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Abstract

The mapping of flood hazard can be time and resource consuming, but it is essential
for assessing flood risk and for designing strategies to avoid consequences and recover
faster in the event of flooding. This generally involves setting up complex numerical
hydrologic/hydrodynamic models to simulate the flow of water in river channels and over
the floodplains. Although such approach is considered standard, it is not always feasible.
For example, it is challenging to simulate floods over large areas, produce a number of
scenarios, represent flood mechanisms in a detailed way, and make use of all the data
that is increasingly available in the field of water resources. Clearly, flood managers could
use more options. Machine learning (i.e., algorithms that learn from data, in contrast to
physically-based equations) has been seldomly used until now, but is a good candidate
because of simplicity, typically faster runtimes and ability to handle large amounts of data.
In combination with geographic information systems attractive tools can potentially be
created. The combination of nearly instantaneous results with a web-GIS provides the
possibility of near-real time analysis using any modern web browser. This thesis seek for
additional clues that can help in the answering of the following questions: can data-driven
models live to their expectations in flood hazard assessment? to what extent they offer
viable alternatives to standard approaches and what are the concrete advantages and
limitations? Several aspects of flood hazard assessment are addressed by developing and
employing different state-of-the-art data-driven approaches, namely for the estimation
and mapping of areas that may be subject to flooding across geographic scales, their
downscaling, their extrapolation and regionalisation, or the transfer between catchments
based on physical similarity. In each part of the thesis, the viability of selected methods
are demonstrated and possible ways to overcome limitations are highlight.
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Introduction

Floods pose a serious threat to individuals and communities, as shown by disaster
data found in the International Disaster Database (EM-DAT) of the Centre for Research
of the Epidemiology of Disasters (CRED). A United Nations report on the Human cost of
weather related disasters (CRED/UNISDR, 2016) illustrates the dimension of the problem
well: 47% of all disasters since 1995 have been floods, affecting a total of 2.3 billion people
worldwide. This previous experience paints a grim picture and there is mounting evidence
for an increase in frequency and intensity of severe floods due to climate change (Milly
et al., 2002; Aerts et al., 2006; Kleinen and Petschel-Held, 2007; Alfieri et al., 2017;
Barichivich et al., 2018; Sassi et al., 2019). Emphasised by examples of historical flood
disasters (e.g., Barredo, 2007), projected consequences (e.g., Alfieri et al., 2015) represent
a serious challenge to flood risk management.

On the other hand, the increase of socio-economic activities in areas that are subject
to flooding perseveres in a number of countries, aggravating the exposure of persons and
assets (de Moel et al., 2009; Kron et al., 2019). According to the European Environment
Agency (EEA, 2016), a significant part of the European population is estimated to be
living in, or near to, a floodplain.

Thus, understanding and assessing flood hazard is of great importance to protect
lives and to prevent negative socio-economic and environmental impacts. The EU Floods
Directive (2007/60/EC) clearly recognises this vital importance and mandates member
states to produce flood hazard and risk maps, but much more can be done to help.

In particular, authorities and stakeholders could make use of more prompt and cost-
effective alternatives to assess every type of flood consistently across geographic scales
(e.g., Leskens et al., 2014). This applies to flood maps – a critical component of risk
assessment – but also to information used for the design of protection and emergency
measures, spatial planning and awareness raising. In the insurance sector, this knowledge
is critical for managing portfolios, risk screening and assessing long-term financial solvency
(de Moel et al., 2009).

The larger the geographic area, where management is complex and transboundary
coordination is generally required, and the limited the resources of economies and organ-
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2 Introduction

isations involved, the more relevant the alternatives become. Disaster risk reduction (i.e.,
mitigation, preparedness, response and recovery) and risk transfer (i.e., insurance) could
greatly benefit from innovative tools capable of enriching decision-making processes (e.g.,
Jongman et al., 2014; Pappenberger et al., 2015; Ward et al., 2015). It is unsatisfactory,
and to some degree unjustified, that there is not more to offer, given today’s technological
developments and unprecedented quantities of data (e.g., Ma et al., 2015).

Standard approaches to flood hazard mapping generally involve the combined use of
hydrological and hydrodynamic computer models (e.g., Şen and Kahya, 2017), with re-
sulting flood maps typically produced at the reach-scale and in urban settings (Horritt
and Bates, 2002). At these local scales, researchers generally devote themselves to in-
creasing the detail of flood models, an example being the move towards very high spatial
resolution (Noh et al., 2018). Instead, from regional to global scales, authors tend to
focus more on simplification, as parsimonious models are more suitable to be used over
larger geographic areas due to their higher computationally efficiency (Yamazaki et al.,
2011; Neal et al., 2012, 2011; Pappenberger et al., 2012; Winsemius et al., 2013; Alfieri
et al., 2014; Sampson et al., 2015; Dottori et al., 2016; Rebolho et al., 2018; Zheng et al.,
2018a).

However, detail (i.e., physics and spatial resolution) and large geographic coverage are
two desirable but often competing properties of flood modelling (e.g., Schumann et al.,
2014a); in other words, it is hard to setup a flood model with one of these characteristics
without compromising the other. Adding to long simulation times, numerical instabilities,
limited resources and scarcity of stream gauge observations counter the effort for up-to-
date flood information at any location or any time these are requested. Such bottlenecks,
have motivated a number of authors to start looking at low-complexity solutions that rely
more on data-driven methods (Schumann et al., 2014a; Tang et al., 2018; Giovannettone
et al., 2018; Caprario and Finotti, 2019; Zhao et al., 2019).

A new class of methods that take a completely different approach from the one of
standard flood modelling schemes has in fact emerged. Machine learning (Mitchell, 1997),
whose algorithms instead of explicitly and exhaustively encode the physics of the processes
that drive flood hazard, learns information directly from existing data (e.g., historical ob-
servations, deterministic model simulations) to infer knowledge, with respect to a specific
task and measure of performance, and improve as more examples are added. Compara-
tively, these methods can be not only faster and cost-effective, as is desirable, but also
useful when the problem at hand is hard to describe mathematically, hard to solve com-
putationally or when it involve large amounts of data.



3

Data is of course central to machine learning and in principle the more quality data
is fed to a specific algorithm, carefully setup for a specific task, the more it should learn
and the better it should perform – this perhaps explains why big data became such a
popular term more or less simultaneously. Given that water resources are no exception
to the boom of data experienced in the last decades (see e.g., Chen and Wang, 2018;
Levizzani and Cattani, 2019), from remote sensing and photogrammetry to networks of
sensors, citizen science and social media, there is a certain expectation that machine
learning will open the door to new advances, by leveraging the power of big data, and to
the development of innovative tools. The question is, can data-driven models live to their
expectations in flood hazard mapping? To what extent do they offer a viable alternative
to standard approaches and what are the concrete advantages and limitations? Through
the identification of flood hazard patterns using different strategies and case studies, this
work seeks to provide additional clues that can help in the answering of these questions.

In summary, machine learning methods can be categorised into at least two major
branches, supervised and unsupervised learning (Fig. 1), that are of interest to this thesis.

Figure 1: Taxonomy of machine learning methods.

Supervised learning is the branch of machine learning algorithms where predictive
modelling is achieved based on evidence. In other words, a supervised learning algorithm
infers a function from a training dataset that is able to map each new example to a
response. Supervised learning is further subdivided into classification or regression algo-
rithms. The first type of algorithms is specific to problems in the discrete space, where
data is in the form of discontinuous sequences – classification algorithms aim to group
new examples into categories. For instance, Olthof and Tolszczuk-Leclerc (2018) used a
decision tree algorithm to classify satellite imagery into inundated floodplain pixels or
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dry land. The second type of algorithms is specific to problems in the continuous space,
where data is in the form of continuous sequences – regression algorithms aim to predict
response values for new examples. For instance, Garmdareh et al. (2018) tested if a sup-
port vector regression algorithm and different types of artificial neural networks could be
used to predict peak flood discharges.

Unsupervised learning, on the other hand, seeks patterns in datasets that do not have
a response associated to each sample – clustering algorithms aim to group samples in
a dataset according to a measure of similarity. Cassalho et al. (2019) tested the abil-
ity of different clustering algorithms to group catchments, based on observations from
corresponding stream gauges, into hydrologically similar regions for an improved flood
frequency analysis and a transfer of flood information between catchments, known as re-
gionalisation (Blöschl and Sivapalan, 1995).

In this thesis several aspects of flood hazard assessment are addressed by employing
data-driven approaches. Algorithms used were tailored specifically for the task of esti-
mating and mapping areas that are subject to flooding across geographic scales, their
downscaling, their extrapolation and regionalisation.

It brings together all the work that was carried out in the course of the last three years
and it organises the material in the following way: Chapter 1 provides an overview of
standard methods for flood hazard mapping; Chapter 2 provides an overview of the state-
of-the-art in hydrogeomorphic flood hazard mapping; Chapter 3 provides an overview of
the specific data-driven methods used for mapping areas subject to flooding and highlights
strategies to enhance the transfer of flood extents to other geographic areas; in Chapter 4
different evaluation measures used throughout this thesis are summarised; and, Chapter
5 provides an overview of several case studies where mapping of areas subject to flooding
was performed.

This thesis includes additional developments, namely: 1) in Appendix A the analysis
of free digital elevation models (DEMs) that are central to the classification and regression
problems presented in Chapter 3 and Chapter 5; 2) in Appendix B a brief description of
principal component analysis and regression that were also explored in Chapter 3 and
Chapter 5 ; and, 3) in Appendix C the description of a web application prototype, based
on online geographic information system (GIS) technology, that seeks to integrate in a
user-friendly interface the data-driven methods used to assess flood hazard.



Chapter 1

Standard methods for flood hazard
mapping

Standard approaches to flood hazard mapping can be sub-divided into event-based,
semi-continuous or fully continuous approaches according to Grimaldi et al. (2013). In
an event-based approach a design hyetograph is estimated from time series of observed
rainfall, fed to a hydrological model to produce a corresponding design flood hydrograph,
which is then used in a hydrodynamic model to simulate flow both in the stream channel
and over the floodplain. In a semi-continuous approach, synthetic time series of rainfall
are fed directly to the hydrological model, of which the resulting discharge peaks are
analysed in terms of frequency to produce a synthetic design flood hydrograph to be
used in a hydrodynamic model. Finally, in a continuous approach, time series of rainfall
are transformed by the hydrological model into discharge that are directly fed to the
hydrodynamic model, of which the resulting flood maps are analysed in terms flood depth
frequency on a cell-by-cell basis to estimate a corresponding return period. Grimaldi et al.
(2013), have tested an event-based, a semi-continuous and a fully continuous approach to
flood mapping in the Rio Torbido in Italy using a Width Function Instantaneous Unit
Hydrograph (WFIUH-1par, Grimaldi et al. 2013) for hydrological modelling and FLO-2D
(O’Brien et al. 1993) for hydrodynamic modelling. The authors have showed that the
three methods result in significantly different flood maps.

Another example of application, is given by Alfieri et al. (2014) that used the LIS-
FLOOD hydrological model (Knijff et al. 2010) to produce a discharge climatology for
flood frequency analysis and the estimation of flood hydrographs, which were then input
to the hydrodynamic model LISFLOOD-ACC (Bates et al. 2010, Neal et al. 2011) to
produce pan-European return period flood hazard maps.

These workflows can be further simplified by performing regional flood frequency anal-
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ysis using gauge observations to obtain flood quantiles used to simulate flow in steady state
or, alternatively, to estimate a design flood hydrograph to simulate flow dynamically. For
example, Sampson et al. (2015) used regional flood frequency analysis to generate extreme
flows, derive design flood hydrographs and run the hydrodynamic model LISFLOOD-FP
(Neal et al. 2012).

Alternatively, rainfall observations or design hyetographs used in the hydrological mod-
els can be substituted by stochastic rainfall scenario generators. For example, Sampson
et al. (2014) generated a series of independent synthetic rainfall storms, assumed a spa-
tially uniform rainfall pattern over the catchments of interest in the region of Dublin in
Ireland, ran the Hydrologiska Byråns Vattenbalansavdelning hydrological model (HBV,
Seibert and Vis 2012) to simulate synthetic design flood hydrographs and finally ran the
LISFLOOD-FP model to obtain the flood hazard maps for Dublin.

These flood hazard mapping approaches are generally part of catastrophe modelling
frameworks, typically used for disaster insurance, that also encompass modules for vul-
nerability and loss to represent the whole risk chain. This was the case in Sampson et al.
(2014), but also Falter et al. (2015, 2016) that coupled a weather generator (Hundecha
and Merz 2012) to a hydrological model (SWIM – Soil and Water Integrated Model,
Krysanova et al. 1998), a hydrodynamic model based on the inertial formulation of Bates
et al. (2010) and a flood loss model (FLEMOps + r – Flood Loss Estimation MOdel
for the private sector, Elmer et al. 2012) to estimate risk in a meso-scale catchment, the
Mulde, in Germany.

More recently, a number of authors have focused on the integration of hydrological
and hydrodynamic models for flood hazard estimation in near-real time and over large-
scales, in opposition to static flood maps. For example, O’Loughlin et al. (2020) prepared
a hydrological model (HRR – Hillslope River Routing model, Beighley et al. 2011) with
precipitation data to obtain estimates of discharge and subsequently run LISFLOOD-FP.
The authors applied this approach to the middle reach of the Congo River Basin and com-
pared the resulting flood hazard maps to inundation data inferred from multiple satellites
observations. Rajib et al. (2020) used the same approach to simulate flood hazard in the
Ohio River Basin in the US, but applied a different hydrological model, the Soil & Water
Assessment Tool (SWAT, Arnold and Fohrer 2005); while Hoch et al. (2017) combined
the PCRaster GLOBal Water Balance hydrological model (PCR-GLOBWB, van Beek
and Bierkens 2008) with the Delft3D (Kernkamp et al. 2011) and the LISFLOOD-FP
hydrodynamic models to compare results at the Óbidos River Basin in Brazil.

Although standard approaches to flood hazard estimation share the same principle of
coupling a hydrological model to a hydrodynamic model in order to obtain flood maps, the
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physical descriptions included in the models, the equations governing the propagation of
flow, the numerical schemes used in solving those equations, and hoe the models are cou-
pled (i.e., transfer information between themselves) can differ substantially. For example
the HRR model combines Green and Ampt (1911) infiltration equations, or runoff gen-
eration, with kinematic-wave approximation of the shallow water equations, for hillslope
flow routing, and diffusive-wave approximation of the shallow water equations, for chan-
nel flow routing, while the SWAT model combines the Soil Conservation Service Curve
Number infiltration equations, for runoff generation, with a variable storage flow routing
(Williams, 1969). The hydrodynamic equations of LISFLOOD-FP neglect the advection
term and the stream channel is represented with a subgrid, while Delft3D solves the full
shallow water equations and resolves both the stream channel and the floodplain.

