power consumption PSTM32 (scaled
for BCD technology) over the operating clock frequency fSTM32 (which is 524.288
kHz):

PdSTM32 =
PSTM32

fSTM32
(5.9)

Then, considering the same optimistic hypotheses which are that processor executes
one instruction per clock cycle and its execution is pipeline stalls free, one can define
the STM32 average energy per task as:

ESTM32 = PdSTM32 · ninsn =
PSTM32

fSTM32
· ninsn (5.10)

48 Chapter 5. Application Analysis

where ninsn is the number of instructions needed to be executed to carry out the
specific task.

As for the previous PULPino case, STM32 latency, expressed in clock cycles, is
the number of instructions that have to be executed to perform the task (with the
same optimistic supposition of one instruction per clock cycle). While in terms of
time it is the number of instructions times the clock period.

As already mentioned, microcontrollers and especially commercial microcon-
trollers have a variety of dedicated peripherals such as Pulse-Width Modulation
(PWM) controller, timers, etc., in order to increase the system performance in terms
of power consumption and latency. In this way, it is possible to avoid the software-
programmable device computational model, while exploiting hardware devices since
dedicated peripherals tend to be “programmable” ASICs.

5.2.5 Energy Gain and Latency

As explained in Equation (5.2), (5.4), (5.6) and (5.10), both eFPGA and ASIC, and
PULPino and STM32 have the same computational model. The first couple is repre-
sentative of hardware implementation devices whereas the second one is for software-
programmable devices. The difference is the power density multiply factor that in
hardware-programmable devices is the number of clock cycles (which is typically
one) while in a processor implementations is the number of instructions to be exe-
cuted. Hardware implementations directly map in hardware the digital block with
no need to execute a set of sub-instructions to obtain the same results, as happened
for the software-programmable solutions. Therefore, considering the energy per task
and not the power consumption it is possible to compare the performances of differ-
ent solutions to carry out different applications. In order to qualify the performance
of the different implementations, especially to find out which one is the most effi-
cient solution in our proposed system-on-chip to manage a specific task, we define
the energy gain between PULPino and the eFPGA as follows:

EGAIN =
EPULP

EeFPGA
(5.11)

This model is clearly optimistic for PULPino because, in our estimation EPULP does
not take into account processor pipeline stalls, and it assumes that the microproces-
sor executes one instruction per cycle. This energy gain evaluates whether a specific
task is better handled in the eFPGA (used as a processor programmable peripheral)
when EGAIN > 1 or in the microprocessor EGAIN < 1. This energy ration can guide
the system application designer to an efficient task partitioning between the pro-
cessor and its configurable peripheral. In addition, for a SoC designer, the possible
energy gain can justify the non-negligible area overhead.

For a latency point of view, considering PULPino and the eFPGA working at
the same frequency, for a specific task the responsiveness gain is expressed with the

5.3. Application Results 49

processor number of instructions ninsn and eFPGA clock cycles ntick ratio. Hence, to
aim at a desired latency with PULPino, one can both:

• optimize as much as possible the execution code, even if it is not always pos-
sible;

• increase the operating clock frequency, keeping in mind that there is the phys-
ical upper limit of the maximum implementation frequency.

Regarding the eFPGA, one can just set the operating clock frequency since the num-
ber of clock cycles necessary for the task is usually one. eFPGA clock frequency, as
well as PULPino clock frequency, has the same upper limit which is the maximum
implementation frequency. Latency consideration too can address the system appli-
cation designer to the right task partitioning between PULPino and the eFPGA, and
justify the area overhead introduced by the eFPGA.

5.3 Application Results

In this section, we analyze different application domains starting from control ap-
plications, then streaming tasks and in the end ultra low-power application. Each
application kind has different peculiarities, for instance, control applications gener-
ate signal pattern at the outputs based on inputs. Hence, in this case, the compu-
tational base model is described through a Finite State Machine (FSM). Concerning
bitwise streaming applications, the key point is the continuous data stream which is
processed at a bit level. In ultra low-power tasks, the elaboration unit has to simple
manage data, reducing as much as possible the power consumption. The differ-
ent kinds of applications should fit with the different elaboration unit architectures.
Through the energy comparison, we evaluate how the proposed SoC is efficient in
managing different kinds of applications. In Table 5.2 are summarized all the data of
the different four considered devices (eFPGA, PULPino, ASIC and STM32) to man-
age different applications.

5.3.1 Control Applications

In control applications, the computational base model of the elaboration unit is de-
scribed through an FSM, since the elaboration unit has to generate specific patterns
at outputs based on the inlets. The required data processing is “simple” and it is
not needed high-density computing because the controller behavior is basically an
FSM, which updates the outputs (and the internal state) based on the inputs (and
the internal state). This kind of application typically interacts with the real physical
world since both inputs and outputs are from/to some physical quantities. Usu-
ally one wants to manage electrical quantities, such as average voltage or current
based on some kinds of input such as both user inputs and feedback sensor outputs

50 Chapter 5. Application Analysis

Table
5.2:A

pplications
R

esults.R
eused

from
[1].

A
pplications

PW
M

R
G

B
LED

BR
U

SH
ED

STEPPER
C

R
C

16
LFSR

W
U

R

eFPGA
feFPG

A
[M

H
z]

1.25
1.25

1.25
1.25

1.25
1.25

1.25
C

LBs
7

11
7

4
4

15
5

P
eFPG

A
[µW

]
20.86

28.45
22.75

21.86
64.85

110.95
34.05

P
d

eFPG
A

[µW
/M

H
z]

16.69
22.76

18.2
17.49

51.88
88.78

27.24
n

tick c
1

1
1

1
1

1
1

E
eFPG

A
[pJ]

16.69
22.76

18.2
17.49

51.88
88.78

27.24

PULPino

fPU
LP

[M
H

z]
10

n.a. a
10

10
10

10
n.a. b

P
PU

LP
[µW

]
984

n.a.
1082.5

1058.4
1050

886
n.a.

P
d

PU
LP

[µW
/M

H
z]

98.4
n.a.

108.25
105.84

105
88.6

n.a.
n

insn
c

77
n.a.

110
145

8
42

n.a.
E

PU
LP

[pJ]
7576.8

n.a.
11907.5

15346.8
840

3721.2
n.a.

ASIC

A
rea

[µm
2]

442.3
732.1

512.6
340.26

554.3
1174.4

367.7
Eq.gates

156
260

179
125

201
442

134
fA

SIC
[M

H
z]

10
10

10
10

10
10

0.1
P

A
SIC

[µW
]

2.67
3.73

2.41
4.19

11.3
29.3

0.0398
P

d
A

SIC
[µW

/M
H

z]
0.267

0.373
0.241

0.419
1.13

2.93
0.398

n
tick c

1
1

1
1

1
1

1
E

A
SIC

[pJ]
0.267

0.373
0.241

0.419
1.13

2.93
0.398

STM32

fSTM
32

[M
H

z]
0.524288

0.524288
0.524288

0.524288
0.524288

0.524288
n.a. b

P
STM

32
[µW

]
1.67

2.769
69.785

70.892
82.523

75.877
n.a.

P
d

STM
32

[µW
/M

H
z]

3.185
5.282

133.1
135.22

157.4
144.724

n.a.
n

insn
c

sleep
sleep

79
111

10
15

n.a.
E

STM
32

[pJ]
3.185

5.282
10515.24

15009
1574

2170.86
n.a.

a
PU

LPino
im

plem
entation

is
too

inefficient
b

µC
im

plem
entations

are
notused

for
ultra-low

-pow
er

applications
c

itcorresponds
to

latency
in

an
iso-frequency

case

5.3. Application Results 51

and hence, control applications are event-driven applications. As already said, con-
trol applications are related to the physical world, for instance, motor controllers,
smart-switches, switching regulators, etc., and therefore are smart power control
applications.

As it will be explained, PULPino is less efficient than the eFPGA in managing
simple finite state machines with few inlets/outlets and internal states since a micro-
processor is oversized for a simple FSM. While eFPGA maps the FSM in hardware,
the processor has to implement an FSM in software and hence, has to execute many
instructions just to update both the outputs and the internal state. In the processor
implementation, the whole processor pipeline has to work to manage the FSM and
thus, processor architecture plays an important role in overall efficiency. However,
processor at every clock cycle accesses to instruction memory to fetch instructions,
decodes and executes them, and potentially it might have to read and write-back
data with bigger parallelism than the required by the finite state machine. Since con-
trol applications are event-driven ones, the most efficient way to implement them
with a microprocessor is based on the interrupt paradigm, coupling peripherals and
when it is necessary the processor. Using an interrupt paradigm one optimizes the
power consumption, but on the other hand, inefficient factors remain. Interrupt Ser-
vice Routines (ISRs), which are activated when necessary, manage the task but, to
preserve the computation consistency they have both prologue and epilogue sub-
stantially affecting the power consumption [36].

The considerations regarding the latency are still valid. The latency is related to
both the clock period and the number of required clock cycles to execute the task,
hence, hardware-based solutions are more reactive than software-programmable so-
lutions, since they respond in just 1 cycle. Therefore, in an iso-frequency case, the
processor has to increase its operating clock frequency by an ' ninsn (number of
executed instructions) factor (assuming the execution of one instruction per cycle),
which results in a straightforward drawback in terms of power consumption.

As control application testbenches are considered a Pulse-Width Modulation con-
troller, an RGB LED controller and both brushed and stepper motor controllers.

Pulse-Width Modulation

Pulse-Width Modulation (PWM) is widespread (due to its simplicity) technique to
modulate physical quantity. It consists of the generation of rectangular wave and
through the duty cycle, one can modulate the average value of the physical quantity
as schematized in Figure 5.4. In general, one can define the period and the duty cycle
of the signal.

As testbench, we implement a PWM controller with 8-bit programmable period
and duty cycle. This controller is described in HDL code and synthesized in an ASIC
solution. As reported in Table 5.2, the ASIC version of the PWM controller has a di-
mension of 442.3 µm2 which corresponds to 156 equivalent gates and an operating
clock frequency of 10 MHz. The same controller HDL code is synthesized in the

52 Chapter 5. Application Analysis

Figure 5.4: PWM signals and corresponding average value with dif-
ferent duty cycles: 25%, 50% and 75%.

eFPGA using 7 of the 16 available CLBs. In PULPino implementation the PWM con-
troller is implemented using two timers to generate the timing and the interrupt con-
troller since PULPino does not have a dedicated PWM peripheral. When the timers
finish the count, the interrupt controller generates an interrupt and then, the proces-
sor in the Interrupt Service Routines (ISRs) manages the outputs. Microprocessor,
when it is not executing the ISRs, is in sleep mode to reduce power consumption.
PULPino is designed targeting a clock frequency of 50 MHz, but now, the operating
clock frequency is 10 MHz. The eFPGA operating clock frequency feFPGA is scaled
from the PULPino clock frequency by a factor ndiv of 8 and hence, it is 1.25 MHz.
STM32 is an example of a commercial microcontroller equipped with different pe-
ripherals including the PWM ones, useful to perform a comparison with devices
available on the market. We measure the power consumption of the STM32L152RE
which is an ultra low-power microcontroller as reported in Figure 5.3. Initially, we
perform the measurements with processor in low-power sleep mode and the GPIOs
in analog mode and then activating only time 3 (TIM3) used for timing generation
and GPIO port B to generate the output signal. The power consumption change is
due to the peripheral operation to generate the PWM signal. Naturally, the mea-
sured power consumption is scaled in BCD through equation (5.8).

Therefore, the resulting energies per task for the different solutions are 0.267 pJ
for ASIC, 16.69 pJ for eFPGA, 7576.8 pJ for PULPino and 3.185 pJ for STM32L152RE
as summarized in Table 5.2. Clearly, ASIC implementation has the best achievable
performance but, on the other hand, it is not reconfigurable. The PWM peripheral
lack in PULPino has really strong impact on the inefficiency of the system, since pro-
cessor has to wake up from sleep mode to execute the interrupt service routines, and
hence, it has to fetch, decode, execute, read/write data just only to update few bits
of the FSM that manage the PWM controller. As expected the eFPGA fits better than

5.3. Application Results 53

PULPino the FSM achieving an energy gain EGAIN (equation (5.11)) of 454. The us-
age of a commercial solution, in this case, yields good energy performance since the
employed peripheral tends to an ASIC implementation enhanced with some con-
figuration parameters. Typically these kinds of microcontroller peripherals can be
configured but just only for a specific function and not fully-configured as an eF-
PGA.

RGB LED Controller

This application testbench is an extension of the previous one since an RGB LED
controller has to manage the three components of the color, Red, Green, and Blue.
Hence, the easiest way to modulate the color contribution is through a PWM signal
[64]. Therefore, the RGB LED controller has three PWM controllers one for each
color component and thus, the application analysis is similar to the previous one.

