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Introduction

The recent availability of the so-called “tall” data sets, that is data
sets which include information on a very large number of units, poses
new challenges to statistical analysis. In particular, for many practical
applications, the computational load may become incredibly high, thus
making analysis very slow if not impossible.
Subsampling and divide-and-conquer approaches (i.e. divide the data in
chunks, which are separately analyzed, and merge the results in a clever
way) are the most commonly used approaches in this context. The qual-
ity of the approximation they yield is however hard to determine.

Data compression techniques based on random linear combinations
have been developed within the computer science community and have
recently become popular. They are commonly known as sketching meth-
ods. Their properties have been widely studied from a numerical anal-
ysis perspective and there is an increasing interest in assessing their
behavior from a statistical perspective.
The reason for their increased popularity, besides the computational ad-
vantage that motivated their proposal, resides in the fact that they are
well suited to deal with streaming data as they do not require to store
the new data but can update the existing ones incrementally.
Moreover, sketching methods have also been considered under the as-
pect of preserving privacy (Blocki et al., 2012). As the new observa-
tions are random linear combinations of the original ones, no observa-
tion in the resulting matrix can be identified with one of the original
data points.

As previously mentioned, the basic idea of sketching is to reduce the
size of the data set from n to k, with k much smaller than n, by creating
new synthetic units obtained through random linear combinations of the
units in the original data set.
The theoretical motivation for this is given by the now famous John-
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2 INTRODUCTION

son and Lindenstrauss Lemma, which gives theoretical conditions un-
der which sketching preserves most of the linear structure that is present
in the data.
This explains the wide interest that sketching has gained in the linear
statistical modeling context where, for very large n, the computation
of the involved Gram matrix becomes increasingly problematic. The
pioneering works in this area have adopted an algorithmic perspective
aimed at showing that, when the sketches are constructed appropriately,
one can obtain answers that are approximately as good as the exact an-
swer for the input data at hand, in less time than would be required to
compute an exact answer.
The methods have recently attracted the interest of the statistical com-
munity with the aim of understanding whether the insights from the
algorithmic perspective of sketching carry over to the statistical setting.

In the literature, two general categories of distributions for the ran-
dom projection matrix have been introduced: data aware and data obliv-
ious ones. Our focus will be on the latter approach, which will be thor-
oughly dealt with in the next chapters.

Data aware random projections use information from the source
data to generate the random projection matrix, for instance they per-
form weighted sampling with replacement from the source dataset.
Relevant examples in this context are leverage sampling (Mahoney,
2011) and thinning. Thinning has been introduced in Cerioli & Perrotta
(2014) with the aim of removing uninteresting or noisy observations for
the estimation of regression lines in the context of robust clustering.

The theoretical motivation for sketching and the most relevant sketch-
ing methods are critically reviewed in chapter 2. In the same chapter,
the literature on sketching in multiple linear regression is summarized,
putting a special emphasis on the algorithmic and statistical aspects.

The goal of this thesis is to analyze the performances of sketching
methods in the context of linear discriminant analysis. This theme has
never been addressed before in the literature on sketching.

In chapter 1, the basic ideas of two group linear discriminant analy-
sis are briefly summarized and a few results relating the optimal linear
discriminant direction and the vector of multiple linear regression coef-
ficients are derived (see McLachlan, 1992; Anderson, 1958). Building
upon them, in chapter 3, the use of sketching methods (and in particu-
lar of what is called partial sketching) in linear discriminant analysis is
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evaluated according to both a numeric analytic and a statistical perspec-
tive. The performance of linear discriminant analysis on the sketched
data is compared to the one obtained on the original data in a number of
real datasets. In chapter 4, the properties of the sketched data are also
used to solve the up to date problem of imbalanced classes in supervised
classification.

To conclude it is worth mentioning that while the idea of compress-
ing the data through random linear combinations of units is rather new
and not yet fully explored, the use of random linear combinations of the
columns of the data matrix, i.e. of the variables, has received a great
attention.
The methods are summarized under the heading “random projections”
and are aimed at performing dimension reduction, thus solving the so
called “large p small n” problem.
Random projections have successfully been applied in the context of
supervised classification (Cannings & Samworth, 2017), high dimen-
sional covariance estimation (Marzetta et al., 2011), clustering (Fern
& Brodley, 2003), sparse principal component analysis (Gataric et al.,
2017), multiple linear regression (Thanei et al., 2017) among others.
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Chapter 1

Linear Discriminant Analysis

Linear discriminant analysis (LDA) also known as Fisher’s linear
discriminant analysis or as Canonical variate analysis is a widely used
method aimed at finding linear combinations of observed features which
characterize or separate two or more classes of objects or events. The re-
sulting combinations are commonly used for dimensionality reduction,
before later classification.

1.1 Discrimination

Let us assume we have G groups of units (each composed of ng
units, for g = 1, . . . ,G, such that ∑

G
g=1 ng = n) on which a vector random

variable x (corresponding to p observed numeric variables) has been
observed. We also assume that, for the G populations the G groups
come from, the homoscedasticity condition holds i.e.

Σ1 = Σ2 = · · ·= Σg = · · ·= ΣG = Σ.

Fisher (1936) suggested to look for the linear combination z of the vari-
ables in x, z = `T x, which best separates the groups. This amounts to
look, according to Fisher’s perspective, for the vector ` such that, when
projected along it, the groups are as separated as possible and as homo-
geneous as possible at the same time.
In this framework the function which must be optimized with respect to
` is the ratio of the between group to the within group variance of the
linear combination z. In the x space the overall average is x̄, while each

5



6 CHAPTER 1. LINEAR DISCRIMINANT ANALYSIS

group has average vector x̄g and covariance matrix Sg; because of the
properties of the arithmetic mean it will be

x̄ =
1
n

G

∑
g=1

x̄gng (1.1)

The variable z will therefore have overall average z̄ = `T x̄ and, for each
group, average value z̄g = `T x̄g and variance Var(zg) = `T Sg`.

Var(z)within =
1

n−G

G

∑
g=1

(ng−1)Var(zg) =
1

n−G

G

∑
g=1

(ng−1)`T Sg`

= `T

{
1

n−G

G

∑
g=1

(ng−1)Sg

}
`= `T W`

where W = 1
n−G ∑

G
g=1(ng−1)Sg is the within group covariance matrix

(also known as within group scatter matrix) in the observed variable
space (it is meaningful because of the homoscedasticity assumption).

Var(z)between =
1

G−1

G

∑
g=1

(z̄g− z̄)2ng =
1

G−1

G

∑
g=1

(`T x̄g− `T x̄)2ng

=
1

G−1
`T

{
G

∑
g=1

ng(x̄g− x̄)(x̄g− x̄)T

}
`= `T B`

where B = 1
G−1 ∑

G
g=1 ng(x̄g− x̄)(x̄g− x̄)T is the between group covari-

ance matrix (also known as between group scatter matrix) in the ob-
served variable space. Its rank is at most G−1.
In the simple two group case, the between group variance has one de-
gree of freedom only and it has the simple expression ∑

2
g=1 ng(x̄g−

x̄)(x̄g− x̄)T . After writing x̄ as in equation (1.1) and after little algebra,
it becomes

B =
n1n0

n1 +n0
(x̄1− x̄0)(x̄1− x̄0)

T (1.2)

This clearly shows that in the two group case the between group covari-
ance matrix has rank equal to 1.
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According to Fisher, the function that has to be optimized with re-
spect to ` is therefore:

φ =
Var(z)between

Var(z)within
=

`T B`
`T W`

(1.3)

In order to find the vector ` for which φ is maximum, φ must be derived
with respect to ` and the derivatives must be set to 0:

∂φ

∂`
= 2

{
B`(`T W`)−W`(`T B`)

(`T W`)2

}
= 2

{
B`(`T W`)

(`T W`)2 −
W`(`T B`)
(`T W`)2

}
= 0

Following equation (1.3), it becomes

B`
`T W`

− W`φ

`T W`
= 0

and then
B`−φW`= 0 (1.4)

or equivalently:
(B−φW)`= 0

After pre-multiplying both sides by W−1 (under the assumption that it
is non singular), we obtain:

(W−1B−φI)`= 0

This is a linear homogeneous equation system which admits non
trivial solution if and only if det(W−1B−φI) = 0; this means that φ is
an eigenvalue of W−1B and ` is the corresponding eigenvector.

As φ is the function we want to maximize we choose the largest
eigenvalue and the corresponding eigenvector as the best discriminant
direction.
We can find up to G− 1 different discriminant directions as the rank
of B (and hence of W−1B) is at most G− 1. Each of them will have a
decreasing discrimination power. In the two group case, the following
result holds:
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Theorem 1. Given two groups G0 and G1 coming from two homoscedas-
tic populations, the only linear discriminant direction ` is proportional
to:

a = W−1(x̄1− x̄0)

Proof. If we assume that W is nonsingular, then equation (1.4) can be
rewritten as:

φ `= W−1B`

= W−1(x̄1− x̄0)(x̄1− x̄0)
> `

n0 n1

n
Setting: c = (x̄1− x̄0)

>` ∈ R

`=
c
φ

n0 n1

n︸ ︷︷ ︸ W−1(x̄1− x̄0)

∈ R
and hence: ` ∝ a

In the same paper Fisher rephrased the issue as a multiple linear re-
gression problem.
Given Y = Xβ + ε , where X is mean centered and the variable y iden-
tifying group membership is such that:

yi =

{
−n1/n if the unit i ∈ G0

n0/n if the unit i ∈ G1

the solution to the least square regression problem relating Y to X, is

b = (X>X)−1X>y = (T SS)−1(x̄1− x̄0)
n0n1

n0 +n1
(1.5)

where T SS = X>X is the total sum of squares.

The following proposition can be proved:

Proposition 1.1. the best linear discriminant direction ` is also propor-
tional to the vector of linear regression coefficients b.
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Proof. Remembering that:

B =
BSS

G−1
, W =

WSS
n−G

where BSS and WSS are the between and the within sum of squares,
equation (1.4) can be rewritten as:

BSS
G−1

`− WSS
n−G

`φ = 0

or equivalently as:

BSS `−WSS ` φ
G−1
n−G

= 0 (1.6)

and hence:

BSS `−WSS ` φ1 = 0, where φ1 = φ
G−1
n−G

This means that ` is also an eigenvector of WSS−1BSS and φ1 is the
corresponding eigenvalue.

As: WSS = T SS−BSS, then (1.6) becomes:

BSS `−T SS ` φ1 +BSS ` φ1 = 0
BSS `(1+φ1)−T SS ` φ1 = 0

BSS `−T SS `
φ1

(1+φ1)
= 0

BSS `−T SS ` φ2 = 0, where φ2 =
φ1

1+φ1

So: (T SS)−1BSS `= φ2 `

Therefore, the best linear discriminant direction ` is also an eigenvector
of T SS−1BSS and φ2 is the corresponding eigenvalue.
Moreover, in the two group case:
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φ2 `= (T SS)−1BSS `

= (T SS)−1B `

= (T SS)−1(x̄1− x̄0)(x̄1− x̄0)
> `

n0 n1

n
Setting c = (x̄1− x̄0)

> ` ∈ R, then :

`=
c
φ2

T SS−1(x̄1− x̄0)
n0 n1

n

=
c
φ2

b

So: ` ∝ b

1.2 Classification based on probability mod-
els

Let x be the p-dimensional vector of the observed variables and xnew
a new observation whose group membership is unknown. Let Π1 and
Π0 denote the two parent populations. The key assumption is that x has
a different probability density function (pdf ) in Π1 and Π0.
Let us denote the pdf of x in Π1 as f1(x) and the pdf of x in Π0 as f0(x).
Let us denote by R the set of all possible values x can assume.
As f1(x) and f0(x) usually overlap, each point of R can belong both
to Π1 and Π0, but with a different probability degree. The goal is to
partition R into two exhaustive, non overlapping regions R1 and R0
(R1 ∪ R0 = R and R1 ∩ R0 = /0) such that the probability of a wrong
classification is minimum, when a unit belonging to R1 is allocated to
Π1 and a unit belonging to R0 is allocated to Π0.
Given a new unit xnew, whose group membership is unknown, a very in-
tuitive rule consists in allocating it to Π1 if the probability that it comes
from Π1 is larger than the probability that it comes from Π0 or to allo-
cate it to Π0 if the opposite holds.
According to this criterion:
R1 is the set of the x values such that f1(x)> f0(x) and R0 is the set of
the x values such that f1(x) < f0(x). The ensuing classification rule is
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therefore: allocate xnew to Π1 if:

f1(xnew)

f0(xnew)
> 1

allocate xnew to Π0 if:
f1(xnew)

f0(xnew)
< 1

allocate xnew randomly to one of the two populations if equality holds.
This classification rule is known as likelihood ratio rule.
However intuitively reasonable, this rule neglects possibly different prior
probabilities of class membership and possibly different misclassifica-
tion costs.
Let us denote by π1 the prior probability that xnew belongs to Π1 and by
π0 the prior probability that xnew belongs to Π0 (π1 +π0 = 1).
Based on likelihoods only, the probability that a unit belonging to Π1 is
wrongly classified to Π0 (this happens when it falls in R0) is:

p(0|1) =
∫

R0

f1(x)dx

and the probability of a wrong classification of a unit to Π1 when it
effectively comes from Π0 is:

p(1|0) =
∫

R1

f0(x)dx

The overall probability of a wrong classification is therefore:

prob = π1 p(0|1)+π0 p(1|0)

R1 and R0 should be therefore chosen in such a way that prob is mini-
mum.
prob can be written as

prob = π1

∫
R0

f1(x)dx+π0

∫
R1

f0(x)dx (1.7)

Since R is the complete space and pdfs are known to integrate to 1 over
their domain, it is: ∫

R
f1(x)dx =

∫
R

f0(x)dx = 1
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and as R1∪R0 = R and R1∩R0 = /0 we have:∫
R

f1(x)dx =
∫

R1

f1(x)dx+
∫

R0

f1(x)dx = 1

and hence: ∫
R0

f1(x)dx = 1−
∫

R1

f1(x)dx

After replacing it in the equation (1.7) we obtain:

prob = π1

[
1−

∫
R1

f1(x)dx
]
+π0

∫
R1

f0(x)dx

= π1−π1

∫
R1

f1(x)dx+π0

∫
R1

f0(x)dx

= π1 +
∫

R1

[π0 f0(x)−π1 f1(x)]dx

As π1 is a constant, prob will be minimum when the integral is
minimum, i.e. when the integrand is negative.
This means that R1 should be chosen so that, for the points belonging to
it:

π0 f0(x)−π1 f1(x)< 0

that is:
π1 f1(x)> π0 f0(x)

The ensuing allocation rule will then be:
allocate xnew to Π1 if:

f1(xnew)

f0(xnew)
>

π0

π1

allocate xnew to Π0 if:
f1(xnew)

f0(xnew)
<

π0

π1

allocate xnew randomly to one of the two populations if equality holds.
In the equal prior case (π1 = π2 = 1/2) the likelihood ratio rule is ob-
tained.
It is worth adding that the classification rule obtained by minimizing the
total probability of a wrong classification is equivalent to the one that
would be obtained by maximizing the posterior probability of popula-
tion membership. That’s the reason why it is often called an optimal
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Bayes rule.