Standard methods for flood hazard mapping, however, can be data, resource and
knowledge intensive. Hydro-meteorological data required by the models not only as input,
but also for calibration, are often sparse or simply inexistent for several catchments around
the world; catchment characteristics, specially when they cannot be derived from a DEM,
such as land-use and plant growth, can be of insufficient quality and detail; information
on man-made structures, such as roads that contribute to imperviousness of urban areas,
but also reservoirs that affect runoff routing and flood defences that condition the flow
of water, may not be available. In order to get around these challenges, modellers resort
to estimates or parametrizations, which can result in added uncertainty at the end of the
whole modelling chain. On the other hand, the more process detail is incorporated in
each component of the modelling system, the more data and computational resources will
probably be need, the more time it will probably take to execute and the more demanding
its setting up and calibration will be. These aspects can all contribute to render standard
methods unfeasible or undesirable for some applications and in this context low-complexity
data-driven approaches can be good alternative solutions. In the next chapters of this
thesis such simplified solutions are comprehensively analysed, and compared to standard
approaches, in terms of their ability to map flood hazard, in terms of their concrete
advantages and limitations and different applications.





Chapter 2

State-of-the-art hydrogeomorphic
flood hazard mapping

Simplified data-driven methods for delineating flood-prone areas aim at informing
users rapidly in the absence of detailed studies and in data-scarce (e.g., ungauged basins)
or resource-limited settings, while enabling large-scale analyses without incurring in high
computational time penalties. In some cases, these methods may not depend explicitly on
hydrological conditions nor relate directly to event frequency, duration or magnitude, nor
to local settings or antecedent conditions. Instead, they can be based solely on causality
between historical floods and the floodplain hydraulic geometry (e.g., Bhowmik, 1984).

Leopold and Maddock Jr. (1953) evidenced how the water-surface width, mean depth
and mean velocity, at different points of the stream channel in a downstream direction,
increase on average with discharge as simple power functions. These relationships hold
even for very different river systems and tributaries up to bankfull stage. Dodov and
Foufoula-Georgiou (2005) provided evidence of two scaling regimes in maximum annual
floods, one below and one above the bankfull flow. The authors confirmed that inundation
depth was proportional to bankfull depth at any given scale and that bankfull depth scaled
with the contributing area.

Rodda (2005) used historic floods and local knowledge to reason about the patterns
(summer rainfall and snow melt) of fluvial flooding in the Czech Republic and generate
a set of synthetic flood events. The events were characterised by a growth curve index,
given by the ratio of peak flood (maximum mean daily flow) to the median annual flood,
and the number of river basins typically affected by each pattern. Flood magnitudes were
defined based on the growth curve index that increased in the downstream reach if the
two upstream tributaries were flooding with the same magnitude. The authors used a
conversion factor obtained from observed data to transform the growth curve index into

9
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peak flow at each gauging station. Using rating curves, flows were converted to water
levels and bankfull stage was subtracted, assumed as the water level associated with the
1 to 2 year return period flood. Flood depth was assumed invariant along the reach and
was propagated over the floodplain associated to each reach. The authors used a buffer
of maximum flooded area and, for each cell within that buffer, the elevation of the river
network cell, connected by the flow path of maximum slope, was subtracted from the
flood depth at the reach. This approach was found by the authors to represent well the
flood extents and some of the errors found were arguably related to DEM resolution and
to the presence of ponds.

Based on previous findings, Dodov and Foufoula-Georgiou (2006) used a geomorphic
approach to delineate the floodplain within regions of similar climatic and geologic condi-
tions. Inundation depth was estimated at points along the stream network using scaling
relations of bankfull depth and a regional proportionality coefficient. Similarly, Nardi
et al. (2006) and Nardi et al. (2013) presented a flat-water approach to delineate the
floodplain (i.e., simple intersection of a specified flood depth with the surrounding dig-
ital topography). They used a variable stage at each stream pixel from a stream-order
averaged linear scaling relation. The relation was found by generalising an outlet flood
magnitude to each stream pixel, matching it to the discharge obtained from the Manning
uniform flow equation, with constant roughness, to estimate the stage.

Rennó et al. (2008), Nobre et al. (2011) and Gharari et al. (2011) found that, similarly
to the topographic wetness index by Beven and Kirkby (1979), the Height Above the
Nearest Stream (HAND, or incision as defined by Bhowmik 1984) previously used to
characterise valley-bottom settings (Williams et al., 2000) was correlated to soil water
content distribution.

Manfreda et al. (2011) investigated the correlation between the topographic wetness
index and flood-prone areas and proposed a tailored version of it by weighing the local
upslope contributing area. Flood-prone areas were delineated by searching for the optimal
combination of weight and index threshold that would minimise the sum of false negatives
and false positives, in relation to a reference flood hazard map. As a result of the discussion
of this paper, Cartier and Fuamba (2013) suggested that the authors also tested the
downslope index proposed by Hjerdt et al. (2004) that represents a “smoothed estimate
of the local slope defined over a length variable with the morphology”, as described in
Cartier and Fuamba (2013). The authors found that the modified topographic index
outperformed the downslope index in the Arno River Basin.

Degiorgis et al. (2012) proposed the delineation of flood-prone areas from a location
where a flood map exists to one where it does not, for example from a training area
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to the entire river basin. This extrapolation procedure was achieved by identifying the
isoline or contour (optimal threshold) of a chosen flood descriptor that best approximated
the areal extent of an existing flood map (benchmark) for a given return period. Flood
descriptors can be defined as quantitative layers produced with DEM that classify the
digital terrain in such a way that it correlates to the characteristics of hydrological or
hydraulic processes; DEMs are digital elevation datasets representing the Earth’s surface
that are distributed as gridded values representing local terrain elevations (Tavares da
Costa et al., 2019b). Among the tested flood descriptors, the elevation difference and the
distance to the nearest stream were found to be the best performing flood descriptors.

Jalayer et al. (2014), Risi et al. (2014), De Risi et al. (2014), and Risi et al. (2015) have
developed a fast procedure for hazard zoning. The authors relate, through simple linear
regression, each flood depth contour, of a given return period flood hazard map, to the
topographic wetness index optimal threshold, the value with the highest probability of
correct delineation of flood-prone areas given by a maximum likelihood estimate. De Risi
et al. (2017) used the same approach but further included information on historical floods
through Bayesian updating. With this, the authors were able to delineate and extrapolate
flood-prone areas based on the functional relationships and calculate risk.

Rathjens et al. (2016) compared the topographic wetness index, to a relative slope
position index, to the method introduced by Nardi et al. (2006) and to the method
introduced by Degiorgis et al. (2012) in their ability to delineate floodplains. The authors
found that both the slope position and the method introduced by Nardi et al. (2006)
performed better in the four selected watersheds in the US, resulting in less under- and
overestimation compared to the topographic wetness index and the method introduced by
Degiorgis et al. (2012), respectively. On the other hand, McGrath et al. (2018) compared
the HAND, as a predictor of flood extent and depth, to the flat-water approach and to a
water surface obtained through inverse distance weighting. It was found that the HAND
performed best for two study areas in Canada.

Manfreda et al. (2014) compared the linear binary classification, using the modified
topographic index and the indices introduced by Degiorgis et al. (2012) to the hydroge-
omorphic approach of Nardi et al. (2006). Their study confirmed that the classification
using the HAND was reliable for delineating flood-prone areas, something also suggested
in a remote sensing application by Westerhoff et al. (2013) using the HAND model and
later confirmed by Nobre et al. (2016) and by Zheng et al. (2018a). Manfreda et al. (2015);
Samela et al. (2016, 2017) further tested the ability of single and composite indices to
classify flood-prone areas. The Geomorphic Flood Index (GFI, Samela et al. 2017), was
found to be the best performing and the most consistent index (Manfreda et al., 2015)
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and (Samela et al., 2016, 2017). Building upon this, Samela et al. (2017) and Tavares da
Costa et al. (2019a) successfully delineated flood-prone areas at the continental scale
(pan-European maps) for several return periods by dramatically reducing computational
time and costs, opening new possibilities for flood risk assessment and management. In
Tavares da Costa et al. (2019a), optimal thresholds of the GFI were also shown to be
positively correlated to flood extents associated with specific return periods. Based on
the previous findings, Samela et al. (2018) and Tavares da Costa et al. (2019a) developed
offline and online tools to automatically delineate flood-prone areas; while Manfreda and
Samela (2019) introduced a method to estimate flood depth from the GFI directly.

Clubb et al. (2017) tested the HAND model and the slope in delineating floodplains.
The topographic threshold corresponding to the transition between hillslope and flood-
plain was determined by identifying the value of both the HAND and the slope at which
the difference between their probability density function and the Gaussian function was
less than 1%.

Jafarzadegan and Merwade (2017) proposed an enhancement to the extrapolation of
flood-prone areas by regressing optimal thresholds of the HAND model with catchment
characteristics and by introducing a probabilistic threshold classifier to generate proba-
bilistic flood maps (Jafarzadegan et al., 2018; Jafarzadegan and Merwade, 2019).

Afshari et al. (2018) used the HAND model to estimate reach-average rating curves
by employing the Manning’s equation with hydraulic radius, estimated for each HAND
isoline (Zheng et al., 2018a,b). The rating curves allow one to retrieve a flood depth,
associated to a HAND isoline, for an input flood quantile and rapidly delineate flood
hazard. Godbout et al. (2019) analysed the errors of this approached and realised that it
underperformed in short reaches with extreme slopes.

Morrison et al. (2018) utilised the hydrogeomorphic approach of Nardi et al. (2013) to
partition a US wetland database into floodplain wetlands. The authors assessed the rela-
tionship between the presence of levees and floodplain wetland areas to understand how
one affected the other. It was found that floodplain wetland area is linked to maximum
Strahler stream order (Strahler, 1964) and that the presence of levees are linked to larger
wetlands, particularly at lower Strahler stream order. Based on the same approach, Scheel
et al. (2019) assessed the impact of the presence of levees in the delineation of floodplains
for the Wabash Basin in the US. The authors found that levee heights captured by the
digital terrain decreased the floodplain area. Nardi et al. (2018) investigated the perfor-
mance of the hydrogeomorphic approach in mapping the floodplain of two river basins in
the US. The authors found that results were consistent with reference flood maps, even
when scaling parameters varied significantly, and that man-made structures captured by
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the DEM were responsible for some of the differences found. Annis et al. (2019) inves-
tigated how the power law coefficients in the same hydrogeomorphic approach changed
with spatial resolution of DEMs, Strahler stream order and return period and how it
performed, using valid ranges of the coefficients, in several river basins of different sizes
across Europe. The authors used standard flood hazard maps for different return periods
as reference and compared the results to the ones obtained by thresholding the HAND,
the constant hydrological flow distance to the stream network, the local slope and the
topographic wetness index. Since the power law coefficients showed a strong linear corre-
lation between themselves, the authors kept the constant of the power law fixed and tested
only how the exponent varied. Optimal exponent values for the delineation of floodplains
increased with an increase in spatial resolution and return period and decreased with
Strahler stream order. Furthermore, the best performances were found for smaller re-
turn periods and the hydrogeomorphic approach outperformed the results obtained with
selected topographic indices. Nardi et al. (2019) delineated the global floodplains by
employing the hydrogeomorphic approach with a power law exponent calibrated using a
global flood map for the 200-year return period Dottori et al. (2016). A measure-of-fit of
the delineated floodplains across Europe was found to support the use of a constant value
for the power law coefficient.

Speckhann et al. (2018) have combined the HAND model with frequency analysis of
annual maximum water levels to map flood hazard in the Itajaí River Basin in Brazil.
The water level corresponding to a specific return period, retrieved from a fitted contin-
uous probability distribution, was first corrected by adding the difference between staff
gauge height and the corresponding HAND value before using it to threshold the HAND
model. The authors found some sensitivity of the approach to channel initiation and low
sensitivity to DEM spatial resolution.

The hydrogeomorphic flood hazard mapping approach has opened the possibility for
fast automatic delineations of flood-prone areas without requiring great amounts of com-
puting power, data inputs or even technical knowledge, for example in setting up and
calibrating hydrological and hydrodynamic models. It allows for multiple analyses over
large-scales, continental to global, which are still a challenge for standard approaches
without some degree of simplification. It releases a study of the burden of sophisticated
modelling, allowing one to focus, even if in a more coarser way, in other type of questions.
For example, Elshorbagy et al. (2017) used the HAND model and the distance from the
nearest drainage topographic indices to define hazard classes in Canada. These classes
were then combined with exposure assessed using nightlights from satellite imagery to
estimate risk. The simplicity of the hydrogeomorphic flood hazard mapping approach
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also allows for straightforward integrations in modelling frameworks as shown by Zheng
et al. (2018a), or even in web applications as presented in this work and in Tavares da
Costa et al. (2019a), which brings a new type of usability and dissemination of products.
As a static approach, the hydrogeomorphic flood hazard mapping, as it is, will hardly be
able to replicate more than the envelope of major floods (as explained in the following
chapters). Therefore, there should not be an expectation of replacement, but instead of
complementarity of this approach to standard ones. The hydrogeomorphic flood hazard
mapping also has a number of drawbacks, for example the quality and detail of the DEM
can largely influence its outcomes, but this is not exclusive of this approach it also af-
fects any hydrological-hydrodynamic simulation. Not only the DEM pixel size, but also
vertical accuracy, the representation of man-made structures and of floodplain features
can be a cause of unrealistic results, this is briefly explored in one of the Appendices and
in Tavares da Costa et al. (2019b). Most importantly, the HAND model or any of the
topographic indices based on it, such as the GFI, need to be improved substantially over
flat-areas as they present a tendency for overestimation. This is because there are no
topographic constraints, in height, that intersect with the flat-water surface earlier.

In this thesis the hydrogeomorphic approach serves as the basis for flood hazard map-
ping, downscaling and regionalisation. It is used in the following chapters as a starting
point for developing novel data-driven methods and for implementing novel technologies,
of which their value is demonstrated in several case studies and applications, across spatial
scales and with datasets of different sizes.



Chapter 3

Flood hazard: mapping, downscaling
and regionalisation

3.1 Classification of flood-prone areas

The methodology presented in this thesis is based on the prior definition of a composite
flood index, the GFI, whose isolines (i.e., represented by unique thresholds values, TH)
are used to classify benchmark flood extents.

