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Abstract: Recently, nanomedicines have gained a great deal of attention in diverse biomedical
applications, including anti-cancer therapy. Being different from normal tissue, the biophysical
microenvironment of tumor cells and cancer cell mechanics should be considered for the development
of nanostructures as anti-cancer agents. Throughout the last decades, many efforts devoted to
investigating the distinct cancer environment and understanding the interactions between tumor cells
and have been applied bio-nanomaterials. This review highlights the microenvironment of cancer cells
and how it is different from that of healthy tissue. We gave special emphasis to the physiological shear
stresses existing in the cancerous surroundings, since these stresses have a profound effect on cancer
cell/nanoparticle interaction. Finally, this study reviews relevant examples of investigations aimed at
clarifying the cellular nanoparticle uptake behavior under both static and dynamic conditions.

Keywords: nanomedicine; nanoparticle; targeted therapy; anti-cancer; shear stress; flow; in vitro

1. Introduction

In 1959, Richard Feynman delivered his pioneering lecture about nanotechnology in which
he gave a foundation about materials miniaturization [1]. Since then, nano-scaled materials have
been investigated and studied extensively for use in various fields, including the medical field [2].
When the power of nanotechnology is harnessed for biomedical applications, it is designated as
nano-biotechnology or bio-nanotechnology to indicate the combination of nanotechnology with the
biological system [3]. Nanomaterials are considered promising and favorable materials due to their
unique properties as well as their extremely small size and high surface area to volume ratio, which
means better surface interaction and effective cellular uptake. Nanobiotechnology has been applied in
diverse medical applications, such as drug delivery platforms, contrast agents for magnetic resonance
imaging, tissue engineering, and anti-cancer therapy.

Today, cancer is rated as the second leading cause of mortality worldwide [4]. In cancer cases,
the signals that control normal cell division and normal cell death are disregarded due to genetic or
environmental conditions. Consequently, uncontrolled cell division gives rise to rapid cell growth and
the formation lumps, which is known as localized tumors. These tumor cells are characterized by fast
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proliferation, metastasis, and the ability to induce the formation of new blood vessels, which is also
known as “angiogenesis” [5]. Current cancer therapies are known for their lack of selectivity for tumor
cells, as well as severe side effects such as damage to healthy organs, hair loss, and uncontrolled gastric
problems. The integration of nano-scaled structures for anti-cancer therapy can be in the form of carriers
for chemotherapeutic agents, cancer diagnostic agents, or targeting moieties. Nanomedicine holds the
potential to minimize the undesired and severe adverse side effects of anti-cancer therapy, as well as to
increase the efficacy and selectivity against tumor cells. In that regard, significant efforts have been
devoted to developing nanoplatforms for specific cancer therapy or nanomedicine [6–9]. To design
an effective nanomedicine, specific characteristics of cancer cells such as cancer cell mechanics or
microenvironment of the tumor, which will influence the binding or internalization of the nanoparticles
to cancer cells, should be taken into consideration.

Cancer cells are exposed to different forces and mechanical stresses than normal cells in the body,
such as compressive forces due to tumor growth plus the interstitial pressure and shear stresses due to
blood and interstitial fluid flow [10]. The biophysical microenvironment of tumor cells is different
from normal cells. To illustrate this, blood flow in cancer microenvironment is irregular compared to
normal circulation and subsequently, causes the tumor to be less oxygenated as the tumor grows [11].
Furthermore, the tumor site (extracellular fluid) is more acidic than normal tissues [12]. All these
differences have substantial influences on the interactions of tumor cell with applied nanostructures.
For example, shear forces in the extracellular environment can activate some cellular processes and affect
the cellular uptake mechanism, which is important for targeted cancer therapy via nanoparticles [13].