Gaussian populations
Let us assume that both f1(x) and f0(x) are multivariate normal densi-
ties with parameters (µ1,Σ1) and (µ0,Σ0), respectively:

f1(x) = (2π)−p/2 |Σ1|−1/2 exp
{
−1

2
(x−µ1)

>
Σ
−1
1 (x−µ1)

}
f0(x) = (2π)−p/2 |Σ0|−1/2 exp

{
−1

2
(x−µ0)

>
Σ
−1
0 (x−µ0)

}
The likelihood ratio is therefore:
f1(x)
f0(x)

= |Σ1|−1/2 |Σ0|1/2 exp
{
−1

2

[
(x−µ1)

>
Σ
−1
1 (x−µ1)− (x−µ0)

>
Σ
−1
0 (x−µ0)

]}
= |Σ1|−1/2 |Σ0|1/2 exp{−1

2
[x>(Σ−1

1 −Σ
−1
0 )x−2x>(Σ−1

1 µ1−Σ
−1
0 µ0)

+µ
>
1 Σ
−1
1 µ1−µ

>
0 Σ
−1
0 µ0]}

The expression can be simplified by considering the logarithm of
the likelihood ratio. In this way the so called Quadratic discriminant
function is obtained:

Q(x) = ln
f1(x)
f0(x)

=
1
2

ln
|Σ0|
|Σ1|
− 1

2
[x>(Σ−1

1 −Σ
−1
0 )x−2x>(Σ−1

1 µ1−Σ
−1
0 µ0)

+µ
>
1 Σ
−1
1 µ1−µ

>
0 Σ
−1
0 µ0]

The expression clearly shows that it is a quadratic function of x.
The ensuing classification rule suggests to allocate xnew to Π1 if:

Q(xnew)> ln(H)

where H is either 1, if equal priors are assumed, or π0
π1

in the unequal
prior case.
When Σ1 = Σ0 = Σ then the likelihood ratio becomes:

f1(x)
f0(x)

= exp
{
(µ1−µ0)

>
Σ
−1x− 1

2
(µ1−µ0)

>
Σ
−1(µ1 +µ0)

}
= exp

{
(µ1−µ0)

>
Σ
−1
[

x− 1
2
(µ1 +µ0)

]}
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After taking the logarithm we obtain:

L(x) = (µ1−µ0)
>

Σ
−1
[

x− 1
2
(µ1 +µ0)

]
(1.8)

This is known as linear discriminant rule as it is a linear function of x.
The ensuing classification rule suggests to allocate xnew to Π1 if

L(xnew)> ln(H)

where H is either 1, if equal priors are assumed, or π0
π1

in the unequal
prior case.
In empirical applications, maximum likelihood estimates of the model
parameters are plugged into the classification rules.
µ1 and µ0 are estimated by x̄1 and x̄0. Furthermore, in the heteroscedas-
tic case Σ1 and Σ0 are replaced by S1 and S0 respectively, while in the
homoscedastic case, the common Σ is replaced by the within group co-
variance matrix W.
Equation (1.8) clearly tells us that in the two group case, the linear com-
bination minimizing the total probability of a wrong classification is
given by:

(µ1−µ0)
>

Σ
−1x

Its sample version is obtained through the vector:

a =W−1(x̄1− x̄0) (1.9)
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1.3 Optimal direction and regression

We have verified that the vector ` of the coefficients of the linear
combination maximizing the ratio of the between to the within variance
is proportional to a.
We have also said that ` is proportional to the vector of the linear re-
gression coefficients b.
It follows that a is proportional to b.
We can prove the following proposition:

Proposition 1.2. The relation between a and b is given as:

a = γ b = γ (X>X)−1(x̄1− x̄0)
n0 n1

n
(1.10)

where:

γ =
n

n0 n1
(n−2)+d2

M(x̄0, x̄1) (1.11)

and d2
M(x̄0, x̄1) = (x̄1− x̄0)

>W−1(x̄1− x̄0) is the squared Mahalanobis
Distance between x̄0 and x̄1.

Proof. a ∝ b⇒ a = γ b, where γ ∈ R

From (1.9) a =W−1(x̄1− x̄0),

from (1.10) b = (T SS)−1(x̄1− x̄0)
n0 n1

n
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So:

W−1(x̄1− x̄0) = γ (T SS)−1(x̄1− x̄0)
n0 n1

n
(n−2)(WSS)−1(x̄1− x̄0) = γ (WSS+BSS)−1(x̄1− x̄0)

n0 n1

n
γ (x̄1− x̄0) =

n
n0 n1

(n−2)(WSS+BSS)(WSS)−1(x̄1− x̄0)

γ (x̄1− x̄0) =
n

n0 n1
(n−2) I (x̄1− x̄0)+

n
n0 n1

(n−2)BSS (WSS)−1(x̄1− x̄0)

γ (x̄1− x̄0) =
n

n0 n1
(n−2)(x̄1− x̄0)+(n−2)(x̄1− x̄0)(x̄1− x̄0)

>(WSS)−1(x̄1− x̄0)

γ (x̄1− x̄0) =
n

n0 n1
(n−2)(x̄1− x̄0)+d2

M(x̄0, x̄1)(x̄1− x̄0)

γ (x̄1− x̄0) =

[
n

n0 n1
(n−2)+d2

M(x̄0, x̄1)

]
(x̄1− x̄0)

and hence: γ =
n

n0 n1
(n−2)+d2

M(x̄0, x̄1)

Alternatively, starting from the original formulation for a (1.9), we
can obtain:

Proposition 1.3.

a =
n

n0 n1
(n−2)

1
(1− n0n1

n δ 2)
b (1.12)

where: δ 2 = (x̄1− x̄0)
> (X>X)−1 (x̄1− x̄0) ∈ R

Proof. The proof is based on a result by Miller (1981) according to
which, given a full rank matrix X>X and a rank 1 matrix B:

(X>X−B)−1 = (X>X)−1 +
1

1−g
(X>X)−1 B (X>X)−1 (1.13)

where: g= tr
[
(X>X)−1B

]
= n0 n1

n (x̄1− x̄0)
> (X>X)−1 (x̄1− x̄0)=

n0n1
n δ 2
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So:

a =W−1 (x̄1− x̄0)

= (n−2)(X>X−B)−1 (x̄1− x̄0)

= (n−2)
[
(X>X)−1 +

1
1−g

(X>X)−1B (X>X)−1
]
(x̄1− x̄0)

= (n−2)
[
(X>X)−1 +

1
1−g

(X>X)−1 n0 n1

n
(x̄1− x̄0)(x̄1− x̄0)

>(X>X)−1
]
(x̄1− x̄0)

= (n−2)
[
(X>X)−1(x̄1− x̄0)+

1
1− n0 n1

n δ 2 (X>X)−1 n0 n1

n
(x̄1− x̄0) δ

2
]

= (n−2)
1

1− n0 n1
n δ 2 (X>X)−1(x̄1− x̄0)

=
n

n0 n1
(n−2)

1
1− n0 n1

n δ 2 (X>X)−1(x̄1− x̄0)
n0 n1

n

=
n

n0 n1
(n−2)

1
(1− n0n1

n δ 2)︸ ︷︷ ︸ b

γ
∗ ∈ R

We have seen that a = γ b and a = γ∗b, so γ = γ∗.
Starting from this equality, we can rewrite the squared Mahalanobis
distance in terms of the δ 2 constant, and vice versa.
So:

d2
M(x̄0, x̄1) =

(n−2)δ 2

1− n0 n1
n δ 2 (1.14)

and:

δ
2 =

d2
M(x̄0, x̄1)

(n−2)+ n0 n1
n d2

M(x̄0, x̄1)
(1.15)

If we think of our classification problem as a regression problem,
the following expression for the Model Sum of Squares (MSS) can be
easily derived:

Proposition 1.4.

MSS =
n0n1

n
− (n−2)

(n−2)n0n1
n +d2

M(x̄0, x̄1)
(1.16)
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or also as:

MSS =
(n0n1

n

)2
δ

2 (1.17)

Proof.

MSS = b>X>y

=
1
γ

a>X>y

=
1
γ
(x̄1− x̄0)

>W−1(x̄1− x̄0)
n0 n1

n

=
1
γ

d2
M(x̄0, x̄1)

n0 n1

n

=
1

n
n0 n1

(n−2)+d2
M(x̄0, x̄1)

d2
M(x̄0, x̄1)

n0 n1

n

=
n0n1

n

(
1−

(n−2) n
n0 n1

(n−2) n
n0 n1

+d2
M(x̄0, x̄1)

)

=
n0n1

n
− (n−2)

(n−2) n
n0 n1

+d2
M(x̄0, x̄1)

=
n0n1

n
− (n−2)

γ

=
n0n1

n
− (n−2)

γ∗

=
n0n1

n
− (n−2)

n
n0 n1

(n−2) 1
(1− n0n1

n δ 2)

=
n0n1

n
− n0n1

n
(1− n0n1

n
δ

2)

=
(n0n1

n

)2
δ

2



Chapter 2

Matrix Sketching

2.1 Motivation
Matrix sketching is a probabilistic data compression technique. Its

goal is to reduce the number of rows in a data set and the task is accom-
plished by linearly combining the rows of the original data set through
randomly generated coefficients. The analysis can then be performed
on the reduced matrix, thus saving time and space.

The theoretical justification for this approach to data compression
is given by Johnson-Lindenstrauss lemma (Johnson & Lindenstrauss,
1984).

Lemma 2.1. Johnson Lindenstrauss (1984). Let Q be a subset of

p−points in Rn, then for any ε ∈ (0,1/2) and for k =
20 logp

ε2 there

exists a Lipschitz mapping f : Rn −→ Rk such that for all u, v ∈ Q:

(1− ε)‖u−v‖2 ≤‖ f (u)− f (v)‖2 ≤ (1+ ε)‖u−v‖2

The Lemma says that any p−point subset of the Euclidean space
can be embedded in k dimensions without distorting the distances be-
tween any pair of points by more than a factor of 1± ε , for any ε in
(0,1/2).
Moreover, it also gives an explicit bound on the dimensionality required
for a projection to ensure that it will approximately preserve distances.
This bound depends on the dimension of the data matrix that is not
sketched, i.e. p in this case.

19
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The original proof by Johnson and Lindenstrauss is probabilistic, show-
ing that projecting the p-point subset onto a random k-dimensional sub-
space only changes the inter-point distances by 1±ε with positive prob-
ability. The proof of the lemma is based on what is called norm preser-
vation lemma (Dasgupta & Gupta, 2003).

Lemma 2.2. Norm preservation lemma. Let x ∈Rn. Assume that
the entries of a matrix A ⊂ Rk×n are sampled independently from a
N(0,1/k), then

Pr((1− ε)‖x‖2 ≤‖Ax‖2 ≤ (1+ ε)‖x‖2)≥ 1−2e−(ε
2−ε3)k/4

By applying the norm preservation lemma to the vectors u+ v and
u−v the following corollary can be proved.

Corollary 1. Let u, v ∈ Rn and ‖u‖ < 1, ‖v‖ < 1. Let f = Ax where
A is a k×n matrix, where each entry is sampled i.i.d from a Gaussian
N(0,1/k)). Then,

Pr(|u>v− f (u) f (v)| ≥ ε)≤ 4e−(ε
2−ε3)k/4

The corollary states that inner products are preserved as well after
random projections.

In order to apply Johnson and Lindenstrauss lemma, the concept of
ε−subspace embedding is useful.

Definition 1. ε−subspace embedding. For a given n× p matrix X, we
call a k× n random matrix S an ε-subspace for X, if for all vectors
z ∈ Rp

(1− ε)‖Xz‖2 ≤‖SXz‖2 ≤ (1+ ε)‖Xz‖2

S is usually called a Sketching Matrix. It reduces the sample size
from n to k whilst preserving most of the linear information in the full
dataset.
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2.2 Sketching Methods

The original proof by Johnson and Lindenstrauss required S to have
orthogonal rows; subsequent proofs relaxed the orthogonality require-
ment and assumed the entries of S to be independently randomly gen-
erated from a Gaussian distribution with 0 mean and variance equal to
1/k. This approach to sketching is known as Gaussian sketching and it
is largely used in statistical applications as it allows for statistical anal-
ysis of the results obtained after sketching.

Although appealing from a theoretical point of view, Gaussian sketch-
ing is computationally demanding as the associated sketching matrix is
full. Therefore research has been oriented towards developing more ef-
ficient algorithms still satisfying the ε-subspace embedding property.
Ailon & Chazelle (2009) have proposed what is known as Hadamard
sketch. The sketching matrix is formed as S = ΦHD/

√
k, where Φ is

a k× n matrix and H and D are both n× n matrices. The fixed matrix
H is a Hadamard matrix of order n. A Hadamard matrix is a square
matrix with elements that are either +1 or −1 and orthogonal rows.
Hadamard matrices do not exist for all integers n, the source dataset can
be padded with zeros so that a conformable Hadamard matrix is avail-
able. The random matrix D is a diagonal matrix where each nonzero
element is an independent Rademacher random variable. The random
matrix Φ subsamples k rows of H with replacement. The structure of
the Hadamard sketch allows for fast matrix multiplication, reducing cal-
culation of the sketched dataset from O(npk) of the gaussian sketch to
O(np logk) operations.
Another efficient method for generating ε−subspace embeddings is the
so-called Clarkson-Woodruff sketch (Clarkson & Woodruff, 2017). The
sketching matrix is a sparse random matrix S =ΓD, where Γ(k×n) and
D(n×n) are two independent random matrices. The matrix Γ is a ran-
dom matrix with only one element for each column set to +1. The
matrix D is the same as above. This results in a sparse random matrix
S with only one nonzero entry per column. The sparsity speeds up ma-
trix multiplication, dropping the complexity of generating the sketched
dataset to O(np).

It is worth noticing that the rows of the Gaussian and Clarkson-
Woodruff sketching matrices are not orthogonal and this implies that
the geometry of the original space is not preserved after sketching. The
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Gaussian sketching matrix is sometimes orthogonalized according to
Gram-Schmidt procedure thus leading to what are known as Haar pro-
jections. This operation inevitably increases the computational load.
Hadamard sketching matrices on the contrary are orthogonal by con-
struction.

In the following we will denote by X the n× p original data matrix
and by X̃ = SX the k× p sketched data matrix.

As said in the Introduction, the leading motivation for sketching is
the reduction of the computational cost related to the computation of the
Gram matrix. In order to study the performances of the different sketch-
ing methods in terms of quality of the approximation of the Gram matrix
after sketching, we have run a small simulation study in which a n× p
data matrix has been generated for n = {1024,2560} (the numbers have
been chosen in such a way that they are conformable to the Hadamard
matrix). The matrices have been sketched 200 times and every time
the Frobenius norm of the difference between the original Gram matrix
X>X and the sketched one X̃>X̃ has been computed.
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Figure 2.1: Frobenius norm of the difference between the original
and the sketched Gram matrix, different sketching methods (Gaussian,
Clarkson-Woodruff, Haar, Hadamard), for different sketching degrees
(0.25 n, 0.5n, 0.75n, 1n) and different data set sizes (1024, 2560).
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Figure 2.1 reports the boxplots of the Frobenius norm over the 200
replicates for the different sketching algorithms, different data sizes and
four different degrees of sketching corresponding to k = n, k = 0.75n
k = 0.5n and k = 0.25n. When k = n the two orthogonal sketching
methods (namely Haar and Hadamard) exactly reproduce the Gram ma-
trix while, due to non-orthogonal rows, the Gaussian sketch and the
Clarkson-Woodruff one give distorted results. However, especially for
large datasets, when the data set size is reduced through Gaussian or
Clarkson-Woodruff sketching, the approximation of the Gram matrix is
better than the one obtained by the two orthogonal sketching methods.
In particular, Gaussian and Clarkson-Woodruff sketching guarantee the
same degree of approximation in terms of Frobenius norm but with a
stronger reduction in the data set size. For this reason and for its rele-
vant statistical properties, most of the following results will be referred
to as Gaussian sketching.

2.3 Matrix Sketching in linear regression
Maybe the first context in which matrix sketching has been applied

is multiple linear regression modeling. As previously said, the goal was
to reduce the computational load related to the Gram matrix.
We assume that the data consists of n observations on a response vari-
able y (which are collected in a n-length vector) and a set of p covariates
which, for the same n units, are collected in the n× p matrix X. X is
assumed to be of full rank. The model y = Xβ + ε is assumed to hold
for the data and the goal is to find the least squares estimate for β i.e.
the vector b that minimizes the following function:

min
b
‖ Xb−y ‖2

It is well known that the solution to this problem is given by

b = (X>X)−1X>y

The solution only depends on the Gram matrix X>X and on the marginal
association X>y.
In order to review the theory related to the use of sketching methods in
regression, the following quantities are worth introducing.
Let T SS = y>y; RSS =‖Xb−y ‖2

2; MSS =‖Xb ‖2
2 and R2 = MSS/T SS
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where T SS, RSS and MSS are the total, residual and model sum of
squares respectively and R2 is the multiple linear correlation coefficient.