3.1.1 Geomorphic Flood Index

A flood descriptor is a raster layer that is able to identify the propensity to flooding in
a given area. It can be obtained by combining different factors into a unique raster layer
(e.g., from terrain analysis, land use and land cover, and so forth). In this thesis, the
flood descriptor is presented as a combination of hydrogeomorphic factors and is called
the Geomorphic Flood Index (GFI) (Samela et al., 2017), which requires several steps
to be computed. The GFI is a raster layer estimated from pre-processed terrain analysis
layers extracted from a DEM. The computation of the GFI is given by:

GFIij = ln
(
hij
Hij

)
(3.1)

It is composed of two terms, computed following the steepest downslope path given by
a convergent eight direction flow model (abbreviated as D8 flow model). The first term,
hij (in meters), consists of an empirically derived stage estimated by means of a power law
hydraulic scaling relation of bankfull depth and upslope contributing area (Nardi et al.,
2006; Dodov and Foufoula-Georgiou, 2006; Manfreda et al., 2015; Samela et al., 2016,
2017). The empirically derived stage in each cell under analysis (i, j) is computed using
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the upslope contributing area specific to the river centreline cell hydrologically connected
to cell i, j and following the D8 flow model:

hij = a
(
Achk

)n
, withAchk = F ch

k × cellsize (3.2)

For simplicity, the power law constant a and exponent n are assumed transferable and
kept constant with values of 0.1 and 0.4 (Samela et al., 2017), respectively. The second
term of the GFI consists of the HAND (Rennó et al., 2008; Nobre et al., 2016) calculated
between the cell under analysis (i, j) and the river centreline cell hydrologically connected
to cell i, j, following the D8 flow model:

Hij = zij − zchk (3.3)

with zij the DEM elevation value of the cell under analysis and zchk the DEM elevation
value of the hydrologically connected river centreline cell. The GFI is rescaled before use
to a range of values lying between 0 and 1, corresponding to low (i.e., away from the river
centreline) and high hazard levels (i.e., near the river centreline), respectively. Note that
moving away from the river centreline, Hij increases while the GFI decreases. Scaling is
achieved by resorting to the minimum and maximum values of the GFI. The rescaled GFI
can effectively be used as a classifier of flood-prone areas (Manfreda et al., 2015; Samela
et al., 2016, 2017) and of the extent of the envelope of major floods that is confined to
the floodplain, between the active river channel at bankfull and the surrounding marked
topography. The GFI computation is summarised in Fig. 3.1.
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Figure 3.1: Two components that constitute the Geomorphic Flood Index (GFI). a) D8
flow direction raster for a portion of a catchment. b) The empirically derived stage in each
cell under analysis computed as a power law of bankfull depth and upslope contributing
area of the hydrologically connected river centreline cell. c) The DEM elevation difference
between the cell under analysis and the hydrologically connected river centreline cell. At
the lower left, a river basin representation showing the catchment E, in grey, and the river
network, in blue. At the lower centre, a cross-section of the river channel and floodplain.

3.1.2 Threshold Binary Classification

The threshold binary classification, introduced by Degiorgis et al. (2012), is adopted
in this study to find the a unique TH that produce the best possible representation of
the benchmark flood maps in terms of flood extent (see Fig. 3.2 for an illustration of the
workflow). The resulting unique TH per catchment of the Thames, Weser, the upper
Rhine and the upper Danube river basins are subsequently used as the target variable for
training the regression models.
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Figure 3.2: Workflow involved in the discrete statistical classification of the Geomorphic
Flood Index (GFI) for a generic river basin. a) GFI layer. b) Overlay of fixed buffer (green)
around the river network centerline. c) Calibration area corresponding to the clipped GFI
using the fixed buffer. d) Overlay of benchmark (red) and start of the threshold binary
classification. e) Search for optimal TH by means of an objective function. f) Best possible
representation of flood-prone areas (black) after classification.

The binary classifier consists of a mathematical optimisation that outputs the best
possible representation of known binary values from a benchmark. The algorithm starts
by creating, through image segmentation of the flood descriptor (the GFI), a binary flood
mask associated to each TH, out of a large number of possible values from zero to one,
hereinafter called the segmented GFI. The algorithm then searches all these binary cases
to find the one that best approximates the benchmark. The optimal case, represented
by a unique TH, is indicated by the maximisation of a specific objective function that
expresses the correctness of a representation.

The classifier performs better when binary categories are symmetrically distributed
(Kubat et al., 1998), when raster cells of one binary class are not greater in number than
the other. Therefore, a portion of the GFI, namely a classification area corresponding to
a fixed buffer (ca. 1 km) around the river network centreline of the largest benchmark, is
adopted in order to handle class imbalance. The classification area allows one to discard
the number of flood-free raster cells in excess.
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3.1.3 Objective function

The maximisation of the True Skill Statistic (TSS) (Peirce, 1884; Youden, 1950;
Stephenson, 2000; Baker and Kramer, 2007) is adopted in this study as the classifica-
tion rule that defines which TH is optimal to select for each catchment and return period
that results in the optimal delineation of flood-prone areas. The TSS represents the point
of maximum forecast value of the classifier (see Fig. 3.3); in other words, it is the point
in the Relative Operating Characteristic (ROC, see Chapter 3) that has the maximum
perpendicular distance from the line of no-skill (Manzato, 2007), which translates to a
good representation of the binary categories in the benchmark. the TSS can be seen as
the probability of making an informed decision with regard to the proportion of correctly
predicted classes, assuming false positives to be as undesirable as false negatives. In other
words, misclassifying areas that are flood-prone is as serious as misclassifying flood-free
areas. In this thesis, the maximum TSS defines the optimal TH for a classification
area and return period, i.e., the TH that best captures the reference flood extent. It is
determined for all the considered segmentations of the GFI layer during classification.

Figure 3.3: Relative Operating Characteristic (ROC) curve obtained by plotting the false
positive rate (FPR) against the true positive rate (TPR) of each unique TH of the flood
descriptor for a generic river basin, in blue, and intersection point with the perpendicular
of the line of no-skill (i.e. the diagonal bisector) that corresponds to the point of maximum
True Skill Statistic (TSS), in cyan.
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The TSS has been used elsewhere with success by several authors (Stephenson, 2000;
Manzato, 2007; Bartholmes et al., 2009; Alfieri et al., 2013) and can also be interpreted
as the probability of making an informed decision in terms of the proportion of correct
binary categories, assuming for this specific study that the misclassification of flood-prone
areas is as undesirable as the misclassification of flood-free areas. The TSS is defined as:

TSS = TPR− FPR = tp

(tp+ fn) −
fp

fp+ tn
= tp× tn− fp× fn

(tp+ fn)(fp+ tn) (3.4)

with TPR, the true positive rate or the probability of a correct hit (Fawcett, 2006),
given by:

TPR = 1− FNR = tp

(tp+ fn) (3.5)

with FNR the false negative rate; FPR the false positive rate or the probability of
an incorrect hit (Fawcett, 2006), given by:

FPR = 1− TNR = fp

(fp+ tn) (3.6)

with TNR the true negative rate; tp the number of raster cells marked as flood-prone
in both the segmented GFI and the benchmark flood hazard maps; fn the number of
raster cells marked as flood-free in the segmented GFI but marked as flood-prone in the
benchmark; tn the number of raster cells marked as flood-free in both the segmented
GFI and the benchmark; and, fp the number of raster cells marked as flood-prone in the
segmented GFI but marked as flood-free in the benchmark. Where the values of tp, fp,
fn and tn together constitute the 2× 2 binary contingency matrix (see Table 3.1), from
which several metrics can be derived, such as the TSS. The TSS is negative when the
segmented GFI has a higher number of fp and fn than tp and tn; it is positive when the
opposite happens, with TSS = 1 indicating that the segmented GFI perfectly matches
the benchmark. The case of TSS = 0 implies that the classifier does not provide any
useful information. We note that TSS maximises the success of the method but not its
utility, i.e. benefits and costs of any particular hydrogeomorphic flood hazard delineation
for decision-making purposes are not weighed in (Peirce, 1884; Baker and Kramer, 2007).

Table 3.1: Example of contingency matrix of possible raster cell values in a binary classi-
fication.

Benchmark flood-prone Benchmark flood-free
Predicted

flood-prone
tp – total number of
true positive instances

fp – total number of
false positive instances

Predicted
flood-free

fn – total number of
false negative instances

tn – total number of
true negative instances
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3.2 Delineation and downscaling of flood-prone areas

The delineation of flood-prone areas is achieved by simple image segmentation using
the optimal TH value resulting from the threshold binary classification. In practice, all
the values in the flood descriptor layer below the threshold are marked as zero (flood-free)
and all the values above are marked as one (flood-prone), resulting in a binary mask of
flood-prone areas (see Fig. 3.2f).

On the other hand, the spatial resolution and coverage that is sometimes required for a
particular flood hazard assessment often differs from the one promptly available. In these
cases, downscaling can be used to enhance the spatial detail and coverage of an existing
flood study. Downscaling is achieved by computing a flood descriptor from a DEM with
a spatial resolution that is finer than the one of the benchmark flood study. Once the
threshold binary classification is performed and the optimal TH is found, a delineation of
flood-prone areas can be undertake, resulting in a more spatially resolved flood extent and
mask of flood-prone areas than the one of the benchmark flood study used. Additionally,
in cases where the flood descriptor layer was computed beyond the classification area (see
Fig. 3.2b), the delineation will also automatically result in an enhancement of coverage
from the main stream to the tributaries (see Fig. 3.1e and f).

3.3 Regionalisation of flood-prone areas

The task of estimating flood-prone areas in catchments where flood information is not
available can be addressed by regional analysis, also known as statistical regionalisation.
Regionalisation consists in transferring flood information to a target catchment based on
a measure of similarity, traditionally spatial proximity or physical similarity (Merz and
Blöschl, 2005). In this thesis, physical similarity is explored, in particular geomorphic and
climatic-hydrologic catchment characteristics (see Chapter 4), to transfer the optimal TH
described in Section 1.1.2 to catchments of interest, predicting like this the flood-prone
area specific to a return period.

Multivariate statistical methods can be used to describe the relationship between
a unique TH and a set of explanatory variables. In practice, the unique TH values
resulting from the classification are statistically related to a selection of geomorphic and
climatic-hydrologic catchment characteristics, scaled and mean centred before use, by two
distinct types of regression models: the stepwise regression and the random forest. The
establishing of such relations allows for the prediction of TH, which represents envelope
flood extents and can be used to delineate flood-prone areas, based on physical inputs of
any given river basin.
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3.3.1 Stepwise Linear Regression

Multiple linear regressions (MLR) are well-established models in hydrological sciences,
particularly between flood moments and catchment characteristics (Merz and Blöschl,
2005; Haddad et al., 2012). A MLR can be defined in matrix notation as:

y = Xβ + ε (3.7)

where y is the response vector of size n corresponding to the total number of catch-
ments in the training set; X is the matrix of k explanatory variables with size n× (k+ 1),
with x1, x2, . . . , xk corresponding to the catchment characteristics for a particular return
period; and last, β and η are the vectors of regression coefficients and residuals, respec-
tively. In vector and matrix notation it can be written as follows:

y =



y1

y2
...
yn

 ,X =



1 x11 x12 . . . x1k

1 x21 x22 . . . x2k
... ... ... ...
1 xn1 xn2 . . . xnk

 , β =



β1

β2
...
βn

 , ε =



ε1

ε2
...
εn

 (3.8)

Ideally, catchment characteristics should not be highly correlated to each other or to
their linear combination, since multicollinearity may increase the variance of parameter
estimates and potentially lead to unreliable results. Therefore, before developing the
statistical models, multicollinearity is diagnosed with the variance inflation factor (VIF)
that can be defined as:

V IFk = 1
1− r2

k

(3.9)

with r2
k the coefficient of determination for a regression of the k-th variable with all

other explanatory variables. Multicollinearity may be present when V IF > 10 (Hirsch
et al., 1992; Merz and Blöschl, 2005) and therefore variables above such values are con-
sidered for elimination prior to model fitting. The problem of estimating the regres-
sion coefficients, or the fitting problem, is solved by stepwise analysis with bidirectional
elimination (i.e., the sequential addition) and replacement or elimination of explanatory
variables based on the relative quality of each competing model. The trade-off between
maximum likelihood and explanatory variables, or model’s simplicity in this context, is
measured by the Akaike’s information criterion (AIC) (Akaike, 1974):

AIC = −2 ln(L) + 2k = n ln
(∑n

i=1 ε
2
i

n

)
+ 2k + const. (3.10)
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with L being the maximum likelihood. In practical terms, model selection is based on
the minimum possible AIC obtained for competing models (Haddad et al., 2012).

To obtain classical evaluation metrics such as R2 and the root mean square error
(RMSE), a 10-fold cross-validation procedure is used. The cross-validation consists of
randomly splitting the dataset in ten equally-sized bins, one of which is retained for
testing and the remaining are used for training. The training and testing procedure is
repeated ten times, until every single bin has been selected once. Performance results
from each of the ten validations are averaged to produce a single final estimation.

3.3.2 Random Forest Regression

Random forest (Breiman, 2001) is a rule-based machine learning method that can be
used for classification (Wang et al., 2015; Coltin et al., 2016) or regression (Iorgulescu and
Beven, 2004; Pappenberger et al., 2006; Prieto et al., 2019). A random forest regression
model consists of an ensemble of randomised decision tree-like models {T1(x), T2(x), . . . , Tj(x)}
with size j that can produce for any input vector of explanatory values x an equal num-
ber of outputs {ŷ1 = T1(x), ŷ2 = T2(x), . . . , ŷj = Tj(x)}, whose average gives the final
prediction.

Randomisation is achieved by bootstrapping, or the random draw of xik and yi samples
– each corresponding to a catchment in the original dataset – with replacement, meaning
that each drawn sample can be selected multiple times to form j independent sets θj that
share the same distribution.

Each decision tree in the random forest consists of a top-down recursive partitioning
of a specific θj, using decision rules based on the xik variable in θj. At each tree node,
the lowest possible residual sum of squares is used as decision rule for horizontally or
vertically partitioning θj in two subsets with sizes l and r:

RSS =
l∑

i=1
(yi − ŷi)2 +

r∑
i−1

(yi − ŷi)2 (3.11)

The partitioning procedure continues in each subset until the maximum possible tree
size is reached. In practice, nodes are data divide rules and each terminal node corresponds
to a best guess of the dependent variable. The tree designation comes from the resulting
hierarchy of nodes that represents an acyclic undirected graph of constant decision models.

