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TOTAL ASYMPTOTICALLY NONEXPANSIVE MAPPINGS
IN UNIFORMLY CONVEX METRIC SPACES
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We approximate common fixed point of a pair of total asymptotically
nonexpansive mappings in the setting of a uniformly convex metric space.
The proposed algorithm is computationally simpler than the existing ones
in the literature of metric fixed point theory. Our results are new and are
valid in Hilbert spaces, CAT(0) spaces and uniformly convex Banach spaces
satisfying Opial’s property, simultaneously.
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1. Introduction

Let C be a nonempty subset of a metric space X and T : C → C a
mapping. A point x ∈ C is a fixed point of T if Tx = x. Denote the set of all
fixed points of T by F (T ) . We say that the mapping T is:
(i) contraction if there exists k ∈ (0, 1) such that d(Tx, Ty) ≤ kd(x, y) for
all x, y ∈ C (ii) nonexpansive if d(Tx, Ty) ≤ d(x, y) for all x, y ∈ C (iii)
asymptotically nonexpansive mapping if there is a nonnegative real sequence
{kn} such that kn → 0 and d(T nx, T ny) ≤ (1 + kn) d(x, y) for all x, y ∈
C, n ≥ 1 (iv) generalized asymptotically nonexpansive if there are nonneg-
ative real sequences {k1n} and {k2n} with k1n → 0 and k2n → 0 such that
d(T nx, T ny) ≤ (1 + k1n) d(x, y) + k2n for all x, y ∈ C, n ≥ 1 (v) asymptoti-
cally nonexpansive in the intermediate sense if it is continuous and lim supn→∞
supx,y∈C (d(T nx, T ny)− d(x, y)) ≤ 0 (vi) total asymptotically nonexpansive [2]
if there exist nonnegative real sequences {k1n}, {k2n} with k1n → 0, k2n → 0 and
a strictly increasing continuous function ψ : [0,∞) → [0,∞) with ψ(0) = 0
and d(T nx, T ny) ≤ d(x, y) + k1nψ (d(x, y)) + k2n for all x, y ∈ C, n ≥ 1 (vii)
uniformly L−Lipschitzian if d(T nx, T ny) ≤ Ld(x, y) for all x, y ∈ C, n ≥ 1
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(vii) uniformly continuous if for each ε > 0, there exists δ (ε) > 0 such that
d (Tx, Ty) < ε whenever d (x, y) < δ.

Every uniformly L−Lipschitzian mapping is uniformly continuous but
the converse is not true in general. The function T (x) =

√
x is uniformly

continuous on [0,∞) but not Lipschitz.The class of total asymptotically non-
expansive mappings is the most general as it includes the classes of mappings
mentioned in (ii)-(vi).

The Banach contraction principle is of metrical nature and its proof hings
on Picard iterations. This principle is applicable to a variety of subjects such
as integral equations, partial differential equations and image process. Picard
iterative algotithm fails to converge for nonexpansive mappings on a Banach
space. Krasnoselskii, Mann and Ishikawa iterative algorithms are employed
for the approximation of fixed points of the classes (ii)-(vi) in Hilbert spaces,
Banach spaces, CAT(0) spaces and convex metric spaces (see for example,
[2, 4, 6, 13, 26]).

To approximate common fixed point of two asymptotic nonlinear map-
pings T1, T2 : C → C in a linear domain, many authors have used the following
modified Ishikawa’s iterative algorithm[8]:

x1 = x ∈ C,
xn+1 = (1− αn)xn + αnT

n
1 yn

yn = (1− βn)xn + βnT
n
2 xn

(1)

where {αn} and {βn} are sequences in (0, 1) (also see [5, 9]).
Abbas et al. [1] introduced a new one−step iterative algorithm to com-

pute common fixed point of two asymptotically nonexpansive mappings in uni-
formly convex Banach spaces. For two asymptotically nonexpansive mappings
T1, T2 : C → C, they defined the following iterative algorithm:

x1 = x ∈ C,
xn+1 = αnT

n
1 xn + (1− αn)T n

2 xn
(2)

where {αn} is a sequence in (0, 1) .
It is worth to mention that algorithm (2) is of independent interest and

is computationally simpler than the algorithm (1) to approximate common
fixed point of two asymptotic nonlinear mappings. Neither (1) implies (2) nor
conversely. However, when T1 = I (the identity mapping) , T2 = T, both (1)
and (2) reduce to the following Mann’s iterative algorithm:

x1 = x ∈ C,
xn+1 = αnxn + (1− αn)T nxn.

(3)

A mapping W : X2 × [0, 1] → X is a convex structure on a metric space X
[16] if it satisfies the following inequality

d (u,W (x, y, α)) ≤ αd(u, x) + (1− α)d(u, y)
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for all u, x, y ∈ X and α ∈ [0, 1]. A subset C of X is convex if W (x, y, α) ∈ C
for all x, y ∈ X and α ∈ [0, 1].