Generally, fluid shear stress (FSS) in the biological systems can be categorized as resulting from
blood flow, interstitial fluid flow or lymphatic fluid flow. Cancer cells mainly encounter interstitial
fluid flow in localized tumor and also blood flow in case of metastasis [14]. Tumor cells can be exposed
to additional fluid flows in the body, such as fluid flow in peritoneal cavity during ovarian cancer,
which increases FSS [15]. Consequently, FSS is accepted as an important factor regulating the behavior
of cancer cells and, more particularly, FSS acting on tumor cells will be discussed later in this article.

The major objectives of this review are to: (a) demonstrate the main types of physiological shear
stresses that are affecting the tumor cells; (b) shed light on the interactions between cancer cells and
applied nanomaterials in both static and dynamic conditions; (c) summarize findings on the influence
of uptake of nanomaterials by cancer cells.

2. Physiological Shear Stresses Affecting the Tumor Cells

2.1. Shear Stress Due to Blood Flow

Circulating tumor cells (CTC) or metastatic cells are cancer cells that shed from the localized
primary tumor and migrate to other body sites through the blood stream [16]. These cells experience
shear stress due to blood flow [17,18]. Studies showed that, CTC can be influenced by FSS in two ways:
either the cell cycle will be arrested due to mechanical force [19] or certain cellular process will be
activated resulting in migration of CTC and invasion of other organs [20]. It has been reported that
high levels of FSS (~60 dyn/cm2) can induce apoptosis and eliminate 90% of cancer cells from the blood
stream [21]. This elimination and cell death have been related to destruction of the cell’s cytoskeleton
due to high shear, thus preventing cell adhesion. Furthermore, at high shear rate, cells produce more
reactive oxygen species, resulting in cell death due to oxidative stress [22]. On the other hand, low FSS
(2 dyn/cm2) can activate certain mechanosensitive cytokines such as IGF-2, VEGF, ROCK, and Cav-1.
This activation prompts their downstream molecular pathways which induce metastasis [23].

2.2. Shear Stress Due to Interstitial Fluid Flow

Molecular diffusion and convection are the basic mechanism of biological mass transport.
In molecular diffusion, random molecular movements lead to net transport of solutes or particles
down the gradient in concentration. During convection, a solute or particle is carried by moving fluid.
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In a region where a fluid (for example, blood or interstitial fluid) is flowing, diffusive and convective
transport can occur simultaneously [24].

In normal tissue, the way that cells get their nutrition is by diffusion of the blood plasma to
the stromal space between the cells, which is also known as the interstitial space. The cells excrete
their wastes by diffusion of waste products to the nearby lymphatics that drain them to the venous
blood stream [25] (Figure 1). In normal situations, the flow of interstitial fluid is only maintained
by the diffusion of nutrients from the blood stream to the interstitial space, and waste products
from the cells to the interstitial space, and then to the lymphatic vessels. This mechanism prevents
excessive fluid accumulation in interstitial site. However, the situation is different in the cancer
microenvironment. As cancer cells keep growing, it becomes difficult for them to support a good waste
drainage. Furthermore, tumor endothelial cells proliferate fast due to production of vascular endothelial
growth factor (VEGF) by tumor cells. However, they form less tight junctions than endothelial cells in
normal tissue, causing leaky endothelial cell junctions and hyperpermeability [26]. Therefore, although
the fluid will be absorbed from the blood vessels, it will not be drained back to the venous system.
This fluid accumulation will cause pressure difference between cancer microenvironment and healthy
tissue, resulting in fluid flow from tumor to its surroundings [25]. The flow of interstitial fluid was
shown to induce shear stresses on the cancer cells within the localized tumor [27] with a shear stress
level of 0.1 dyn/cm2 [13]. Interstitial flow has much slower velocity than blood flow. The interstitial
flow velocity ranges from 0.1–4 um/s compared to blood flow at 0.6–0.9 m/s in pulmonary artery [28].
Table 1 represents levels of FSS in the body and Figure 2 shows different types of FSS that cancer cells
are exposed to.
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Table 1. Different shear rate values in physiological and pathological conditions.