Some important advantages of the random forest method are that it does not need
any specific assumption about the probability distribution (non-parametric), it works well
when the relationship between explanatory variables and response is non-linear, as well
as when there are high order interactions (Snelder et al., 2013). Furthermore, random
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forest is relatively robust against outliers, noise and overfitting (Breiman, 2001) and can
handle the problem of multicollinearity well (Cutler et al., 2007).

As opposed to MLR, a chief disadvantage of this method is that it cannot predict target
values outside the range of the explanatory variables in the training dataset. Another
limitation of the random forest is that it does not provide an easy understanding of the
statistical relationships between explanatory variables. Even though, it does provide a
simple visualisation of the model structure and of the covariate influence, in contrast
to other machine learning methods, such as artificial neural networks (Shortridge et al.,
2016).

The random forest regression model used in this study goes through an automatic
and distributed optimisation procedure (grid search) of the setup parameters in order to
find the best performing model, in terms of both accuracy and computational efficiency.
In specific, the optimised parameters are the number of decision trees in the ensemble,
the number of sampled variables at each tree node and the maximum depth of each tree.
The optimisation of the random forest regression is achieved a priori, using a 10-fold
cross-validation to obtain evaluation metrics and compare the multiple models.



Chapter 4

Performance metrics

4.1 Threshold-independent metrics: ROC analysis

ROC analysis has been used by several authors to distinguish between decision values
in a classifier and their trade-offs between costs and benefits (Swets, 1973; Bradley, 1997;
Fawcett, 2006; Schumann et al., 2014b). It is considered a threshold-independent per-
formance measure, as points falling along the ROC curve (see Fig. 3.3) represent unique
evaluations, in terms of TPR and FPR, of a flood descriptor segmentation, correspond-
ing to a unique threshold value, against the benchmark. The top left corner of the ROC
space represents the perfect classification, such that TPR = 1 and FPR = 0; instead,
the diagonal line dividing the ROC space represents the line of no-skill. ROC curves are
frequently used in flood model performance assessment (e.g., Tehrany et al., 2013, 2014;
Schumann et al., 2014b; Rahmati and Pourghasemi, 2017).

In the specific context of this study, the Area Under the ROC Curve (AUC) summarises
the overall discerning capability of the flood descriptor in a single threshold-independent
value. As such, irrespective of the threshold, it represents the probability of correctly
classifying a randomly chosen raster cell as flood-prone rather than incorrectly classifying
it as such (Bradley, 1997; Fawcett, 2006). The AUC can be estimated by trapezoidal rule
approximation of the definite integral and may take values from AUC = 0.5, meaning
no discerning capability of the flood descriptor, to AUC = 1, the perfect classifier. The
AUC is used to filter out those cases that are not well suited to serve as a classifier and
may therefore impact the formulation of the statistical relationships. AUC has been used
by several authors to assess performance of flood models (e.g., Tehrany et al., 2013, 2014;
Schumann et al., 2014b; Rahmati and Pourghasemi, 2017).
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4.2 Threshold-dependent metrics

4.2.1 Evaluation of classification outcomes

The modified Pearson’s correlation coefficient for discrete dichotomous problems, rφ
(Matthews, 1975; Cramér, 1999; Baldi et al., 2000), is used to measure the magnitude
of association and direction of the linear relationship between flood-prone areas and a
benchmark flood map. It was chosen because it is not sensitive to class imbalance and
because it is a more balanced overall evaluation of the threshold binary classification
outcomes, due to the full use of the contingency table (see Table 3.1). It can also be seen
as the geometric mean of the TSS and its complementary term and is given by:

rφ =
√
χ

2
N =

√√√√TSS ( tp

tp+ fp
− fn

fn+ tn

)
=

= tp× tn− fp× fn√
tp+ fp× tp+ fn× tn+ fn× tn+ fn

(4.1)

where χ2 is the Pearson chi-square statistical test (Pearson, 1900), with N the total
sample. As a rule of thumb, it is assumed that 1 < rφ < 0.5 represent a strong positive
degree of association, between 0.5 < rφ < 0.3 a moderate degree of association, 0.3 <

rφ < 0.1 a weak degree of association and 0 < rφ < 0.1 a complete absence of association.

4.2.2 Evaluation of regression outcomes

The fit between predicted flood-prone areas, obtained through image segmentation of
the flood descriptor using the predicted TH of the regression analysis, and the benchmark,
can be evaluated by (Wing et al., 2017): the hit rate, or TPR; the false discovery rate:

FDR = fp

fp+ tp
(4.2)

from FDR = 0 (no false alarms) to FDR = 1 (overprediction); the critical success:

C = tp

tp+ fn+ fp
(4.3)

with values ranging from C = 0 when there is no match between delineated flood-prone
areas and benchmark and C = 1 when the match is perfect; and, the error bias:

E = fp

fn
(4.4)

that indicates whether there is a tendency towards underprediction, 0 ≤ E < 1, or
overprediction, E > 1, with E = 1 an indication of no bias.



Chapter 5

Mapping flood-prone areas in Europe

5.1 Impact of scale in classification outcomes

In this section, a pan-European application of a web-based tool, developed in the scope
of this work (see Appendix C), is tested and showcased for regional hydrogeomorphic
analyses and detailed (i.e., tens of meters) mapping, downscaling and extrapolation of
flood-prone areas across geographic scales, namely at the continental scale and at the
scale of sub-catchments within a particular river basin.

This study provides a useful indication on the reliability of the selected classification
method, based on a flood descriptor and its use as a linear threshold binary classification
(Degiorgis et al., 2012). In particular, the flood descriptor and the downscaled and ex-
trapolated flood-prone areas are evaluated, as well as the optimal geographical scale of
implementation identified. A complete workflow is presented in Fig. 5.1.

27
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Figure 5.1: General methodological workflow for classifying a morphological descriptor
and assessing its performance in delineating and extrapolating flood-prone areas.

The methodology starts with the terrain analysis of a specific DEM, i.e., the compu-
tation of local slope, flow direction and upslope contributing area using for example using
TauDEM utilities, and the transformation of benchmark flood studies into binary masks
– in this case, the six flood hazard maps for Europe (Dottori et al., 2016) that correspond
to a raster of maximum flood depths per return period (10, 20, 50 ,100, 200 and 500 year)
were considered.

The subsequent morphological characterisation step corresponds to the computation
of the selected flood descriptor from pre-processed terrain analysis layers and to the def-
inition of a classification area (roughly a buffer of about 1 km around the benchmark),
used to avoid some classification shortcomings (Kubat et al., 1998). The threshold binary
classification of the morphological descriptor is then performed within the classification
area established for each river basin or sub-catchment and for each return period, search-
ing for the optimal threshold TH that better represents the benchmark. The optimal
TH is then used to segment the morphological descriptor, by flagging all values above
or equal to the threshold as flooded, while those below as flood-free, thus obtaining a
hydrogeomorphic flood hazard map.

The maps outputted by the web application naturally identify all possible flood-prone
areas in a region of interest and according to the DEM, which are often not limited to
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the flood extents associated with a particular river reach, as usually found in numerical
models, but complete river networks (i.e., main stem and tributaries) and their floodplains.
Furthermore, the output maps are obtained with the spatial detail of the DEM used as
basis to derive the flood descriptor, that is 25 m, instead of the original 100 m spatial
resolution of the benchmarks, providing another rather important enhancement.

5.1.1 Study area and data

Table 5.1 lists all the open-access datasets used in this study. The EU-DEM (version
1.0, EEA, Fig. 5.2) at approximately 25 m spatial resolution was selected for computing
the flood descriptor. This dataset is freely accessible online through the Copernicus Data
and Information Access Services, funded by the European Union. At the easternmost
region of Europe, where data was lacking, the EU-DEM was merged with the Shuttle
Radar Topography Mission (SRTM – USGS) 1 arc-second near-global digital elevation
data at approximately 30 m spatial resolution.

Figure 5.2: European digital elevation model (EU-DEM; EEA) for computing the mor-
phological descriptor.

The undefended flood hazard maps for Europe (Dottori et al., 2016) (Fig. 5.3) were
selected to derive the benchmark flood extents needed in the methodological workflow.
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These maps are the only well-known open-access datasets available for the whole Europe.
According to Alfieri et al. (2014), they were produced by simulating a European-wide
discharge climatology using the LISFLOOD rainfall-runoff model (Knijff et al., 2010), by
estimating synthetic design hydrographs from the derived climatology and by simulating
floodplain hydrodynamics using the LISFLOOD model using the hydrographs as bound-
ary conditions (Bates et al., 2010; Neal et al., 2012). Hydrodynamic simulations were
performed by Alfieri et al. (2014) for every 5 km stretch of the river network (unspecified
river network delineation method) and only for river basins with an upstream area greater
than 500 km2. As highlighted by Alfieri et al. (2014), the flood hazard maps for Europe are
affected by a number of uncertainties and limitations, namely space- and time-resolution
issues associated with the inputs (e.g., noise in the DEM and its incapability of resolving
flood defences, coarse resolution of meteorological inputs and a tendency of the method
to overestimate runoff). In fact, the flood hazard map for Europe for the 100-year return
period event presents TPRs between 59% and 78% and critical success between 43% and
65% evaluated based on specific national/regional hazard maps.

Figure 5.3: Flood hazard maps for Europe (Dottori et al., 2016) used as reference in the
classification of flood-prone areas.

The study area is composed of a selection of 270 river basins (Fig. 5.4) from the Eu-
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ropean mainland and continental islands that drain into the Atlantic, the Mediterranean,
Black, Baltic and North Seas. Europe’s major rivers have a length ranging from approx-
imately 324 km to 2, 860 km (excluding the river Volga in Russia) and their river basins
are relatively small in area when compared to their counterparts at the global scale, with
just 70 European river basins exceeding an area of 10, 000 km2.

Figure 5.4: Study area consisting of 270 major European river basins obtained from
the Catchment Characterisation and Model layer, River and Catchment Database (CCM,
de Jager and Vogt 2010).

The analyses results are summarised at the river basin scale, where study catchments
have been selected by filtering the Catchment Characterisation and Model (CCM) River
and Catchment Database, version 2.1 (de Jager and Vogt, 2010). In particular, the study
focused on streams with Strahler stream order greater or equal to 5, which is consistent
with other large-scale studies of fluvial flood hazard (Muis et al., 2015). River basins
corresponding to such streams and intersecting a country from the European Economic
Area were selected for the evaluation of flood-prone areas.

Selected river basins are characterised by fairly diverse sizes (ranging from 500 to
750, 000 km2), topography (Western Uplands, North European plain, partially underwa-
ter, Central Uplands and Alpine Mountains with altitudes surpassing 4, 500 m), climate
(e.g., Kottek et al. 2006; arid in the eastern Iberian Peninsula to warm temperate in most
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central and northern Europe, boreal in the Pyrenees, Alps and Carpathian, with the last
two also presenting a polar climate), and different degrees of anthropization.

In order to explore the impact of basin scale on the proposed methodology, 64 addi-
tional sub-catchments of the river Po in Italy (Fig. 5.5) have been included in the study
(with sizes ranging from 1 to 6, 300 km2).

Figure 5.5: Study area consisting of 64 sub-catchments of the Po river, Italy, obtained from
the Catchment Characterisation and Model layer, River and Catchment Database (CCM,
de Jager and Vogt 2010).

5.1.2 Results and discussion

The skill of the flood descriptor is assessed by means of a ROC analysis and AUC
obtained within the pre-defined classification areas and is examined for each major river
basin in Europe and return period considered, as well as for the sub-catchments of the
river Po in Italy.

Among the 270 river basins analysed herein, some show high discerning capability
(i.e., the ROC curve approaches the top left corner and the AUC tends towards unity),
while a few underperform, even though they still perform better than random guessing
(i.e., curve above the bisecting line of the ROC space and AUC value greater than 0.5).
The spatial distribution of AUC values is rather homogeneous with relatively high values
in most of the major river basins in Europe (Fig. 5.6). Also, AUC values show a low
variability between different return periods. Differences between AUC values become
more pronounced within the sub-catchments of the river Po and their spatial distribution
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seems to highlight a greater discerning capability of the morphological descriptor GFI
where mountainous areas are prevalent (Fig. 5.7).

The classification of the flood descriptor GFI within the pre-defined classification area
resulted in an optimal TH for each European river basin, each Po river sub-catchment,
and each return period considered. In this section, the delineated and downscaled hy-
drogeomorphic flood-prone areas are compared to the benchmark flood hazard maps for
Europe, to understand how well the former replicates the latter.

The resulting spatial distribution of optimal TH obtained after the classification step,
maximising the TSS for all major river basins in Europe (Fig. 5.8) shows low variability.
This implies that, at this scale, the optimal TH is fairly similar across major river basins
in Europe. Fig. 5.9 shows much higher heterogeneity in terms of the optimal TH within
the sub-catchments of the river Po: a pattern of higher TH can be seen in flatter regions
and of lower TH in headwater catchments.

The spatial distribution of the maximum TSS accounts for the correct identification
of the two critical classes, namely flood-prone and flood-free areas, and characterises the
success of the classification. In general, a greater discerning capability of the morpho-
logical descriptor GFI will result in high TSS values. Fig. 5.10 shows that the spatial
distribution of TSS values within major river basins in Europe is fairly homogeneous, with
low variability across return periods. The variability in the sub-catchments of the river Po
is more pronounced (Fig. 5.11) and shows higher TSS values for headwater catchments
and lower TSS values in sub-catchments in the lower part of the basin.

The rφ is reported here to complement the analysis with a more balanced measure of
magnitude and direction of the linear relationship between the hydrogeomorphic delin-
eated flood-prone areas and the benchmark flood hazard maps for Europe.

Fig. 5.12 and Fig. 5.13 highlight the correlation of the maps at the river basin and sub-
catchment scales. Results show a positive linear correlation between the hydrogeomorphic
flood-prone areas and the benchmark. The major European river basins analysed present
rφ values around 0.6, with very few basins with values above or below. There is higher
heterogeneity at the sub-catchment scale, with most sub-catchments presenting rφ values
ranging from 0.4 to 0.6 and very few with values outside this range.

To complement the Geographical distributions presented, and to have a more complete
overview of the results, the data distribution is summarised in a set of box plots (Fig. 5.14
and Fig. 5.15). The figures refer to the results obtained by performing the linear binary
classification of flood-prone areas within the 270 major river basins of Europe and the 64
sub-catchments of the river Po.