Sarlós (2006) and Woodruff (2014), using the concept of ε-subspace
embedding, proved that the linear regression problem can be rephrased
in terms of sketched matrices:

min
b
‖ SX b−Sy ‖2⇒min

b
‖ X̃ b− ỹ ‖2

and the solution is:
bs = (X̃>X̃)−1 X̃>ỹ

where S is the Sketching matrix and X̃ and ỹ are the sketched covariate
matrix and response vector respectively.
bs is the so called complete sketching estimator for the vector of linear
regression coefficients.
Many theoretical results aimed at studying the properties of the sketched
vector of regression coefficients provided worst case bounds.
As a consequence of the ε-subspace embedding properties, Sarlós (2006)
proved that:

‖ bs−b ‖2
2≤

ε2

σ2
min(X)

RSS (2.1)

where σ2
min(X) is the smallest singular value of X and RSS is the resid-

ual sum of squares of the unsketched model.
The properties of the sketched vector of regression coefficients have re-
cently been studied according to a statistical perspective.
Ahfock et al. (2017) present interesting theoretical results related to
the goodness of the approximation of the sketched vector with respect
to the one referred to the unsketched dataset, while Dobriban & Liu
(2018) mainly address the issue of the quality of bs with respect to the
unknown vector of the model coefficients β .
Assuming that y and X are fixed, Ahfock et al. studied the distribution
of bs induced by the randomness in the sketching matrix S for Gaussian,
Hadamard and Clarkson Woodroff sketching.
When Gaussian sketching is used it can be easily proved that, condi-
tioning on the observed data set, the sketched data set has a multivariate
normal distribution. In fact, each sketched observation is obtained as a
linear combination of Guassian random variables.
Starting form this simple result, Ahfock et al. (2017) proved the follow-
ing theorem:
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Theorem 2. Suppose bs is computed using a Gaussian sketch and k >
p+1. The conditional distribution of bs is:

bs|X̃,X,y∼ N(b,
RSS

k
(X̃>X̃)−1)

The marginal distribution of bs is:

bs|X,y∼ Student
(

b,
RSS

k− (p+1)
(X>X)−1,k− (p+1)

)
.

This means that the structured vector of regression coefficients bs
is an unbiased estimator for the vector of regression coefficients b, ob-
tained on the original dataset.
The theorem also allows to derive exact confidence intervals for the el-
ements of bs.
Things are not so straightforward for the Hadamard and Clarkson -
Woodruff sketches, as they are discrete distributions over an enormous
combinatorial space. The explicit finite sample distribution of the sketched
estimators can be written as a sum over all these possible combinations,
but such a representation is not very informative. Instead, it is use-
ful to study the large n distribution of the estimator bs to obtain an
interpretable expression. An important result in Ahfock et al. (2017)
is a conditional central limit theorem for the sketched dataset that con-
nects the Hadamard and Clarkson-Woodruff projections to the Gaussian
sketch.
Besides analyzing the quality of the regression coefficients estimated on
the sketched data set with respect to the regression coefficients obtained
on the full unsketched data set, Ahfock et al. also address strict inferen-
tial issues. While in what has been described so far the source dataset is
assumed as fixed and error is introduced by the random projection only,
in the classical inferential setting a source of variability at the popula-
tion level is added to the projection one. The properties of the sketched
regression coefficients need therefore to be studied considering expec-
tations both with respect to the random sketching matrices S and with
respect to sampling.
In this new setting Ahfock et al. proved that the vector of sketched re-
gression coefficients bs is an unbiased estimator for the population one
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β and its unconditional variance after Gaussian sketching is: 1(
n− p

k− p−1
+1
)

σ
2(X>X)−1

In the same inferential framework Dobriban & Liu (2018) compared the
statistical efficiency of the least squares estimator b and of the sketched
estimator bs for the model parameter β . In particular they considered
variance efficiency:

V E(bs,b) =
E[‖bs−β‖2]

E[‖b−β‖2]
(2.2)

and prediction efficiency:

PE(bs,b) =
E[‖Xbs−Xβ‖2]

E[‖Xb−Xβ‖2]

which can be both regarded as a usual ratio of mean squared error of
two estimators.
For V E the parameter is β while for PE it is the regression function Xβ .
Both measures of efficiency are greater than or equal to 1, and smaller
is better.
Finally they studied out-of-sample efficiency defined as:

OE(bs,b) =
E[(x>t bs− yt)

2]

E[(x>b− yt)2]

They considered an asymptotic framework in which both the number of
variables p and the sample size n tend to infinity, and their aspect ratio
converges to a constant. The size k of the sketched data is also propor-
tional to n. Under these asymptotics they found the limits of the relative
efficiencies under various conditions on X and S.
In particular, relying on results from asymptotic random matrix theory
and free probability theory, they found very simple expressions for the

1The variance is obtained using the law of the total variance. Our result is slightly
different from Ahfock et al.’s one as they assume varε{Es(bs|y,X)} = 0 while we
think it is equal to σ2(X>X)−1 as Es(bs|y,X) is b, i.e the original least squares esti-
mator.
Also the degrees of freedom in Ahfock et al. contain a typo and should be k− p−1.
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relative efficiencies in the context of iid sketching (of which the Guas-
sian sketching is a special case) and of Haar/Hadamard (i.e. orthogonal
sketching). They also considered uniform sampling and leverage based
sampling, but we will report here on the sketching methods only.
Both for Gaussian sketching and Haar/Hadamard sketching the limits
of the variance efficiency and of the prediction efficiency coincide and
are respectively:

1+
n− p

k− p−1
for Gaussian sketch 2

n− p
k− p

for Haar/Hadamard sketch

It can be easily noticed that the estimation error increases by the fac-
tor due to sketching and that it increases for Haar and Hadamard sketch
less than for the iid sketch.
This is partially coherent with our finding in the previous section (which
however involves the Gram matrix only and does not consider the effect
of sketching on the association between the response and the covari-
ates). Gaussian projections distort the geometry of Euclidean space due
to their non-orthogonality and this in turn degrades the performance of
OLS even if we do not reduce the sample size.
The difference between the efficiency of the different sketching meth-
ods decreases as the size of the sketched data sets decreases.
The limits for OE are nk−p2

n(k−p) and k(n−p)
n(k−p) respectively for the Gaussian

and the orthogonal sketching.

In the same paper, in which they studied how the regression coeffi-
cients obtained after sketching both X and y approximate the ones re-
ferred to the unsketched dataset, Ahfock et al. (2017) also studied what
they called partial sketching, which has been introduced in the litera-
ture by Dhillon et al. (2013) and Pilanci & Wainwright (2016).
As the computational burden mainly affects the Gram Matrix, one can
simply sketch the design matrix X while leaving the response variable
y unchanged. The least squares problem can be rephrased as

min
b
‖ SXb−y ‖2⇒min

b
‖ X̃b−y ‖2

2This result is coherent with our result in note 1.
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and the solution is the so-called vector of partially sketched regression
coefficients:

bp = (X̃>X̃)−1 X>y

Ahfock et al. proved that:

‖ bp−b ‖2≤ 4ε2

σ2
min(X)

MSS (2.3)

i.e. the goodness of the approximation of the partially sketched regres-
sion coefficients with respect to the ones obtained on the full data set
is upper bounded by a quantity that depends on the unsketched model
sum of squares MSS. This means that when the model sum of squares
is low partial sketching provides a better approximation than complete
sketching; on the contrary when the error sum of squares is low com-
plete sketching should be preferred.
When dealing with Gaussian sketching, the following results hold:

X̃ |X∼MN(0k×p,Ik,
1
k

X>X) (2.4)

i.e. X̃ is a matrix variate normal random variable. Therefore:

X̃>X̃ |X∼Wishart(k,X>X/k) (2.5)

and (X̃>X̃)−1 |X∼ InvWishart(k,k(X>X)−1) (2.6)

Useful properties of the Wishart and the inverse-Wishart random vari-
ables are reported in Appendix A. We will refer to them in the following.
bp = (X̃>X̃)−1 X>y is therefore a linear combination of the elements of
an inverse Wishart random variable.
Its distribution is unknown but it is possible to compute its expected
value and its variance.
According to property A6(i) in the appendix:

E
[
(X̃>X̃)−1

]
=

1
k− p−1

(X>X)−1.

From this:

Es [bp |y,X] = E
[
(X̃>X̃)−1X>y |y,X

]
=

k
(k− p−1)

b (2.7)
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easily derives. The subscript s stresses the fact that the expected value
is computed with respect to all possible sketching matrices.
This result means that the partially sketched vector of regression coeffi-
cients bp is a biased estimator of the corresponding vector b referred to
the full data set.
The unbiased estimator can therefore be obtained as:

b∗p =
(k− p−1)

k
(X̃>X̃)−1 X>y.

Ahfock et al. also derived the variance both for the biased and the
unbiased vector of partially sketched regression coefficients:

V (bp) =
k2

(k− p)(k− p−1)(k− p−3)
(MSS(X>X)−1 +

k− p+1
k− p−1

bb>) (2.8)

V (b∗p) =
(k− p−1)

(k− p)(k− p−3)
(MSS(X>X)−1 +

k− p+1
k− p−1

bb>) (2.9)

Their proof is a little bit laborious. We have obtained the same result in
a simpler way by relying on the result in Haff (1979) which is reported
in A6(iii) in the appendix.
As:

V (bp) = E(bp
2)−E(bp)

2

and, according to (2.7):

E(bp)
2 =

k2

(k− p−1)2 bb>

we only need to find a suitable expression for E(bp
2) in order to obtain

the result.

E(bp
2) = E(bpbp

>) = E
[
(X̃>X̃)−1 X>yy>X(X̃>X̃)−1

]
which, after setting X>yy>X = A and using the property in A6(iii),
becomes:

E
[
(X̃>X̃)−1A(X̃>X̃)−1

]
=

1
(k− p)(k− p−1)(k− p−3)

tr(k(X>X)−1A)k(X>X)−1+

+
1

(k− p)(k− p−3)
k(X>X)−1A(X>X)−1k
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But:

(X>X)−1A(X>X)−1 = (X>X)−1X>yy>X(X>X)
−1

= bb>

Moreover:

tr[k(X>X)−1A)](X>X)−1 = k2tr[(X>X)−1X>yy>X](X>X)−1

= k2tr[by>X](X>X)−1

and, after applying trace properties and recognizing in b>X>y the
model sum of squares for the full data set, it becomes:

k2tr[b>X>y](X>X)−1 = k2MSS(X>X)−1

So:

E(bp
2)=

k2

(k− p)(k− p−1)(k− p−3)
MSS(X>X)−1+

k2

(k− p)(k− p−3)
bb>

The variance then becomes:

V (bp) =
k2

(k− p)(k− p−1)(k− p−3)
MSS(X>X)−1+

+
k2

(k− p)(k− p−3)
bb>− k2

(k− p−1)2 bb>

=
k2

(k− p)(k− p−1)(k− p−3)
(MSS(X>X)−1 +

k− p+1
k− p−1

bb>)

The variance of b∗p can be derived accordingly.
It is immediately evident that the variance of the partially sketched re-
gression coefficients depends on the model sum of squares while the
one of the completely sketched regression coefficients depends on the
residual sum of squares. This means that when R2 is close to 1 complete
sketching can be more efficient than partial sketching while when R2 is
close to zero the latter should be preferred.
In order to deal with intermediate situations, Ahfock et al. (2017) pro-
pose a combined estimator which relies on the incorrelation between b∗p
and bs.
As previously said, the explicit form of the sampling distribution of the
partially sketched regression coefficients is hard to obtain. However, by
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making a connection with method of moments estimation, Ahfock et
al. also established asymptotic normality of both bp and b∗p as k tends
to infinity. This motivates the construction of approximate confidence
intervals.
They also proved that, asymptotically, the Hadamard and Clarkson-
Woodruff sketches should have similar mean and variance properties
to the Gaussian partially sketched estimator.
Dobriban & Liu (2018) did not address the issue related to the effi-
ciency of partial sketching in the unconditional setting, but Ahfock et
al. proved that b∗p is also unbiased for the population parameter β , and
its variance is:

Vε(b∗p) =
(k− p−1)

(k− p)(k− p−3)
{(pσ

2 +nτ
2)(X>X)−1+

+(
k− p+1
k− p−1

σ
2(X>X)−1 +

k− p+1
k− p−1

ββ
>)}

where σ2 is the variance of the error term and τ2 = ‖Xβ‖2
2/n represents

the average mean function sum of squares.
When compared with the unconditional variance of bs, this variance
tells us that again bs is more efficient when the signal to noise ratio is
high and b∗p is more efficient when the signal to noise ratio is low.
This is confirmed also when variance efficiency of b∗p in estimating β in
(2.2) is measured with respect to the ordinary least squares estimator.
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Chapter 3

Matrix Sketching for LDA

3.1 Introduction

The main contribution of this thesis is the proposal of applying ma-
trix sketching in linear discriminant analysis. As illustrated in chapter 1
LDA can be seen as a particular regression problem, therefore the same
computational load inherent in the computation of the Gram matrix in-
volved in multiple linear regression also affects LDA.
As the response variable for two group LDA is a binary variable, partial
sketching represents the only viable solution. Sketching the response
variable too (i.e. linearly combining the response values) would lead to
loose the information on group membership, thus preventing any possi-
ble classification.
According to the partial sketching approach, only the Gram matrix is
sketched while the relationship between the predictor variables and the
response is left unchanged.
By applying matrix sketching to the Gram matrix involved in (1.9),
(1.10), (1.11) and (1.12), the following expression for the partially sketched
linear discriminant direction can be obtained:

bp =(X̃>X̃)−1 (x̄1− x̄0)
n0 n1

n0 +n1
(3.1)

ap =γp bp (3.2)

33
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where:

γp =(n−2)
(n0 +n1)

n0 n1
+(x̄1− x̄0)

>W−1
sk (x̄1− x̄0) (3.3)

=(n−2)
n

n0 n1

1

1− n0n1
n (x̄1− x̄0)> (X̃>X̃)−1 (x̄1− x̄0)

(3.4)

Equivalently ap can be written as:

ap =W−1
sk (x̄1− x̄0) = (n−2)(X̃>X̃−B)−1 (x̄1− x̄0) = γp bp (3.5)

3.2 Theoretical Results
In analogy with the approach followed in the context of multiple

regression, we have derived an upper bound for the squared Euclidean
distance between the vector of the partially sketched linear discriminant
coefficients ap and the linear discriminant direction a referred to the
unsketched dataset:

Theorem 3. Suppose that X̃ is an ε−subspace embedding of X, with
0 < ε < 0.5. Then the following bound holds:

‖a−ap‖2
2 ≤ d2

M

[
(n−2)+

n0n1

n
d2

M

] 1
σ2

min(X)
4ε

2 (3.6)

Proof.