Fluid Flow Shear Stress (Dyn/cm2) Reference

Interstitial flow 0.1 [13]

Normal vein 1–6 [29]

Normal artery 10–70 [29]

Lymphatic fluid flow 0.64 [14]

Liver 0.1–0.5 [30]

Peritoneal fluid flow <5 [15]
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2.3. Important Aspects for the Development of Nanomedicine for Targeted Cancer Therapy

One important aspect to consider is the mode of transport of drugs to cancer tumor, which is
combination of convection and diffusion. Once infused, anti-cancer agent is transported in the systemic
circulation via convection. Upon reaching to microcirculation, exchange occurs between blood and
tissue. Here, drug passes through vessel walls toward cancer cells by combination of convection and
diffusion in interstitial fluid. For low molecular mass drugs and small nanoparticles, diffusion is the
dominant transport mechanism [31].

For efficient targeted anti-cancer therapy using nanoparticles, the tumor microenvironment should
be considered during the design process. Ideally, nanomaterials, i.e., nanoparticles, or photothermal
nano-agents should be tested on pre-clinical animal models of cancer therapy. However, using
animal models is limited by ethical guidelines, also it is time and labor intensive [32]. To avoid the
uncritical testing on animals, in-vitro and in-silico testing are used as preliminary evaluation due
to their low cost, simplicity and better control on experimental conditions. In silico simulations are
developed to analyze nanoparticle/cancer cell interactions by solving governing physical equations.
These computational models provide quantitative analyses to describe biological mechanisms under
certain conditions. However, in most situations, in-vitro experiments should be designed to verify
in-silico test results [33]. For example, using a combination of in-vitro flow chamber set up and in-silico
simulations, Boso et al. showed that artificial neural networks can determine the optimal nanoparticle
size for maximal adherence to a targeted tissue. This optimal size depends on the wall shear rate in the
target location [34]. The results suggested that the number of in-vitro experiments can be successfully
reduced by using artificial neural networks, without compromising the accuracy of the study.

One of the major limitations for the in vitro approach is the discrepancies compared to in-vivo
systems. The reason for these discrepancies is related to the fact that cells in the body are influenced
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by many factors in their native environment. For example, FSS is one important factor affecting
cell behavior. Therefore, static cell cultures are limited to mimicking the native cancer environment.
To resemble the real conditions in organized system, FSS can be induced to static cell culture by
using microfluidic devices [35]. FSS is the force experienced by cells as a result of flow of viscous
fluids [17]. FSS can be applied on cells using parallel plate flow chambers (PPFCs), cone plate chambers
or microfluidic chambers. Different chambers are used based on the site where FSS is intended to be
mimicked. For example, cone-plate chambers are used to mimic FSS in abdominal aorta and brachial
artery due to resemblance of their geometry [36], whereas parallel plate or microfluidic chambers are
used to mimick FSS in smaller vessels.

PPFC were commonly used to mimick FSS in cancer microenvironment since cancer cells in the
body are constantly exposed to FSS by interstitial flow or blood flow. It was previously suggested that
FSS is an important factor for nanoparticle internalization by cancer cells. Therefore, association of
FSS and cellular uptake of some nanomaterials has been studied [37,38]. We will explain this in detail
in the following section. One of the first PPFCs was developed in 1995 by Ruel et al. [39]. A typical
PPFC would have an inlet port and an outlet port for flow perfusion, silicon gaskets to form the flow
chamber, and a coverslip where cells are grown on (Figure 4).

These flow chambers are mostly connected to syringe or peristaltic pumps that can pump a certain
fluid (mostly cell media) at specific flow rates for extended flow perfusion. Shear stress can be calculated
using Hagen–Poiseuille equation assuming Newtonian fluids under steady and laminar flows.

τ =
6.µ.Q
w.h2

where Q represents the fluid flow rate, τ is the shear stress acting on the cells, w and h are width and
height of the flow chamber, and µ is the viscosity of the fluid, which is the cell medium [40]. Figure 4
illustrates a typical chamber setup representing the flow of the fluid in a closed circuit.