In Fig. 5.14, a lower variability of the AUC (standard deviation equal to c.a. 0.05) in
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river basins is observed and remains fairly unchanged across return periods. The AUC
at the river basin scale (pan-European level) presents a number of outliers outside the
lower bound but higher minima than in sub-catchments of the river Po in Italy. At the
sub-catchment scale, there is an increase in variability of the AUC and a slight loss of skill.
In general, the AUC mean and median tend to increase with return period at any of the
given scales, with average values always above 0.8. The TSS presents low variability at
the river basin scale, while at the sub-catchment scale its variability increases significantly.
The minima TSS are also significantly lower at the sub-catchment scale. In particular,
the mean TSS value is above 0.64 for all considered return periods at the river basin
scale, and above 0.55 at the sub-catchment scale. The rφ shows low variability at the
river basin scale, taking always positive values with mean above 0.48 at the river basin
scale and above 0.46 at the sub-catchment scale.

In Fig. 5.14, the optimal TH of the flood descriptor GFI present low variability (higher
at the sub-catchment scale), with different behaviour in terms of the mean, minima and
maxima. The mean GFI TH, which tend to fall between 0.20 and 0.23, decrease slightly
with return period. This is expected, since the higher the return period, the larger
the flood-prone areas and the further the discerning edge moves away from the stream
network. Few outliers can be observed outside the upper bound in any of the given scales.

Figure 5.15: Data distribution of the optimal Geomorphic Flood Index (GFI) threshold
for six return periods.
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In sum, the resulting homogeneous spatial distribution of the optimal GFI TH that
decreases with return period, demonstrates that there is little inter-basin variation and
that flood-prone areas actually grow with increasing return periods, as expected. In
fact, performances indicate a strong capacity of the GFI to characterise flood-prone areas
across return periods, generally achieving high AUC values. It is also observed that high
AUC values did not always correspond to high rφ values, as the correlation coefficient
takes into account the contingency matrix, because of the additional areas mapped by
the hydrogeomorphic web application. Correlation values are nevertheless always positive
and relatively high, with few exceptions.

Using the European dataset, small changes in performances and in the objective func-
tion TSS were observed. However, moving on to the sub-catchment scale, higher het-
erogeneity was found. This may have been due to the fact that over larger river basins
different morphological features are smoothed out by the classification and the overall
outcomes result similar, while within-basin morphological differences may influence the
the method. Moreover, the method becomes more sensitive to the change of return period
at the sub-catchment scale. Results suggest that the method should be applied at the
basin scale, finding different TH values within each specific sub-catchment.

These findings open the possibility to explore a detailed procedure for the regionali-
sation of classification outcomes at a sub-catchment scale, which has the additional ad-
vantage of facilitating the parallelisation of computations by distributing tasks performed
within sub-catchments among a number of CPUs.

5.2 Regionalisation of classification outcomes

Recently, Jafarzadegan and Merwade (2017) experimented with regression models,
obtained by stepwise analysis of climate and catchment characteristics, to delineate the
100-year floodplains in North Carolina, US. The delineation was performed based on a
range of thresholds of the HAND, used as the flood descriptor. The authors used the
United States Federal Emergency Management Agency’s Flood Insurance Rate Maps
as a benchmark for validating the results, but pointed out their uncertain and subjective
nature. This approach was later extended by Jafarzadegan et al. (2018) and Jafarzadegan
and Merwade (2019) to include a probabilistic description of the 100-year floodplains.

Similarly, the data-driven approach employed here complements traditional flood mod-
elling, providing a cost-effective alternative that can exploit big, high-resolution datasets,
without limiting the scale of application nor compromising computational speed. Being
mostly DEM-based, the approach also relaxes the problem of data-scarcity often found,
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enabling the delineation of flood-prone areas in any given catchment (i.e., regionalisation),
based solely on statistical relations between flood-prone areas and catchment characteris-
tics. Two major drawbacks found in previous applications are also eliminated by develop-
ing such relations: 1) the absolute dependence on a benchmark (Degiorgis et al., 2012);
and, 2) the assumption of transferability of the optimal threshold (Samela et al., 2017).
The questions posed are: 1) Can functional relationships be established between the GFI
and catchment characteristics? 2) If so, can these relationships be used for low-complexity
predictive modelling of flood-prone areas and related envelope flood extents?

In this study, estimators of flood-prone areas (linear stepwise regression and random
forest regression) were developed for regionalisation based on classification outcomes of a
flood index using high-resolution benchmarks and on geomorphic and climatic-hydrologic
catchment characteristics. Elementary catchments of four river basins in Europe served
as training dataset, while those of another river basin in Europe served as testing dataset.
Two return periods were considered in the analysis, the 10- and 10,000-year.

In particular, regression models are established between the derived optimal GFI
thresholds – the target variable – and selected geomorphic and climatic-hydrologic catch-
ment characteristics – the explanatory variables. Flood-prone areas in elementary catch-
ments of a distinct major river basin in Europe are delineated by using unique TH pre-
dicted by the established relationships. Each resulting delineation is compared to the
benchmark to assess the ability of the method to predict the extent of the envelope of
major floods. In Fig. 5.16, the general methodological workflow is presented.
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Figure 5.16: Workflow for developing predictive models of envelope flood extents using
geomorphic and climatic-hydrologic catchment characteristics.

5.2.1 Study area and data

Five major river basins in Europe were selected for this study, mostly for their record
of major floods and importance in Europe, their locations can be visualised in Fig. 5.17.
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Figure 5.17: The five study river basins in Europe, with drainage divide highlighted in
black in the lower left map. The training of the regression models is performed using a) the
Thames river basin in the UK, b) the Weser in Germany. c) the upper Rhine in Switzerland,
and d) the upper Danube in Austria. Testing is performed using e) the Rhône in France.

The River Thames in the UK constitutes the longest one in southern England (ca.
350 km length). It drains an area (ca. 13, 478 km2) of relatively flat terrain (mean
elevation of ca. 100 m a.s.l.) to the North Sea. The Thames river basin has a mean
annual precipitation (MAP ) ranging from ca. 610 to 778 mm yr−1 that results in a
mean annual runoff (MAR) ranging from 100 to 295 mm yr−1. The Thames is prone to
major flooding; the 2013/14 winter floods that the valley sustained are an example of this
(Huntingford et al., 2014; Fenn et al., 2016).

The River Weser in Germany has an overall length of ca. 452 km. It drains an area
of ca. 43, 857 km2 with relatively flat terrain (mean elevation of ca. 200 m a.s.l.) to the
North Sea. The Weser river basin has a MAP ranging from ca. 575 to 1, 195 mm yr−1
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that results in a MAR ranging from 190 to 930 mm yr−1. In 2013, the Weser river
basin was affected by high flood levels with peak discharges above 50-year return period
(Schröter et al., 2015).

The River Rhine (ca. 1, 230 km total length) has its source in the Swiss Alps and flows
through several major cities in Switzerland, France, Germany and the Netherlands, where
it drains to the North Sea. The upper Rhine river basin (drainage area of ca. 32, 114 km2),
the portion of the Rhine river basin considered in this study, has a relatively mountainous
terrain (mean elevation of ca. 1, 065 m a.s.l.), with MAP ranging from ca. 825 to
1, 715 mm yr−1, and resulting MAR ranging from 330 to 2, 250 mm yr−1. The upper
Rhine river basin is prone to major flooding; for example, in 2007, one person lost its life,
at least 100 were affected and the country withstood a total estimated damage of more
than 312 million EUR (CRED EM-DAT).

Originating in Germany and flowing through major cities (e.g., Vienna, Austria) in
10 different countries before draining to the Black Sea, the River Danube is the second
longest river in Europe (ca. 2, 850 km length). The upper Danube river basin (drainage
area of ca. 97, 000 km2), section considered in this study, is characterised by a relatively
mountainous terrain (mean elevation of ca. 890 m a.s.l.), MAP ranging from ca. 460 to
1, 785 mm yr−1, resulting in MAR ranging from ca. 23 to 1, 282 mm yr−1. The upper
Danube river basin is prone to major flooding; for example, in 2013, four persons lost
their lives, at least 200 were affected and the country withstood a total estimated damage
of more than 893 million EUR (CRED EM-DAT).

The River Rhône in France originates in the Swiss Alps and runs through south-eastern
France, where it finally drains to the Mediterranean Sea. The Rhône river basin, with
an area of ca. 96, 475 km2 has a mean elevation of ca. 785 m a.s.l. It is characterised
by a MAP ranging from ca. 561 to 1, 890 mm y−1, resulting in MAR ranging from ca.
119 to 1, 551 mm yr−1. The winter floods of 2003 marked the largest flood in the Rhône
river basin since 1856. Consequences arising from this event were severe, with the country
withstanding a total estimated damage of ca. 1.130 billion EUR (Arnaud-Fassetta, 2013).

Mean elevation values reported here were estimated from the EEA EU-DEM, MAP
values from the ECA&D E-OBS and MAR values from the UNH/GRDC runoff dataset.

The flood descriptor layer (GFI) and catchment characteristics (Table 5.2) were com-
puted for all selected river basins using a proprietary DEM dataset, the RMS-DEM, at ca.
50 m spatial resolution. The RMS-DEM is well suited for flood inundation modelling, as
it does not contain artefacts such as trees, buildings or bridges that can adversely affect
the accuracy of the simulations.
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The (1) Thames river basin in the UK, the (2) Weser river basin in Germany, the (3)
upper Rhine river basin in Switzerland, and the (4) upper Danube river basin in Austria
are used for training the regression models, where the unique TH values resulting from a
threshold binary classification are used as target variable. The first two river basins are
representative of flatter regions and the last two of mountainous regions. The (5) Rhône
river basin in France is instead used for testing the regression models, where a unique
TH is predicted for each of its elementary catchments, using the statistical relationships
established by the regression models.

The benchmark used in the threshold binary classification to find the TH values, and
also in the evaluation of the final predictions, is obtained from high-resolution flood haz-
ard maps for Europe, developed by RMS and currently used by global insurance and
reinsurance companies. The RMS flood maps were created for several return periods at
ca. 50 m resolution. They are based on a cascade of sequential modelling components.
Rainfall runoff processes are modelled with a semi-distributed, TOPMODEL-based ap-
proach (Beven and Kirkby, 1979). Flows are routed through the river network using the
Muskingum-Cunge 1D wave propagation method (Cunge, 1969; Georgakakos et al., 1990).
Inundation depths and extents used in this study are derived by applying rating curves
to river flows in every river segment of 500 m, calculating the associated river depth and
filling the river cross-section extracted from the DEM for each segment. The maximum
flood depths over the floodplain, after propagating the flood wave through the main river
channel, represent the flood hazard map for an event. The benchmark is used in the
form of a binary mask (raster cells marked as flood-prone or flood-free) that is obtained
through image segmentation with a cut-off depth, set to 0.01 m.

The data-driven approaches described in previous chapters are performed within ele-
mentary catchments of major river basins (i.e., hydrological units defined as the “portion
of basin directly drained by a river stretch, between two confluences, or from the head-
water to the first confluence” in Castellarin et al. (2018); Fig. 5.18).
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Figure 5.18: Subdivision into elementary catchments overlaid with a river network repre-
sentation (the EEA EU-Hydro photo-interpreted river network) and outlets, defined as the
intersection of each elementary catchment drainage divide with the river network.

The delineation of elementary catchments accounts for a hierarchical structure that
reflects the topology of the river network (Verdin and Verdin, 1999). The main reason
for choosing this scale of analysis is the division of each river basin in topographic areas
that may contribute significantly to discharge and play a central role in the management
of water resources. It also serves the purpose of making computations more manageable
through concurrent programming (see Appendix D). Catchments are delineated following
the constraint that catchment areas should be less than ca. 1200 km2. The catchment de-
lineation resulted in 83 elementary catchments within the Thames river basin, 171 within
the Weser river basin, 109 within the upper Rhine and 286 within the upper Danube.
Their merging into a single dataset resulted in a total of 651 elementary catchments, of
which, after filtering out issues such as poor classification results, 454 were used for train-
ing the regression models. Catchment delineation within the Rhône river basin resulted
in 277 elementary catchments that were used for testing the regression models.

Catchment characteristics used in this thesis (Table 5.2) are strictly geomorphic and
climatic-hydrologic, as defined by Horton (1932), where soil, geology and vegetation are
not taken into account. For consistency, the same high-resolution DEM of the proprietary
flood maps is used to extract geomorphic catchment characteristics.
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The following single geomorphic catchment characteristics were considered: area of
elementary catchment (A); flow accumulation at the elementary catchment outlet (F ),
defined as the cumulative sum of raster cells upstream of the outlet; relief of elementary
catchment (∆z), defined as:

∆z = zmax − zmin (5.1)

the total river channel length in the elementary catchment (Lch); and mean river chan-
nel fall, or relief, in the elementary catchment (∆zch). Composite geomorphic catchment
characteristics used in this thesis are representative of the mean declivity. Within each
elementary catchment, the relief-area ratio is defined as:

S = ∆z
A

(5.2)

while the relief ratio of the river channel in the elementary catchment is defined as:

Sch = ∆zch
Lch

(5.3)

From a hydrological perspective, declivity has an important relation to surface runoff,
to the concentration of rainfall in river channels and to flood magnitude (Horton, 1932).
On the other hand, mean river channel declivity gives an estimate of channel storage and
time length required by a flood wave to traverse the channel (Horton, 1932), while it also
relates to the linear head loss found in the Manning’s equation for uniform flow (Manning,
1891). High mean declivities equate to water entering the channel quicker, and thus to
higher flooding likelihood. By contrast, gentle sloping channels are slower to route the
incoming runoff and have a lower flooding likelihood.

Multi-day rainfall events are an important cause of flooding and therefore critical for
the design of structures (Fowler and Kilsby, 2003). In this study, the annual highest 10
consecutive day precipitation is reported, which has a likelihood of occurring or of being
exceeded every 10 and 10,000 years on average (P10 and P10k), respectively. These statis-
tics are calculated based on the ECA&D E-OBS 0.1 degree regular gridded precipitation
dataset (Cornes et al., 2018). Principal component analysis was applied to precipitation
anomalies in the dataset for the 1950-2010 period, in order to identify dominant rainfall
patterns across Europe. Stochastic precipitation fields are obtained for 50,000 years as
linear combinations of empirical orthogonal functions and principal components (Zanardo
et al., 2019) (see Appendix B). To complement these statistics, the MAP) calculated by
averaging the annual totals obtained from the ECA&D E-OBS dataset is also reported.