‖a−ap‖2 = ‖γ b− γp bp‖2

=

∣∣∣∣ n
n0 n1

(n−2)
∣∣∣∣ ‖ 1

1− n0 n1
n δ 2 b− 1

1− n0 n1
n δ 2

p
bp‖2

2

where: δ
2
p = (x̄1− x̄0)

> (X̃>X̃)−1 (x̄1− x̄0) ∈ R
and δ

2 = (x̄1− x̄0)
> (X>X)−1 (x̄1− x̄0)

Let X = UDV> be the singular value decomposition of X. Then:

b = (X>X)−1 (x̄1− x̄0)
n0 n1

n
= ((UDV>)>UDV>)−1 (x̄1− x̄0)

n0 n1

n
= VD−1 D−1V>(x̄1− x̄0)

n0 n1

n
, because U>U = Ip
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Similarly, bp can be written as:

bp = (X̃>X̃)−1 (x̄1− x̄0)
n0 n1

n
= ((SX)>SX)−1 (x̄1− x̄0)

n0 n1

n
= VD−1(U>S>SU)−1D−1V>(x̄1− x̄0)

n0 n1

n

So:

‖a−ap‖2 = (n−2)‖ 1
1− n0 n1

n δ 2 VD−1 D−1V>(x̄1− x̄0)+

− 1
1− n0 n1

n δ 2
p

VD−1(U>S>SU)−1D−1V>(x̄1− x̄0)‖2

= (n−2)‖VD−1

[
1

1− n0 n1
n δ 2 I− 1

1− n0 n1
n δ 2

p
(U>S>SU)−1

]
D−1V>

(x̄1− x̄0)‖2

Let:

ξ =
1

1− n0 n1
n δ 2 ∈ R, and ψ =

1
1− n0 n1

n δ 2
p
∈ R, with both ψ,ξ > 0

Then:

‖a−ap‖2 = (n−2)‖VD−1
[
ξ I−ψ (U>S>SU)−1

]
D−1V>(x̄1− x̄0)‖2

≤ (n−2)‖VD−1‖2‖ξ I−ψ (U>S>SU)−1‖2 ‖D−1V>(x̄1− x̄0)‖2

As: ‖VD−1‖2 =
1

σmin(X) , where σmin(X) is the minimum singular value of X,

and: ‖D−1V>(x̄1− x̄0)‖2
2 = (x̄1− x̄0)

>VD−1 D−1V>(x̄1− x̄0)

= (x̄1− x̄0)
>(X>X)−1(x̄1− x̄0) = δ

2

⇒ ‖D−1V>(x̄1− x̄0)‖2 = δ then:

‖a−ap‖2 ≤ (n−2)
1

σmin(X)
δ ‖ψ (U>S>SU)−1−ξ I‖2



36 CHAPTER 3. MATRIX SKETCHING FOR LDA

We now need to upper bound the maximum singular value of the
matrix ψ (U>S>SU)−1−ξ I.
We can write:

‖ψ (U>S>SU)−1−ξ I‖2 = ξ ‖ψ

ξ
M−1− I‖2,

where M = U>S>SU.
Since:

ψ

ξ
=

1− n0 n1
n δ

1− n0 n1
n δp

∼ 1

then:
‖ψ (U>S>SU)−1−ξ I‖2 = ξ ‖M−1− I‖2,

The maximum absolute value of the singular values of the matrix M−1− I
is equal to:

max
(∣∣∣∣ 1

σmin(M)
−1
∣∣∣∣ , ∣∣∣∣ 1

σmax(M)
−1
∣∣∣∣) ,

where σmin(M) and σmax(M) are the minimum and maximum singular
value of M respectively.
Since S is an ε−subspace embedding for X:

σmin(M)≥ 1− ε,σmax(M)≤ 1+ ε

this implies that:

1
σmax(M)

≤ 1
σmin(M)

≤ 1
1− ε

So:

‖ψ (U>S>SU)
−1−ξ I‖2 = ξ ‖M−1− I‖2

= ξ max(
∣∣ 1
σmin(M)

−1
∣∣, ∣∣ 1

σmax(M)
−1
∣∣)

≤ ξ
∣∣ 1
1− ε

−1
∣∣

≤ ξ 2ε

=
1

1− n0 n1
n δ 2 2ε
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So:
‖a−ap‖2 ≤ (n−2)

1
σmin(X)

δ
1

1− n0 n1
n δ 2 2ε

Now, remembering that:

d2
M(x̄0, x̄1) = (n−2)

δ 2

1− n0 n1
n δ 2

then:

(n−2)
1

1− n0 n1
n δ 2 =

d2
M(x̄0, x̄1)

δ 2

So:

‖a−ap‖2 ≤
d2

M(x̄0, x̄1)

δ

1
σmin(X)

2ε

Squaring both sides, we have:

‖a−ap‖2
2 ≤

d4
M(x̄0, x̄1)

δ 2
1

σ2
min(X)

4ε
2

Since:

δ
2 = (x̄1− x̄0)

> (X>X)−1 (x̄1− x̄0) =
d2

M

(n−2)+ n0 n1
n d2

M

the bound can finally be rewritten as:

‖a−ap‖2
2 ≤ d2

M

[
(n−2)+

n0n1

n
d2

M

] 1
σ2

min(X)
4ε

2

The bound essentially depends on the squared Mahalanobis distance
(like bp that depends on MSS) as the effect of n is compensated by
σmin(X) according to the so called interlacing theorem which, when
referred to singular values, states what follows:

Theorem 4. For A ∈ Cn×p, let B denote A with one of its rows or
columns deleted. Then:

σi+1(A)≤ σi(B)≤ σi(A)

where σi is the i-th singular value in the decreasing sequence of the p
non-zero singular values.
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This implies that, as the number of rows increases, the minimum
singular value does too (see for further details Horn & Johnson, 1991).
To better understand the meaning of the bound, we have performed a
small simulation study in which we have generated 100 samples com-
posed of n0 = n1 = 10000 units from p-variate Normal distributions,
with p = 4 and squared Mahalanobis distance equal to 5.6,11.5,23
(these values are very close to the ones of the empirical data sets de-
scribed in 3.3). The data have then been sketched to k = 1000. Fig-
ure 3.1 reports the boxplot of the euclidean distances between the par-
tially sketched and the unsketched linear discriminant directions over
the replicates. The results confirm that that the median distance and the
variability increase as the Mahalanobis distance increases and the upper
extreme of the boxplot is within the bound in (3.6).
This result is meaningful also from a statistical perspective. When the
populations are separated, a plurality of different discriminant direc-
tions separates the two groups equally well, while less variability is
allowed when the populations are increasingly overlapping.

dM
2 =5.6 dM

2 =11.5 dM
2 =23

0
5

10
15

20
25

30
35

||ap−a||2 − Homoscedastic populations

Figure 3.1: Boxplot of the euclidean distances between the partially
sketched and the unsketched linear discriminant directions over 100
replicates, from multivariate normal distributions with varying Maha-
lanobis distance.
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Besides deriving the approximation bound according to a numeric
analytic perspective we have also studied the properties of the sketched
discriminant direction within an inferential framework. Our goal would
be first of all to derive the expected value and the variance of the sketched
linear discriminant direction, in analogy to the approach followed for
linear regression.

Proposition 3.1. The random variable ap (where randomness is due to
S) has finite expected value.

Proof. According to (2.4), (2.5), (2.6):

X̃ |y,X∼MN(0k×p,Ik,
1
k

X>X)

Therefore:

X̃>X̃ |y,X∼Wishart(k,X>X/k)

(X̃>X̃)−1 |y,X∼ InvWishart(k,k(X>X)−1)

According to (3.3) and (3.4):

ap = γp bp

= (n−2)
n

n0 n1

1

1− n0n1
n (x̄1− x̄0)> (X̃>X̃)−1 (x̄1− x̄0)

(X̃>X̃)−1 (x̄1− x̄0)
n0 n1

n

= (n−2)
1

1− n0n1
n (x̄1− x̄0)> (X̃>X̃)−1 (x̄1− x̄0)

(X̃>X̃)−1 (x̄1− x̄0)

Setting u = (x̄1− x̄0), G = X̃>X̃, Λ = X>X

u>ap = (n−2)
1

1− n0n1
n u>G−1 u

u>G−1 u

=
(n−2)

1− n0n1
n

u>G−1 u
u>Λ−1u

u>Λ−1 u

u>G−1 u
u>Λ−1u

u>Λ
−1 u

where:
u>G−1 u
u>Λ−1u

=
1
z
∼ 1

χ2
n−p−1
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This result is a consequence of property A4:

E
[
u>ap

]
= (n−2)E

[
1

1− n0n1
n

1
z u>Λ−1 u

1
z

u>Λ
−1 u

]

= (n−2)E
[

1
z− n0n1

n u>Λ−1 u
u>Λ

−1 u
]

= ω

∫ +∞

0

1
z− n0n1

n u>Λ
−1 u︸ ︷︷ ︸ u>Λ

−1 u z(
n−p−1

2 −1)e−
z
2 dz

δ

where

ω =
(n−2)

2
n−p−1

2 Γ(n−p−1
2 )

The singularity point n0 n1
n δ can be taken out as Cauchy principal value

transformation, resulting in a finite expected value of u>ap :

= ω lim
ε→0+

[∫ n0 n1
n δ−ε

0

1
z− n0n1

n δ
u>Λ

−1 u z(
n−p−1

2 −1)e−
z
2 dz+

∫ +∞

n0 n1
n δ+ε

1
z− n0n1

n δ
u>Λ

−1 u z(
n−p−1

2 −1)e−
z
2 dz

]
< ∞

Technical details of the proof are omitted.
This result tells us that a finite linear combination of ap has finite ex-
pected value. This in turn allows to say that the variable ap has finite
expected value, but it doesn’t give any hint on how to compute it. The
distribution of ap is a function of the inverse of a shifted Wishart and
its moments are not known. In order to study the properties of ap, we
derive an approximation for its expected value through its series expan-
sion.

Proposition 3.2. A first-order approximation of the expected value of
ap is given by:

Es(ap) = (n−2)E
[
(X̃>X̃−B)−1](x̄1− x̄0) (3.7)

=
[
η +(α−η)

(n−2) n
n0n1

(n−2) n
n0n1

+d2
M(x̄0, x̄1)

]
a (3.8)
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where: α = k
k−p−1 and η = k2

(k−p)(k−p−3)

Proof. Recalling that Taylor’s expansion of the inverse of the sum of
two matrices is:

(A+B)−1 = A−1−A−1BA−1 +A−1BA−1BA−1+

−A−1BA−1BA−1BA−1 + · · ·

where A and A+B are invertible and ‖A−1B‖< 1 or ‖BA−1‖< 1, we
derive Taylor’s expansion of (X̃>X̃−B)−1 and we truncate it to the first
order, as higher order terms involve quadratic forms of quadratic forms
of inverted Wishart random variables whose moments have not a closed
form expression (for the same reason no closed form for the variance of
ap can be derived either).

E
[
(X̃>X̃−B)−1

]
= E

[
(X̃>X̃)−1

]
+E

[
(X̃>X̃)−1 B (X̃>X̃)−1

]

Furthermore, according to (1.13):

(X>X−B)−1 = (X>X)−1 +
1

1−g
(X>X)−1 B (X>X)−1

where: g= tr
[
(X>X)−1B

]
= n0 n1

n (x̄1− x̄0)
> (X>X)−1 (x̄1− x̄0)=

n0n1
n δ 2

The two expressions coincide when g = 0.
In empirical applications of LDA g is always very close to 0, so assum-
ing it equals 0 does not cause a too relevant loss.
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Using the results in Haff (1979) reported in A6 (i) (iii) we have:

E
[
(X̃>X̃−B)−1

]
= E

[
(X̃>X̃)−1

]
+E

[
(X̃>X̃)−1 B (X̃>X̃)−1

]
=

k
(k− p−1)

(X>X)−1 +
tr(−k (X>X)−1 B)

(k− p)(k− p−1)(k− p−3)
·

· k(X>X)−1 +
1

(k− p)(k− p−3)
k (X>X)−1 B(X>X)−1k

=
k

(k− p−1)
(X>X)−1− k2 g

(k− p)(k− p−1)(k− p−3)
·

· (X>X)−1 +
k2

(k− p)(k− p−3)
(X>X)−1 B(X>X)−1

=
k

(k− p−1)
(X>X)−1 +

k2

(k− p)(k− p−3)
(X>X)−1 B(X>X)−1

= α (X>X)−1 +η (X>X)−1 B(X>X)−1

where we set α =
k

(k− p−1)
and η =

k2

(k− p)(k− p−3)

So, using (3.5):

E(ap) = (n−2)E
[
(X̃>X̃−B)−1](x̄1− x̄0)

= (n−2)
[
α (X>X)−1 +η (X>X)−1 B(X>X)−1

]
(x̄1− x̄0)

= (n−2)
[
η

(
(X>X)−1 +(X>X)−1 B(X>X)−1

)
+(α−η)(X>X)−1

]
(x̄1− x̄0)

= (n−2)η

(
(X>X)−1 +(X>X)−1 B(X>X)−1

)
(x̄1− x̄0)+

+(n−2)(α−η)(X>X)−1 (x̄1− x̄0)

= (n−2)η (X>X−B)−1(x̄1− x̄0)+(n−2)(α−η)(X>X)−1 (x̄1− x̄0)

= η W−1(x̄1− x̄0)+(n−2)(α−η)(X>X)−1 (x̄1− x̄0)

= η a+(n−2)(α−η)(X>X)−1 (x̄1− x̄0)

Now, rembering that, for (1.10) and (1.11):

a = γ b = γ (X>X)−1(x̄1− x̄0)
n0 n1

n
, where γ =

n
n0 n1

(n−2)+d2
M(x̄0, x̄1)

we obtain: (X>X)−1(x̄1− x̄0) =
1
γ

n
n0 n1

a =

n
n0 n1

n
n0 n1

(n−2)+d2
M(x̄0, x̄1)

a
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So:

Es(ap) = η a+(n−2) (α−η)

n
n0 n1

n
n0 n1

(n−2)+d2
M(x̄0, x̄1)

a

=

[
η +(α−η)

n
n0 n1

(n−2)
n

n0 n1
(n−2)+d2

M(x̄0, x̄1)

]
a

This result tells us that ap is a biased estimator of a and that the bias
depends again on the Mahalanobis distance between the two groups
in the full dataset. De-biasing ap would involve computing the Maha-
lanobis distance in the original data set, thus making the use of sketch-
ing meaningless. For this reason in the applications that follow we will
not make any correction to ap.

It is worth noting that while (X>X−B)−1 is positive definite by
definition, nothing guarantees that (X̃>X̃−B)−1 is also positive defi-
nite because sketching the Gram matrix only (i.e. using partial sketch-
ing) breaks the link between the sketched total sum of squares and the
unsketched between group sum of squares. In empirical applications a
check should be made on the positive definiteness of (X̃>X̃−B)−1 and
solutions that deviate from it should be discarded.

3.3 Real data applications
The goal of supervised classification is to definite an assignment rule

that has the best accuracy. We expect that sketching can cause a loss in
terms of accuracy with respect to the rule obtained on the full data set.
In order to better understand how sketching impacts on the accuracy of
LDA we have analyzed several real data sets with different degrees of
sketching and different sketching methods.
Each data set has been randomly split in two parts: 75% of the units for
both classes constituted the training set and the remaining 25% formed
the test set. The procedure was repeated 200 times. The values in the
table represent the median of the quantity of interest over the 200 repli-
cates.
The datasets have markedly different sizes. We have purposely chosen
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also small data set, which in principle would not require sketching, in
order to have a more detailed picture of how sketching works.
Here we present the results on four of them which are briefly described
in the following.

• iris: the famous (Fisher’s or Anderson’s) iris data set gives the mea-
surements in centimeters of the variables sepal length and width and
petal length and width, respectively, for 50 flowers from each of 3
species of iris. Here the samples are labeled as virginica vs. nonvir-
ginica.

• vehicle: data include the silhouettes measured by the HIPS (Hi-
erarchical Image Processing System) of 846 vehicles, extracted in
18 features. The aim is to distinguish the vans from the other ve-
hicles. (https://archive.ics.uci.edu/ml/datasets/Statlog+
(Vehicle+Silhouettes)).

• banknotes: data extracted from 1372 images of genuine and forged
banknote-like specimens. Wavelet Transform tool were used to extract
4 features from images. (http://archive.ics.uci.edu/ml).