PPFCs offer a model that is not as simple as static cell culture, but not as complex as animal
models; thus, cellular interactions and nanomaterials uptake can be studied in a practical and reliant
manner as represented in Figure 3 [41].Cancers 2020, 12, x 6 of 17 
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where Q represents the fluid flow rate, τ is the shear stress acting on the cells, w and h are width and 
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Figure 4. A typical flow chamber setup. (A) depicts a closed-circuit chamber, in which the chamber is
connected to a peristaltic pump and a reservoir (cell media). (B) illustrates the flow chamber assembly
where coverslip containing the cells is allowed for fluid flow. Adapted from bioptechs [42].

3. Interactions between Nanoparticles and Cancer Cells

Nanomaterials interact with cells differently in static and dynamic cultures. These differences
include production of reactive oxygen species (ROS) [43] as well as the viability and uptake of the
nanomaterials by cells [44]. Dynamic culture is more relevant to physiological conditions present in
an animal or human body, as the biological systems are more complex and dynamic. Usually, it is
easier to study the influence of nanomaterials using static cultures, but the results from such studies
might be misleading and/or contradictory when compared to animal models or dynamic cultures.
For example, nanomaterials tend to sediment and settle down in static cultures, inducing stresses on
cells. Furthermore, nanomaterials form aggregates in static cultures, which might alter their uptake by
the cells, and therefore, altering the viability of the results explained in Figure 5 [43].
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Figure 5. Comparison between distributions of nanomaterials under static (A) and dynamic
(B) conditions. In static culture, nanoparticles tend to sediment and aggregate due to their high
surface energy. This condition create physiochemical stress on cells, which might alter cells viability
as well as particles uptake On the other hand, in dynamic culture, the particles will be uniformly
distributed allowing better cellular interaction, which can be charge-dependent as the direction of the
negatively-charged particles will be away from the cell surface, unlike positively-charged particles,
where the particle direction will be towards the cell surface. Adapted from Mahto et al. [43].

When nanomaterials form aggregates, the aggregate size should be much smaller than the cell
size for uptake. There are different mechanisms by which cells uptake nanomaterials. These include
diffusion or passive penetration through the plasma membrane, and endocytosis that involves
pinocytosis and phagocytosis. Pinocytosis involves the internalization of molecules or fluid by the
formation of small vesicles, whereas phagocytosis involves the engulfment of large materials by
the formation of intracellular phagosomes [45]. It was reported that the uptake of nanomaterials
is size-dependent, and in some cases, it is easier for the cells to uptake larger nanomaterials by
endocytosis, than smaller nanomaterials by diffusion [46]. Moreover, the formation of aggregates and
sedimentation of nanomaterials will alter the effective concentration of nanomaterials delivered to
the cells [47]. Therefore, nanoparticle aggregation should be prevented in most cases for nanoparticle
studies. To uniformly distribute the nanomaterials over cells in culture without aggregate formation or
sedimentation, it is suggested to use dynamic culture, and grow the cells under flow conditions using
flow chambers [35].

It was reported that the uptake of nanomaterials is different under flow conditions compared to
static cultures and that these changes are due to material’s surface charge, surface ligands, stiffness,
size and shape [48]. Cells can uptake nanomaterials in two steps: the first step is binding of the
nanomaterial to cell surface and the second step is internalization of the nanoparticles. In the first step,
electrostatic interactions, which are due to the physio-chemical properties of the nanomaterial, play an
important role. As the cell membrane is negatively charged, it is more favorable for positively charged
materials to interact with its surface than neutral or negatively charged particles. The second step
is the internalization of the nanoparticle from the cell membrane. After nanomaterials interact and
bind to the cell surface by electrostatic interactions, they can then be internalized by different uptake
mechanisms [49]. Although surface charge is considered as an important contributor to higher uptake,
other parameters influence the cellular uptake as well, such as elasticity [50] and the shape of the
material especially under flow conditions [51]. Under flow conditions, the alignment of non-spherical
nanomaterials can be different from that in static culture, thus altering the uptake. It has been reported
that fibrous or 2D materials have a flow-aligning effect, which impacts their cellular adhesion and
uptake [41], as demonstrated in Figure 6.
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4. Shear Stresses and Cellular Uptake of Nanomaterials for Cancer and Normal Cells