Proxies for long-term average runoff are obtained by accumulating precipitation statis-
tics downstream using the hierarchy of connected elementary catchments, which should
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reflect the fractal nature of the river network. The general water balance equation for
each elementary catchment is given by:

P + ∆Q− E −∆WS = 0 (5.4)

with P the precipitation received at each elementary catchment, ∆Q the change in
specific runoff, E the evapotranspiration and ∆WS the change in water storage. If subsur-
face water flow and evapotranspiration losses are neglected as a simplification for severe
rain storms and very humid conditions – meaning that overland flow suffers either from
saturation excess or infiltration excess and that evapotranspiration losses are much lower
than water entering the elementary catchment – the direct conversion of precipitation into
runoff may be assumed dominant at each elementary catchment, water yield tends to 1,
and the following equation holds:

Qout = P +Qin (5.5)

with Qout the runoff at each elementary catchment outlet and Qin the runoff from
upstream elementary catchments. Equation 5.5 can be further expanded, to cater for the
lumped cascading estimation of direct runoff at the elementary catchment:

Qout = P0 × A0 +
n∑
i=1

(Pi × Ai) (5.6)

with P0 corresponding to a unique long-term average precipitation statistic (i.e., P10,
P10k or MAP ) associated with the elementary catchment under analysis with area A0,
while Pi is the unique precipitation statistic associated with the n-th upstream elemen-
tary catchment with area Ai. Results are reported as unit discharge at each elementary
catchment outlet:

1out = Qout

F × cellsize
(5.7)

with cell size (in m2) equal to the product of pixel length by pixel width, specific to
each DEM.

5.2.2 Results and discussion

The classification of the GFI layer to obtain the TH was performed using each ele-
mentary catchment that constitutes the training set, composed of four major river basins
in Europe. In Fig. 5.19, the data used in the development of estimators and prediction of
flood-prone areas for the 10- and 10,000-year return periods is presented.
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Average AUC values of ca. 95% and 91% are found for the 10 and 10,000-year return
periods, respectively, which indicates a very high discerning capability of the GFI classifier.
These AUC values translate to a high probability of correctly classifying a raster cell as
flood-prone or flood-free. A noticeable number of AUC outliers in the lower bound of the
distribution of outcomes, particularly below the no-skill line, may affect the development
of the statistical relationships for the prediction of flood-prone areas. Therefore, values
of AUC below 0.5 were filtered out from the training dataset.

Average rφ values between ca. 60% and ca. 64% are found for the 10 and 10,000-
year return periods, respectively, which indicates a strong positive degree of association
(i.e., between 1 and 0.5) of the best possible representation of flood-prone areas. This
is a necessary pre-condition before any attempt to relate the threshold values and the
catchment characteristics. Values of rφ below 0.3 (lower limit of a moderate degree of
association) were filtered out from the training dataset.

Values of TH for the elementary catchments of the training set are found to range
between 0.18 and 1, with a mean value of ca. 0.44 and 0.39 for the 10- and 10,000-year
return periods, respectively. As expected, there is a tendency towards a value decrease
with increasing return period.

For most catchment characteristics more than 50% of test data is contained within
the training set interquartile range. Exceptions to this can be found for the precipitation
statistics, P10 and P10k, with median slightly above the test set interquartile range, and
for the corresponding unit discharge estimates, q10 and q10k. The sample variability of
the test set is larger than that of the training set for the A, the S, the Lch, and the Sch.
The explanatory variable A is the only that is noticeably positively skewed, while the
MAP and corresponding qMAP , are negatively skewed. These differences are expected to
negatively impact the final prediction of flood-prone areas as the training set does not
represent the test set in the most exhaustive manner.

The correlation matrix in Fig. 5.19c provides an evaluation of the magnitude of as-
sociation and direction of the linear relationship between explanatory variables and the
dependent variable. Correlations between the TH and the F , indicate a moderate pos-
itive linear relationship. Moreover, a moderate negative linear relationship is revealed
between TH, the δzch and Sch. The remaining catchment characteristics reveal weak
linear relationships to the TH.

Furthermore, correlations that exist between different catchment characteristics may
be indicative of multicollinearity. Disregarding the correlations between composite ex-
planatory variables and their constituting parts, a moderate to strong positive correlation
between precipitation statistics, discharge estimations and δz is noticeable. Also, A shows
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a strong positive correlation with δz andδz. Collinearity between catchment characteris-
tics is an undesirable condition that can negatively impact the quality of the statistical
relationships for the prediction of flood-prone areas and need to be addressed before any
further step is taken.

Two types of regression models were built from the classification outcomes TH and
catchment characteristics of the training set, namely the stepwise regression and the
random forest regression models.

Several data transformations were tried for building different models (log-linear, linear-
log and principal component analysis, see Appendix B, which were tested but did not pro-
duce any beneficial result). Log-log transformed variables were used as they substantially
improved both models’ statistical tests and performance metrics.

Several data splits were also tried for building different models. For example, one
model for the 10- and another for the 10,000-year return period, were tried but did not
yield significantly different results from the ones presented in Table 5.3. Furthermore, the
inclusion of specific river basins was tested. Namely, two out of the four training river
basins were held out at the time for testing the models built with the remainders. None of
the six river basin combinations (4!/(2!× (4− 2)!) = 6) significantly improved the overall
performance and in most cases holding out specific river basins actually decreased it.

In the stepwise regression, multicollinearity tests point towards strong collinearity be-
tween the composite explanatory variables and their individual constituents. Additionally,
V IF values above 2 are found between the combined q10 and q10k and the qMAP . Thus,
the catchment characteristics A, δz, δz, δzch and qMAP were considered for elimination
given the results of the multicollinearity tests and taking into consideration the correlation
results presented in Fig. 5.19.

The previous steps were followed by a stepwise selection of explanatory variables based
on the AIC, which reflects the trade-offs between maximum likelihood and model sim-
plicity. A very low AIC lead to the following equation:

TH = 0.1580− S0.0631
ch + F 0.0345 + S0.0023 − P 0.0774

(10/10k) +MAP 0.1267 + q0.0156
(10/10k) (5.8)

As can be seen from Table 5.3 the final optimised linear model is constituted by six
of the 11 original explanatory variables and is characterised by a high F-statistic (> 3)
and very low p-value (< 0.01), which indicates a high degree of significance of individual
explanatory variables and of the model. From the 10-fold cross-validation procedure,
results a R2 value of ca. 42%, indicating a moderate explanatory power of the model, and
a RMSE of 0.0597.
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In the random forest regression, optimisation was performed by an automatic search
of the best possible combination of input parameters that lead to the highest possible
decrease in RMSE obtain through cross-validation. This also ensures that overfitting is
avoided. The final optimised random forest regression corresponds to a model with 644
trees, three explanatory variables randomly sampled at each tree node and a maximum
depth of 25 nodes. As shown in Table 5.3, the random forest regression results have
substantially improved the explained variance obtained by the stepwise regression model,
from ca. 42% to ca. 64% R2, and the RMSE, which decreased from 0.0598 to 0.0466.

Variable relative importance shows that the Sch is the explanatory variable with the
highest relative importance in both models, ca. 48% and 19%, followed by the F with ca.
36% and 19%. In the random forest regression model δzch is also found to have a fairly
high variable relative importance with ca. 14%. The remaining catchment characteristics
are ranked as relatively less important, or not included at all (stepwise regression). How-
ever, it should be noted for the case of the random forest model that as one explanatory
variable is randomly selected at a tree node, the importance of other variables is substan-
tially reduced, particularly if there is collinearity. In light of this, variable importance
should be interpreted with caution, as explained in (Seibert et al., 2017).

Using the models previously presented, envelope flood extents were predicted based
on the physical characteristics of elementary catchments of the Rhône river basin.

Catchment characteristics matching those used for training of the regression models
were obtained for the 10- and 10,000-year return periods and used as input. A unique TH
was predicted per elementary catchment, return period and model. The predicted TH
values were used to segment the original GFI raster layer of each corresponding elementary
catchment of the Rhône river basin and to delineate the flood-prone areas (see Fig. 5.20a
for an example).

By comparing each raster cell of the binary mask of predicted flood-prone/flood-free
areas with each corresponding raster cell of the benchmark RMS flood maps, it was possi-
ble to obtain a contingency matrix for each model and for each return period considered,
from which the performance metrics described in Chapter 3 were computed.

In Fig. 5.20 and Table 5.4, it can be observed that the TPR is high for the great
majority of elementary catchments (average above 80%), similar between models and
slightly higher for the 10-year return period. At the same time, the FDR is high for
the 10-year return period (average ca. 63%), moderate for the 10,000-year return period
(average ca. 39%), and slightly higher for the stepwise regression. The C is moderate
for the 10-year return period (average ca. 34%), high for the 10,000-year return period
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(average ca. 52%), and slightly higher for the random forest. It is also shown by the E
that more than ca. 85% of the flood-prone areas obtained for the elementary catchments of
the Rhône river basin suffer from overestimation (E > 1). In general, the TPR decreased
with increasing return period, but this seems to be well compensated by a significantly
lower number of false alarms, as a higher C is observed for the 10,000-year return period
and the E decreases.
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Conclusions

Integrating big open data with data-driven methods and emerging information and
communication technologies in flood risk management may well represent a forward step
in supporting robust, evidence-based decision-making. Driven by this idea, the progress
in simplified hydrogeomorphic methods for the mapping of flood-prone areas as been
reviewed. A methodology for the classification of flood-prone areas based on a particular
flood descriptor, the GFI has been adopted and tested using big open datasets for Europe.
Additionally, a user-friendly web application, well suited for regional hydrogeomorphic
delineation of flood-prone areas, has been implemented, described in detail and used to
classify, delineate and downscale six pan-European hydrogeomorphic flood hazard maps
at 25-m pixel resolution (one for each return period: 10, 20, 50 ,100, 200 and 500 years)
and to evaluate their quality within major European basins, relative to the flood hazard
maps for Europe (Alfieri et al., 2014; Dottori et al., 2016).

An average efficiency, measured in terms of ROC analysis and AUC of 88.59% was
obtained for the flood descriptor. In the analysis focusing on sub-catchments of the river
Po in Italy, an average AUC of 84.23% was obtained, in line with results presented in other
studies (Manfreda et al., 2015; Samela et al., 2017). The selected hydrogeomorphic method
was found to be valid in replicating, downscaling and extrapolating the flood hazard maps
for Europe with different return periods. The hydrogeomorphic flood hazard mapping web
application presented in this study provides fast, high-resolution delineations of flood-
prone areas over large scales at higher spatial resolution than the benchmarks used. The
classification method was found to be affected by:

1. pixel size and vertical accuracy of the DEM;
2. processing decisions (e.g., de-noising, smoothing and hydrological conditioning);
3. channel initiation and stream network definition using a convergent flow model;
4. fixed coefficients in the hydraulic scaling relation.

Other factors include differences in the DEMs used to compute the GFI and the
reference flood hazard maps. Furthermore, there is a strong possibility that the size of
flat areas influences negatively the classification of hydrogeomorphic flood-prone areas.
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64 Conclusions

A GFI computed with inadequate horizontal resolution and vertical accuracy will likely
underperform in flat areas because of its strong dependency on the elevation difference,
but also on the stream network definition, which is known to be problematic in these areas
(e.g., Pan et al., 2012). One could also argue that sub-grid scale features, for example
embankments, affect performance, particularly in highly anthropized river basins (e.g.,
river Po, Italy), but we note that such obstacles are not explicitly taken into consideration
neither in the reference flood hazard maps for Europe nor in the GFI computation.

By establishing functional relationships in the form of linear and non-linear regres-
sion models between specific isolines of a flood index TH and geomorphic and climatic-
hydrologic characteristics of elementary catchments, the prediction of extents of the en-
velope of major floods in diverse river basins, gauged or ungauged, and for diverse return
period was made possible. This advancement extends the classification approach by re-
laxing its complete dependence on benchmark flood maps and by providing a physical
basis for the transferability of the TH between catchments or river basins, also making
the extrapolation and downscaling goals more realistic.

The classification stage of the methodological workflow in the regionalisation study
showed that, overall and in spite of some outliers, the GFI has an overall high discerning
capability of flood-prone areas, as shown by the average AUC value above 91% for any of
the return periods. At the same time, average value of rφ above 60% for any of the return
periods indicates a strong positive degree of association between the GFI delineated flood-
prone areas and the benchmark flood maps. These values are significantly higher than
the ones reported before, most likely because of the scale of analysis used (elementary
catchments) and the quality of datasets (RMS-DEM and RMS flood maps).

The development of estimators of flood-prone areas has shown that in the stepwise
regression the VIF and AIC selection of catchment characteristics has been valuable in ob-
taining statistically significant explanatory variables that improved the explained variance
(R2) of the target and the fit of the initial model (RMSE).

In comparison to the stepwise regression, the random forest regression proved to be a
much more flexible and straightforward approach to setup. The final optimised random
forest model could be obtained without any prior selection of catchment characteristics
and still substantially increased the R2 and decreased the RMSE. Moreover, the improve-
ment of the statistical tests by the random forest model seems to provide some evidence
of non-linear behaviour between TH and catchment characteristics.

When it comes to the predictions of flood-prone areas and envelope flood extents in
the elementary catchments of the Rhône river basin, the random forest regression model
performed marginally better than the stepwise regression for any of the return periods
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considered. Both the stepwise and the random forest regression outputted high TPR

values, while at the same time moderate to high FDR values. This was reflected in
the moderate to high critical success C obtained and in the E values always above 1,
indicative of overprediction, especially at lower return periods. As this thesis tries to
deal with envelope flood extents, overprediction was already expected. Overall, predicted
flood-prone areas better match the benchmark at higher return periods and, particularly
for the 10,000-year return period, it is interesting to note that the performance obtained
is in line with some modelling results reported by (Wing et al., 2017). A number of
additional findings are also worth noting:

1. Although the models proved to be reasonably robust, considering that the sample
variability of the training data was limited in comparison to that of the testing, a
training of the models with a broader range of values and more degrees of freedom
could improve the generalisation properties and prediction capability.

2. The random forest model is not able to predict target values outside the range
found in the training dataset and this can be particularly problematic for lower TH
values. To account for this feature, different algorithms would need to be considered
or modifications to the random forest would need to be implemented.

3. Explicitly including the case where flooding does not occur (e.g., accurate repre-
sentation of the river at bankfull stage and the corresponding physical climatic-
hydrologic characteristics that lead to it) in the models may benefit the analysis.
However, such cases should be completely withheld from the performance analysis,
as they might artificially influence the performance.

4. The use of a DEM to compute the GFI that was different from the DEM used in the
modelling of the benchmark flood maps negatively influenced the results. Caution
should be exercised in the selection of the DEM, but also in its processing (e.g.,
terrain analysis, river network and catchment delineation).