The designed controller has 3× PWM controllers with an 8-bit programmable
duty cycles each and 8-bit programmable period common to every color. The con-
troller described in the HDL code implemented in ASIC has an area occupation of
732.1 µm2 resulting in 260 equivalent gates. The same HDL code synthesized in the
eFPGA occupies 11 CLBs. The RGB LED controller is not implemented in PULPino
since the lack of the required peripherals results in a too inefficient implementation,
which implies the processor busy all the time in managing the three PWM signals.
The usage of a processor just to realize three PWM signals produces a straightfor-
ward energy waste. On the other hand, the STM32 implementation is very efficient
thanks to the exploitation of the hardware peripherals. For this testbench, we follow
the approach of the previous application to compute the STM32 energy per task,
keeping the microprocessor in low-power sleep mode and using a timer peripheral
(TIM4) to generate the timing for the three channels, and the GPIO port B to manage
the outputs and inputs.

The ASIC, first in class, has an energy per task EASIC of 0.373 pJ, 22.76 pJ for the
eFPGA EeFPGA and 5.282 pJ for the STM32 ESTM32, as reported in Table 5.2.

Brushed Motor Controller

Brushed motors are DC motors extensively used in different application domains.
Since they are DC motors, they are usually driven through half or full H-bridge cir-
cuits [65]. As well known, this kind of circuit allows the motor to run forwards
or backwards inverting the current direction. The H-bridge is historically realized
in discrete components but now, several semiconductor companies are developing
dedicated integrated circuits with both logic controller and power devices and not
just only the digital controller. In this testbench, we consider as actuation circuit the
full H-bridge since for the half H-bridge are valid the same considerations. The dig-
ital controller has to generate the signal patterns for the four transistors composing
the full H-bridge. In Figure 5.5(a) are reported the required signals for running mode

54 Chapter 5. Application Analysis

0

0

1

1 0

0

Forward

Reverse

0

0

0

1 1

0

Coast

Brake

0

0

(a) (b)

Figure 5.5: Brushed controller H-bridge operating modes. (a) for-
ward - red - and reverse - blue - mode. (b) coast - red - and brake -

blue - mode. Picture reused from [1].

in forward and reverse directions (chosen through an input). Applying a PWM
signal one can modulate the motor speed acting on the duty cycle. Figure 5.5(b)
describes two stopping techniques, in brake mode, the motor is abruptly stopped
whereas in coast mode it is free to relax. This controller has a PWM controller ex-
tended with a more complex finite state machine that has to handle the full H-bridge
transistors based on the desired running and stopping mode. The designed brushed
motor controller has a PWM generator with both an 8-bit programmable both period
and duty cycle and the finite state machine to manage all the full-bridge signals.

The digital controller designed in HDL implemented in an ASIC solution has
an area occupation of 512.6 µm2 which corresponds to 179 equivalent gates with an
operating frequency of 10 MHz. The same HDL code synthesized in the eFPGA oc-
cupies 7 CLBs and the operating clock frequency of the eFPGA is set at 1.25 MHz.
The PULPino implementation is based on an interrupt paradigm and it uses timers
to generate the timing for the PWM signal, GPIOs to handle both inputs and out-
puts and interrupt controller for the interrupt management. PULPino microproces-
sor has to execute 110 assembly instructions just to update the finite state machine
states. The same approach is used for the STM32 implementation, using GPIO, in-
terrupt controller and a timer peripheral. In this implementation, the processor has
to execute 79 assembly instructions to update the FSM.

As reported in Table 5.2, the energy per task of the ASIC implementation EASIC

is 0.241 pJ, while eFPGA energy per task EeFPGA is 18.2 pJ. Both microcontroller so-
lutions are comparable since they have quite similar architecture, both are based on
Harvard architecture and the RI5CY core ha 4-stage RISC pipeline while the ARM
Cortex-M3 has 3-stage RISC pipeline [66]. Therefore, they have a comparable num-
ber of assembly instructions to handle the FSM and a similar energy per task which
is 11907.5 pJ for PULPino and 10515.24 pJ for the STM32. In this testbench, the
achieved eFPGA energy gain over PULPino is 654.

5.3. Application Results 55

!C !D

C

(a) (b)

D

A B

!A !B

A B C D

Figure 5.6: Driver circuits for stepper motors. Two full H-bridges - re-
spectively red and blue inputs - for bipolar stepper motors (a). Tran-
sistor scheme for unipolar stepper motors (b). Picture reused from

[1].

Stepper Motor Controller

Stepper motors are brushless DC electric motors [67] and their full rotation is divided
into equal steps, and the controller has to drive every single step and therefore, they
are usually driven in open-loop configuration without negative feedback. Typically
there exist two-phase stepper motors, the bipolar one and the unipolar one. Both
bipolar and unipolar stepper motors have the same digital controller but different
actuation circuit. In Figure 5.6(a) are reported two (the first one has red inputs while
the second one has blue inputs and !x is the Boolean operation not(x)) full H-bridge
circuits for bipolar stepper motors, since they have two coils. Figure 5.6(b) shows an
actuation circuit for unipolar stepper motors which have 4 coils. Through different
control techniques, one can modulate the torque and the angular resolution while
the frequency impacts the motor speed. In Figure 5.7 are reported the considered
control modes where the blue letters are for bipolar stepper motor and the red are
for unipolar motors.

• In full-step mode (Figure 5.7(a)) one has always two phases on, and hence the
motor provides the maximum rated torque.

• In half-step mode (Figure 5.7(b)) the actuation circuit alternates between two
phases on and a single phase on increasing the angular resolution but reducing
the available torque.

• In wave-drive mode (Figure 5.7(c)) the motor has always just a phase on, in-
volving a torque reduction.

When a stop input is activated, the controller generates no more signals even though
one or two remain active, depending on the selected control policy. Thus, in order to

56 Chapter 5. Application Analysis

(b)

(a)

(c)

A-A

B-C

C-B

D-D

A-A

B-C

C-B

D-D

A-A

B-C

C-B

D-D

Figure 5.7: Signals patterns for unipolar - red - and bipolar - blue -
for: full-step (a), half-step (b) and wave-drive control modes. Picture

reused from [1].

5.3. Application Results 57

avoid motor short circuit current while keeping the torque, a PWM signal is applied
to the active phases.

The designed controller works for the mentioned control policies and it has an
8-bit programmable PWM both period and duty cycle. The ASIC implementation
of the stepper motor controller has an area occupation of 340.26 µm2, which cor-
responds to 125 equivalent gates. The same HDL code synthesized in the eFPGA
occupies 4 CLBs of the 16 available. Since time unit is important, one can set the
controller time resolution (vertical grey dashed line of Figure 5.7) acting on the eF-
PGA prescaler. In the PULPino solution, it is used the previous methodology, timers
are used to generate the time unit and the processor manages the finite state ma-
chine. GPIOs are necessary for input and output ports, and the interrupt controller
handles the interrupts generated by the timers and the GPIOs. PULPino core to han-
dle the FSM state executes 145 assembly instructions. In the STM32 implementation,
the approach is the same, the timer generates time resolution, the GPIOs handle in-
lets and outlets and the interrupt controller allows the core to be in sleep mode. In
this case, the core has to execute 111 assembly instructions to manage the finite state
machine.

As reported in Table 5.2, the equivalent ASIC energy per task EASIC is 0.419 pJ,
while for the eFPGA is 17.49 pJ. As already mentioned, both microcontroller imple-
mentations have comparable architecture, and sure enough, they have similar en-
ergy performance. PULPino implementation has an energy per task EPULP of 15346.8
pJ, whereas STM32 has 15009 pJ of energy per task. For this testbench, the energy
gain EGAIN between eFPGA and PULPino is 877.

5.3.2 Bitwise Streaming Applications

Bitwise streaming applications have to elaborate data applying some kind of oper-
ation. In this case, the system has a structure of data flow, unlike the previous case
where the computational base model is a finite state machine. A microprocessor
has an intrinsic data flow structure in its pipeline where data are elaborated. On
the other hand, hardware-paradigm devices must be configured to execute specific
operations. In this case, microprocessors exploit their structure better than in the
case of control applications, especially if the required operations are available in the
processor instruction set architecture. As bitwise streaming application testbenchs,
we consider both an error-detecting code generator (Cyclic Redundancy Check) and
pseudo-random number generator. Both of them are typically used in cryptography,
memories and storage devices, and communication protocols.

Cyclic Redundancy Check

Cyclic Redundancy Check (CRC) is an error-detecting code widespread used in dif-
ferent applications. In this testbench, we consider the CRC16 with a programmable
polynomial. For the performance estimation, we use the polynomial x16 + x15 + x2 +

58 Chapter 5. Application Analysis

x0 used in both industrial communication protocols such as Modbus and the USB.
In order to perform CRC computation, the elaboration unit has to execute both xor
and shift operations on the data.

The ASIC implementation of the CRC16 has an area occupation of 554.3 µm2

which corresponds to 201 equivalent gates. The same HDL code synthesized in the
eFPGA uses 4 CLBs of the 16 available, generating CRC at every clock cycle. In the
case of PULPino implementation is used a fast-CRC algorithm based on hash tables
[68] which uses 8 assembly instructions ninsn. The same approach of a hash table
is used for the STM32 implementation which corresponds to 10 required assembly
instructions ninsn.

As reported in Table 5.2, the ASIC implementation energy per task EASIC is 1.13
pJ, which is slightly higher than the previous cases. Since the ASIC area occupation is
almost the same (and hence, the power consumption due to the leakage current), the
energy increase is due to the increase in switching activity. Obviously, the ASIC im-
plementation is still the best in terms of performances, but if one wants to change the
data-width or the CRC polynomial, it has to redesign and refabricate the integrated
circuit. The same thing happens to the eFPGA. In this case, the eFPGA uses the
same number of CLBs of the stepper motor controller but consuming more power
because is increased the switching activity. In the stepper motor case just a few bits
of the FSM switch at the same time while in this testbench more bits are changing.
The resulting eFPGA energy per task EeFPGA is 51.88 pJ. Processor implementations
have almost constant power consumption when the pipeline is working, and then,
the assembly instruction number impacts on energy efficiency. PULPino energy per
task EPULP is 840 pJ while for the STM32 solution ESTM32 is 1574 pJ. The achieved
energy gain EGAIN between the eFPGA and PULPino is 16, which is smaller than
that reached in the previous testbenches of control applications. For the processor
implementations, supposing the execution of one instruction per clock cycle, in or-
der to obtain the same throughput of the eFPGA, the processor clock frequency fCPU

should be:
fCPU =

feFPGA

ntick
· ninsn (5.12)

where ntick is the number of required clock cycles to execute the task (which is typ-
ically 1), and ninsn is the number of the required Central Processing Unit (CPU) as-
sembly instructions to execute the same task.

Pseudo-Random Number Generation

The pseudo-random number generation is a methodology to generate a sequence of
numbers using mathematical algorithms. One of the easiest algorithm to generate
pseudo-random numbers is based on Linear Feedback Shift Registers (LFSRs). The
pseudo-random number generator designed is a 16-bit LFSR.

The ASIC implementation has an area occupation of 1174.4 µm2 which corre-
sponds to 442 equivalent gates. In this case, the area occupation is bigger than the

5.3. Application Results 59

D Q

CK

D Q

CK

D Q

CK

D Q

CK

D Q

CK

D Q

CK

D Q

CK

D Q

CK

IN

THR

OUT

Figure 5.8: Wake up radio correlator architecture. Picture reused from
[1].

previous cases since the task complexity is higher. The same ASIC HDL code is
synthesized in the eFPGA and it uses 15 CLBs of the 16 available CLBs. The micro-
controller approach is the same followed in the previous testbench, which is based
on the fast-LFSR algorithm using hash tables. PULPino solution needs of 42 assem-
bly instructions to generate a pseudo-random number, while the STM32 uses just 15
assembly instructions.

As reported in Table 5.2 the ASIC power consumption PASIC is increased becom-
ing 29.3 µW compared to the previous testbenches. The ASIC area occupation is
increased too and hence, also the contribution to the power consumption due to the
leakage power should be increased. However, in this technology (90 nm BCD tech-
nology) the power consumption due to the leakage is negligible, for instance, in this
case of the overall power consumption (of 29.3 µW) just 10.3 nW is due to power
leakage which is almost the 0.035%. The corresponding ASIC energy per task EASIC

is 2.93 pJ. The eFPGA implementation has an energy per task EeFPGA of 88.78 pJ,
while the microcontroller implementations have 3721.2 pJ PULPino energy per task
EPULP and 2170.86 pJ STM32 energy per task ESTM32. In this case, the energy gain
between the eFPGA and the PULPino EGAIN is 42 which is again smaller than con-
trol applications. For a throughput point of view, it is still valid the equation (5.12),
and hence, to reach the same eFPGA throughput, PULPino should have a clock fre-
quency of the eFPGA multiplied by an ninsn factor.