Owing to the effect of the dynamic environment in different biological processes, tissue engineering,
and drug-delivery [52,53], many studies have investigated the role of FSS in the interactions between cells
and nanoparticles [54–56]. One of these significant interactions is the cellular uptake of nanoparticles.
To illustrate this, the uptake of the applied nanomaterials by cells is considered an important aspect,
especially in drug-delivery and other therapeutic purposes, which require sufficient uptake by the
targeted tissue. One important factor playing a role in cell-nanomaterial interaction under flow is
the surface e charge of the nanoparticles. For instance, the interaction of endothelial cells with two
negatively charged nanoparticles has been scrutinized by Samuel et al. by the application of varying
levels of FSS on cells [57]. The authors revealed that, the cellular uptake increased under low shear
stresses (0.05 Pa) compared to high shear stresses (0.5 Pa). In static conditions (0 Pa), cellular uptake
was lower compared to low shear stress (0.05). The higher uptake of these particles under stress was
mainly attributed to the formation of cytoskeletal stress fibers and membrane ruffles, which enhance
endocytosis. Such changes in the cytoskeleton were not observed in the non-shear exposed cells.
Additionally, Rigau and Städler correlated between the uptake of nano-sized drug delivery systems
and the subsequent therapeutic effect using skeletal mouse myoblast cell model (C2C12) in the absence
or presence of FSS [58]. They concluded that, the liposomes with positively charged lipids result in
higher cellular interaction in the presence of shear, in contrast to those contained negatively charged
lipids or zwitterionic ones. Furthermore, the authors investigated the therapeutic effect, in terms of
cell viability, after treatment with the positively charged liposomes carrying a small cytotoxic molecule
in static and dynamic conditions. Their findings stated that, there was a higher therapeutic response
(i.e., higher cell mortality) in the case of dynamic conditions, which demonstrates the relationship
between the higher cellular association of positive carriers and more effective therapy in the presence
of shear. In another relevant study by Rinkenauer et al., authors investigated the effect of FSS on the
uptake of co-polymers (negatively charged PMMA -co-PMAA with different ratios of MAA (3%, 5%,
8%, and 13%) and positively charged PMMA-co-PDMAEMA with 20% PDMAEMA) using different
cell lines (HUVEC, HEK293, L929, and primary muscle cells). They found that, increasing the negative
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charge (MMA) increases the uptake by different cells under static conditions. However, the uptake is
not as efficient as that resulting from the use of positive particles (20 % PDMAEMA). A similar trend
was observed in different cell lines, but not in co-culture which reduced the cellular uptake due to
cellular interactions. When the uptake was assessed under flow conditions (0.7, 3, 6, and 10 Dyn/cm2),
it was observed that, increasing shear stress is positively correlated with cellular uptake. Nevertheless,
compared to static culture, 13% PMMA showed more efficient uptake compared to positively charged
20% PDMAEMA. This is probably related to the differences in surface receptor patterns observed
under flow conditions, which can alter the cellular uptake [38]. In our group, we are developing
two-dimensional Mxene sheets as photothermal agents. Our initial findings show successful uptake
on MXene sheets by MDA 231 breast cancer cells. When we compared static and dynamic cultures, we
did not see any significant difference.