• mammography: the Mammography dataset (Woods et al., 1993) has 6
attributes and 11,183 samples that are labeled as noncalcification and
calcifications.

Table 3.1: iris dataset, n=150 - Accuracy median values (over 200
replications)

Gauss CW Haar Hadamard
Unsketched 0.92 0.92 0.92 0.92
Sketched - k = n 0.92 0.92 0.89 0.92
Sketched - k = 0.75n 0.89 0.89 0.89 0.89
Sketched - k = 0.50n 0.89 0.89 0.86 0.86
Sketched - k = 0.25n 0.86 0.86 0.82 0.84
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Table 3.2: vehicles dataset, n=846 - Accuracy median values (over
200 replications)

Gauss CW Haar Hadamard
Unsketched 0.95 0.95 0.95 0.95
Sketched - k = n 0.95 0.95 0.95 0.95
Sketched - k = 0.75n 0.95 0.95 0.95 0.95
Sketched - k = 0.50n 0.94 0.94 0.93 0.93
Sketched - k = 0.25n 0.93 0.93 0.89 0.89

Table 3.3: banknotes data, n=1372 - Accuracy median values (over
200 replications)

Gauss CW Haar Hadamard
Unsketched 0.98 0.98 0.98 0.98
Sketched - k = n 0.98 0.97 0.95 0.97
Sketched - k = 0.75n 0.98 0.97 0.95 0.97
Sketched - k = 0.50n 0.98 0.97 0.95 0.97
Sketched - k = 0.25n 0.97 0.97 0.94 0.97

Table 3.4: mammography data, n=11,183 - Accuracy median values
(over 200 replications)

Gauss CW Haar Hadamard
Unsketched 0.98 0.98 0.98 0.98
Sketched - k = n 0.98 0.98 0.98 0.98
Sketched - k = 0.75n 0.98 0.98 0.97 0.97
Sketched - k = 0.50n 0.98 0.98 0.97 0.96
Sketched - k = 0.25n 0.98 0.98 0.97 0.95

All the empirical results show that sketching has a very little im-
pact on accuracy, which remains almost unchanged in all the cases,
even when, for k = 0.25n, the data set size is reduced to one fourth.
Gaussian and Clarkson-Woodruff sketches seem to guarantee the best
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performances.
The only case in which the performances are really deteriorated is for
the Iris data (see Table 3.1). However table 3.5 shows that the number
of available units in that case is below the limit required by Johnson and
Lindenstrauss Lemma even for a precision corresponding to ε = 0.49
which yields the worst possible approximation. In all the other cases
the accuracies are preserved even for sketching degrees that do not al-
low to guarantee a good approximation of the discriminant direction.
The table shows the value of k required by Johnson Lindenstrauss Lemma
for the different number of variables in the different datasets that have
been analyzed and for different quality of approximation correspond-
ing to different values of ε . The larger the value of ε the worse the
approximation.

Table 3.5: Minimum value of k =
20log p

ε2 required to obtain a given
approximation of ε for the different number of variables in the empirical
data sets. In bold the values of k compatible with the observed number
of units ( ntraining = 112 for iris, ntraining = 634 for vehicle, ntraining =
1029 for banknotes, ntraining = 8387 mammography).

ε = 0.05 0.1 0.2 0.3 0.4 0.49
iris & banknotes - p = 4 11090 2773 693 308 173 115
vehicle - p = 18 22123 5781 1445 642 361 241
mammography - p = 6 14334 3584 896 398 224 149



Chapter 4

Matrix Sketching for
imbalanced classes

4.1 Introduction

In many practical contexts, observations have to be classified into
two classes of remarkably distinct size.
In such cases, many established classifiers often trivially classify in-
stances into the majority class achieving an optimal overall misclassifi-
cation error rate.
This leads to poor performance in classifying the minority class, the
correct identification of which is usually of more practical interest.
The presence of imbalanced classes in the big data context also poses
relevant computational issues. If the dataset contains thousands or mil-
lions of observations from the majority class for each example from the
minority one, many of the majority class observations are redundant.
Their presence increases the computational cost with no advantage in
terms of classification accuracy.
The problem of imbalanced classes is very common in modern clas-
sification problems and has received a great attention in the machine
learning literature (Chawla et al., 2004).

The error rate, or its complement, accuracy, is the most widely used
measure of classifier performance. However, it inevitably favors the
majority class when the misclassification error has the same importance
for the two classes. On the contrary, when the error in the minority class
is more important than the one of the majority class, the receiver operat-

47
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ing characteristic (ROC) curve and the area under the curve (AUC) are
commonly suggested.
The ROC curve is a plot of the true positive rate (sensitivity) versus the
false positive rate (1−specificity) and hence a higher AUC generally in-
dicates a better classifier.
The ROC is obtained by varying the discriminant threshold, while the
error rate is obtained at an optimal discriminant threshold. Therefore,
AUC is independent of the discriminant threshold, while the accuracy
is not.
The literature on the problem of supervised classification is very broad
and methodological solutions follow two main streams. People either
suggest to modify the loss function used in the construction of the clas-
sification rule or propose to re-balance the data.
The first solution requires, in most of the cases, the definition of a loss
function that is specific for the case at hand and therefore not easily gen-
eralizable to different empirical problems. Re-balancing strategies are
more general and not problem specific. That explains their great suc-
cess in applied research and the focus on explaining their performances
and on improving them.
Re-balancing the class sizes in the training dataset, is usually obtained
either by oversampling the minority class or by under-sampling the ma-
jority class, or by a combination of both. The rebalanced data are then
used to train the classifiers.
As far as two-class linear discriminant analysis is concerned, the prob-
lem has been addressed, among others, by Xie & Qiu (2007), Xue &
Titterington (2008), Xue & Hall (2014).
Through a wide simulation study supported by theoretical considera-
tions, Xue & Titterington (2008) showed that AUC generally favors
balanced data but the increase in the median AUC for LDA after re-
balancing is relatively small. On the contrary, error rate favors the orig-
inal data and re-balancing causes a sharp increase in the median error
rate. They also stress that re-balancing affects the performances of LDA
in both the equal and unequal covariance case.
Xue & Hall (2014) proved that, in the Gaussian case, using the rebal-
anced training data can often increase the area under the ROC curve
(AUC) for the original, imbalanced test data. In particular they demon-
strate that, at least for LDA, there is an intrinsic, positive relationship
between the re-balancing of class sizes and the improvement of AUC
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and the largest improvement in AUC can be achieved, asymptotically,
when the two classes are fully rebalanced to be of equal sizes.

AUCmax = Φ

(√
(x̄1− x̄0)> (S1 +S0)−1 (x̄1− x̄0)

)
where, now and henceforth, the subscript 1 identifies the minority class.
However, when the two Gaussian classes have similar covariance matri-
ces, re-balancing class sizes only provides a little improvement in AUC
for LDA.
Moreover, re-balancing class sizes may not improve AUC when LDA is
applied to non-Gaussian data.
In both the above mentioned papers re-balancing is obtained either by
randomly undersampling the largest class or by randomly oversampling
the smallest one.
It has however been argued that random undersampling may lose some
relevant information while randomly oversampling with replacement
the smallest class may lead to overfitting.
To avoid these drawbacks, solutions focusing on the border between the
classes have been suggested. Mani & Zhang (2003) proposed select-
ing majority class examples whose average distance to its three nearest
minority class examples is smallest. A similar approach is suggested
by Fithian & Hastie (2014) in the context of logistic regression. They
proposed a method of efficient subsampling by adjusting the class bal-
ance locally in feature space via an acceptance-rejection scheme. The
proposal generalizes case-control sampling, using a pilot estimate to
preferentially select examples whose responses (i.e. class membership
identifiers) are conditionally rare given their features.
With special reference to classification trees and naive-Bayes classifiers
Chawla et al. (2002) proposed a strategy that combines random under-
sampling of the majority class with a special kind of oversampling for
the minority one. They try to improve upon literature results according
to which undersampling the majority class leads to better classifier per-
formance than oversampling and combining the two does not produce
much improvement with respect to simple undersampling.
They designed an oversampling approach which creates synthetic ex-
amples (SMOTE - Synthetic minority oversampling technique) rather
than oversampling with replacement. The minority class is over-sampled
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by taking each minority class sample and introducing synthetic exam-
ples along the line segments joining any/all of the k minority class near-
est neighbors. Depending upon the amount of over-sampling required,
neighbors from the k nearest neighbors are randomly chosen. The syn-
thetic examples allow to create larger and less specific decision regions,
thus overcoming the overfitting effect inherent in random oversampling.
SMOTE oversampling is combined with majority class undersampling.
The idea of creating synthetic examples has been followed also by Menardi
& Torelli (2014) who proposed a method they called ROSE-Random
OverSampling Examples (see, for a description of the corresponding
R package, Lunardon et al., 2014). In this solution, units from both
classes are generated by resorting to a smoothed bootstrap approach.
A unimodal density is centered on randomly selected observations and
new artificial data are randomly generated from it. The key parameter
of the procedure is the dispersion matrix of the chosen unimodal density
which plays the role of smoothing parameter. The full dataset size is of-
ten kept fixed while allowing half of the units to be generated from the
minority class and of half from the majority one. The method is applied
to classification trees and logit models.

4.2 Rebalancing through Sketching
In the previous chapters we have seen that sketching preserves the

scalar product while reducing the data set size. As the sketched data are
obtained through random linear combinations of the original ones, most
of the linear information is preserved after sketching. This means that,
in the imbalanced data case, the size of the majority class can be reduced
through sketching without incurring the risk of losing (too much) linear
information. Sketching the majority class can therefore be considered as
a theoretically sound alternative to majority class undersampling. The
sketched majority class data matrix reduced to the size of the minority
class will then be X̃0 (n1× p) and the corresponding covariance matrix
will be Var(X̃0) = (X̃>0 X̃0)/(n0−1).
Sketching has been proposed as a data compression technique but, as a
consequence of Johnson Lindenstrauss lemma, the scalar product preser-
vation also holds when the sketching matrix has a number of rows that
is larger than the number of original data points. This allows to think of
this unconventional way of using sketching as an alternative to random
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oversampling that generates synthetic new examples from the minority
class (through random linear combination of all of them) while preserv-
ing the linear structure in the data. This allows to enlarge the decision
area and thus to avoid overfitting. For example, in case it is desired
to increase the size of the minority class so that it equals the one of
the majority class the “oversketched” minority class data matrix will be
X̃1 (n0× p) and the corresponding covariance matrix will therefore be:
Var(X̃1) = (X̃>1 X̃1)/(n1−1)
The rebalanced covariance matrices can then be plugged into the within
group covariance matrix and used for the computation of a new linear
discriminant direction.
Sketching the majority class and oversketching the minority one can
also be used in a combined way.
The use of matrix sketching is undoubtedly coherent with linear dis-
criminant analysis which is based on the Gram matrix. Its performance
in combination with other classification methods is not supported by the
same strong theoretical motivation and can only be assessed through
empirical analysis. This will be the topic of the next section in which
different sketching methods are compared.
All the different sketching methods preserve the Gram matrix even if,
as shown in chapter 2, with a different goodness of approximation for
different degrees of sketching. The different sketching methods can
however change the data distribution. For instance Gaussian sketching
tends to “gaussianize” the data and can therefore strongly distort skew
data distributions. Moreover, as each linear combination is a function of
all the units, potentially outlying observations impact on all the sketched
data values and their effect is amplified. This effect is less evident for
instance for Clarkson-Woodruff sketching which, being a sparse sketch-
ing method, only selects a few units for each random linear combina-
tion.
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4.3 Empirical Results
The properties of sketching as a re-balancing method have been

tested on many real datasets which differ in terms of imbalance degree.
Here we report the results on the two most significant ones (spine and
mammography) which have been classified both by linear discriminant
analysis (see tables 4.1 and 4.2) and C4.5 classification tree (Quinlan,
2014) (see tables 4.3 and 4.4). The data set mammography has already
been described in 3.3. The data set spine is composed of p = 6 biome-
chanical features used to classify n = 310 orthopedic patients into 2
classes (normal or abnormal). (http://archive.ics.uci.edu/ml/
datasets/vertebral+column).
Gaussian, Hadamard and Clarkson-Woodruff sketching have been ap-
plied in order to reduce the size of the majority class to the one of the
minority class and in order to increase the size of the minority class so
that it is as large as the majority class one. They have also been jointly
used so that the size of both classes is twice the minority class size.
For this last case re-balancing through SMOTE is also performed. For
comparison, ROSE with its default option of preserving the total size is
considered too.
As in chapter 3, each data set has been randomly split in two parts: 75%
of the units for both classes constituted the training set and the remain-
ing 25% formed the test set. The procedure was repeated 200 times.
The values in the table represent the median of the quantity of interest
over the 200 replicates.
The performance of the classifiers has been measured in terms of accu-
racy, sensitivity, specificity and area under the ROC curve (AUC).
The code implementing our procedure is reported in the appendix, while
ROSE and SMOTE have been applied using the corresponding R pack-
ages ROSE and DMwR.
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Table 4.1: spine dataset, n=310, π1=32% - Median values (over 200
replications)

Accuracy Sensitivity Specificity AUC

LDA 0.831 0.904 0.680 0.897

Under-Sampling 0.792 0.731 0.920 0.907
Gauss Partial Sk 0.792 0.731 0.920 0.900
CW Partial Sk 0.792 0.750 0.880 0.899
Hada Partial Sk 0.792 0.731 0.920 0.910

Over-Sampling 0.792 0.750 0.920 0.900
Gauss Partial OverSk 0.792 0.731 0.920 0.903
CW Partial OverSk 0.792 0.731 0.920 0.902
Hada Partial OverSk 0.792 0.731 0.920 0.910

ROSE 0.792 0.712 0.960 0.905

SMOTE 0.792 0.750 0.920 0.905
UndOver-Sampling Bal 0.792 0.750 0.900 0.902
Gauss Bal Sk 0.792 0.750 0.880 0.896
CW Bal Sk 0.792 0.750 0.920 0.902
Hada Bal Sk 0.792 0.731 0.920 0.910
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Table 4.2: mammography, n=11,183, π1=2.32% - Median values (over
200 replications)

Accuracy Sensitivity Specificity AUC

LDA 0.977 0.986 0.554 0.903

Under-Sampling 0.830 0.829 0.892 0.928
Gauss Partial Sk 0.827 0.826 0.907 0.930
CW Partial Sk 0.827 0.825 0.892 0.923
Hada Partial Sk 0.742 0.739 0.892 0.914

Over-Sampling 0.829 0.828 0.892 0.931
Gauss Partial Over Sk 0.828 0.826 0.892 0.932
CW Partial Over Sk 0.828 0.826 0.900 0.931
Hada Partial Over Sk 0.743 0.739 0.892 0.914

ROSE 0.977 1.000 0.000 0.878

SMOTE 0.841 0.840 0.892 0.930
UndOver-Sampling Bal 0.837 0.836 0.892 0.928
Gauss Bal Sk 0.829 0.827 0.900 0.932
CW Bal Sk 0.957 0.964 0.677 0.900
Hada Bal Sk 0.744 0.740 0.892 0.914
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Table 4.1 and 4.2 show that, coherently with the findings in Xue and
Titterington and Xue and Hall, when combined with LDA, rebalancing
causes a strong decrease in the accuracy which is combined with a little
increase in the AUC. However a strong increase in specificity, i.e. in
the ability to correctly identify the minority class, is worth of note. In
this context sketching based methods always outperform the other re-
balancing methods. It does not seem to be any evidence of a systematic
predominance of over, under or balanced sketching strategies.
As already said, sketching preserves the linear structure which is the
core element of LDA. The good performances of sketching in this con-
text are therefore coherent with its theoretical properties. However,
when sketching methods are combined with classification methods that
do not rely on the linear structure in the data, results are not so clear-cut
and they seem to be strongly related to specific characteristics of the
data.
Tables 4.3 and 4.4 report the results of C4.5 classification trees. While
for the spine dataset the sketching methods perform well, for the mam-
mography dataset sketching methods are strongly outperformed by stan-
dard random oversampling or undersampling methods and by ROSE.
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Table 4.3: spine dataset, n=310, π1=32% - Median values (over 200
replications)