5.3.3 Ultra Low-Power Applications

In ultra low-power applications the main goal is to have the smallest reachable
power consumption. For this reason, the most used devices are ASICs designed
for a specific application avoiding the usage of software-programmable devices that
are not appealing due to their energy inefficiency. As analyzed in the next chapter,

60 Chapter 5. Application Analysis

nowadays, the aim is to connect everything to each other, and hence, is required
excellent energy performance. In order to optimize the power consumption of each
node, the communication interface can be switched off when is not required since it
strongly affects the overall system power consumption. As shown in [69], a wake
up radio (WUR) which is an always-on minimalist radio interface capable of recog-
nize a simple message and wake up the sleeping system. For instance, the designed
controller receives the bitstream from the analog front-end (presented in the next
chapter and in [69]) and it is able to detect an 8-bit word. In Figure 5.8 is reported
the architecture of the proposed digital correlator. The correlator is capable to com-
pare 8-bit of the serial received bitstream with a predefined “keyword” through xor
gates. The xor outputs are connected to a “checker” block which is a combinational
logic circuit and it counts how many xor gates have “1” at the output. The count
of how many “1”s are at xor outputs means how many received bits are equal to
the keyword. Then, if the number of “1”s at xor outputs is greater than a defined
threshold (programmed with THR of Figure 5.8), the correlator generates a wake up
signal (blue line of Figure 5.8) for the node elaboration unit. Since the bit rate of the
analog front-end presented in the next chapter and in [69] is 1 kHz (chosen to reduce
the dynamic power consumption), the designed ASIC targets a clock frequency of
100 kHz. As reported in Table 5.2, the ASIC area occupation is 367.7 µm2 resulting
in 134 equivalent gates. The same controller HDL code synthesized in the eFPGA
uses 5 CLBs of the available 16.

The ASIC energy per task EASIC, which is an 8-bit comparison is 0.398 pJ. Obvi-
ously, this implementation is the best from both energy performance and area occu-
pation points of view, even though it has not any reconfigurable features (useful to
upgrade the node during its operating life especially in a remotely way). The same
controller represented in Figure 5.8 synthesized in the eFPGA requires an energy
EeFPGA 27.24 pJ to compare 8 bits.

5.4 Results and Discussion

In this section we discuss the data obtained in the previous section, focusing on both
energy and latency performances.

5.4.1 Energy Efficiency Consideration

The overall energy data obtained in the previous section (and summarized in Ta-
ble 5.2), for each testbench and each elaboration unit implementation, are reported
in Figure 5.9. Figure 5.9 shows the energy per task of ASIC, eFPGA, PULPino and
STM32 for the considered applications. The chart highlights how different architec-
tures impact on energy performance.

As well known, ASIC implementation has the best performance in terms of en-
ergy efficiency since the specific circuit is designed and optimized for the specific

5.4. Results and Discussion 61

Energypertask[pJ]

1e
-0
1

1e
+
00

1e
+
01

1e
+
02

1e
+
03

1e
+
04

1e
+
05

A
p
p
li
ca
ti
o
n

PW
M

LE
D

B
R
U
SH
ED

ST
EP
PE
R

C
R
C
16

LF
SR

W
U
R

eF
PG
A

PU
LP
in
o

A
SI
C

ST
M
32

Fi
gu

re
5.

9:
Th

e
en

er
gy

ef
fic

ie
nc

y
de

ri
ve

d
fr

om
eq

ua
ti

on
s

(5
.2

),
(5

.4
),

(5
.6

)a
nd

(5
.1

0)
-i

n
lo

g
sc

al
e

-a
nd

re
la

te
d

by
nu

m
be

r
of

bo
th

C
LB

s
an

d
in

st
ru

ct
io

ns
to

ca
rr

y
ou

tt
he

re
qu

ir
ed

fu
nc

ti
on

al
it

ie
s.

Pi
ct

ur
e

re
su

ed
fr

om
[1

].

62 Chapter 5. Application Analysis

task. Because of this reason, the energy per task is increasing with the required
computational complexity, as visible in the chart, impacted by the switching activity
and not by leakage power (for the considered 90 nm BCD technology). Indeed, as
reported in Figure 5.9 (dotted bars) and Table 5.2, from control applications to bit-
wise streaming applications, the energy per task increases, due to an increase in the
switching activity. Since the computational base model of control applications is a
simple finite state machine with few bits changing at the same time, whereas is a
data flow for bitwise streaming applications. ASIC is the best in class and hence, it
is impossible to exceed its energy performance.

The eFPGA has the same behavior of the ASIC, its average power consumption
PeFPGA is related to both application complexity and its switching activity, as shown
in Figure 5.9 (solid bars) and Table 5.2. Therefore, the eFPGA power consumption
PeFPGA goes from 20.86 µW (for simple PWM application) to 110.95 µW (for the more
dynamic and larger LFSR application) which corresponds to around a 5× increase.
The power consumption and hence, the energy per task of both the hardware-based
devices, ASIC and eFPGA, follow the same trend as visible in Table 5.2. The eFPGA
due to its reconfigurability has a power and energy overhead, which is the offset
between the two hardware implementation.

On the other hand, the microprocessor has a fixed structure designed to execute
instructions. At every clock cycle, a processor fetches an instruction from the in-
struction memory, decodes the instruction, executes it and eventually saves data.
Therefore the microprocessor power consumption is almost constant especially for
single-datapath RISC processor since all the pipeline stages are working, however,
the power consumption is not far from to be dominated by the instruction memory
access. As shown in Table 5.2, the power consumption of both microcontroller im-
plementations PPULP and PSTM32, is almost constant when the processor is working
and it is in average 1012.18 µW for PULPino (considering all the available applica-
tions) and 74.77 µW for STM32 (without taking into account both PWM controller
and RGB LED controller since the processor is in sleep mode). Evidently, the dif-
ference in power consumption between the two microcontroller implementations
is due to the difference in the operating frequency, which is 10 MHz for PULPino
fPULP, and 524.288 kHz for the STM32 fSTM32. Therefore, if the average power con-
sumption is constant, the energy per task is not constant and it strongly depends on
the number of executed assembly instructions, as shown in Table 5.2, which defines
how many clock cycles the pipeline has to work, and hence, using energy. For this
reason, it is important how the instruction set architecture tailors the applications.
As highlighted before, the energy per task of the eFPGA increases going from control
applications (based on finite state machine) to bitwise streaming applications (based
on a data flow model). On the contrary, microprocessors decrease their energy per
task from control applications to streaming applications as visible in Figure 5.9 (di-
agonal bars for PULPino). In control applications, microprocessors have to execute

5.4. Results and Discussion 63

Table 5.3: eFPGA - PULPino Energy Gain. Reused from [1].

Applications
PWM Brushed Stepper CRC16 LFSR

EGAIN 454× 654× 877× 16× 42×

Figure 5.10: Energy gain - in log scale - defined by equation (5.11)
for applications implemented in both eFPGA and PULPino. Picture

reused from [1].

more instructions than necessary due to the prologue and epilogue of the proces-
sor routines as introduced in [36]. This instruction overhead is inevitable since the
processor has to preserve the computation consistency.

The energy per task gap between eFPGA and PULPino is hence bigger in control
applications and it reduces in bitwise streaming applications as shown in Figure 5.9
and Table 5.2. This energy gap is defined as an energy gain through the equation
(5.11). The energy gain for each application is summarized in Table 5.3 and reported
in Figure 5.10. Data highlight that for control applications the processor is certainly
oversized, developing in time what it can not do in space. That means the processor
has to execute many instructions if it has not available a specific instruction for the
task. The processor time exploitation results in a decrease in energy performance.
Whereas, on streaming applications processor can needless instructions to perform
a more complex computation than just a check and a bit update. On the other hand,
embedded FPGA develops in space the task, and hence, in this case, the limitation is
the device size. In the right side of Figure 5.10 is well shown how the small eFPGA

64 Chapter 5. Application Analysis

dimension fits better control application, reaching high energy gain. Therefore, for a
system-on-chip designed for smart power applications, this energy gain justify the
area overhead introduced by the eFPGA peripheral. Besides, Figure 5.10 reveals how
should be the task partitioning in the proposed heterogeneous system-on-chip com-
posed of PULPino and its reconfigurable peripheral eFPGA. The control application
should be managed by the eFPGA while all other computations by the microcon-
troller.

The STM32 is a processor implementation and hence, its efficiency is related to
the number of required assembly instructions, since its power consumption is almost
constant when the processor is working. However, STM32 implementation high-
lights, as shown in both Table 5.2 and Figure 5.9 (crossbars), how the exploitation of
a dedicated peripheral allows the system to strongly increase the performance. This
happens because dedicated peripherals tend to be almost ASIC implementation. For
instance, in both PWM and RGB LED testbench, the STM32 uses entirely dedicated
peripherals achieving good performance worse than real ASIC but better than eF-
PGA, since the processor is in sleep mode. On the other hand, when is required
the processor activity to handle the finite state machine, the performance is deteri-
orated. However, one may conceivably replace some dedicated peripherals (such
as timers, PWM controllers, small pre/post-processing accelerators) with a more re-
configurable peripheral like the proposed embedded FPGA, extending the usage of
peripherals instead of a processor for different kinds of application, which proves
more efficient in some cases [1].

5.4.2 Latency Consideration

From a latency point of view, we consider the time required to update the outputs
of the digital controller. As already introduced, hardware-based devices respond
in typically one clock cycle (ntick = 1) since their structure directly maps digital
controller in hardware.

Software-programmable device latency, supposing they execute one instruction
per clock cycle, which is slightly optimistic, is related to the number of executed as-
sembly instructions (ninsn). Hence, the microprocessor implementation latency, as
well as energy performance, is related to the instruction set architecture. Therefore,
the usage of dedicated hardware peripheral allows the system to achieve just one
clock cycle latency. For that reason, the eFPGA addition as a reconfigurable periph-
eral could enhance the latency performance of the system, using just only the eFPGA
without any cooperation with the processor as schematized in Figure 5.11.

In Figure 5.11 using the values reported in Table 5.2 for all applications, we con-
sider the eFPGA latency as reference (black trace with triangles). PULPino with
the same eFPGA operating clock frequency (iso-frequency) has a latency, in terms
of clock cycle referred to the eFPGA, which is equal to the number of executed as-
sembly instructions ninsn and it is reported in the chart in red trace with circles. In

5.4. Results and Discussion 65

Figure 5.11: PULPino and eFPGA latency (in clock cycles) for the ap-
plications under analysis. Picture reused from [1].

this case, the PULPino latency is ninsn times the eFPGA latency. The correspond-
ing PULPino latency of Table 5.2 (where the PULPino operating clock frequency is 8
times the eFPGA operating clock frequency) is reported in Figure 5.11 with blue trace
with diamond symbols. Therefore, in order to improve the PULPino latency perfor-
mance, one has to increase the PULPino operating clock frequency with a straightfor-
ward drawback in terms of power consumption. To reach the same eFPGA latency
performance, PULPino operating clock frequency should be the eFPGA operating
clock frequency multiplied by ninsn factor, and more in general should be equal to
fCPU reported in equation (5.12). However, it is possible to increase the PULPino
operating clock frequency just until its maximum frequency which is the green trace
with square symbols in Figure 5.11. The filled region of Figure 5.11 represents the
“unreachable latency” zone. This area is out of the PULPino domain since the re-
quired clock frequency upscaling is over the implementation frequency.

5.4.3 Implementation Solutions Under Analysis

For a qualitative analysis of the considered implementation solution performances,
we evaluate:

• the configurability allows one to reuse the device for different applications. In
this way, a microelectronics company can produce one component covering
different application fields. As well known, configurability impacts directly

66 Chapter 5. Application Analysis

on the area occupation of the device. Besides, configurability affects the per-
formance of the device in terms of both power consumption and latency.

• The area occupation mainly depends on the configurability features of the de-
vice. Certainly, it affects the device cost and hence, the possible market.

• The efficiency depends primarily on both the computation base model and the
application requirements.

• The latency depends directly on the computational base model too. As shown
in the previous sections and chapters, hardware-paradigm devices allow the
system to reach the best performance in terms of latency.

As explained in the following, all these features are summarized in charts for each
implementation solution in order to give a qualitative idea of the specific device
capabilities. The chart scales go from 1 to 10, and as bigger are the numbers as the
device under analysis has better performances. It does not exist a unique choice,
and one should decide its strategy based on both application needs and its available
resources. We summarize all these four features for all the considered elaboration
unit architectures.

Microcontroller Implementation

Microcontrollers as already shown, combine software-programmable features with
some dedicated hardware peripherals. In Figure 5.12 are summarized the main four
features of a device. Both microcontrollers PULPino and STM32 have very good per-
formance in terms of configurability. They have software-programmable features
and hence, they provide the easiest programmable features. Therefore, the main
microcontroller feature, as reported in Figure 5.12, is the ease of use and then, its
general-purpose characteristic. However, it has not all the programmable features
since it can not implement an elaboration unit based on a hardware-paradigm. In
terms of area occupation, microcontrollers have a medium impact and it can be re-
duced designing easier microprocessor architectures. As shown in the previous sec-
tion, microcontroller latency and efficiency performances are not good, especially in
the smart power arena. As already shown both efficiency and latency are related to
the number of assembly instructions ninsn. In order to improve the microcontroller
area occupation, researchers have been developing easier microprocessor architec-
tures, reducing, for instance, the number of pipeline stages. In this way, the area
occupation is strongly reduced with a straightforward negative impact on both la-
tency and energy efficiency, since the processor needs both more clock cycles and
perhaps more assembly instructions to execute the task.