Another important aspect in cell-nanoparticle interaction is the surface modification.
Toe et al. studied the cell response to modified liposomes with and without FSS using two cell
lines. The former cell line was the immortalized skeletal mouse myoblast (C2C12), a tumor cell model,
which is important to estimate the activity of the applied liposomes as drug carriers in drug delivery
systems. The later cell model was hepatic cells (HepG2), which was chosen as a model for hepatic
clearance due to their importance in eliminating drug-loaded nanocarriers from the body. To illustrate,
the authors fabricated PEGylated poly (dopamine) coated liposomes and quantified their cellular
uptake by myoblasts and hepatocytes using flow cytometry in both static and dynamic conditions.
The results manifested that the hepatocytes response in the dynamic conditions was significantly
higher after only 30 minutes, while the myoblasts demonstrated a significant increase after a relatively
longer time (4 h). The authors explained these findings as the nature of the two cell lines were different.
The hepatic cells were concerned with clearance, so their responses were instantaneous in the presence
of physiological shear. On the other hand, the cancer cell model needed a longer time to show a
response in low shear stress (0.146 dyn/cm2) [59]. Additionally, the uptake of lipidic NPs by MCF-7
breast cancer cells and Hela human cervical cancer cells was reported by Palchetti et al., under flow
conditions. Authors produced two types of lipidic NPs, one with surface modification (PEGylated)
while the other without modification. They incubated the cells with particles at two different incubation
durations (5 and 90 minutes). MCF-7 cells showed a significantly lower uptake of unmodified NPs in
dynamic culture in comparison to static condition at both incubation durations, whereas Hela cells
showed a higher NPs cellular uptake after 90 minutes incubation in dynamic culture [53]. On the other
hand, an insignificant difference in uptake of modified NPs by MCF-7 was observed under flow and
static conditions. However, NPs uptake by Hela cells in dynamic conditions was still higher than static
culture. They clarified that shear stress can affect the protein corona (protein corona is formed when
NPs absorb biomolecules as they interact with cells and the biological system) by changing its surface
chemistry and properties, which in turn affect their uptake by cells [60].

Particle elasticity is suggested to affect cellular uptake [61,62]. In a very important investigation,
Guo et al. revealed experimental evidence that indicates how elasticity alters in-vitro cellular uptake
and in-vivo tumor uptake [50] They studied uptake of nanolipogels (NLGs) which consist of lipid
bilayer capsule and hydrogel core with tunable elasticity. The elasticity of NLGs could be modulated
independent from other physical properties such as size, shape and surface charge. Both normal
cells and cancer cells showed higher uptake of soft NLGs (NLP-45KPa) compared to rigid NLGs
(NLG-19MPa). Authors explained the higher uptake of soft particles by usage of different cell
internalization pathways. While NLP-45KPa entered the cells through fusion and endocytosis,
NLG-19MPa was internalized by only endocytosis (Figure 7). Fusion requires low energy compared to
endocytosis. Therefore, cells take more time and energy to uptake the same amount of NLG-19MPa
than NLP-45KPa. The in-vivo test results showed that particles with higher elasticity were more likely
to accumulate into tumors. This is strong evidence that particle stiffness controls the tumor uptake of
systematically applied nanoparticles.
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enters the cell via two pathways: fusion and endocytosis. Hard NLG-19MPa (b) enters cell via only
endocytosis. Adapted from Guo et al. [50].

Surface ligand is another aspect that affects cellular intake. Several studies were conducted
on selective tumor targeting in order to eradicate tumor cells without harming normal body cells.
The experiments were based on decorating nanoparticles with molecular recognition ligands that
bind to selective proteins expressed on the surface of cancer cells. Engelberg et al. studied the
internalization of quantum dots (QDs) decorated with S15-APT ligand into human non-small cell
lung cancer A549 cells [63,64]. S15-APTs is a selective targeting moiety for uptake by A549 cells.
These APT-decorated QDs bound themselves selectively to the target A549 cells and were internalized
by them. However, they were neither bound to, nor were internalized by normal human bronchial
epithelial BEAS2B, cervical carcinoma (HeLa), and colon adenocarcinoma CaCo-2 cells, thereby
demonstrating high specificity. The shape and size of the particle is known to affect the uptake as
well. Particle shape- and size-dependent uptake under physiological shear stress was reported by
Jurney et al. They produced negatively charged rod-shaped PEG NPs with different aspect ratios and
assessed their uptake by human umbilical vein endothelial cells (HUVEC) under flow conditions at
different incubation durations (1, 12, and 24 hours). In all cases, the uptake of larger particles was
found to be higher than smaller ones under flow in comparison to static culture. In contrast, smaller
particles are internalized more in static conditions than in flow conditions. The trend of larger NPs
being internalized more under flow conditions is contradictory with what was reported in literature
with similar-sized spherical NPs. This indicates that particles with higher aspect ratios interact more
with cells under flow conditions [65].