Accuracy Sensitivity Specificity AUC

C4.5 Tree 0.818 0.904 0.680 0.773

Under-Sampling 0.805 0.788 0.840 0.822
Gauss Partial Sk 0.792 0.731 0.920 0.825
CW Partial Sk 0.792 0.750 0.880 0.817
Hada Partial Sk 0.805 0.750 0.920 0.825

Over-Sampling 0.818 0.846 0.720 0.795
Gauss Partial OverSk 0.805 0.788 0.840 0.813
CW Partial OverSk 0.805 0.788 0.840 0.815
Hada Partial OverSk 0.805 0.769 0.880 0.825

ROSE 0.792 0.712 0.960 0.835

SMOTE 0.805 0.808 0.800 0.805
UndOver-Sampling Bal 0.812 0.846 0.760 0.794
Gauss Bal Sk 0.805 0.750 0.920 0.835
CW Bal Sk 0.805 0.788 0.880 0.824
Hada Bal Sk 0.818 0.779 0.880 0.834
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Table 4.4: mammography, n=11,183, π1=2.32% - Median values (over
200 replications)

Accuracy Sensitivity Specificity AUC

C4.5 Tree 0.985 0.997 0.508 0.752

Under-Sampling 0.893 0.894 0.846 0.879
Gauss Partial Sk 0.763 0.241 0.938 0.592
CW Partial Sk 0.838 0.165 0.969 0.562
Hada Partial Sk 0.807 0.806 0.846 0.827

Over-Sampling 0.979 0.987 0.646 0.815
Gauss Partial OverSk 0.964 0.973 0.477 0.729
CW Partial OverSk 0.977 0.988 0.538 0.762
Hada Partial OverSk 0.931 0.937 0.692 0.813

ROSE 0.901 0.903 0.800 0.850

SMOTE 0.914 0.916 0.846 0.879
UndOver-Sampling Bal 0.914 0.917 0.831 0.873
Gauss Bal Sk 0.720 0.624 0.908 0.724
CW Bal Sk 0.756 0.257 0.923 0.591
Hada Bal Sk 0.839 0.838 0.815 0.830
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Chapter 5

Conclusions

We studied the performances of sketching algorithms in the super-
vised binary classification context. In particular the use of what is called
partial sketching in linear discriminant analysis is evaluated according
to both a numeric analytic and a statistical perspective.

The discriminant direction ap, obtained after sketching the Gram
matrix, closely approximates the one computed on the original data.
The goodness of the approximation depends on the Mahalanobis dis-
tance between the two populations. We also proved that the expected
value of ap is finite.

The performance of linear discriminant analysis on the sketched
data is compared to the one obtained on the original data in a number of
real datasets, with varying degree of sketching. All the empirical results
show that sketching has a very little impact on accuracy, which remains
almost unchanged in all the evaluated cases, even when the data set size
was reduced to one fourth.

We also addressed, through sketching, the issue of imbalanced classes,
which hampers most of the common classification methods. In fact,
when observations have to be classified into two classes of remarkably
distinct size, many established classifiers often allocate instances into
the majority class, achieving an optimal overall misclassification error
rate. This leads to poor performance in classifying the minority class,
the correct identification of which is usually of more practical interest.

As sketching preserves the scalar product while reducing the data set
size, we can say that most of the linear information is preserved after
sketching. This means that, in the imbalanced data case, the size of
the majority class can be reduced through sketching without incurring

59
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the risk of losing (too much) linear information. Sketching the majority
class can therefore be considered as a theoretically sound alternative to
majority class undersampling.

The properties of sketching as a re-balancing method have been
tested on many real datasets which differ in terms of imbalance degree
and compared with other competing alternatives.

When combined with LDA, rebalancing causes a strong decrease
in the accuracy which is combined with a little increase in the AUC.
However a strong increase in specificity, i.e. in the ability to correctly
identify the minority class, is worth of note. In this context, sketching
based methods always outperform the other rebalancing methods. It
does not seem to be any evidence of a systematic predominance of over,
under or balanced sketching strategies.

However, when sketching is combined with classification methods
that do not rely on the linear structure in the data, results are not so
clear-cut and they seem to be strongly related to specific characteristics
of the data.



Appendix

In the following, we recall a few theorems and theoretical results
that have been used in the thesis. The first ones relate to the Wishart and
inverse-Wishart random variables. We refer to Gupta & Nagar (2018)
and the references therein for the proof.

A 1. Let X ∼N(0,Σ⊗In) and define S=XX>,n≥ p. Then S∼Wp(n,Σ).

A 2. Let S∼Wp(n,Σ). Then, for Aq×p, with rank(A) = q≤ p, ASA> ∼
Wq(n,AΣA>).

A 3. Let S∼Wp(n,Σ). Then a> Sa
a>Σa ∼ χ2

n where a(p×1) 6= 0.

A 4. Let S∼Wp(n,Σ) and a ∈ Rp,a 6= 0. Then a>Σ−1 a
a> S−1 a ∼ χ2

n−p+1

A 5. Let S∼Wp(n,Σ). Then E(S) = nΣ.

A 6. Let S∼Wp(n,Σ), then:

(i) E(S−1) = 1
n−p−1 Σ−1,n− p−1 > 0

(ii) cov(si j,skl) = 2(n−p−1)−1σ i jσ kl+σ ikσ jl+σ ilσ k j

(n−p)(n−p−1)(n−p−3) ,n− p−3 > 0

(iii) E(S−1 AS−1) = tr(Σ−1 A)Σ−1

(n−p)(n−p−1)(n−p−3) +
Σ−1 AΣ−1

(n−p)(n−p−3) ,

where S−1 = (si j),Σ−1 = (σ i j)andAp×p is a constant positive
semidefinite matrix.

A 7. Let S∼Wp(n,Σ), then the density of V = S−1 is

{2
1
2 np

Γp(
1
2

n)det(Σ)
1
2 n}−1det(V )−

1
2 (n+p+1) etr(−1

2
Σ
−1V−1),V > 0.
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R codes

Matrix sketching functions

hada.sk<-function(n,k){

require(extraDistr)

if (zero.row(n)!=0) n <- n + zero.row(n)

D <- diag(rsign(n))

H <- julia_eval(paste0("hadamard(",n,")"),

need_return = c("R", "Julia"))

I <- matrix(0,k,n)

if (k>n) which.unit <- sample (1:n,k,replace=T)

else which.unit <- sample (1:n,k,replace=F)

for (i in 1:k) I[i,which.unit[i]] <- 1

return (1/sqrt(n)*I%*%H%*%D)

}

# This function returns the number of zero rows

# we need in order to compute the Hadamard matrix

zero.row <- function(n) {

if (n %in% c(1,3,5,6,9,10))

return (12-n)

esponente <- ceiling(log2(c(n,n/12,n/20)))

xx <- c(1 ,12 ,20)*2^ esponente

return(min(xx -n))}

cw.sk <- function(n,k){

I <- matrix(0,k,n)

indice <- sample (1:k,n,replace=T)

for (i in 1:n) I[indice[i],i] <- rsign (1)

return(I)}

haar.sk <- function(n,k){

return(t(randortho(n,type=c("orthonormal"))[ ,1:k]))}

gauss.sk <- function(n,k){

return(matrix(rnorm(prod(k,n),sd=1/sqrt(k)),k,n))}
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Classification with LDA
Data have been split into training and test data. We have applied

Gaussian sketching, Hadamard sketching, Haar sketching and Clarkson-
Woodruff sketching to the original data matrix X.

x <- as.matrix(x)

x <- x[c(which(y==0),which(y==1)),]

y <- y[c(which(y==0),which(y==1))]

x0 <- x[y==0 ,]; y0 <- y[y==0];

x1 <- x[y==1 ,]; y1 <- y[y==1];

n0 <- sum(y==0); n1 <- sum(y==1); n <- n0+n1;

# in case k is function of n

k <- round(r*n,0) # r varies between 0 and 1

# usually r={0.25,0.50,0.75}

quali.te0 <- sample(1:n0,round(n0*0.25),replace=FALSE)

quali.te1 <- sample(1:n1,round(n1*0.25),replace=FALSE)

test.x0 <- x0[quali.te0 ,]; test.x1 <- x1[quali.te1 ,];

test.y0 <- y0[quali.te0]; test.y1 <- y1[quali.te1];

te.n0 <- nrow(test.x0); te.n1 <- nrow(test.x1);

test.x <- rbind(test.x0,test.x1)

test.y <- c(test.y0,test.y1)

train.x0 <- x0[-quali.te0 ,]; train.x1 <- x1[-quali.te1 ,];

train.y0 <- y0[-quali.te0]; train.y1 <- y1[-quali.te1];

tr.n0 <- nrow(train.x0); tr.n1 <- nrow(train.x1);

train.x <- rbind(train.x0,train.x1)

train.y <- c(train.y0,train.y1)

X0 <- scale(train.x0,T,F)

X1 <- scale(train.x1,T,F)

X <- scale(train.x,T,F)

mean.tr.x0 <- colMeans(train.x0)

mean.tr.x1 <- colMeans(train.x1)

tr.n <- nrow(train.x)

# Hadamard sketching ####

hada.skx <- hada.sk(n=tr.n,k)
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hada.sk.x <- hada.skx %*%

rbind(X,matrix(0,zero.row(tr.n),ncol(X)))

B <- (mean.tr.x0-mean.tr.x1)%*%t(mean.tr.x0-mean.tr.x1)

*(tr.n0*tr.n1)/tr.n

W.sk.hada <- (t(hada.sk.x)%*% hada.sk.x-B)/(tr.n-2)

a.sk.hada <- t(solve(W.sk.hada ,tol=1e-150)%*%

(mean.tr.x1-mean.tr.x0))

proj.data <- train.x%*%t(a.sk.hada)

if (a.sk.hada %*% mean.tr.x0>a.sk.hada %*% mean.tr.x1)

cl.sk.hada <- ifelse(train.x%*%t(a.sk.hada) <

c(log(tr.n0/tr.n1)+1/2*a.sk.hada %*%

(mean.tr.x0+mean.tr.x1)),1,0)

else

cl.sk.hada <- ifelse(train.x%*%t(a.sk.hada) >

c(log(tr.n0/tr.n1)+1/2*a.sk.hada %*%

(mean.tr.x0+mean.tr.x1)),1,0)

# Clarkson -Woodruff sketching ####

clark.skx <- clark.sk(tr.n,k)

clark.sk.x <- clark.skx%*%X

W.sk.clark <- (t(clark.sk.x)%*% clark.sk.x-B)/(tr.n-2)

a.sk.clark <- t(solve(W.sk.clark ,tol=1e-150)%*%

(mean.tr.x1-mean.tr.x0))

proj.data <- train.x%*%t(a.sk.clark)

if (a.sk.clark %*% mean.tr.x0>a.sk.clark %*% mean.tr.x1)

cl.sk.clark <- ifelse(train.x%*%t(a.sk.clark) <

c(log(tr.n0/tr.n1)+1/2*a.sk.clark %*%

(mean.tr.x0+mean.tr.x1)),1,0)

else

cl.sk.clark <- ifelse(train.x%*%t(a.sk.clark) >

c(log(tr.n0/tr.n1)+1/2*a.sk.clark %*%

(mean.tr.x0+mean.tr.x1)),1,0)



65

# Gaussian Sketching ####

gauss.skx <- gauss.sk(tr.n,k)

gauss.sk.x <- gauss.skx%*%X

W.sk.gauss <-(t(gauss.sk.x)%*% gauss.sk.x-B)/(tr.n-2)

a.sk.gauss <- t(solve(W.sk.gauss ,tol=1e-150)%*%

(mean.tr.x1-mean.tr.x0))

proj.data <- train.x%*%t(a.sk.gauss)

if (a.sk.gauss %*% mean.tr.x0>a.sk.gauss %*% mean.tr.x1)

cl.sk.gauss <- ifelse(train.x%*%t(a.sk.gauss) <

c(log(tr.n0/tr.n1)+1/2*a.sk.gauss %*%

(mean.tr.x0+mean.tr.x1)),1,0)

else

cl.sk.gauss <- ifelse(train.x%*%t(a.sk.gauss) >

c(log(tr.n0/tr.n1)+1/2*a.sk.gauss %*%

(mean.tr.x0+mean.tr.x1)),1,0)

# Haar Sketching ####

haar.sk <- haar.sk(n=tr.n,k)

haar.x <- haar.sk%*% train.x

B <- (mean.tr.x0-mean.tr.x1)%*%

t(mean.tr.x0-mean.tr.x1)*(tr.n0*tr.n1)/tr.n

W.haar <- (t(haar.x)%*% haar.x-B)/(tr.n-2)

a.sk.haar <- t(solve(W.haar ,tol=1e-45)%*%

(mean.tr.x1-mean.tr.x0))

proj.data <- train.x%*%t(a.sk.haar)

if (a.sk.haar %*% mean.tr.x0>a.sk.haar %*% mean.tr.x1)

cl.sk.haar <- ifelse(train.x%*%t(a.sk.haar) >

c(log(tr.n0/tr.n1)+1/2*a.sk.haar %*%

(mean.tr.x0+mean.tr.x1)),0,1)

else

cl.sk.haar <- ifelse(train.x%*%t(a.sk.haar) >

c(log(tr.n0/tr.n1)+1/2*a.sk.haar %*%

(mean.tr.x0+mean.tr.x1)),1,0)
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# Test Set

test.sk.gauss <- test.x%*%t(a.sk.gauss)

test.sk.hada <- test.x%*%t(a.sk.hada)

test.sk.clark <- test.x%*%t(a.sk.clark)

test.sk.haar <- test.x%*%t(a.sk.haar)

if (a.sk.haar %*% colMeans(train.x0) >

a.sk.haar %*% colMeans(train.x1))

haar.test.cl <- ifelse(test.sk.haar >

c(log(tr.n0/tr.n1)+ 1/2*a.sk.haar %*%

(colMeans(train.x0)+ colMeans(train.x1))),0,1)

else

haar.test.cl <- ifelse(test.sk.haar >

c(log(tr.n0/tr.n1)+ 1/2*a.sk.haar %*%

(colMeans(train.x0)+ colMeans(train.x1))),1,0)

if (a.sk.hada %*% colMeans(train.x0) >

a.sk.hada %*% colMeans(train.x1))

test.sk.hada.cl <- ifelse(test.sk.hada <

c(log(tr.n0/tr.n1)+ 1/2*a.sk.hada %*%

(colMeans(train.x0)+ colMeans(train.x1))),1,0)

else

test.sk.hada.cl <- ifelse(test.sk.hada >

c(log(tr.n0/tr.n1)+ 1/2*a.sk.hada %*%

(colMeans(train.x0)+ colMeans(train.x1))),1,0)

if (a.sk.clark %*% colMeans(train.x0)>

a.sk.clark %*% colMeans(train.x1))

test.sk.clark.cl <- ifelse(test.sk.clark <

c(log(tr.n0/tr.n1)+1/2*a.sk.clark %*%

(colMeans(train.x0)+ colMeans(train.x1))),1,0)

else

test.sk.clark.cl <- ifelse(test.sk.clark >

c(log(tr.n0/tr.n1)+ 1/2*a.sk.clark %*%

(colMeans(train.x0)+ colMeans(train.x1))),1,0)

if (a.sk.gauss %*% colMeans(train.x0) >

a.sk.gauss %*% colMeans(train.x1))
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test.gwps.cl <- ifelse(test.gauss <

c(log(tr.n0/tr.n1)+ 1/2*a.sk.gauss %*%

(colMeans(train.x0)+ colMeans(train.x1))),1,0)

else

test.gwps.cl <- ifelse(test.gauss >

c(log(tr.n0/tr.n1)+ 1/2*a.sk.gauss %*%

(colMeans(train.x0)+ colMeans(train.x1))),1,0)