5.4. Results and Discussion 67

Figure 5.12: Microcontroller PULPino and STM32 implementation
features.

68 Chapter 5. Application Analysis

Figure 5.13: Proposed eFPGA implementation features.

5.4. Results and Discussion 69

Figure 5.14: ASIC implementation features.

eFPGA Implementation

The proposed eFPGA has a very small dimension, around 1-kilo equivalent gates
and its features are reported in Figure 5.13. For this reason, its programmable capa-
bility is very limited, especially compared to both a general-purpose microprocessor
solution and a standalone or embedded FPGA tailored for high-density computing.
Due to its synthesizability characteristic, the area occupation is not negligible and it
is almost comparable to the PULPino core area occupation. Since it is a hardware-
programmable device, it can reach excellent performances in terms of both latency
and energy efficiency better than processor, particularly in smart power applica-
tions. The reconfigurability slightly affects the efficiency, since the device has a cir-
cuit overhead in order to guarantee the configurability. The configurability affects
also the device reachable latency in terms of time since the eFPGA critical path is
slower than an ASIC implementation due to the presence of additional circuits for
the reconfigurability.

70 Chapter 5. Application Analysis

Figure 5.15: Proposed SoC implementation features.

ASIC Implementation

As well known, ASIC is the best solution in terms of area occupation, energy effi-
ciency and latency as reported in Figure 5.14. The reason is that ASICs are realized
optimizing the circuits required to implement a specific digital circuit. In this way,
ASICs totally lose any reconfigurability features and this makes ASICs appealing
just for certain kinds of markets.

Proposed SoC Implementation

The proposed system-on-chip composed of PULPino microcontroller and our pro-
posed eFPGA as a reconfigurable peripheral combines the features of the single so-
lutions at the expense of the area occupation, as reported on the chart of Figure 5.15.
The combination of both devices increase the reconfigurability of the system-on-
chip, and therefore, its reusability in different application scenarios. In this way, the
system is provided with both software-programmable and hardware-programmable
features and hence, the system application designer can partition the task using the
most efficient solution. PULPino and eFPGA union has a straightforward benefit in
terms of energy efficiency thanks to a careful task partitioning, which can impact

5.4. Results and Discussion 71

directly the latency performance of the system-on-chip. As summarized in Table 5.2
and Figure 5.10, one can use the eFPGA to manage more efficiently smart power
applications and guaranteeing better latency performance. In the meanwhile, the
processor can handle other kinds of computations that fit better its structure such
as operations mapped in its instruction set architecture. Somehow, the proposed
system-on-chip represents the opposite of an ASIC implementation as visible in Fig-
ure 5.15 and in Figure 5.14. Both of them achieve excellent performances in terms
of latency and energy efficiency targeting respectively configurability (the proposed
SoC) and the best area occupation (ASIC implementation).

73

Chapter 6

Wake Up Radio

Most of the material reported in this chapter is reused from [69] (©2018 IEEE), in agreement
with IEEE copyright policy on theses and dissertations.

This chapter presents a technique to reduce the power consumption of the com-
munication interface of Figure 2.4. In the previous chapters we have analyzed tech-
niques, in terms of elaboration unit architecture to optimize the computational unit
performance. We consider now the communication interface in order to reduce its
power consumption making the proposed SoC of Figure 2.4 appealing for the IoT
scenario. On top of the chosen radio communication protocol, we have developed
a dedicated circuit that reduces the power consumption of the communication in-
terface during the node listening phase. Hence, it is presented a wake up radio
integrated circuit developed in 90-nm BCD technology by STMicroelectronics. The
reason which induces the wake up radio usage and the proposed wake up radio ar-
chitecture are introduced . This chapter is the result of the collaboration with other
researchers and Ph.D. students in our laboratory. The contribution of this thesis is
the design of some wake up radio blocks through a full custom design methodology.

6.1 ULP Communication Techniques

In the IoT scenario, the ultra low-power design techniques are the key enabling tech-
nologies for its diffusion. Coming back to Figure 2.1, ULP technologies should be ap-
plied to every end-node blocks. In this chapter is proposed a ULP technique for the
communication side of the IoT node in an integrated circuit solution. Since the wire-
less communication unit is one of the subsystems with the highest power consump-
tion, the main idea is to reduce the communication activities [70]. A well-known
communication activity reduction technique is Duty Cycling (DC) while wake up
radio is one of the emerging technologies.

• Duty Cycling consists in periodically turning off the wireless transceiver based
on either fixed or variable timing schedule. In this way, the energy saving is
considerable because the listening phase power consumption (without trans-
mitting any data) is substantially reduced, but on the other hand, the com-
munication latency is notable. In addition to the latency increase, DC does

74 Chapter 6. Wake Up Radio

Figure 6.1: System architecture with WUR.

not eliminate potential useless listening procedures resulting in wasted power
consumption [71].

• Wake up radio change the communication unit architecture in terms of both
structure and protocol. WUR is an additional always-on radio which duty
is to always listen to the communication channel, while the main radio is
switched off and the elaboration unit can be switched in sleep-mode in or-
der to minimize the power consumption. In this way, wake up radio must
be an ultra low power radio capable only to detect the wake up signal (using
eventually some kind of addressing technique) on the communication channel
and then generate the wake up signal to the elaboration unit. This approach
enables asynchronous communication architectures improving system energy
efficiency since both the main radio and elaboration unit work only when it
is really necessary. WUR can share the physical channel with the main radio
and it typically uses On-Off Keying (OOK) modulation since the demodulator
(inside the WUR) requires low power consumption [72]. Since long-range com-
munication protocols are becoming popular and they use a carrier frequency
of 868 MHz, WURs use this frequency too. Wake up radio are realized in both
discrete component and integrated circuit solutions [69]. Based on the power
consumption there exist different kind of WUR for different applications, such
as:

– fully-passive WURs could work without any supply reaching sensitivi-
ties in the order of -25 dBm. The limited sensitivities restrict applications
to short-range communications (few centimeters) such as implantable de-
vices.

6.2. Wake Up Radio Architecture 75

Figure 6.2: Wake up radio architecture.

– Nano-watts WURs are usually suitable for medium-range communica-
tions (at most 100 m) for instance in indoor applications.

– Micro-watts WURs are useful for long-range communications (km) for
outdoor applications since they have better sensitivity in order of -100
dBm.

The new system architecture provided a wake up radio is reported in Figure
6.1. In this case, in the communication unit in addition to the main radio, there
is a further block which is the WUR. Starting from a sleep-mode condition
of the end-node where only the WUR is active, the working procedure is the
following reported in Figure 6.1:

1. WUR is always listening to the channel and it receives a wake up RF sig-
nal.

2. If the address in the message detected from the WUR is correct, WUR
generates a wake up signal for the elaboration unit.

3. Then the elaboration unit switches on the main radio for the communica-
tion.

4. The elaboration unit handles all the data transfers.

After the communication procedure, the system can come in sleep mode, turn-
ing off both the main radio and the elaboration unit.

6.2 Wake Up Radio Architecture

The proposed solution is an active integrated circuit nano-watts wake up radio,
working with OOK modulation at 868 MHz, with a bitrate of 1 kbit/s, and it is
implemented in 90 nm BCD technology. The wake up radio architecture is reported
in Figure 6.2 and it is composed of a matching network, a demodulator and ampli-
fier circuit, a Schmitt trigger and a bias circuit to generate the reference voltages. The

76 Chapter 6. Wake Up Radio

Figure 6.3: Bias circuit function.

high-Q off-chip matching network is used to match the antenna impedance and pro-
vide some additional amplification. The demodulator and amplifier detects the en-
velope of the OOK modulated signal and amplifies it. The demodulator and ampli-
fier, with a band-pass response, generates a pulse at each OOK bit transition. Then,
the generated pulses through a capacitive coupling are digitalized via a Schmitt trig-
ger as reported in Figure 6.2. A bias circuit provides both the DC biasing voltage
VREF for the Schmitt trigger input and the thresholds VH and VL for the Schmitt trig-
ger hysteresis. The DC voltage VREF is between the two threshold voltage. The hys-
teresis thresholds are digitally programmable by the user as schematized in Figure
6.3 where it is also present a standard analog buffer in order to monitor the ampli-
fier output during the testing phase. The thresholds are generated from a kind of
voltage divider based on resistors. These resistors are on-chip digital potentiome-
ters with 5-bit inputs, which are decoded in 32 resistance steps. Figure 6.4 shows the
structure of both digital potentiometers to generate the two threshold voltage VH

and VL. In Figure 6.4 the voltage Vx is a copy of the DC bias voltage VREF applied to
the Schmitt trigger input. When the Schmitt trigger input crosses a threshold (based
on the Schmitt trigger internal state), the output is thus inverted. In the following
section is presented the architecture of the demodulator-amplifier designed by a col-
league. Then, is explained the actual contribution of the thesis which corresponds to
both Schmitt trigger design and threshold generation dedicated circuit design.

6.2. Wake Up Radio Architecture 77

Figure 6.4: Digital potentiometer structures used to generate the
Schmitt Trigger voltage references.

78 Chapter 6. Wake Up Radio

Figure 6.5: Demodulator-amplifier architecture. Picture reused from
[69].

6.2.1 Demodulator-Amplifier Architecture

Since the ultra low-power feature is the main aim, all transistors in the signal path
work in subthreshold region and hence, the MOSFET current equation is:

ID =
W
L

I0 · e
VGS−Vth

nVT

(
1− e−

VDS
VT

)
(6.1)

which can be approximated if VDS is enough greater than the thermal voltage VT as:

ID '
W
L

I0 · e
VGS−Vth

nVT (6.2)

where Vth is the MOSFET threshold voltage, n is a non-ideality factor and I0 is a
process parameter. The OOK modulated signal is stated by:

vRF (t) = VOOK (t) · cos (ωt) (6.3)

where VOOK (t) is the modulating signal while cos (ωt) is the RF carrier.
The demodulator-amplifier architecture presented in [69] is reported in Figure

6.5 and it consists of a non-inverting cascode stage M1 and M2, and a voltage fol-
lower M3. The voltage follower provides negative feedback to input transistor M1
gate resulting in a self-biasing architecture. The circuit input port is on the M1 source

6.2. Wake Up Radio Architecture 79

reaching very high input impedance (much more than the antenna impedance). The
capacitor C of Figure 6.5 is an off-chip high-quality capacitor due to its big value
(magnitude order of pF) which make it unfeasible in integrated circuit solution es-
pecially in BCD technology. The envelope detection process is based on the non-
linear relation between current ID and VGS of a MOSFET as stated in equation (6.2).
As shown in Figure 6.5, the RF input is provided to the MOSFET source terminal,
and considering the RF signal grounded by the capacitance C, the M1 current can be
written as:

ID1 (t) = IBIAS · e
− vRF(t)

nVT (6.4)

Through the Taylor approximation of the exponential function, the current of M1
can be expressed as:

ID1 (t) = IBIAS · e
− vRF(t)

nVT ' IBIAS

[
1− vRF (t)

nVT
+

1
2

(
vRF (t)

nVT

)2
]

(6.5)

Substituting equation (6.3) into the previous equation, and reminding trigonometric
identity

cos2 (x) =
1 + cos (2x)

2
(6.6)

the M2 current becomes:

ID2 (t) = IBIAS

[
1 +

V2
OOK (t)
4n2V2

T

]
(6.7)

considering the high-frequency components grounded by the parasitic capacitances
at the M2 source. Therefore, M2 current contains only low-frequency components.
The M2 current can also be expressed highlighting both its DC component (IBIAS)
and its signal component which is envelope-dependent:

ID2 (t) = IBIAS

[
1 +

V2
OOK (t)
4n2V2

T

]
= IBIAS + ∆I (t) (6.8)

The ID2 envelope-related part ∆I (t) can be considered as resulted of a low-frequency
input voltage source vIN (t)

∆I (t) = vIN (t) · gm1 = IBIAS
V2

OOK (t)
4n2V2

T
(6.9)

Since M1 is working in weak inversion, its transconductance is gm1 = IBIAS/nVT,
and hence, the equivalent low-frequency input voltage source is:

vIN (t) =
∆I (t)

gm1
=

V2
OOK (t)
4nVT

(6.10)

80 Chapter 6. Wake Up Radio

Figure 6.6: Frequency response of the proposed circuit. Picture
reused from [69].