Moreover, Klingberg and Oddershede studied the effect of FSS on the uptake of spherical 80 nm
gold nanoparticles (Au NPs) by HUVEC [66]. They categorized the cells into two groups, one group
was cultured in static conditions for 24 hours (non-adapted group), while the other group was cultured
for 24 hours under 10 dyn/cm2 shear stress (shear adapted group). Then, each group was either kept in
static culture for three hours in the presence of 5 µg/mL Au NPs or kept in dynamic culture for three
hours in presence of 5 µg/mL Au NPs. The highest uptake was achieved by non-adapted group with
three hours additional static culture and lowest uptake was realized by the shear adapted group with
three hours additional dynamic culture. [66]. One more study was conducted by Fede et al. to reveal the
effect of FSS and size of spherical citrate stabilized gold nanoparticles on HUVEC [32]. They tested two
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batches of gold NPs (Batch 24 nm and Batch 13 nm). It was observed that, the viability is significantly
more when testing gold NPs under flow conditions in comparison to static culture, regardless of NPs
size or concentration. They measured the NPs concentration in two methods, one based on the surface
area per unit volume, while the other based on the number of NPs per unit volume. They found that
the cells were less viable when the surface area was increased per unit volume irrespective of the
NPs size [32]. Yazdimamaghani et al. studied the effect of silica NPs density and flow conditions on
cell cytotoxicity, uptake and sedimentation. They produced four types of silica NPs with different
densities and surface charges and tested the cytotoxicity and uptake on RAW 264.7 macrophage cells
after 24 hours of incubation with the cells, in static or under flow conditions. They found that the cell
viability is enhanced under flow conditions, compared to static culture. Moreover, none of the four
particles showed a toxic effect on macrophage cells up to 250 µg/mL in dynamic conditions. Also,
particle sedimentation was reduced in dynamic conditions, and the distribution of particles was more
homogeneous. Authors also found that, cellular uptake of silica NPs was more in static conditions
compared to dynamic conditions. Furthermore, low density particles, showed lower uptake under
flow conditions compared to high density particles [67].

Finally, application of different FSS levels is considered as an important parameter for detailed
investigation of the effect of dynamic conditions on cellular responses, where the cellular uptake could
be studied as a consequence of all applied FSS levels. Hence, more relevant correlation between the
cell response and FSS levels can be stated. For instance, Kona and co-workers developed a novel
drug delivery system that imitates the natural platelet adhesion to the injured vascular walls under
different shear flow rates [68]. Their results implied that when the shear stress level was increased to
20dyn/cm2, the cellular uptake fell dramatically by three folds when compared to the control static
group. The authors explained their findings through computational model revealing that the high
shear rates induce huge dislodging forces that are able to detach the adhered particles [69,70]. Table 2
summarizes important works on the effect of FSS nanoparticle internalization.
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Table 2. Summary of findings on nanoparticle—cell interactions under shear stress.

Type & Properties of
Nanomaterial Applied Type of Cells Flow Conditions Shear Rate Findings Ref.

Different polymer-based NPs HUVEC

One-hour incubation
under optimum

conditions (37 ◦C, 95% air
& 5% CO2)

0.7, 3, 6, and 10 Dyn/cm2

Increasing the negative charge increases the uptake
under static conditions.

Positively charged particles showed more efficient
uptake in static culture compared to negatively

charged particles.
Increasing shear stress is positively correlated with

cellular uptake.