5. Besides what was mentioned above, it would be interesting to see how such method-
ology would work with benchmark flood extents obtained from remote sensing de-
tection (e.g., Westerhoff et al., 2013; Schumann and Moller, 2015), as well as to
take a step further and provide a way to estimate flood depth (e.g., Manfreda and
Samela, 2019).

Results presented in this thesis reinforce the idea that data-driven approaches are
valuable in the handling of big data and for implementation as online tools, while the web
technology is a powerful way to bring researchers, developers and end users together, in
order to implement innovative approaches and functionalities in the context of large-scale
flood assessment and management.





Appendix A

Analysis of open-access digital
elevation models

One of the most critical elements in the hydrological response of a river basin is its
topography (e.g., Sørensen and Seibert, 2007; Zhang and Montgomery, 1994; Horritt and
Bates, 2001). In fact, the great progress experienced in the modelling of both hydrological
and hydraulic processes in the last decades cannot be dissociated from the advances in
terrain information in the form of DEMs, or digital elevation datasets representing the
Earth’s surface. Obviously, this popularity might not have been attained had advances
in remote sensing not been on a par with those in computational power and software, as
well as with the release of other important datasets, land use and land cover, for example.
Within the large variety of remote sensing techniques, a focus is here given to the two
most disruptive technologies for generating DEMs: synthetic aperture radar (SAR) and
light detection and ranging (LiDAR), see Croneborg et al. (2015) for more details.

The open access licensing has allowed DEMs to be distributed online, free of charge
to the public. Access to global DEMs before 1996 was either restricted or inexistent and
since then the number of publication have significantly increased. This reflects their use
in a range of fields, amongst which the modelling of hydrological and hydraulic processes
(e.g., Kumar et al., 2000). However, publicly released, freely-available datasets differ in
characteristics such as spatial resolution, digital terrain processing decisions and vertical
accuracy, which may introduce a range of errors in the modelling of hydrological and
hydraulic processes. A number of authors have assessed these errors and conjectured new
ways to move forward (e.g., Sanders, 2007; Jarihani et al., 2015; Archer et al., 2018).

Here, a brief investigation of ten DEM dataset (SRTM GL1 and GL3, HydroSHEDS,
TINITALY, ASTER GDEM, EU DEM, VFP, ALOS AW3D30, MERIT and the TDX) in
terms of the influence of three parameters, i.e., spatial resolution, hydrological recondition-
ing and vertical accuracy, on four relevant geomorphic terrain descriptors frequently used
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to characterise hydrological or hydraulic processes (e.g., Tarboton et al., 1992; Beven and
Kirkby, 1979; Montgomery and Dietrich, 1989; Westerhoff et al., 2013; Nobre et al., 2016;
Manfreda et al., 2015; Clubb et al., 2017) is presented. Namely, the upslope contributing
area, the local slope, the H (see Chapter 2) and the flow path distance to the nearest
stream, D, respectively. This is done in terms of their cumulative frequency curves within
the Tanaro river basin, in Italy. In addition to investigating the intrinsic characteristics
of freely accessible DEMs and given the importance of river networks in the modelling
of hydrological and hydraulic processes, DEM-based river networks are delineated and
compared to a photo-interpreted river network. Last, the vertical accuracy of each DEM
is quantified in relation to LiDAR data.

A.1 Methods

A.1.1 Digital terrain analysis

The extraction of terrain descriptors from free DEMs follows a simple workflow using
the TauDEM toolbox (see Fig. A.1).

A clipped DEM is first corrected by identifying sinks and by raising cell elevation
values to the level of the lowest pour point in the 8 surrounding cells of the structured
grid. This is deemed necessary in order to avoid interference with flow routing. From this
corrected layer, flow directions from each cell to one of its 8 neighbours are determined
by following the D8 flow model and a counter-clockwise coding from 1 (flow to the East)
to 8. Using the D8 flow model, the local slope or tangent of the angle of incline, θ, is
calculated as the drop, ∆y, over distance, ∆x, between a cell and its neighbours in the
flow path:

tanθ = ∆y
∆x (A.1)

In turn, the upslope contributing area is obtained by simply accumulating cells fol-
lowing the D8 flow directions.

To delineate river network centrelines from the free DEMs, channel initiation points, or
channel heads where water is assumed to begin to flow between banks, are first identified
by imposing a threshold of 105m2 (Giannoni et al., 2005) on an area-slope criterion that
characterises the transition between transport mechanisms (Montgomery and Dietrich,
1988, 1989), in specific:

AijS
k
ij > 105 (A.2)

where Aij is the upslope contributing area (in m2) at any given cell, given by the



A.1. METHODS 69

Figure A.1: Workflow for extracting terrain analysis layers from a digital elevation model,
necessary to compute the flood index.

product of the flow accumulation and the DEM-specific cell size, and Sij is the local slope
raised to the exponent k = 1.75 (Giannoni et al., 2005) that characterises drainage density
changes. Starting at the channel heads, river networks are delineated following the D8
flow directions to the outlet.

With the river network delineated from the free DEMs, the computation of H and
D was programmed in Python following the description in (Manfreda et al., 2015) and
making use of the Geospatial Data Abstraction Library (GDAL) for raster I/O. D is
obtained by counting the number of cells from each position in the DEM raster to the
connected river network cell, still following the D8 flow directions. Furthermore, for each
unique flow path, adjacent cell counts need to be distinguished from diagonal ones, so
that lengths can be obtained by multiplication with the spatial resolution or with the
product of spatial resolution and

√
2, respectively. The total flow path distance from

each location in the raster to the stream is simply the sum of corresponding adjacent and
diagonal lengths.
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A.1.2 Accuracy assessment

In order to assess the vertical accuracy of the free DEMs, 3 common error measures
were selected to be used with continuous variables, in this case the elevation data. Differ-
ent error measures are report in this study as they may complement each other (Chai and
Draxler, 2014). The systematic error or statistical bias is defined as the simple difference
between DEM, ŷi, and LiDAR, yi, elevations (here assumed as the truth):

BIAS = ŷi − yi (A.3)

where i the index of an individual cell in a flattened raster. The MAE is defined as:

MAE = 1
n

n∑
i=1
|ŷi − yi| (A.4)

where n is the total number of cells. The MAE represents the average absolute dif-
ference between DEM and LiDAR elevations and gives an indication of the magnitude of
error. Finally, the RMSE is defined as:

RMSE =
√√√√ 1
n

n∑
i=1

(ŷi − yi)2 (A.5)

where the mean square error is the second moment of the bias. The RMSE also
measures the magnitude of error, but with a higher sensitivity to outliers, thus putting
stronger emphasis to unfavourable conditions (Chai and Draxler, 2014). Its normalised
version that is less sensitive to outliers is given by:

NRMSE = 100 ∗ RMSE

ymax − ymin
(A.6)

Finally, the linear correlation between ŷi and yi is also reported and measured using
the Pearson’s correlation coefficient (PCC) defined as:

PCC =
∑n
i=1(yi − ȳ)(ŷi − ¯̂y)√∑n

i=1(yi − ȳ)2∑n
i=1(ŷi − ¯̂y)2

(A.7)

PCC takes values between -1 and 1, with PCC = −1 corresponding to a perfect
inverse correlation, PCC = 1 corresponding to a perfect direct correlation and PCC = 0
corresponding to no linear correlation.
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A.2 Case study and datasets

A.2.1 Tanaro River Basin

With inception in the Ligurian Alps close to France and located in north-western
Italy, the Tanaro river is the most significant right-side tributary to the Po River in
terms of length (c.a. 276km) and drainage area (c.a. 8000km2), presenting a highly
variable discharge (Degiorgis et al., 2012). The Tanaro river basin is characterised by
steep mountainous terrain and a nearly flat alluvial region (Fig. A.2). The river itself
is highly prone to flooding; indicatively, during the 1994 historical Piedmont flood and
landslide, 44 persons lost their lives, 2000 were displaced and a whopping 8.8 billion €in
damages were estimated (Luino, 1999).

The Tanaro river basin was chosen as case study due to its peculiar characteristics
and history of disastrous events. In this work, the DEMs listed in Table A.1 were clipped
with the Tanaro river catchment polygon obtained from the Italian Environmental Agency
(ISPRA – Istituto Superiore per la Protezione e la Ricerca Ambientale) in shapefile format.
The clipped DEMs are used to extract the terrain descriptors within the study area,
namely (1) the upslope contributing area, (2) the local slope, (3) the flow path elevation
difference to the nearest stream, H, and (4) the flow path distance to the nearest stream, D,
used for comparison in terms of cumulative frequency curves. In addition, river networks
are delineated from the clipped DEMs for visual inspection and comparison with the EU-
Hydro photo-interpreted river network (http://land.copernicus.eu/pan-europ
ean/satellite-derived-products/eu-dem). As a final step, vertical accuracies
of the free DEMs are reassessed using LiDAR data.

http://land.copernicus.eu/pan-european/satellite-derived-products/eu-dem
http://land.copernicus.eu/pan-european/satellite-derived-products/eu-dem
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Figure A.2: Representation of the study area. A) Location of the Tanaro river basin
in the Piedmont region, NW Italy, with the drainage divide highlighted in red; B) digital
elevation model (DEM) of the Tanaro river basin and footprint of the light detection and
ranging (LiDAR) dataset in blue; C) histogram of elevations within the Tanaro river basin.

A.2.2 Digital elevation models datasets

In Table A.1, an overview of some of the most common DEMs with spatial resolutions
of the order of 3 arc seconds (c.a. 90m) or less is provided. These datasets are currently in
the public domain or available upon request mostly for research or other non-commercial
purposes. Table A.1 is organised by ascending order of year of public release. In this
work, all datasets in Table A.1 are taken into consideration:
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1. The open-access SRTM GL3 released by the United States (US) National Aeronau-
tics and Space Administration (NASA) in 2003 (Rodriguez et al., 2005; Farr et al.,
2007).

2. The TINITALY, a seamless DEM for the whole Italian territory developed by Tar-
quini et al. (2007, 2012) at the Italian National Institute of Geophysics and Volcanol-
ogy (INGV – Istituto Nazionale di Geofisica e Vulcanologia). This DEM is based
on the interpolation of heterogeneous data sources, including contour lines and spot
heights from Italian topographic maps, global positioning system (GPS) and LiDAR
data. The TINITALY is distributed as a non-commercial product available upon
request.

3. The open-access HydroSHEDS, a suite of hydrological geo-reference datasets pro-
duced and released between 2006 and 2009 by Conservation Science Program of
World Wildlife Fund (WWF), within which a seamless hydrologically conditioned
global DEM can be found (Lehner et al., 2008). This DEM is derived from the
SRTM GL3, but has been hydrologically conditioned using a sequence of automated
procedures, namely the deepening of open water surfaces, weeding of coastal zones,
stream burning, filtering, moulding of valley courses, sink filling, carving through
barriers, and manual corrections.

4. The open-access ASTER GDEM, a dataset produced by a consortium between the
NASA Jet Propulsion Laboratory (JPL) and Japan’s Ministry of Economy, Trade
and Industry (METI) produced and released in 2009 (Tachikawa et al., 2011).

5. The EU DEM released by the European Environmental Agency (EEA) in 2013,
consisting of a seamless open-access pan-European DEM that combines data from
the SRTM and ASTER missions with other sources (EEA, 2014).

6. The VFP made available to the public in 2014 as open-access, consisting of a
global DEM produced by fusion of SRTM, ASTER GDEM and other elevation
data sources.

7. The open-access SRTM GL1 released by NASA in 2018 as an updated version of
the SRTM GL3 (Rodriguez et al., 2005; Farr et al., 2007).

8. The open-access AW3D30 global DEM by the Japan Aerospace Exploration Agency
(JAXA) publicly available since 2015 (Tadono et al., 2014).

9. The MERIT DEM by Yamazaki et al. (2017), consisting of a seamless global DEM
that combines SRTM with AW3D30 and VFP data and has been available upon
request since 2017.

10. The open-access TDX (Rizzoli et al., 2017) released by the German Aerospace Cen-
tre (DLR – Deutsches Zentrum für Luft- und Raumfahrt e.V.) free of charge in
2018.
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A.2.3 Benchmark LiDAR dataset

As benchmark for the assessment of vertical accuracies, a LiDAR dataset that partially
covers the Tanaro river basin (footprint in Fig. A.2) is used and was obtained from the
Italian Ministry of Environment, Land and Sea (Ministero dell’Ambiente e della Tutela
del Territorio e del Mare). The LiDAR data was resampled to the corresponding spatial
resolution of each DEM in Table A.1. Resampling was performed using bilinear filter-
ing (Kirkland, 2010), where the values of the four nearest cells of the original LiDAR
to the cell under analysis of the resampled LiDAR, were interpolated using a bilinear
function.This non-linear function corresponds to the product of a linear interpolation in
the x-direction followed by a linear interpolation in the y-direction of the raster, making
it a quadratic interpolator. The LiDAR dataset (with spatial reference WGS84 / ITAL-
GEO95) is available to the general public upon formal request and upon payment of a
processing fee (to visualise its areal coverage, please visit the Italian National Geoportal
– Geoportale Nazionale).

A.3 Results and discussion

The cumulative frequency curves of terrain descriptors presented in Fig. A.3 show im-
portant differences within the Tanaro river basin and the reader can also refer to Fig. A.4
for the average values of the terrain descriptors. Note that the upslope contributing area
and D have not been computed for the LiDAR data, as both indicators proved to be
meaningless within the limited extent of the LiDAR footprint.

The EU DEM, the VFP, the SRTM GL1 and GL3, the MERIT, the ASTER GDEM
and the AW3D30 DEMs approximate well the LIDAR elevation cumulative frequency.
However, this is not necessary or sufficient to assert a faithful representation of geomor-
phic features. On the other hand, it is also observed that the HydroSHEDS DEM is
significantly different from the LiDAR data at lower elevations and that the TDX and
TINITALY DEMs is consistently different from LiDAR throughout the entire range of
elevations.

For values below 1 km2 (c.a. 90% of the basin) DEMs with a finer spatial resolution
seem to present lower upslope contributing area values than DEMs with a coarser spatial
resolution, while for values above 1.2 km2 (c.a. 10% of the basin) DEMs with finer spatial
resolutions seem to present larger values than DEMs with coarser ones. The smaller
fraction of cells with higher upslope contributing areas can generally be associated with
cells belonging to the river network, and channel initiation may occur further upstream
in DEMs of finer resolution.
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Figure A.3: Cumulative frequency curves of terrain descriptors extracted from free digital
elevation models (DEM) within the Tanaro river basin, in Italy. A) Terrain elevations
within the light detection and ranging (LiDAR) footprint; B) upslope contributing area;
C) local slope within the LiDAR footprint; D) elevation difference to the nearest stream, H,
within the LiDAR footprint; and E) distance to the nearest stream, D. Logarithmic scales
refer to the natural logarithm.
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The local slope differs from the LiDAR data to some degree, except in the case of
HydroSHEDS, followed closely by the SRTM GL3, the VFP and the MERIT DEM. The
best approximations are given by the TDX, the SRTM GL1, the EU DEM and the ASTER
GDEM. The average values of local slope show that differences can reach about 10%.