Group-wise Partial Sketching and Over-Sketching

Classification via LDA

library(MCMCpack)

library(pracma)

library(DMwR)

library(Rweka)

library(extraDistr)

library(JuliaCall)

julia <- julia_setup(JULIA_HOME= "/.../ julia/bin/")

julia_library("Hadamard")

x <- as.matrix(x)

x <- x[c(which(y==0),which(y==1)),]

y <- y[c(which(y==0),which(y==1))]

x0 <- x[y==0 ,]; y0<-y[y==0];

x1 <- x[y==1 ,]; y1<-y[y==1];

n0 <- sum(y==0); n1<-sum(y==1); n<-n0+n1;

which.te0 <- sample(1:n0,round(n0*0.25),replace=FALSE)

which.te1 <- sample(1:n1,round(n1*0.25),replace=FALSE)

test.x0 <- x0[which.te0 ,]; test.x1 <- x1[which.te1 ,];

test.y0 <- y0[which.te0]; test.y1 <- y1[which.te1];

te.n0 <- nrow(test.x0); te.n1 <- nrow(test.x1);

test.x <- rbind(test.x0,test.x1)

test.y <- c(test.y0,test.y1)

train.x0 <- x0[-which.te0 ,]; train.x1 <- x1[-which.te1 ,];

train.y0 <- y0[-which.te0]; train.y1 <- y1[-which.te1];
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tr.n0 <- nrow(train.x0); tr.n1 <- nrow(train.x1);

train.x <- rbind(train.x0,train.x1)

train.y <- c(train.y0,train.y1)

X0 <- scale(train.x0,T,F)

X1 <- scale(train.x1,T,F)

mean.tr.x0 <- colMeans(train.x0)

mean.tr.x1 <- colMeans(train.x1)

ntr <- nrow(train.x)

# Hadamard Sketching ####

hada.sk0.und <- hada.sk(n=tr.n0,k=tr.n1)

hada.sk1.und <- hada.sk(n=tr.n1,k=tr.n1)

hada.sk.x0.und <- hada.sk0.und %*%

rbind(X0,matrix(0,zero.row(tr.n0),ncol(X0)))

hada.sk.x1.und <- hada.sk1.und %*%

rbind(X1,matrix(0,zero.row(tr.n1),ncol(X0)))

W.sk.hada <- ((t(hada.sk.x0.und )%*% hada.sk.x0.und)/

(tr.n0-1)+ (t(hada.sk.x1.und )%*%

hada.sk.x1.und )/(tr.n1-1))/2

a.sk.hada <- t(solve(W.sk.hada ,tol=1e-45)%*%

(mean.tr.x1-mean.tr.x0))

proj.data <- train.x%*%t(a.sk.hada)

# Hadamard Sketching classification

cl.sk.hada <- ifelse(train.x%*%t(a.sk.hada) >

c(1/2*a.sk.hada %*%( mean.tr.x0+mean.tr.x1)),1,0)

test.sk.hada <- test.x%*%t(a.sk.hada)

test.cl.sk.hada <- ifelse(test.sk.hada >

c(1/2*a.sk.hada %*%( colMeans(train.x0) +

colMeans(train.x1))),1,0)

# Hadamard oversketching

hada.sk0.ov <- hada.sk(n=tr.n0,k=tr.n0)

hada.sk1.ov <- hada.sk(n=tr.n1,k=tr.n0)

hada.sk.x0.ov <- hada.sk0.ov%*%
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rbind(X0,matrix(0,zero.row(tr.n0),ncol(X0)))

hada.sk.x1.ov <- hada.sk1.ov%*%

rbind(X1,matrix(0,zero.row(tr.n1),ncol(X0)))

hada.osk <- rbind(hada.sk.x0.ov ,hada.sk.x1.ov)

W.osk.hada <- ((t(hada.sk.x0.ov)%*% hada.sk.x0.ov)/

(tr.n0-1)+(t(hada.sk.x1.ov)%*% hada.sk.x1.ov)/

(tr.n1-1))/2

a.osk.hada <- t(solve(W.osk.hada ,tol=1e-45)%*%

(mean.tr.x1-mean.tr.x0))

proj.data <- train.x%*%t(a.osk.hada)

# Hadamard Over -Sketching classification

cl.osk.hada <- ifelse(train.x%*%t(a.osk.hada) >

c(1/2*a.osk.hada %*%( mean.tr.x0+mean.tr.x1)),1,0)

test.osk.hada <- test.x%*%t(a.osk.hada)

test.cl.osk.hada <- ifelse(test.osk.hada >

c(1/2*a.osk.hada %*%( colMeans(train.x0) +

colMeans(train.x1))),1,0)

# Balanced Hadamard sketching + oversketching k=2*n1

hada.sk0.bal <- hada.sk(n=tr.n0,k=2*tr.n1)

hada.sk1.bal <- hada.sk(n=tr.n1,k=2*tr.n1)

hada.sk.x0.bal <-hada.sk0.bal %*%

rbind(X0,matrix(0,zero.row(tr.n0),ncol(X0)))

hada.sk.x1.bal <- hada.sk1.bal %*%

rbind(X1,matrix(0,zero.row(tr.n1),ncol(X0)))

hada.bal <- rbind(hada.sk.x0.bal ,hada.sk.x1.bal)

W.bal.hada <- ((t(hada.sk.x0.bal )%*% hada.sk.x0.bal)/

(tr.n0-1)+(t(hada.sk.x1.bal )%*% hada.sk.x1.bal)/

(tr.n1-1))/2

a.bal.hada <- t(solve(W.bal.hada ,tol=1e-45)%*%

(mean.tr.x1-mean.tr.x0))

proj.data <- train.x%*%t(a.bal.hada)

# Hadamard Balanced Sketching classification

cl.bal.hada <- ifelse(train.x%*%t(a.bal.hada) >

c(1/2*a.bal.hada %*%( mean.tr.x0+mean.tr.x1)),1,0)
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test.bal.hada <- test.x%*%t(a.bal.hada)

test.cl.bal.hada <- ifelse(test.bal.hada >

c(1/2*a.bal.hada %*%( colMeans(train.x0) +

colMeans(train.x1))),1,0)

# Gaussian Sketching ####

gauss.sk0.und <- gauss.sk(n=tr.n0,k=tr.n1)

gauss.sk1.und <- gauss.sk(n=tr.n1,k=tr.n1)

gauss.sk.x0.und <- gauss.sk0.und%*%X0

gauss.sk.x1.und <-gauss.sk1.und%*%X1

W.sk.gauss <- ((t(gauss.sk.x0.und )%*% gauss.sk.x0.und)/

(tr.n0-1) + (t(gauss.sk.x1.und )%*% gauss.sk.x1.und)/

(tr.n1-1))/2

a.sk.gauss <- t(solve(W.sk.gauss ,tol=1e-45)%*%

(mean.tr.x1-mean.tr.x0))

proj.data <- train.x%*%t(a.sk.gauss)

# Gaussian Sketching classification

cl.sk.gauss <- ifelse(train.x%*%t(a.sk.gauss)>

c(1/2*a.sk.gauss %*%( mean.tr.x0+mean.tr.x1)),1,0)

test.sk.gauss <- test.x%*%t(a.sk.gauss)

test.cl.sk.gauss <- ifelse(test.sk.gauss >

c(1/2*a.sk.gauss %*%( colMeans(train.x0) +

colMeans(train.x1))),1,0)

# Gaussian Over -Sketching

gauss.sk0.ov <- gauss.sk(n=tr.n0,k=tr.n0)

gauss.sk1.ov <- gauss.sk(n=tr.n1,k=tr.n0)

gauss.sk.x0.ov <- gauss.sk0.ov%*%X0

gauss.sk.x1.ov <- gauss.sk1.ov%*%X1

gauss.osk <- rbind(gauss.sk.x0.ov,gauss.sk.x1.ov)

W.osk.gauss <- ((t(gauss.sk.x0.ov)%*% gauss.sk.x0.ov)/

(tr.n0-1)+(t(gauss.sk.x1.ov)%*% gauss.sk.x1.ov)/

(tr.n1-1))/2

a.osk.gauss <- t(solve(W.osk.gauss ,tol=1e-45)%*%
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(mean.tr.x1-mean.tr.x0))

proj.data <- train.x%*%t(a.osk.gauss)

# Gaussian Over -Sketching classification

cl.osk.gauss <- ifelse(train.x%*%t(a.osk.gauss) >

c(1/2*a.osk.gauss %*%( mean.tr.x0+mean.tr.x1)),1,0)

test.osk.gauss <- test.x%*%t(a.osk.gauss)

test.cl.osk.gauss <- ifelse(test.osk.gauss >

c(1/2*a.osk.gauss %*%( colMeans(train.x0) +

colMeans(train.x1))),1,0)

# Balanced Gaussian Sketching + Over -Sketching k=2*n1

gauss.sk0.bal <- gauss.sk(n=tr.n0,k=2*tr.n1)

gauss.sk1.bal <- gauss.sk(n=tr.n1,k=2*tr.n1)

gauss.sk.x0.bal <- gauss.sk0.bal%*%X0

gauss.sk.x1.bal <- gauss.sk1.bal%*%X1

gauss.bal <- rbind(gauss.sk.x0.bal ,gauss.sk.x1.bal)

W.bal.gauss <- ((t(gauss.sk.x0.bal )%*% gauss.sk.x0.bal)/

(tr.n0-1) + (t(gauss.sk.x1.bal )%*% gauss.sk.x1.bal)/

(tr.n1-1))/2

a.bal.gauss <- t(solve(W.bal.gauss ,tol=1e-45)%*%

(mean.tr.x1-mean.tr.x0))

proj.data <- train.x%*%t(a.bal.gauss)

# Gaussian Balanced Sketching classification

cl.bal.gauss <- ifelse(train.x%*%t(a.bal.gauss) >

c(1/2*a.bal.gauss %*%

(mean.tr.x0+mean.tr.x1)),1,0)

test.bal.gauss <- test.x%*%t(a.bal.gauss)

test.cl.bal.gauss <- ifelse(test.bal.gauss >

c(1/2*a.bal.gauss %*%( colMeans(train.x0) +

colMeans(train.x1))),1,0)

# Clarkson -Woodruff Sketching ####

cw.sk0.und <- cw.sk(n=tr.n0,k=tr.n1)

cw.sk1.und <- cw.sk(n=tr.n1,k=tr.n1)

cw.sk.x0.und <- cw.sk0.und %*%X0
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cw.sk.x1.und <- cw.sk1.und %*%X1

W.sk.cw <- ((t(cw.sk.x0.und )%*%cw.sk.x0.und)/

(tr.n0-1)+(t(cw.sk.x1.und )%*%cw.sk.x1.und)/

(tr.n1-1))/2

a.sk.cw <- t(solve(W.sk.cw,tol=1e-45)%*%

(mean.tr.x1-mean.tr.x0))

proj.data <- train.x%*%t(a.sk.cw)

# Sketching classification

cl.sk.cw <- ifelse(train.x%*%t(a.sk.cw) >

c(1/2*a.sk.cw%*%( mean.tr.x0 +

mean.tr.x1)),1,0)

test.sk.cw <- test.x%*%t(a.sk.cw)

test.cl.sk.cw <- ifelse(test.sk.cw >

c(1/2*a.sk.cw%*%( colMeans(train.x0) +

colMeans(train.x1))),1,0)

# Clarkson -Woodruff oversketching

cw.sk0.ov <- cw.sk(n=tr.n0,k=tr.n0)

cw.sk1.ov <- cw.sk(n=tr.n1,k=tr.n0)

cw.sk.x0.ov <- cw.sk0.ov%*%X0

cw.sk.x1.ov <- cw.sk1.ov%*%X1

cw.osk <- rbind(cw.sk.x0.ov ,cw.sk.x1.ov)

W.osk.cw <- ((t(cw.sk.x0.ov)%*%cw.sk.x0.ov)/

(tr.n0-1)+(t(cw.sk.x1.ov)%*%cw.sk.x1.ov)/

(tr.n1-1))/2

a.osk.cw <- t(solve(W.osk.cw,tol=1e-45)%*%

(mean.tr.x1-mean.tr.x0))

proj.data <- train.x%*%t(a.osk.cw)

# Clarkson -Woodruff Over -Sketching classification

cl.osk.cw <- ifelse(train.x%*%t(a.osk.cw) >

c(1/2*a.osk.cw%*%( mean.tr.x0 +

mean.tr.x1)),1,0)

test.osk.cw <- test.x%*%t(a.osk.cw)

test.cl.osk.cw <- ifelse(test.osk.cw >

c(1/2*a.osk.cw%*%( colMeans(train.x0) +
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colMeans(train.x1))),1,0)

# Balanced Clarkson -Woodruff Sketching +

# Oversketching k=2*n1

cw.sk0.bal <- cw.sk(n=tr.n0,k=2*tr.n1)

cw.sk1.bal <- cw.sk(n=tr.n1,k=2*tr.n1)

cw.sk.x0.bal <- cw.sk0.bal %*%X0

cw.sk.x1.bal <-cw.sk1.bal %*%X1

cw.bal <- rbind(cw.sk.x0.bal ,cw.sk.x1.bal)

W.bal.cw <- ((t(cw.sk.x0.bal )%*%cw.sk.x0.bal)/

(tr.n0-1)+(t(cw.sk.x1.bal )%*%cw.sk.x1.bal)/

(tr.n1-1))/2

a.bal.cw <- t(solve(W.bal.cw,tol=1e-45)%*%

(mean.tr.x1-mean.tr.x0))

proj.data <- train.x%*%t(a.bal.cw)

# Clarkson -Woodruff Balanced Sketching classification

cl.bal.cw <- ifelse(train.x%*%t(a.bal.cw) >

c(1/2*a.bal.cw%*%( mean.tr.x0 +

mean.tr.x1)),1,0)

test.bal.cw <- test.x%*%t(a.bal.cw)

test.cl.bal.cw <- ifelse(test.bal.cw >

c(1/2*a.bal.cw%*%( colMeans(train.x0) +

colMeans(train.x1))),1,0)

# Haar Sketching ####

haar.sk0.und <- haar.sk(n=tr.n0,k=tr.n1)

haar.sk1.und <- haar.sk(n=tr.n1,k=tr.n1)

haar.sk.x0.und <- haar.sk0.und %*%X0

haar.sk.x1.und <- haar.sk1.und %*%X1

W.sk.haar <- ((t(haar0.sk.x0.und )%*% haar.sk.x0.und)/

(tr.n0-1) + (t(haar.sk.x1.und )%*% haar.sk.x1.und)/

(tr.n1-1))/2

a.sk.haar <- t(solve(W.sk.haar ,tol=1e-45)%*%

(mean.tr.x1-mean.tr.x0))

proj.data <- train.x%*%t(a.sk.haar)
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# Haar Sketching classification

cl.sk.haar <- ifelse(train.x%*%t(a.sk.haar) >

c(1/2*a.sk.haar %*%( mean.tr.x0 +

mean.tr.x1)),1,0)

test.sk.haar <- test.x%*%t(a.sk.haar)

test.cl.sk.haar <- ifelse(test.sk.haar >

c(1/2*a.sk.haar %*%( colMeans(train.x0) +

colMeans(train.x1))),1,0)

# Haar Over -Sketching

haar.sk0.ov <- haar.sk(n=tr.n0,k=tr.n0)

haar.sk1.ov <- haar.sk(n=tr.n1,k=tr.n0)

haar.sk.x0.ov <-haar.sk0.ov%*%X0

haar.sk.x1.ov <-haar.sk1.ov%*%X1

haar.osk <- rbind(haar.sk.x0.ov ,haar.sk.x1.ov)