Assuming unity gain for the source follower, the circuit response to vIN (t) is ap-
proximately:

A (s) =
vOUT_AMP

vIN
(s) =

1 + sR∗C(
1 + s R∗C

gm1Ro

)
(1 + sRoCo)

(6.11)

where R∗ = R + RFOLL
OUT , with RFOLL

OUT the output resistance of the source follower.
Both Ro and Co are respectively the parasitic resistance and capacitance seen at the
M2 drain. The circuit response of equation (6.11) has a band-pass response reported
in Figure 6.6. From equation (6.11) one can see that the low-frequency gain is limited
due to the negative feedback. Increasing the frequency above (2πR∗C)−1, the capac-
itance C progressively grounds the feedback increasing the gain to the peak value
gm1Ro. While the second pole is due to the parasitic capacitance seen at M2 drain.

The band-pass frequency response allows suppressing the flicker noise effect us-
ing suitable transistor sizes especially for M1 and the current generator IBIAS which
are the main noise contributors.

Considering a signal-to-noise voltage ration (SNR) of 5, with a current power
of 8 nA, the amplifier can reach gain between the output voltage and the envelope
VOOK of 5, resulting in an estimated sensitivity of 5 mV. The achieved gain allows
the Schmitt trigger offset to not strongly impact the overall system performance.

6.3. Schmitt Trigger Design 81

Figure 6.7: Schmitt trigger schematic.

6.3 Schmitt Trigger Design

The Schmitt trigger is based on a two-stage Operational Transconductance Amplifier
(OTA) with positive feedback as reported in Figure 6.7. The trigger aims to detect the
pulses generated by the demodulator-amplifier and generate a digital signal when
the pulses cross the trigger threshold. The right hysteresis threshold is provided
by the digital potentiometers, and selected, as shown in Figure 6.7, by either M9
or M10 based on the internal state of the trigger. This link is the positive feedback
of the trigger. Both M11 and M12 are used to respectively set or reset the trigger
internal state, in order to define the initial operating condition of the circuit. The
main constraints for the Schmitt trigger design are:

• ultra low-power consumption to avoid a degradation on the power perfor-
mance;

• limited equivalent input offset in order to not deteriorate the overall system
performance.

The first constraint is achieved defining the current bias IBIAS of 1 nA and sizing M5,
M6 and M7 with the same aspect ration in order to have the same current of 1 nA
in each branch, and hence, the power consumption of the Schmitt trigger is 3.6 nW.
Regarding the input offset, we define the constraint as 3 · σ < 10 mV. Following the
theory proposed in [73], where a fundamental analysis of the statistical variation of
device parameter P on a wafer predicts a Gaussian distribution with variance

σ2 (∆P) =
A2

P
WL

+ S2
P · D2

x (6.12)

where AP is an area proportionality constant for the parameter P, SP describes varia-
tion of parameter P with the spacing Dx and both W and L are the device dimensions.

82 Chapter 6. Wake Up Radio

Figure 6.8: Equivalent offset model of the Schmitt trigger differential
pair.

In the modern microelectronic technology, the offset is almost due to non-idealities
on the transistor threshold mainly dominated by the area-dependant coefficient

v2
OS = σ2 (Vth) '

A2
Vth

WL
(6.13)

The aim is to evaluate the transistor effect to the trigger input. Considering the trig-
ger differential pair, reported in Figure 6.8, and thanks to its symmetry we evaluate
only M1 and M2 through their equivalent offset voltage vOSeq1 and vOSeq2:

v2
OSeq = v2

OS1eq + v2
OS2eq (6.14)

Since M1 effect is already at the input vOSeq1 = vOS1, we have to find out the expres-
sion of M2 equivalent offset

v2
OSeq = v2

OS1 + v2
OS2eq (6.15)

Therefore, one has to evaluate the effect of vOS2 at M1 gate

v2
OS2eq = v2

gs1 =
i
2
D1

g2
m1

(6.16)

and since iD1 = iD2

i
2
D1 = i

2
D2 = i

2
D = g2

m2 · v2
OS2 (6.17)

6.4. Results and Comparison 83

Figure 6.9: Wake up radio test chip layout.

vOS2eq becomes:

v2
OS2eq = v2

gs1 =
i
2
D

g2
m1

=

(
gm2

gm1

)2

· v2
OS2 (6.18)

reminding the transistor transconductance in weak inversion

gm =
ID

nVT
(6.19)

and since iD1 = iD2 the corresponding transconductances are equal gm1 = gm2 = gm,
and hence, v2

OS2eq = v2
OS2. Finally, the equivalent offset is simply:

v2
OSeq = v2

OS1 + v2
OS2 (6.20)

Considering equal the offset contribution of both M1 and M2, which should be
3 · σTOT < 10 mV, it is possible to size M1, M2 and M4 through equation (6.12).
Choosing all transistors equal with W = L = 2 µm the resulting estimated equiva-
lent offset is 3 · σTOT = 7.2 mV.

84 Chapter 6. Wake Up Radio

Figure 6.10: WUR system transient noise simulation. Picture reused
from [69].

6.4 Results and Comparison

Figure 6.9 reports the layout of a designed wake up radio test chip in 90 nm BCD
technology of STMicroelectronics. The area is strongly dominated by passive com-
ponents. The wake up radio works with OOK modulation at 868 MHz, with a bitrate
of 1 kbit/s, consuming only 11 nA (8 nA the demodulator-amplifier and 3 nA the
Schmitt trigger).

According to the post-layout simulation, the demodulator-amplifier can provide
amplification of 7 of the modulating signal VOOK (t). The estimate demodulator-
amplifier input sensitivity at room temperature is 5 mV, assuming a signal-to-noise
voltage ratio of 5, and hence, adding the gain of the matching network (that can
reach 18 dB), the overall sensitivity becomes -54 dBm. Figure 6.10 depicts the results
for transient noise simulation of the overall wake up radio system. The first signal of
the picture is the modulated RF signal vRF (t) with a 1-0-1 commutation of the mod-
ulating signal VOOK (t) (reminding the equation (6.3)) with an amplitude of 5 mV. In
the second chart from the top of Figure 6.10, is reported the demodulator-amplifier
output without (green line) and with noise (violet line), and both the trigger thresh-
old VH and VL. The last trace of Figure 6.10 is the output of the Schmitt trigger. At
each crossing of the voltage threshold of the demodulator-amplifier output, trigger
inverts its output. Therefore, it is verified the correct behavior of the overall wake
up radio system.

6.4. Results and Comparison 85

Table 6.1: Wake up radio performance comparison. Reused from [69].

Proposed WUR IC [74] IC [75] Discrete [72]

Carrier freq. 868 MHz 114 MHz 915 MHz 868 MHz
Bitrate 1 kbit/s 0.3 kbit/s 100 kbit/s 1–20 kbit/s

Sensitivity at 27 °C -54 dBm -69 dBm -41 dBm -55 dBm
Supply voltage 1.2 V 0.4 V 1.2 V 1.2 V

Power consumption 13 nW 4 nW 98 nW 600 nW
Addressing 7 3 7 3

Technology
90 nm 180 nm 130 nm

n.a.
BCD SOI-CMOS CMOS

In Table 6.1 is reported a performance comparison between our proposed solu-
tion and the integrated circuits presented in both [74] and [75], and the discrete solu-
tion presented in [72]. The IC solution proposed in [74] has the best performance in
terms of power consumption, however, it is realized in a Silicon-On-Insulator CMOS
technology, which allows one to efficiently control the transistor body in order to ex-
ploit dynamic threshold transistors. The integrated circuit presented in [74] has also
the best sensitivity as shown in Table 6.1, but it works with a bitrate of 0.3 kbit/s,
which corresponds to a 2.5 dBm sensitivity deterioration at 1 kbit/s due to a larger
noise bandwidth. Besides, in [74] the carrier frequency is 114 MHz which allows one
to design a matching network reaching around 25 dB gain instead of 18 dB working
at 868 MHz or 12 dB in [75]. On the other hand, the solution presented in [75] works
with 100 kbit/s of bitrate, which corresponds to a 10 dBm sensitivity improvement
at 1 kbit/s. As well as [74], [75] exploits technology available features to increase
transistor transconductance through dynamic threshold configurations.

Our proposed solution has performance comparable to both state-of-the-art inte-
grated circuits and discrete component solutions. Our IC reaches a sensitivity similar
to the one offered by the discrete circuit solution, but drastically reducing the power
consumption.

87

Chapter 7

Conclusions

The Ph.D. research work tries to address techniques to improve performances of the
modern internet-of-things end-nodes acting on both, the elaboration unit and the
communication interface of the system-on-chip depicted in Figure 2.4.

The first thesis part proposes a combination of both microcontroller and soft core
of embedded FPGA that increases the reconfigurability of the elaboration unit, pro-
viding both software and hardware programmable feature, useful in an always in-
creasing resource demand scenario. The proposed heterogeneous system is fully-
synthesizable, and hence, it is portable to different technology. The soft-core eF-
PGA has a small computational capability, and the system is designed to exploit the
eFPGA to carry out smart power tasks while the microcontroller can handle other
kinds of computations or can be switched in sleep mode. The proposed elabora-
tion unit allows the system to increase its energy performance through an efficient
task partitioning. As highlighted in Chapter 5, one can use the small embedded
FPGA to perform smart power tasks in a very efficient way, with a straightforward
drawback in terms of area occupation. The eFPGA usage allows the system-on-chip
to improve also its latency performance since in this way, it can exploit the latency
related to an hardware-programmable device, which is typically related just to the
operating clock period.

The embedded FPGA exploitation just to implement simple finite state machines
is an unconventional point of view to this kind of devices, usually employed for
high computational load applications.

The proposed elaboration unit proves to be an interesting choice for a smart
power system-on-chip, combining both the vast microcontroller capabilities and a
hardware-programmable device which fits better smart power application require-
ments.

To the best of our knowledge the proposed heterogeneous system, which inte-
grates a microcontroller and an embedded FPGA, is the first reconfigurable system-
on-chip suitable for smart power internet-of-things applications.

On the communication interface side, wake up radio proves to be a promising
and essential technology for the future internet-of-things end-nodes, changing both
the communication paradigm and the electronic system architecture.

88 Chapter 7. Conclusions

The proposed monolithic nano-watt wake up radio integrated circuit has per-
formances comparable to the other integrated circuit solutions, and superior per-
formances considering discrete component solutions. However, this encourages re-
searchers to improve wake up radio performances in terms of power consumption,
sensitivity and area occupation.

89

Appendix A

eFPGA Interconnection Network
Details

Most of the material reported in this chapter is reused from [40].

Proprieties and results related to the proposed eFPGA interconnection network
are reported in this appendix.

A.1 Multicast Radix-2 MSSN Proprierties

Banyan networks, as mentioned, are blocking also for unicast connections. Therefore
a method to make the network RNB is the Horizontal Cascading (HC) of two baseline
log2 N-networks as depicted in Figure A.1(a). Benes networks [76], [77] are an exam-
ple of this approach. They are made connecting two baseline networks back-to-back.
However, the Horizontal Cascading technique results in complex routing algorithms
due to a large amount of reconfiguration activity [59].

An alternative to Horizontal Cascading is the Vertical Stacking (VS) technique in-
troduced in [58] and shown in Figure A.1(b). According to the Vertical Stacking
technique, the overall network consists of various copies (called planes) of a base-
line log2 N network. In this way, both a demultiplexer input stage and a multi-
plexer output stage (Figure A.1(b)) are necessary. Regarding multicast connectivity
of Vertically-Stacked MSSN (VS-MSSN), the condition on the number of planes p nec-
essary to obtain RNB features is:

p ≥ 2b
n
2 c (A.1)

where n is the number of stages of the N × N baseline log2 N network, and thus:

n = log2 N. (A.2)

[78] presents a combination of HC and VS obtained by adding x extra stages to
each baseline plane and the RNB condition for unicast traffic is:

p ≥ 2b
n−x

2 c. (A.3)

90 Appendix A. eFPGA Interconnection Network Details

Figure A.1: Example of construction of Multi-log2 N networks: with
horizontal cascading (a) and vertical stacking (b) technique [40].

This technique can improve network area occupation, since the addition of x hori-
zontal stages (lower than n) allows one to save one (or more) whole planes.

[78] demonstrates equation (A.3) for unicast connection, while [79] generalized
the properties defined by [59] for vertical stacking also for multicast connection. We
have intensely tested the proposed interconnection network in one-to-many appli-
cations, without finding any unresolved conditions [40].

From a qualitative point of view, the equivalence between horizontal and vertical
decomposition finds its foundation in the fact that they are different strategies to
provide the same paths multiplicity in connecting a generic input-output pair under
the condition defined by (A.3). Simultaneously, the combination of HC and VS open
the way for exploring various trade-off between hardware complexity and latency
[40].