DEMs with spatial resolution of 30 m, in addition to the TDX DEM, give the best
approximation of the LiDAR H curve. In particular, the ASTER GDEM perfectly matches
the LiDAR cumulative frequency curve at low H values. TINITALY, followed closely by
HydroSHEDS at lower H values, presents a significantly different curve from LiDAR, while
average values of H are significantly different between every DEM and the LiDAR.

The AW3D30 and the ASTER GDEM present consistently higher cell counts per D
contour with respect to the remaining DEMs, while HydroSHEDS and the MERIT DEM
present consistently lower cell counts; the SRTM GL1 and the TDX DEM fall more or
less between all the other curves.

Regarding the DEM-based river network (Fig. A.4), it is confirmed that extraction
can be more problematic in flatter terrain. In particular, the location of river conflu-
ences and meanders can be significantly misrepresented. Over flat areas, coarser spatial
resolution DEMs tend to better approximate the photo-interpreted river network, while
hydrologically reconditioning a DEM (e.g., the HydroSHEDS) also seems to help.

In terms of BIAS (Fig. A.5), a tendency to overestimate elevation values in hillslopes
and a tendency to underestimate elevations in floodplains appear to exist, except for the
HydroSHEDS DEM that tends to underestimate elevations in a more generalised way.
In spite of the BIAS found — less in the case of the SRTM GL3 and VFP DEMs —
it is shown that DEMs are highly correlated to the LiDAR data, with the TINITALY,
HydroSHEDS and AW3D30 showing some noticeable dispersion.

Vertical accuracy measures were computed from each DEM (Table A.2). The lowest
MAE has been obtained by the MERIT DEM, 2.85 m, while the ASTER GDEM and the
HydroSHEDS DEM have presented the highest MAE of all the datasets, 11.16 and 6.61
m, respectively. The lowest RMSE, has been presented by the SRTM GL3, 4.83 m, or
0.21% NRMSE, while the ASTER GDEM and the HydroSHEDS DEM have presented,
once again, the highest RMSE values among all datasets, 15.78 and 9.39 m, or 0.40 and
0.68% NRMSE, respectively.

Concerning the Tanaro river basin, finer spatial resolutions have not always improved
the representation of the morphology. Ideally, a good DEM should aim for an optimal
balance between spatial resolution, vertical accuracy and DEM reconditioning. The choice
of the EU DEM in Chapter 6 was found to be quite reasonable.
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Figure A.4: Overlay of river networks for 3 distinct regions in the Tanaro river basin, Italy,
derived from free digital elevation models (DEM). For each region, the corresponding EU-
Hydro photo-interpreted river network is shown on the right. A) and (B) are sample regions
representative of flatter terrain; and C) is a sample region representative of mountainous
terrain. On the bottom left, the locations of the 3 regions within the Tanaro river basin are
marked with red boxes. On the bottom right, the average values of the terrain descriptors
are presented.
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Figure A.5: A) Map of statistical bias between the SRTM GL3 digital elevation model
(DEM) and the light detection and ranging (LiDAR) data in the Tanaro river basin, Italy;
B) Map of statistical bias between the HydroSHEDS DEM and the LiDAR data; C) DEM
elevations plotted against LiDAR elevations; D) Cumulative frequency of absolute BIAS
plotted against the elevation difference to the nearest stream, H.
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Appendix B

Principal Component Analysis and
Regression

Principle Component Analysis (PCA) is a multivariate statistical method often used
in water resources research (e.g., Wallis, 1965; Di Prinzio et al., 2011; Salas et al., 2011).
Uncorrelated principle components (PCs) are obtained by orthogonal transformation of
the original predictors such that the greatest variance is associated with the first PCs.
The transformation leads to dimensionality reduction:

X = W V T = W = XT (B.1)

where X the matrix of k explanatory variables with size (n × k), excluding the first
column, W the matrix of PCs w1, w2, . . . , wk with size (n×k), or scores, and V the (k×k)
symmetric matrix of transformation coefficients v1, v2, . . . , vk, also known as loadings or
rotation matrix, whose columns correspond to the characteristic vectors of the covariance
matrix of X. The characteristic vectors may be found by:(

XT X

(n− 1) − λiI
)
vi = 0 (B.2)

with I the (k × k) identity matrix and λ the vector of characteristic roots found by
solving the characteristic equation, i.e. equating to zero the characteristic polynomial:∣∣∣∣∣ XT X

(n− 1) − λI

∣∣∣∣∣ = 0 (B.3)

The number of PCs, linear combinations of the original covariates with coefficients
given by the characteristic vectors, to be used in a principal component regression (PCR)
are selected based on the total amount of variance explained. The PCR is fitted by
regressing y on PCs instead of the raw catchment characteristics:

y = Wβ + ε (B.4)
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Appendix C

Flood hazard web application

The methodology described in Chapter 2 was implemented as a web application that is
currently integrated in the SmartFLOOD platform – a cloud-based system that hosts big
data, data-driven models and tools and is connected to flexible computing power (Amazon
Web Services, https://aws.amazon.com). The concept of the platform was inspired
by other existing solutions like the Google Earth Engine (https://earthengine.
google.com/; Gorelick et al. 2017) that brings massive computational capabilities to
planetary-scale geospatial analysis as an integrated platform, the Tethys Platform (http
s://www.tethysplatform.org/; Swain et al. 2016) that implements a development
and hosting environment for web applications, and the SWATShare platform (Rajib et al.,
2016) that establishes a collaborative environment for hydrology research and education.
All of them attempt to organise scientific information and operationalise science.

The web application named Hydrogeomorphic Flood Hazard Mapping has been de-
signed as an innovative tool and is available online to the general public (http://geco
sistema.com/smartflood). It is currently a demonstrator of the hydrogeomorphic
method for flood mapping that makes use of big open-access datasets. The web applica-
tion was developed to obtain rapid and cost-effective estimates of areas subject to flooding
outside their original classification domain, in data-scarce or resource limited settings and
across geographical scales. Delineated flood-prone areas are automatically downscaled to
pixel size and from the main stream to the tributaries. The quality of the delineation
depends on user choices, from the input layers to the selection of areas for classification,
downscaling and extrapolation.

In particular, the current version of the web application enables users to:

• run a supervised classification within a user-selected river sub-catchment, based on
one of the benchmark flood hazard maps for the six return periods considered, and
instantly retrieve the optimal classification outcome and performance;
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https://aws.amazon.com
https://earthengine.google.com/
https://earthengine.google.com/
https://www.tethysplatform.org/
https://www.tethysplatform.org/
http://gecosistema.com/smartflood
http://gecosistema.com/smartflood
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• perform a DEM-based delineation of flood-prone areas that correspond to a downscal-
ing and extrapolation of selected flood hazard maps;

• visualise the delineated flood-prone areas at 25 m spatial resolution obtained by seg-
mentation of the flood descriptor layer with the optimal classification outcome;

• manually fine-tune the optimal classification outcome via a simple slider, testing on-
the-fly its influence on the mapping of flood-prone areas;

• get a dynamic response of performance measures that varies with zoom level and
window size.

Upload of datasets and download of outputs are currently available for any raster file
format supported by the GDAL, visualisation is achieved via HTML5 and JavaScript with
the help of OpenLayers and Highcharts libraries, while code sharing is done via a Git-type
online version-control system. This prototype is already a step forward in flood hazard
assessment and management and its scientific worth can be considered manifold:

• It provides fast and inexpensive estimates of flood-prone areas for specific return pe-
riods.

• It provides fast and inexpensive extrapolation and downscaling capabilities of existing
flood studies (e.g., modelling results, remote sensing detection, field surveys), par-
ticularly in unstudied areas or tributaries, across political borders and data-scarce
regions.

• It can be used to test and conduct experiments with different flood descriptors, clas-
sification methods and datasets.

• It enables and exploits collaborative and community-based activities (e.g., Citizen and
hydrology working group of the International Association of Hydrological Sciences
https://iahs.info/Commissions--W-Groups/Working-Groups/Candh

y.do).

The web application may evolve to a more powerful tool, integrating other data-driven
methods and flood information, that attends to users’ needs and expectations in support-
ing evidence-based decision making. Examples of similar tools are the Water Information
Forecast Framework (WIFF) that integrates process-based models for waves, tides and
surges across geographic scales and predicts floods in coastal areas (Fortunato et al.,
2017), the Iowa Flood Information System (Demir and Krajewski, 2013) that provides
access to flood maps and other flood-related information using an interactive interface or
the FLIRE DSS (Kochilakis et al., 2016) that integrates flood maps with flood warnings,
observations and remote sensing data to inform decision makers through a web-based
system.

https://iahs.info/Commissions--W-Groups/Working-Groups/Candhy.do
https://iahs.info/Commissions--W-Groups/Working-Groups/Candhy.do
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C.1 Architecture

A cloud-based client-server model was adopted as the web application architecture.
The implementation of the web application is illustrated as a network diagram in Fig. C.1.
The server host functions as a web and file server for restricted uploading and storing of
static layers and results, as well as for their retrieval. Clients and server communicate over
the internet via any modern web browser. The web application framework incorporates
a Web-GIS front-end made of a combination of HTML5 (a markup language) and Open-
Layers (an open source JavaScript library), and a server-side, which combines MapServer
(an open source geographic data rendering engine) and Apache (an open-source HTTP
server). All core model functions are written in Python.

Figure C.1: Client-server diagram showing the implementation of the web application.

C.2 Back-end

Web application I/O is done using GDAL and is available in any raster file format
supported by this library. The core model functions accessible to users consist of:

1. preparing data for supervised classification;
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2. linear binary classification of the flood descriptor;
3. computation of classification performance measures.

When the user selects a river sub-catchment and return period in the web user inter-
face, the algorithm searches for the corresponding datasets, constricts the layers to the
pre-defined classification area and vectorises them.

The classification stage is performed with the help of scikit-learn, a Python library for
machine learning functionalities. A number of thresholds are fixed based on the range of
values of the bounded flood descriptor layer. For each threshold, statistics are computed
and used to calculate the objective function. The algorithm then solves the optimisation
problem by maximising the objective function, through retrieval of the corresponding
optimal threshold, the classification outcome. The final flood-prone areas are delineated
within the whole river basin (downscaled extrapolation) to which the classification sub-
catchment belongs. The delineation is achieved by optimal threshold segmentation of the
flood descriptor layer, which discerns flood-prone from flood-free areas. Finally, within
the selected classification area, the flood-prone areas are compared to the benchmark
flood hazard map. Several performance metrics (including, but not limited to the ones
used in this thesis) are computed and made available to the user. It should be noted that
the pre-processing and morphological characterisation steps, executed offline to produce
the georeferenced static layers, are currently not part of the web application workflow.

C.3 Front-end

The responsive Web-GIS single page front-end is designed to allow users to visualise
and interact with the hydrogeomorphic method at the pan-European scale, using any mod-
ern web browser. The front-end is built with HTML5, taking advantage of JavaScript,
OpenLayers and Highcharts to draw graphics. OpenLayers provides the client-side map-
ping utilities to handle geospatial data, while Highcharts provides the additional fea-
tures that complement the interface. The final results are styled and published by the
MapServer on the server-side. Fig. C.2 shows the web user interface as a step-by-step
usage example of the web application (video walkthroughs are also provided as supple-
mentary material, MMC 1 and MMC 2). The web application is implemented in the
most user-friendly way possible, enabling users to test the methodology without being
concerned about the details behind the system. The user requests the web application
core functionality through a simple point-and-click application programming interface,
selecting the river sub-catchment and return period of the reference desired to execute
the linear binary classification of flood-prone areas. Function returns are made visible to
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the user through the Web-GIS interface as a combination of interactive maps, summary
tables and plots.

The classification of flood-prone areas results in the maximisation of the method’s
success, i.e. finding the threshold that corresponds to the optimal operating point in
the ROC curve, although not necessarily its utility (Peirce, 1884; Baker and Kramer,
2007). To address this, a slider was implemented to allow the user to adjust on-the-
fly the rendered optimal flood-prone areas that resulted from the classification stage, so
that subjective benefits and costs of a delineation can be taken into account (Baker and
Kramer, 2007). Furthermore, a dynamic response of performance measures that varies
with zoom level and window size was implemented based on the pixel count of the two
critical classes (i.e., flood-prone and flood-free areas), constricted by the map bounding
box. Finally, having static layers in the file server was used to the systems advantage so
that it could render the maps faster across scales using pre-built tile caching (MapCache).

C.4 Parallelisation strategy

The same concurrent programming model is used in different phases of the method-
ological workflow, from pre-processing and morphological characterisation to classification
and validation. An exception was made for terrain analysis, which followed a different par-
allelisation strategy, used as an out-of-the-box feature of TauDEM utilities. The domain
is decomposed in logical units (i.e., hydrological unique river basins and sub-catchments)
used as natural geometric domain partitions for parallel computation (data parallelism).
Decomposition is achieved using utilities from GDAL to process the geospatial data. Exe-
cution is achieved concurrently and asynchronously, distributing queued data across sub-
processes spawned from a pool, carrying out exactly the same independent computations
on each partition, minimising the total execution time and avoiding overload.

C.5 Web application generated flood hazard maps

In Fig. C.3, an output of the web application relative to a specific classification is
presented. The figure provides a comparison between the hydrogeomorphic flood-prone
areas delineated using the web application (merger of cyan and dark blue pixels) and the
reference flood extents derived from the 100-year flood hazard map for Europe (merger of
cyan and magenta pixels) from Dottori et al. (2016). The example refers to a calibrated
threshold value of the flood descriptor (Fig. C.3a) and a slider operation to control the
threshold (Fig. C.3b), where the user changes the calibrated threshold and gets an
immediate feedback on overestimated (dark blue pixels) and underestimated (magenta
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pixels) flood-prone areas and how they change visually in the study region or catchment.
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Figure C.3: Sample overlay of the 100-year return period flood hazard map for Europe
(Dottori et al., 2016) on the delineated hydrogeomorphic flood-prone areas using the a)
optimal flood descriptor threshold and b) flood desciptor threshold controlled through slider
operation (marked with a yellow circle).
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