W.osk.haar <- ((t(haar.sk.x0.ov)%*% haar.sk.x0.ov)/

(tr.n0-1) + (t(haar.sk.x1.ov)%*% haar.sk.x1.ov)/

(tr.n1-1))/2

a.osk.haar <- t(solve(W.osk.haar ,tol=1e-45)%*%

(mean.tr.x1-mean.tr.x0))

proj.data <- train.x%*%t(a.osk.haar)

# Haar Over -Sketching classification

cl.osk.haar <- ifelse(train.x%*%t(a.osk.haar) >

c(1/2*a.osk.haar %*%( mean.tr.x0 +

mean.tr.x1)),1,0)

test.osk.haar <- test.x%*%t(a.osk.haar)

test.cl.osk.haar <- ifelse(test.osk.haar >

c(1/2*a.osk.haar %*%( colMeans(train.x0) +

colMeans(train.x1))),1,0)

# Balanced Haar Sketching + Over -Sketching k=2*n1

haar.sk0.bal <- haar.sk(n=tr.n0,k=2*tr.n1)

haar.sk1.bal <- haar.sk(n=tr.n1,k=2*tr.n1)

haar.sk.x0.bal <- haar.sk0.bal %*%X0

haar.sk.x1.bal <- haar.sk1.bal %*%X1
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haar.bal <- rbind(haar.sk.x0.bal ,haar.sk.x1.bal)

W.bal.haar <- ((t(haar.sk.x0.bal )%*% haar.sk.x0.bal)/

(tr.n0-1) + (t(haar.sk.x1.bal )%*% haar.sk.x1.bal)/

(tr.n1-1))/2

a.bal.haar <- t(solve(W.bal.haar ,tol=1e-45)%*%

(mean.tr.x1-mean.tr.x0))

proj.data <- train.x%*%t(a.bal.haar)

# Haar Balanced Sketching classification

cl.bal.haar <- ifelse(train.x%*%t(a.bal.haar) >

c(1/2*a.bal.haar %*%( mean.tr.x0 +

mean.tr.x1)),1,0)

test.bal.haar <- test.x%*%t(a.bal.haar)

test.cl.bal.haar <- ifelse(test.bal.haar >

c(1/2*a.bal.haar %*%( colMeans(train.x0) +

colMeans(train.x1))),1,0)
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Classification with Trees

x <- as.matrix(x)

x <- x[c(which(y==0),which(y==1)),]

y <- y[c(which(y==0),which(y==1))]

x0 <- x[y==0 ,]; y0<-y[y==0];

x1 <- x[y==1 ,]; y1<-y[y==1];

n0 <- sum(y==0); n1<-sum(y==1); n<-n0+n1;

p <- ncol(x)

quali.te0 <- sample(1:n0,round(n0*0.25),replace=FALSE)

quali.te1 <- sample(1:n1,round(n1*0.25),replace=FALSE)

test.x0 <- x0[quali.te0 ,]; test.x1 <- x1[quali.te1 ,];

test.y0 <- y0[quali.te0]; test.y1 <- y1[quali.te1];

te.n0 <- nrow(test.x0); te.n1 <- nrow(test.x1);

test.x <- rbind(test.x0,test.x1)

test.y <- c(test.y0,test.y1)

train.x0 <- x0[-quali.te0 ,]; train.x1 <- x1[-quali.te1 ,];

train.y0 <- y0[-quali.te0]; train.y1 <- y1[-quali.te1];

tr.n0 <- nrow(train.x0); tr.n1 <- nrow(train.x1);

train.x <- rbind(train.x0,train.x1)

train.y <- c(train.y0,train.y1)

X0 <- scale(train.x0,T,F)

X1 <- scale(train.x1,T,F)

mean.tr.x0 <- colMeans(train.x0)

mean.tr.x1 <- colMeans(train.x1)

mean.te <- colMeans(test.x)

ntr <- nrow(train.x)

## Gaussian Group -wise Partial Sketching

g.sk0.und <- matrix(rnorm(prod(tr.n1,tr.n0),0,

sd=1/sqrt(tr.n1)),tr.n1,tr.n0)

g.sk1.und <- matrix(rnorm(prod(tr.n1,tr.n1),0,

sd=1/sqrt(tr.n1)),tr.n1,tr.n1)

sk.x0.und <- g.sk0.und %*%X0+
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matrix(mean.tr.x0,nrow(g.sk0.und),ncol=p,byrow=T)

sk.x1.und <- g.sk1.und %*%X1+

matrix(mean.tr.x1,nrow(g.sk1.und),ncol=p,byrow=T)

x.gwps <- as.data.frame(rbind(sk.x0.und ,sk.x1.und))

y.gwps <- c(rep(0,nrow(sk.x0.und)),rep(1,nrow(sk.x1.und)))

df.gwps <- as.data.frame(cbind(y.gwps ,x.gwps))

df.gwps$y.gwps <- as.factor(y.gwps)

## Gaussian Group -wise Partial Over -Sketching

g.sk0.ov <- matrix(rnorm(prod(tr.n0,tr.n0),0,

sd=1/sqrt(tr.n0)),tr.n0,tr.n0)

g.sk1.ov <- matrix(rnorm(prod(tr.n0,tr.n1),0,

sd=1/sqrt(tr.n0)),tr.n0,tr.n1)

sk.x0.ov <- g.sk0.ov%*%X0 +

matrix(mean.tr.x0,nrow(g.sk0.ov),ncol=p,byrow=T)

sk.x1.ov <- g.sk1.ov%*%X1 +

matrix(mean.tr.x1,nrow(g.sk1.ov),ncol=p,byrow=T)

x.gwos <- as.data.frame(rbind(sk.x0.ov,sk.x1.ov))

y.gwos <- c(rep(0,nrow(sk.x0.ov)),

rep(1,nrow(sk.x1.ov)))

df.gwos <- as.data.frame(cbind(y.gwos ,x.gwos))

df.gwos$y.gwos <- as.factor(y.gwos)

# Hadamard Sketching

hada.sk0.und <- hada.sk(tr.n0,tr.n1)

hada.sk1.und <- hada.sk(tr.n1,tr.n1)

hada.sk.x0.und <- hada.sk0.und %*%

(rbind(X0,matrix(0,zero.row(tr.n0),ncol(X0)))) +

matrix(mean.tr.x0,nrow(hada.sk0.und),ncol=p,

byrow=T)

hada.sk.x1.und <- hada.sk1.und %*%

(rbind(X1,matrix(0,zero.row(tr.n1),ncol(X0)))) +

matrix(mean.tr.x1,nrow(hada.sk1.und),ncol=p,

byrow=T)
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x.hadawus <- as.data.frame(rbind(hada.sk.x0.und ,

hada.sk.x1.und))

y.hadawus <- c(rep(0,nrow(hada.sk.x0.und)),

rep(1,nrow(hada.sk.x1.und)))

df.hadawus <- as.data.frame(cbind(y.hadawus ,

x.hadawus ))

df.hadawus$y.hadawus <- as.factor(y.hadawus)

# Hadamard Over -Sketching

hada.sk0.ov <- hada.sk(n=tr.n0,k=tr.n0)

hada.sk1.ov <- hada.sk(n=tr.n1,k=tr.n0)

hada.sk.x0.ov <- hada.sk0.ov%*%

(rbind(X0,matrix(0,zero.row(tr.n0),ncol(X0)))) +

matrix(mean.tr.x0,nrow(hada.sk0.ov),ncol=p,

byrow=T)

hada.sk.x1.ov <- hada.sk1.ov%*%

(rbind(X1,matrix(0,zero.row(tr.n1),ncol(X0)))) +

matrix(mean.tr.x1,nrow(hada.sk1.ov),ncol=p,

byrow=T)

x.hadawos <- as.data.frame(rbind(hada.sk.x0.ov,

hada.sk.x1.ov))

y.hadawos <- c(rep(0,nrow(hada.sk.x0.ov)),

rep(1,nrow(hada.sk.x1.ov)))

df.hadawos <- as.data.frame(cbind(y.hadawos ,

x.hadawos ))

df.hadawos$y.hadawos <- as.factor(y.hadawos)

# Gaussian Balanced Sketching + Over -Sketching k= 2*n1

g.sk0.bal <- matrix(rnorm(prod(2*tr.n1,tr.n0),0,

sd=1/sqrt(2*tr.n1)),2*tr.n1,tr.n0)

g.sk1.bal <- matrix(rnorm(prod(2*tr.n1,tr.n1),0,

sd=1/sqrt(1*tr.n1)),2*tr.n1,tr.n1)

sk.x0.bal <- g.sk0.bal %*%X0 +

matrix(mean.tr.x0,nrow(g.sk0.bal),ncol=p,

byrow=T)

sk.x1.bal <- g.sk1.bal %*%X1 +

matrix(mean.tr.x1,nrow(g.sk1.bal),ncol=p,
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byrow=T)

x.gwbal <- as.data.frame(rbind(sk.x0.bal ,

sk.x1.bal))

y.gwbal <- c(rep(0,nrow(sk.x0.bal)),

rep(1,nrow(sk.x1.bal)))

df.gwbal <- as.data.frame(cbind(y.gwbal ,x.gwbal))

df.gwbal$y.gwbal <- as.factor(y.gwbal)

# Hadamard Balanced Sketching + Over -Sketching k=2*n1

hada.sk0.bal <- hada.sk(tr.n0,2*tr.n1)

hada.sk1.bal <- hada.sk2(tr.n1,2*tr.n1)

hada.sk.x0.bal <- hada.sk0.bal %*%

(rbind(X0,matrix(0,zero.row(tr.n0),ncol(X0)))) +

matrix(mean.tr.x0,nrow(hada.sk0.bal),ncol=p,

byrow=T)

hada.sk.x1.bal <- hada.sk1.bal %*%

(rbind(X1,matrix(0,zero.row(tr.n1),ncol(X0))))+

matrix(mean.tr.x1,nrow(hada.sk1.bal),ncol=p,

byrow=T)

x.hadawbal <- as.data.frame(rbind(hada.sk.x0.bal ,

hada.sk.x1.bal))

y.hadawbal <- c(rep(0,nrow(hada.sk.x0.bal)),

rep(1,nrow(hada.sk.x1.bal)))

df.hadawbal <- as.data.frame(cbind(y.hadawbal ,

x.hadawbal ))

df.hadawbal$y.hadawbal <- as.factor(y.hadawbal)

# Clarkson -Woodruff Sketching

clark.sk0.und <- clark.sk(n=tr.n0,k=tr.n1)

clark.sk1.und <- clark.sk(n=tr.n1,k=tr.n1)

clark.sk.x0.und <- clark.sk0.und%*%X0 +

matrix(mean.tr.x0, nrow(clark.sk0.und), ncol=p,

byrow=T)

clark.sk.x1.und <- clark.sk1.und%*%X1 +

matrix(mean.tr.x1, nrow(clark.sk1.und), ncol=p,

byrow=T)
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x.clarkwus <- as.data.frame(rbind(clark.sk.x0.und ,

clark.sk.x1.und))

y.clarkwus <- c(rep(0,nrow(clark.sk.x0.und)),

rep(1,nrow(clark.sk.x1.und)))

df.clarkwus <- as.data.frame(cbind(y.clarkwus ,

x.clarkwus ))

df.clarkwus$y.clarkwus <- as.factor(y.clarkwus)

# Clarkson -Woodruff Over -Sketching

clark.sk0.ov <- clark.sk(n=tr.n0,k=tr.n0)

clark.sk1.ov <- clark.sk(n=tr.n1,k=tr.n0)

clark.sk.x0.ov <- clark.sk0.ov%*%X0 +

matrix(mean.tr.x0, nrow(clark.sk0.ov), ncol=p,

byrow=T)

clark.sk.x1.ov <- clark.sk1.ov%*%X1 +

matrix(mean.tr.x1, nrow(clark.sk1.ov), ncol=p,

byrow=T)

x.clarkwos <- as.data.frame(rbind(clark.sk.x0.ov,

clark.sk.x1.ov))

y.clarkwos <- c(rep(0,nrow(clark.sk.x0.ov)),

rep(1,nrow(clark.sk.x1.ov)))

df.clarkwos <- as.data.frame(cbind(y.clarkwos ,

x.clarkwos ))

df.clarkwos$y.clarkwos <- as.factor(y.clarkwos)

# Clarkson -Woodruff Balanced Sketching +

# Over -Sketching k=2*n1

clark.sk0.bal <- clark.sk(n=tr.n0,k=2*tr.n1)

clark.sk1.bal <- clark.sk(n=tr.n1,k=2*tr.n1)

clark.sk.x0.bal <- clark.sk0.bal%*%X0 +

matrix(mean.tr.x0, nrow(clark.sk0.bal), ncol=p,

byrow=T)

clark.sk.x1.bal <- clark.sk1.bal%*%X1 +

matrix(mean.tr.x1, nrow(clark.sk1.bal), ncol=p,

byrow=T)
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x.clarkwbal <- as.data.frame(rbind(clark.sk.x0.bal ,

clark.sk.x1.bal))

y.clarkwbal <- c(rep(0,nrow(clark.sk.x0.bal)),

rep(1,nrow(clark.sk.x1.bal)))

df.clarkwbal <- as.data.frame(cbind(y.clarkwbal ,

x.clarkwbal ))

df.clarkwbal$y.clarkwbal <- as.factor(y.clarkwbal)

# Tree ++ Training Set

tree.gwps <- J48(y.gwps~., data=df.gwps , control =

Weka_control(S = TRUE , M = 5))

train.gwps <- predict(tree.gwps ,x.gwps)

tree.gwos <- J48(y.gwos~., data=df.gwos , control =

Weka_control(S = TRUE , M = 5))

train.gwos <- predict(tree.gwos ,x.gwos)

tree.hadawus <- J48(y.hadawus~., data=df.hadawus ,

control = Weka_control(S = TRUE , M = 5))

train.hadawus <- predict(tree.hadawus ,x.hadawus)

tree.hadawos <- J48(y.hadawos~., data=df.hadawos ,

control = Weka_control(S = TRUE , M = 5))

train.hadawos <- predict(tree.hadawos ,x.hadawos)

tree.gwbal <- J48(y.gwbal~., data=df.gwbal ,

control = Weka_control(S = TRUE , M = 5))

train.gwbal <- predict(tree.gwbal ,x.gwbal)

tree.hadawbal <- J48(y.hadawbal~., data=df.hadawbal ,

control = Weka_control(S = TRUE , M = 5))

train.hadawbal <- predict(tree.hadawbal ,x.hadawbal)

tree.clarkwus <- J48(y.clarkwus~., data=df.clarkwus ,

control = Weka_control(S = TRUE , M = 5))

train.clarkwus <- predict(tree.clarkwus ,x.clarkwus)

tree.clarkwos <- J48(y.clarkwos~., data=df.clarkwos ,

control = Weka_control(S = TRUE , M = 5))
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train.clarkwos <- predict(tree.clarkwos ,x.clarkwos)

tree.clarkwbal <- J48(y.clarkwbal~., data=df.clarkwbal ,

control = Weka_control(S = TRUE , M = 5))

train.clarkwbal <- predict(tree.clarkwbal ,x.clarkwbal)

# Test Set

test.gwps <- predict(tree.gwps ,

newdata=as.data.frame(test.x))

test.pos <- predict(tree.gwos ,

newdata=as.data.frame(test.x))

hada.test.gwps <- predict(tree.hadawus ,

newdata=as.data.frame(test.x))

hada.test.gwos <- predict(tree.hadawos ,

newdata=as.data.frame(test.x))

test.gwbal <- predict(tree.gwbal ,

newdata=as.data.frame(test.x))

hada.test.gwbal <- predict(tree.hadawbal ,

newdata=as.data.frame(test.x))

clark.test.gwps <- predict(tree.clarkwus ,

newdata=as.data.frame(test.x))

clark.test.gwos <- predict(tree.clarkwos ,

newdata=as.data.frame(test.x))

clark.test.gwbal <- predict(tree.clarkwbal ,

newdata=as.data.frame(test.x))
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