The interconnection network architecture proposed in both [3] and [4], is an
MSSN based on 2 × 2 switches and it features a Benes-like topology with butter-
fly connectivity as shown in Figure 4.8(a). Considering its topologically equivalent
depicted in Figure 4.8(b), which is a N × N I/Os MSSN with:

• NS = N switch blocks per stage,

• nS = 1INstage + 1OUTstage + (2 log2 (N)− 1)MIDstage = 1INstage + 1OUTstage + n +

x, where n = log2 N and x = log2 (N)− 1.

A.2. Multicast Radix-k MSSN Proprierties 91

Figure A.2: An example of radix-4 16× 16 flat MSSN. Picture reused
from [40].

The network in Figure 4.8(b) has two planes p, p1 and p2 each made of a Banyan net-
work of n + x stages. Therefore, the equation (A.3) for rearrangeable non-blocking
property becomes:

2 ≥ 2b
log2 N−(log2 N−1)

2 c = 2b
1
2 c = 1 (A.4)

and is satisfied for any value of N with p = 2.
For the proposed interconnection network, it should be noticed that a lower

number of extra stages x is necessary. With p = 2 and n = log2 N, from equation
(A.3), only x = log2 (N)− 2 extra stages are strictly required. The area-penalizing
choice of x = log2 (N)− 1 is made in the perspective to increase the symmetry which
enables the introduction of enhanced switch elements.

A.2 Multicast Radix-k MSSN Proprierties

This appendix generalizes the results obtained in the Appendix A.1 to a generic
radix-k of the network. Therefore, the same proposed MSSN architecture with a
generic radix-k has now k × k switch elements in the middle stages, and again the

92 Appendix A. eFPGA Interconnection Network Details

radix-k Multi-Stage Switching Network is topologically equivalent to an MSSN with
two planes, each made of an N × N radix-k Banyan network with additional stages.
For instance Figure A.2 shows an N × N radix-4 interconnection network with N =

16.
The number of stages n of the baseline Banyan interconnect is obtained general-

izing the equation (A.2) for a generic radix-k, and hence:

n = logk N. (A.5)

The additional extra stages necessary for the Horizontal Cascading x follows the def-
inition of the radix-2 case, and thus, x = n − 1 = logk (N) − 1. Consequently, the
total number of stages nS of the N × N radix-k MSSN is:

nS = 1INstg + 1OUTstg + n + x = 1INstg + 1OUTstg + (2 logk (N)− 1)MIDstg (A.6)

which has the form of the case of k = 2.
In [80] is generalized the equation (A.3) for a generic radix-k for one-to-one traf-

fic, demonstrating that the number of vertical planes p necessary to obtain an RNB
network is:

p ≥ kb
n−x

2 c. (A.7)

From the previous definitions of the number of stages n and extra stages x, con-
dition (A.7) becomes:

p ≥ kb
logk N−(logk N−1)

2 c = kb
1
2 c = 1. (A.8)

Considering p = 2, equation (A.8) is always satisfied for any value of both num-
ber N of inputs/outputs and radix-k. In a generic radix-k network, all the stages have
NS switch elements, with NS = N

k · p. For instance, considering p = 2, a radix-2
MSSN has NS = N, while in a radix-4 interconnection network NS = N/2 as shown
in Figure A.2. Regarding the multicast connectivity, we have carried out numerous
routing tests without finding any critical situation for the routing scheme [40].

A.3 Hierarchical MSSN Performance

This section presents an evaluation of the improved MSSN performance through
the U-turn switch elements. The analysis focuses on both the frequency improve-
ment and the straightforward area overhead drawback due to the additional logic
required by the U-turn switches. The following analysis compares radix-2 and radix-4
MSSN implemented in 65 nm CMOS LP technology of STMicroelectronics consid-
ering two different mixes of standard cell libraries, SVT-only for area optimization
and full mix with H+S+LVT for high-speed optimization.

A.3. Hierarchical MSSN Performance 93

Table A.1: CMOS 65 nm 1024 × 1024 radix-2 MSSN post-synthesis
results [40].

Implementation Results
Min Area Max Speed

Flat Half Fully Flat Half Fully

Area [mm2] 0.20 0.34 0.40 0.80 0.89 1.01
Impl. Freq. [MHz] 200 200 180 480 445 395

Cells Mix SVT H+S+LVT

Table A.2: CMOS 65 nm 1024 × 1024 radix-4 MSSN post-synthesis
results [40].

Implementation Results
Min Area Max Speed

Flat Half Fully Flat Half Fully

Area [mm2] 0.27 0.33 0.49 0.89 0.90 1.1
Impl. Freq. [MHz] 200 200 200 400 365 367

Cells Mix SVT H+S+LVT

The radix-2 and radix-4 Multi-Stage Switching Networks considered have 1024×
1024 inputs/outputs in three different organization:

• in a flat structure, the MSSN does not have any U-turn enhanced switch ele-
ments.

• In fully-bypassed architecture the interconnect has U-turn bypasses at each net-
work stage. Referring to Figure 4.9, each switch at stage S, for S from 1 to
log2 N − 1, is composed of source and target U-switches, while the switch in
the central stage (S = log2 N) is a simple basic switch.

• In half-bypassed structure, the MSSN has U-turn switches only at the odd stages,
whereas the switch in the central stage is again a simple basic switch.

Table A.1 and Table A.2 report post-synthesis results for all three MSSN architec-
ture flat, half, and fully, respectively for radix-2 and radix-4. The results are obtained
considering two different implementations, optimized for a minimum area occupa-
tion or maximum speed. As clearly visible in both tables, the introduction of U-turn
switches results in a straightforward area overhead. All the three interconnection
network versions are implemented varying the target implementation frequency,
where the implementation frequency is the time-to-fly between interconnect input
and output, which is the delay necessary to cross all the MSSN switches.

A.3.1 MSSN Delay Model and Validation

In order to perform a trade-off area vs. speed analysis, it is useful to define an in-
terconnection network delay model. In [3] is presented a post-synthesis application-
aware analysis to evaluate the eFPGA performance exploiting the bypassed SEs. [3]

94 Appendix A. eFPGA Interconnection Network Details

analyzed different benchmarks mapped in both radix-2 flat MSSN architecture and
radix-2 fully-bypassed MSSN. The results show that the exploitation of bypassed SEs
allows the eFPGA to increase its operating frequency by a factor (called frequency
gain) from' 20% to' 60% depending on the capability to exploit bypass, and hence,
on the considered application. In that analysis, it is supposed that each internal
MSSN stage has the same delay, in both flat and bypassed architecture. Therefore, the
delay associated to a single MSSN stage with nS stages is approximated as:

STGdly =
TMSSN

nS
(A.9)

where TMSSN is the delay of the whole MSSN, and thus, it is the implementation
period in Tables A.1 and A.2.

Therefore, according to equation (A.9), the interconnection network input-to-
output (IN2OUT) delay is proportional to the stage S, from 1 to log2 N, in which
the U-turn connection is exploited. To better clarify, as reported in Figure 4.9, the
stage S which exploits the bypass has the HS group of switches. Hence, the IN2OUT
delay is:

IN2OUTDELAY(S) =

{
STGdly[(2S− 1) + 2], S = log2 N
STGdly(2S + 2), otherwise

(A.10)

where the 2S factor is because the network has to be crossed back and forth, for
instance, crossing the source and target switches in Figure 4.10. The +2 is due to both
input and output stages. When S = log2 N, the interconnect does not exploit the U-
switches and the overall network stages are crossed to connect an input to outputs.
In this case, the IN2OUT delay degenerates into the implementation period TMSSN ,
since nS = 2n + 1.

Figure A.3 shows the piecewise linear model (A.10) and a set of post-synthesis
IN2OUT delays for the radix-2 fully-bypassed MSSN architecture, in order to prove the
validity of the delay model proposed in equation (A.9) and (A.10). The considered
post-synthesis delays are obtained for both maximum speed and minimum area im-
plementations of the 1024× 1024 radix-2 fully-bypassed MSSN of Table A.1, forcing
the timing analysis tool to exploit the U-turn connections at different interconnect
stages Sn (abscissa of Figure A.3). In this case, Sn goes from 1 to 10, and again, when
Sn = 10 means that the network does not exploit the U-turn connections. Since for
each input/output pair the 1024× 1024 I/Os MSSN provides 1024 possible paths,
the results are represented as clusters of points.

As visible in Figure A.3, the piecewise linear model of equation (A.10) is a “worst-
case” compared to both the mean values depicted through lines with circle symbols
and the ninetieth percentile values, triangular markers. There is only a case in Fig-
ure A.3 where the delay model under-estimates the real interconnection network
delay of the max speed implementation and happens when Sn is equal to S1, S2,
and S3. However, considering the overall delay related to the full embedded FPGA,

A.3. Hierarchical MSSN Performance 95

Figure A.3: 1024× 1024 I/Os radix-2 MSSN in-to-out delays (with by-
pass exploitation at different stages) compared to model (A.10) vary-
ing the MSSN stage S in which the U-turn connection is exploited.

Picture reused from [40].

the under-estimation due to the proposed model would hardly affect the compu-
tation of the critical path, since it is dominated by the computational logic blocks
contribution.

The previous considerations are still valid for radix-4 MSSN architecture of Table
A.2, differentiating for the fact that in this case, the stage delay is larger than that in
the radix-2 architecture since the radix-4 switch elements have higher complexity as
shown in Figure A.2.

The results depicted in Figure A.3 demonstrate the validity of the delay model of
equation (A.10) and allow us to use it to compare the different MSSN architectures
as explained in the following sections.

A.3.2 MSSN Effective Frequency Versus Bypass Exploitation

In order to evaluate the area/speed trade-off of the different MSSN architecture flat,
fully-bypassed and half-bypassed it is performed an analysis taking into consideration
the different interconnect architecture with the same area, but equipped with a dif-
ferent number of stages with enhanced via U-turn switches. For the flat architecture,
we considered the implementation frequency as a figure of merit, since the inter-
connect structure delay corresponds to the MSSN full latency, while for the bypassed
network the real working frequency has to be taken into account. A bypassed inter-
connection network provides shorter, and hence faster, links for inputs/outputs

96 Appendix A. eFPGA Interconnection Network Details

Figure A.4: 1024× 1024 I/Os radix-2 MSSN effective frequency versus
area for different frequency gain thanks to bypass exploitation: flat vs.

half-bypassed (a) and fully-bypassed (b). Picture reused from [40].

A.3. Hierarchical MSSN Performance 97

logically nearby as shown in Figure 4.9. For this reason, the operating frequency
depends on the locality of the application required connections. As illustrated in sec-
tion 4.2.2, the locality optimization of the connection is mainly related to the routing
strategy capability to best exploit bypasses.

Figure A.4 [4] shows the actual frequency of the radix-2 flat 1024× 1024 intercon-
nect architecture, and the achieved working frequency of a radix-2 bypassed 1024×
1024 interconnection network. In this way, are specified four ranges of bypass ex-
ploitation (0% which corresponds to non-exploitation of the bypasses, 20%, 40%,
60%) resulting in four ranges of frequency gain.

As mentioned in Table A.1, the minimum area necessary to realize a flat inter-
connect architecture is 0.2 mm2, 0.34 mm2 for half-bypassed and 0.4 mm2 for fully-
bypassed. Hence, targeting small area devices less than 0.34 mm2, the flat MSSN
version is the unique solution among those listed. The half-bypassed interconnec-
tion network is advantageous for an area greater than 0.44 mm2 as shown in Figure
A.4(a), since it allows us to achieve higher frequencies even if the frequency gain is
around 20%, while reaching time-to-fly frequency values beyond 700 MHz when the
area is not a tight constraint. The same concept is applied to the fully-bypassed in-
terconnection network where, if a small area (less than 0.8 mm2) is required, it is
achievable just only through a flat MSSN as depicted in Figure A.4(b). If one has a
bigger area budget, is possible to reach higher operating frequencies. Comparing
both half-bypassed and fully-bypassed is possible to notice that the fully-bypassed ver-
sion reaches lower frequency due to the increased interconnection network density.
On the other hand, the fully-bypassed interconnect provides a higher probability to
exploit U-turn switches. For this reason, we decided to not consider structures with
lower bypass levels such as quarter-bypassed network because with a small bypass
exploitation probability the frequency gain might no longer be significant.

Applying the same analysis to a radix-4 MSSN, we achieved similar results: ad-
vantages provided by introducing U-turn bypasses, either in half stages or in the
full network, only become evident targeting high frequencies, with the drawback of
additional area requirements [40].

A.3.3 Hierarchical MSSN Radix Comparison

In this section is performed a comparison in terms of area/speed trade-off in func-
tion of different radix of the interconnection network using the delay model pre-
sented in equation (A.10) and validated in the previous sections. In the previous
section, we showed how the usage of enhanced switches improve the real operating
frequency with respect to a flat interconnect structure. Now it is explained how the
radix impacts on the interconnection network performance.