[38]

PEGylated lipidic NPs.
Un-PEGylated lipidic NPs

MCF-7
Hela cells

Incubated under
optimum conditions for 5
or 90 minutes under flow

speed of 50 cm/s

MCF-7 cells showed significantly lower uptake of
un-PEGylated NPs in dynamic culture at both

incubation durations.
PEGylated NPs showed similar uptake by MCF-7 in

dynamic culture and static culture.
Hela cells showed a higher NPs cellular uptake after

90 minutes incubation in dynamic culture.

[60]

Negatively charged PEG NPs
with different aspect ratios HUVEC

1,12, and 24 hours of
exposure to dynamic

conditions using 0.907
uL/min flow rate.

10 Dyn/cm2
Larger particles have higher internalization than
smaller ones, under flow in comparison to static

culture.
[65]

Silica NPs with different
densities

RAW 264.7 macrophage
cells

24-hour incubation under
flow (cell media agitation)

at optimum conditions.

More Uptake in static conditions compared to
dynamic conditions.

Low density particles have lower uptake in dynamic
conditions compared to high density particles.

[67]

Negatively charged NPs Endothelial cells 24-hour incubation under
optimum conditions. 0.05, 0.1, and 0.5 Pa cellular uptake increased with low shear stresses

when compared to high shear. [57]

Negative, Positive &
Zwitterionic lipidic NPS

Skeletal mouse myoblast
cell model (C2C12) 0.0146 and 0.146 Dyn/cm2

Higher cellular interaction in the presence of shear
for positively-charged NPs compared to

negatively-charged lipids or zwitterionic ones.
[58]
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5. Conclusions

Cancer is a wide spreading disease with no definitive treatment. Researchers have been working
on cancer therapy for decades with some improvements, yet many limitations remain. Lately,
nanomaterials are being used for various biomedical applications including the targeted anti-cancer
therapy due to their superior properties. Usually, when nanomaterials are tested for biomedical
applications, cell culture techniques are used for preliminary testing. Cell culture is the most convenient
method to test the toxicity and efficacy of nanomaterials, but it is limited due to particle aggregation,
sedimentation and it does not mimic the native conditions in animal model and human body. FSS is
one important parameter that affect nanomaterial-cell interaction, mainly cell viability and particle
uptake. FSS can be due to blood flow, with variable flow rates based on the diameter size of the
blood vessel where it affects endothelial cells lining the blood vessels or the circulating tumor cells.
FSS can be due to interstitial fluid flow as well with very low flow rate, which occurs mainly around
cancer cells in solid tumors. Here we summarized findings on the relation between shear stress and
nanomaterials uptake mainly for cancer as well as for normal cells using in-vitro systems. There are
variety of factors affecting nanomaterials uptake particularly under dynamic conditions. Some of these
factors are related to the nanomaterials, while other factors are cell related. Nanomaterial size, shape
surface charge, surface ligands, and particle elasticity are the main factors in cellular uptake under
fluid flow. However, these factors are affecting nanomaterial-cell interaction differently depending on
the cell type (i.e., origin of tissue and cancer vs healthy). There is no general rule on how nanomaterials
will interact with cells. However, in most of the cases, negatively charged particles show less uptake
by cells due to inefficient electrostatic interactions between nanomaterials and cells. Furthermore, soft
particles show more uptake than rigid particles which can be attributed to the ability of the cell to
uptake soft particles by different pathways compared to rigid particles. Additionally, the uptake of
2D materials will be different under flow conditions due to the effect of flow aligninment. Coating
the cell surface with ligands is an efficient way to guarantee the uptake of particles, at the same time
reducing the side effects by preventing internalization by non-cancerous cells. Other factors that might
affect cellular uptake, are cell related. For example, the cytoskeletal structure and the formation of
membrane ruffles after flow, as well as, cell rigidity under dynamic culture. However, these details
are not the main focus of this paper. Further investigations will shed light on optimal nanoparticle
parameters that can be used as smart nanoparticles for anti-cancer therapies.
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