Changing the interconnect radix has a straightforward impact on the capability
to exploit local connections as shown in Figure A.5. Indeed, in order to connect two
MSSN input/output exploiting the bypass, the number of stages to cross change
based on the chosen radix, as depicted in Figure A.5 [4]. For instance, in a 16× 16

98 Appendix A. eFPGA Interconnection Network Details

Figure A.5: Example of fully-bypassed MSSN connectivity with 16×
16 I/Os: radix-2 (a) and radix-4 (b). Picture reused from [40].

radix-2 fully-bypassed MSSN of Figure A.5(a), in order to connect IN0 to OUT7 the
minimum common stage S is S = 3, whereas, in a radix-4 architecture the minimum
common stage to be crossed is S = 1, as shown in Figure A.5(b). Therefore, in a radix-
2 fully-bypassed MSSN the number of points (both inputs and outputs) subtended
from a cone of height S is:

POINTS2(S) = 2S (A.11)

while in the radix-4 structure is:

POINTS4(S) =

{
2 · 4S, S < log4 N
4S, S = log4 N

(A.12)

The 2 factor is caused by the fact that each input and output stage is connected to
two I/Os as visible in both Figure A.2 and Figure A.5(b). Generalizing to a generic
radix-k, the number of subtended points becomes:

POINTSk(S) =

{
α · kS, S < logk N
kS, S = logk N

(A.13)

for S from 1 to logk N. In the previous equation α (>0) is a factor that takes into
account the number of inlets (outlets) connected to each input/output stage and it is
α = N

NS
. Since NS is defined as NS = N

k · p, where p is the number of baseline planes.
Hence, the α factor becomes:

α =
N
NS

=
N
N
· k

p
=

k
p

. (A.14)

A.3. Hierarchical MSSN Performance 99

Figure A.6: Max-speed implementations: delay vs. topological dis-
tance between two I/Os for a 1024 × 1024 fully-bypassed and half-

bypassed MSSN. Picture reused from [40].

In order to better understand equation (A.13), it can be re-write as:

POINTSk(S) =

{
α · kS, S < logk N
α
α kS = α · kS · p

k , S = logk N
(A.15)

For a generic stage S, the number of points subtended from a cone of the previous
stage (S− 1) is:

POINTSk(S− 1) = α · kS−1. (A.16)

As presented in [40], at the “current” stage S, the points subtended are those of
the previous stage (S− 1) multiplied by k if S is not the central stage of the network,
and thus, S < logk N. In the central stage case S = logk N, the different planes of
Figure A.1(b) are merged in the central stage, as depicted in Figure 4.9, hence, the
total number of points is the sum of the points of the previous stage of each plane p,
and therefore multiplied by a p factor. Through equation (A.16), equation (A.15) can
be expressed as:

POINTSk(S) =

{
POINTSk(S− 1) · k = αkS−1 · k = α · kS, S < logk N
POINTSk(S− 1) · p = αkS−1 · p = kS, S = logk N

(A.17)

which corresponds to (A.13).
A comparison of half-bypassed and fully-bypassed architecture of a 1024 × 1024

MSSN with both radix-2 and radix-4 is performed. It is carried out a delay anal-
ysis, and thus the number of network stages to be crossed is considered, in order
to connect two inputs/outputs placed at different distances. The analysis is based
on both the stage delay expressed by the equation (A.9) and the IN2OUTDELAY de-
lay model of equation (A.10). The analysis is performed assuming that the CAD
tool, presented in section 4.2.2 places the MSSN I/Os minimizing their distance, and
hence, forcing S = Smin.

100 Appendix A. eFPGA Interconnection Network Details

Figure A.7: Iso-area implementations: delay vs. topological distance
between two I/Os for a 1024 × 1024 fully-bypassed and half-bypassed

MSSN. Picture reused from [40].

Both Figures A.6 and Figure A.7 show the delays as a function of different dis-
tances between two MSSN I/Os that are to be connected. The data, obtained through
post-synthesis simulation show that there is not a unique solution for the MSSN ar-
chitecture and it is strongly related to the CAD capability to exploit bypasses. In
the maximum speed implementations of Figure A.6, radix-4 interconnect (dashed
lines) has better performance, and thus, less average delay, only in the case of not
too large input/output distance. On the other side, for iso-area implementations re-
ported in Figure A.7, radix-4 interconnection network (again dashed lines) prove to
be advantageous reaching lower interconnect delay for any input/output distance
in half-bypassed architecture whereas in the fully-bypassed structure is still advanta-
geous in average for small I/Os distance, and hence, when it is possible to exploit
its local connectivity.

The analysis can be extended to larger values of radix-k. It is worth noting that the
area occupation of k× k switch element increases with O(k2) while the granularity of
bypass exploitation decreases, hence reducing the probability of performance gain
[40].

101

Bibliography

[1] F. Renzini, C. Mucci, D. Rossi, E. F. Scarselli, and R. Canegallo, “A fully pro-
grammable efpga-augmented soc for smart power applications”, IEEE Trans-
actions on Circuits and Systems I: Regular Papers, pp. 1–13, 2019, ISSN: 1549-8328.
DOI: 10.1109/TCSI.2019.2930412.

[2] PULP-Platform. (Jan. 2019). PULPino datasheet, [Online]. Available: https:
//www.pulp-platform.org/implementation.html.

[3] M. Cuppini, C. Mucci, and E. F. Scarselli, “Soft-core embedded-fpga based on
multistage switching networks: A quantitative analysis”, IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 23, no. 12, pp. 3043–3052, 2015.

[4] M. Cuppini, “Methodologies for synthesizable programmable devices based
on multi-stage switching networks”, PhD thesis, University of Bologna, Via
Zamboni 33, 40126 Bologna BO, Italy, May 2015. [Online]. Available: http:
//amsdottorato.unibo.it/7013/1/Cuppini_Matteo_Tesi.pdf.

[5] B. Murari, F. Bertotti, and G. A. Vignola, Smart power ICs: technologies and appli-
cations. Springer Science & Business Media, 2002, vol. 6.

[6] STMicroelectronics. (Mar. 2019). STSPIN datasheet, [Online]. Available: http:
//www.st.com/en/motor-drivers.html.

[7] ——, “STLUX datasheet”, Tech. Rep. DocID027870 Rev 1, May 2015.

[8] A. Andreini, C. Contiero, and P. Galbiati, “A new integrated silicon gate tech-
nology combining bipolar linear, cmos logic, and dmos power parts”, IEEE
Transactions on electron devices, vol. 33, no. 12, pp. 2025–2030, 1986.

[9] STMicroelectronics, BCD technology. [Online]. Available: https://www.st.
com/content/st_com/en/about/innovation---technology/BCD.html.

[10] M. Sanzaro, P. Gattari, F. Villa, A. Tosi, G. Croce, and F. Zappa, “Single-photon
avalanche diodes in a 0.16 µm bcd technology with sharp timing response and
red-enhanced sensitivity”, IEEE Journal of Selected Topics in Quantum Electron-
ics, vol. 24, no. 2, pp. 1–9, 2018.

[11] Z. Dong, F. Lu, R. Ma, L. Wang, C. Zhang, G. Chen, A. Wang, and B. Zhao, “An
integrated transmitter for led-based visible light communication and position-
ing system in a 180nm bcd technology”, in 2014 IEEE Bipolar/BiCMOS Circuits
and Technology Meeting (BCTM), IEEE, 2014, pp. 84–87.

https://doi.org/10.1109/TCSI.2019.2930412
https://www.pulp-platform.org/implementation.html
https://www.pulp-platform.org/implementation.html
http://amsdottorato.unibo.it/7013/1/Cuppini_Matteo_Tesi.pdf
http://amsdottorato.unibo.it/7013/1/Cuppini_Matteo_Tesi.pdf
http://www.st.com/en/motor-drivers.html
http://www.st.com/en/motor-drivers.html
https://www.st.com/content/st_com/en/about/innovation---technology/BCD.html
https://www.st.com/content/st_com/en/about/innovation---technology/BCD.html

102 Bibliography

[12] M. Rose and H. J. Bergveld, “Integration trends in monolithic power ics: Appli-
cation and technology challenges”, IEEE Journal of Solid-State Circuits, vol. 51,
no. 9, pp. 1965–1974, 2016.

[13] D. Flynn, R. Aitken, A. Gibbons, and K. Shi, Low power methodology manual: for
system-on-chip design. Springer Science & Business Media, 2007.

[14] STMicroelectronics, “STM32L151xE STM32L152xE datasheet”, Tech. Rep. Do-
cID025433 Rev 9, Aug. 2017.

[15] Xilinx. (Aug. 2019). Xilinx system-on-chips, [Online]. Available: https://www.
xilinx.com/products/silicon-devices/soc.html.

[16] Intel. (Aug. 2019). Intel system-on-chips, [Online]. Available: https://www.
intel.com/content/www/us/en/products/programmable/soc.html.

[17] QuickLogic. (Aug. 2019). Embedded fpga, [Online]. Available: https://www.
quicklogic.com/.

[18] Lattice Semiconductor. (Mar. 2019). Lattice products, [Online]. Available: http:
//www.latticesemi.com/.

[19] Microsemi. (Aug. 2019). Microsemi products, [Online]. Available: https://
www.microsemi.com/.

[20] Menta. (Aug. 2019). Embedded programmable logic, [Online]. Available: http:
//www.menta-efpga.com/.

[21] Flex Logix. (Aug. 2019). Embedded fpga basics, [Online]. Available: http://
www.flex-logix.com/fpga-tutorial.

[22] Achronix. (Aug. 2019). The Speedcore embedded fpga, [Online]. Available:
https://www.achronix.com/.

[23] J. H. Kim and J. H. Anderson, “Synthesizable standard cell fpga fabrics tar-
getable by the verilog-to-routing cad flow”, ACM Transactions on Reconfigurable
Technology and Systems (TRETS), vol. 10, no. 2, p. 11, 2017.

[24] M. Borgatti, F. Lertora, B. Forêt, and L. Calí, “A reconfigurable system featur-
ing dynamically extensible embedded microprocessor, fpga, and customizable
i/o”, IEEE Journal of Solid-State Circuits, vol. 38, no. 3, pp. 521–529, 2003.

[25] A. Lodi, A. Cappelli, M. Bocchi, C. Mucci, M. Innocenti, C. De Bartolomeis, L.
Ciccarelli, R. Giansante, A. Deledda, F. Campi, et al., “Xisystem: A xirisc-based
soc with reconfigurable io module”, IEEE Journal of Solid-State Circuits, vol. 41,
no. 1, pp. 85–96, 2006.

[26] D. Rossi, F. Campi, S. Spolzino, S. Pucillo, and R. Guerrieri, “A heterogeneous
digital signal processor for dynamically reconfigurable computing”, IEEE Jour-
nal of Solid-State Circuits, vol. 45, no. 8, pp. 1615–1626, 2010.

[27] NXP Semiconductors, “SAC57D54H Data Sheet: Technical Data”, Tech. Rep.
SAC57D54H, Rev. 7, May 2017.

https://www.xilinx.com/products/silicon-devices/soc.html
https://www.xilinx.com/products/silicon-devices/soc.html
https://www.intel.com/content/www/us/en/products/programmable/soc.html
https://www.intel.com/content/www/us/en/products/programmable/soc.html
https://www.quicklogic.com/
https://www.quicklogic.com/
http://www.latticesemi.com/
http://www.latticesemi.com/
https://www.microsemi.com/
https://www.microsemi.com/
http://www.menta-efpga.com/
http://www.menta-efpga.com/
http://www.flex-logix.com/fpga-tutorial
http://www.flex-logix.com/fpga-tutorial
https://www.achronix.com/

Bibliography 103

[28] STMicroelectronics, “STM32™32-bit mcu family”, Tech. Rep. BRSTM320218,
Feb. 2018.

[29] Texas Instruments, “MSP430FR604x, MSP430FR504x ultrasonic sensing MSP430™
microcontrollers for gas and water flow metering applications datasheet”, Tech.
Rep. SLASEF5, Jan. 2019.

[30] STMicroelectronics, “STSPIN32F0 Advanced BLDC controller with embedded
STM32 MCU”, Tech. Rep. DocID029806 Rev 2, Mar. 2017.

[31] Nordic Semiconductor, “nRF52 Series SoC”, Tech. Rep. nRF52_Series_PB_v3.0,
Mar. 2019.

[32] A. Shawahna, S. M. Sait, and A. El-Maleh, “Fpga-based accelerators of deep
learning networks for learning and classification: A review”, IEEE Access, vol. 7,
pp. 7823–7859, 2019.

[33] E. Lupon, S. Busquets-Monge, and J. Nicolas-Apruzzese, “Fpga implementa-
tion of a pwm for a three-phase dc–ac multilevel active-clamped converter”,
IEEE Transactions on Industrial Informatics, vol. 10, no. 2, pp. 1296–1306, 2014.

[34] S. J. Wilton, C. H. Ho, B. Quinton, P. H. Leong, and W. Luk, “A synthesizable
datapath-oriented embedded fpga fabric for silicon debug applications”, ACM
Transactions on Reconfigurable Technology and Systems (TRETS), vol. 1, no. 1, p. 7,
2008.

[35] D. Rossi, C. Mucci, F. Campi, S. Spolzino, L. Vanzolini, H. Sahlbach, S. Whitty,
R. Ernst, W. Putzke-Roming, and R. Guerrieri, “Application space exploration
of a heterogeneous run-time configurable digital signal processor”, IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 21, no. 2, pp. 193–205,
2013.

[36] F Renzini, D Rossi, E. F. Scarselli, C Mucci, and R Canegallo, “A fully pro-
grammable efpga-augmented soc for smart-power applications”, in 2018 25th
IEEE International Conference on Electronics, Circuits and Systems (ICECS), IEEE,
2018, pp. 241–244.

[37] ARM. (Sep. 2019). ARM Cortex-M, [Online]. Available: https://developer.
arm.com/ip-products/processors/cortex-m.

[38] Andreas Traber, Michael Gautschi. (Jun. 2017). PULPino: Datasheet, [Online].
Available: https://github.com/pulp-platform/pulpino/blob/master/doc/
datasheet/datasheet.pdf.

[39] Synopsys. (Mar. 2019). Design Compiler tool in graphical mode, [Online]. Avail-
able: https://www.synopsys.com/.

[40] F. Renzini, M. Cuppini, C. Mucci, E. Franchi Scarselli, and R. Canegallo, “Quan-
titative analysis of multistage switching networks for embedded programmable
devices”, Electronics, vol. 8, no. 3, p. 272, 2019.

https://developer.arm.com/ip-products/processors/cortex-m
https://developer.arm.com/ip-products/processors/cortex-m
https://github.com/pulp-platform/pulpino/blob/master/doc/datasheet/datasheet.pdf
https://github.com/pulp-platform/pulpino/blob/master/doc/datasheet/datasheet.pdf
https://www.synopsys.com/

104 Bibliography

[41] I. Kuon, R. Tessier, J. Rose, et al., “Fpga architecture: Survey and challenges”,
Foundations and Trends® in Electronic Design Automation, vol. 2, no. 2, pp. 135–
253, 2008.

[42] J. Rose, A. El Gamal, and A. Sangiovanni-Vincentelli, “Architecture of field-
programmable gate arrays”, Proceedings of the IEEE, vol. 81, no. 7, pp. 1013–
1029, 1993.

[43] F.-L. Yuan, C. C. Wang, T.-H. Yu, and D. Marković, “A multi-granularity fpga
with hierarchical interconnects for efficient and flexible mobile computing”,
IEEE Journal of Solid-State Circuits, vol. 50, no. 1, pp. 137–149, 2014.

[44] W. Tsu, K. Macy, A. Joshi, R. Huang, N. Walker, T. Tung, O. Rowhani, V.
George, J. Wawrzynek, and A. DeHon, “Hsra: High-speed, hierarchical syn-
chronous reconfigurable array”, in Proceedings of the 1999 ACM/SIGDA seventh
international symposium on Field programmable gate arrays, ACM, 1999, pp. 125–
134.

[45] R. Amerson, R. J. Carter, W. B. Culbertson, P. Kuekes, and G. Snider, “Teramac-
configurable custom computing”, in Proceedings IEEE Symposium on FPGAs for
Custom Computing Machines, IEEE, 1995, pp. 32–38.

[46] R. Amerson, R. Carter, W Culbertson, P. Kuekes, G. Snider, and L. Albertson,
“Plasma: An fpga for million gate systems”, in Fourth International ACM Sym-
posium on Field-Programmable Gate Arrays, IEEE, 1996, pp. 10–16.

[47] F. Reblewski and O. LePape, Reconfigurable integrated circuit with a scalable ar-
chitecture, US Patent 6,594,810, Jul. 2003.

[48] D. Wong, Interconnection network for a field programmable gate array, US Patent
6,693,456, Feb. 2004.

[49] C. C. Wang, F.-L. Yuan, H. Chen, and D. Markovic, “A 1.1 gops/mw fpga
chip with hierarchical interconnect fabric”, in 2011 Symposium on VLSI Circuits-
Digest of Technical Papers, IEEE, 2011, pp. 136–137.

[50] C. Wang and D. Markovic, Network architectures for boundary-less hierarchical
interconnects, US Patent App. 14/777,477, Feb. 2016.

[51] A. DeHon and R. Rubin, “Design of fpga interconnect for multilevel metalliza-
tion”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 12,
no. 10, pp. 1038–1050, Oct. 2004, ISSN: 1063-8210. DOI: 10.1109/TVLSI.2004.
827562.

[52] W. J. Dally and B. P. Towles, Principles and practices of interconnection networks.
Elsevier, 2004.

[53] C. Clos, “A study of non-blocking switching networks”, Bell System Technical
Journal, vol. 32, no. 2, pp. 406–424, 1953.

[54] Y. Yang and J. Wang, “Nonblocking k-fold multicast networks”, IEEE Transac-
tions on Parallel and Distributed systems, vol. 14, no. 2, pp. 131–141, 2003.

https://doi.org/10.1109/TVLSI.2004.827562
https://doi.org/10.1109/TVLSI.2004.827562

Bibliography 105

[55] ——, “On blocking probability of multicast networks”, IEEE Transactions on
Communications, vol. 46, no. 7, pp. 957–968, 1998.

[56] D. P. Agrawal, “Graph theoretical analysis and design of multistage intercon-
nection networks”, IEEE Transactions on Computers, no. 7, pp. 637–648, 1983.

[57] C.-L. Wu and T.-Y. Feng, “On a class of multistage interconnection networks”,
IEEE transactions on Computers, vol. 100, no. 8, pp. 694–702, 1980.

[58] A. Pattavina, Switching Theory: Architectures and Performances in Broadband ATM
Networks, J. Wiley and S. Ltd, Eds. Wiley, 1998.

[59] C. Lea, “Multi–log2n networks and their applications in high-speed electronic
and photonic switching systems”, IEEE Trans. on Communications, vol. 38, no. 10,
pp. 1740–1749, 1990.

[60] M. Collier, “A systematic analysis of equivalence in multistage networks”,
Journal of Lightwave Technology, vol. 20, no. 9, pp. 1664–1672, Sep. 2002.

[61] E. W. Dijkstra, “A note on two problems in connexion with graphs”, Numerische
mathematik, vol. 1.1, pp. 269–271, 1959.

[62] STMicroelectronics, “STM32L1xx ultralow power features overview datasheet
(AN3193)”, Tech. Rep. DocID17369 Rev 2, Sep. 2013.

[63] G. Baccarani, M. R. Wordeman, and R. H. Dennard, “Generalized scaling the-
ory and its application to a 1/4 micrometer mosfet design”, IEEE Transactions
on Electron Devices, vol. 31, no. 4, pp. 452–462, 1984.

[64] Lattice Semiconductor, “ICE40 led driver usage guide”, Tech. Rep. Technical
Note TN1288, Jun. 2016.

[65] Microchip, “Brushed DC motor fundamentals”, Tech. Rep. AN905, Jan. 2004.

[66] Shyam Sadasivan, “An Introduction to the ARM Cortex-M3 Processor”, ARM,
Tech. Rep., Oct. 2006.

[67] C.-h. Liu, J.-s. Ji, and X.-p. Chen, “Control module for stepper motor based on
fpga”, in 2010 International Conference on E-Product E-Service and E-Entertainment,
IEEE, 2010, pp. 1–3.

[68] C. Mucci, L. Vanzolini, I. Mirimin, D. Gazzola, A. Deledda, S. Goller, J. Knae-
blein, A. Schneider, L. Ciccarelli, and F. Campi, “Implementation of parallel
lfsr-based applications on an adaptive dsp featuring a pipelined configurable
gate array”, in Proceedings of the conference on Design, automation and test in Eu-
rope, ACM, 2008, pp. 1444–1449.

[69] A. Elgani, M. Magno, F. Renzini, L. Perilli, E. F. Scarselli, A. Gnudi, R. Cane-
gallo, G. Ricotti, and L. Benini, “Nanowatt wake-up radios: Discrete-components
and integrated architectures”, in 2018 25th IEEE International Conference on Elec-
tronics, Circuits and Systems (ICECS), IEEE, 2018, pp. 793–796.

106 Bibliography

[70] E. Popovici, M. Magno, and S. Marinkovic, “Power management techniques
for wireless sensor networks: A review”, in 5th IEEE International Workshop on
Advances in Sensors and Interfaces IWASI, IEEE, 2013, pp. 194–198.

[71] D. Spenza, M. Magno, S. Basagni, L. Benini, M. Paoli, and C. Petrioli, “Beyond
duty cycling: Wake-up radio with selective awakenings for long-lived wire-
less sensing systems”, in 2015 IEEE Conference on Computer Communications
(INFOCOM), IEEE, 2015, pp. 522–530.

[72] M. Magno, V. Jelicic, B. Srbinovski, V. Bilas, E. Popovici, and L. Benini, “De-
sign, implementation, and performance evaluation of a flexible low-latency
nanowatt wake-up radio receiver”, IEEE Transactions on Industrial Informatics,
vol. 12, no. 2, pp. 633–644, 2016.

[73] M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, “Matching prop-
erties of mos transistors”, IEEE Journal of Solid-State Circuits, vol. 24, no. 5,
pp. 1433–1439, 1989.

[74] P. P. Wang, H. Jiang, L. Gao, P. Sen, Y. Kim, G. M. Rebeiz, P. P. Mercier, and D. A.
Hall, “A near-zero-power wake-up receiver achieving- 69-dbm sensitivity”,
IEEE Journal of Solid-State Circuits, vol. 53, no. 6, pp. 1640–1652, 2018.

[75] N. E. Roberts and D. D. Wentzloff, “A 98nw wake-up radio for wireless body
area networks”, in 2012 IEEE Radio Frequency Integrated Circuits Symposium,
IEEE, 2012, pp. 373–376.

[76] V. E. Benes, Mathematical theory of connecting networks and telephone traffic. New
York: Academic press, 1965, vol. 17.

[77] ——, “Optimal rearrangeable multistage connecting networks”, Bell System
Technical Journal, pp. 1641–1656, 1964.

[78] C. Lea and D. Shyy, “Tradeoff of horizontal decomposition versus vertical
stacking in rearrangeable nonblocking networks”, IEEE Trans. on Communi-
cations, pp. 899–904, 1991.

[79] Y. Tscha and K. H. Lee, “Nonblocking conditions for multi-log2n multiconnec-
tion networks”, Global Telecommunications Conference, GLOBECOM’92, Commu-
nication for Global Users, IEEE, vol. 3, pp. 1600–1604, 1992.

[80] F. K. Hwang and W.-D. Lin., “Necessary and sufficient conditions for rear-
rangeable logd(n, m, p)”, IEEE Trans. Commun., vol. 53, no. 12, pp. 2020–2023,
Dec. 2005.

	Abstract
	Introduction
	SoC Architectures for Smart Power Applications
	Introduction
	Smart Power Technology
	ULP Techniques
	Programmable Device Scenario
	Microcontrollers
	FPGAs
	Embedded FPGAs
	System-on-Chips

	Proposed SoC

	SoC Elaboration Unit
	Microcontroller
	Embedded FPGA Sub-System
	Embedded FPGA Architecture
	Prescaler
	Configuration Loader
	Configuration Registers
	eFPGA Software Tools

	Application Programming Interface

	eFPGA Architecture Details
	Introduction
	Embedded FPGA Interconnection Network
	Proposed eFPGA Interconnection Network
	MSSN with Bypass Enhancement

	MSSN Programming Strategy

	Application Analysis
	Implementation Choices
	Proposed Reconfigurable SoC
	ASIC
	STM32 Microcontroller

	Energy and Latency Model
	eFPGA - Efficiency Model
	PULPino - Efficiency Model
	ASIC - Efficiency Model
	STM32 - Efficiency Model
	Energy Gain and Latency

	Application Results
	Control Applications
	Pulse-Width Modulation
	RGB LED Controller
	Brushed Motor Controller
	Stepper Motor Controller

	Bitwise Streaming Applications
	Cyclic Redundancy Check
	Pseudo-Random Number Generation

	Ultra Low-Power Applications

	Results and Discussion
	Energy Efficiency Consideration
	Latency Consideration
	Implementation Solutions Under Analysis
	Microcontroller Implementation
	eFPGA Implementation
	ASIC Implementation
	Proposed SoC Implementation

	Wake Up Radio
	ULP Communication Techniques
	Wake Up Radio Architecture
	Demodulator-Amplifier Architecture

	Schmitt Trigger Design
	Results and Comparison

	Conclusions
	eFPGA Interconnection Network Details
	Multicast Radix-2 MSSN Proprierties
	Multicast Radix-k MSSN Proprierties
	Hierarchical MSSN Performance
	MSSN Delay Model and Validation
	MSSN Effective Frequency Versus Bypass Exploitation
	Hierarchical MSSN Radix Comparison