A convex metric space X is uniformly convex [14] if for any ε > 0, there
exists δ (ε) > 0 such that d

(
z,W

(
x, y, 1

2

))
≤ r (1− δ (ε)) < r for all r > 0

and x, y, z ∈ X with d (z, x) ≤ r, d (z, y) ≤ r and d (x, y) ≥ rε.
Uniformly convex Banach space is linear while CAT(0) space is a nonlin-

ear uniformly convex metric space. An example of a convex metric space due
to Goebel and Reich [7] is stated as follows:

Let BH be the open unit ball in a general complex Hilbert space H and
kBH

a metric on BH (known as Kobayashi distance) defined as

kBH
(x, y) = tanh−1 (1− σ(x, y))

1
2 ,

where

σ(x, y) =

(
1− ‖x‖2

) (
1− ‖y‖2

)
|1− 〈x, y〉|2

for all x, y ∈ BH .

The open unit ball BH together with the metric kBH
is named as a Hilbert

ball. One can define a convex structure W for the corresponding convex metric
space (BH , kBH

).
In a convex metric space, (2) becomes:

x1 = x ∈ C, xn+1 = W (T n
1 xn, T

n
2 xn, αn) for all n ≥ 1 (4)

where max (αn, 1− αn) ≤ δ for some δ ∈ (0, 1) .
When T2 = I, T1 = T in (3), it becomes the following Mann iterative

algorithm[10]:
xn+1 = W (T nxn, xn, αn) for all n ≥ 1. (5)

The fixed point theory of nonexpansive mappings and its various generaliza-
tions majorly depends on the geometrical characteristics of the under con-
sideration space. The class of nonexpansive mappings enjoys the fixed point
property(FPP) and the approximate fixed point property(AFPP) in various
settings of spaces, see for example [11] for the later property for the class of
nonexpansive mappings. Therefore, it is natural to extend such results to gen-
eralized classes of nonexpansive mappings as a mean of testing the limit of
the theory of nonexpansive mappings. It is remarked that FPP and AFPP of
various generalized classes of nonexpansive mappings are still developing in a
linear and nonlinear domains. The class of uniformly convex metric space is
endowed with rich geometric structures which are helpful to obtain new re-
sults. Metric fixed point theory of nonlinear mappings in a general setup of
convex metric spaces is a fascinating field of research in nonlinear functional
analysis. Moreover, iterative algorithms are the only main tool to study fixed
point problems of nonexpansive mappings and its generalized classes in spaces
of non-positive sectional curvature.

Our purpose in this paper is to approximate common fixed point of a
pair of total asymptotically nonexpansive mappings through 4−convergence
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and strong convergence of iterative algorithm (4) in the general setup of con-
vex metric spaces. Our new setting includes, as special cases, Hilbert spaces,
uniformly convex Banach spaces with Opial’s property and CAT (0) spaces,
simultaneously.

2. Preliminaries

In this section, we give some required definitions and state some needed
results.

For a bounded sequence {xn} in a metric space X, set r(x, {xn}) =
lim supn→∞ d(x, xn) for all x ∈ X.

The asymptotic radius of {xn} with respect to C ⊆ X is defined as

r({xn}) = inf
x∈C

r (x, {xn}) .

A point y ∈ C is called the asymptotic center of {xn} with respect to C ⊆ X
if

r (y, {xn}) ≤ r(x, {xn}) for all x ∈ C.
The set of all asymptotic centers of {xn} is denoted by A({xn}).

A sequence {xn} in X, 4−converges to x ∈ X if x is the unique asymp-
totic center of {yn} for every subsequence {yn} of {xn} .A mapping T : C → C
satisfies demiclosed principle if a sequence {xn} in C that 4−converges to
a point x ∈ C and limn→∞ d(xn, Txn) = 0, then x ∈ F (T ) . A pair of
mappings T1, T2 : C → C satisfies the jointly demiclosed principle [12] if
{xn} 4−converges to a point x ∈ C and limn→∞ d(T1x, T2x) = 0, then
x ∈ F (T1) ∩ F (T2) .

Let `2 (N) =

{
w = (w1, w2, ..., wn, ...) :

∞∑
n=1

‖wn‖2 <∞
}

with ‖w‖ =

(
∞∑
n=1

‖wn‖2
) 1

2

.

Naraghirad has shown in [12] that there exists mappings T1, T2 : `2 (N)→
`2 (N) which satisfy the jointly demiclosed principle but T1 does not satisfy
demiclosed principle.

Let h : [0,∞) → [0,∞) be a nondecreasing function with h(0) = 0
and f(h) > 0 for every h > 0. Then the mappings T1, T2 : C → C with
F = F (T1) ∩ F (T2) 6= φ, satisfy condition(J) if

d(T1x, T2x) ≥ h(d(x, F )) for all x ∈ C
and condition(D) if

max (d(x, T1x), d(x, T2x)) ≥ h(d(x, F )) for all x ∈ C
where d(x, F ) = infz∈F d (x, z) .

Note that condition (J) and condition(D) becomes condition(A) [15] if
either T1 (or T2) = I (the identity mapping).

In the sequel, the following lemmas will be needed.
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Lemma 2.1. [17] If {an}, {bn} and {cn} are nonnegative real sequences satis-
fying

an+1 ≤ (1 + bn)an + cn for all n ≥ 1,
∞∑
n=1

bn <∞ and
∞∑
n=1

cn <∞,

then limn→∞ an exists.

Lemma 2.2. [3] Let C be a nonempty, closed and convex subset of a complete
and uniformly convex metric space X. Then every bounded sequence {xn} in
X has a unique asymptotic center with respect to C that lies in C.

Lemma 2.3. [4] Let X be a uniformly convex metric space. Let x ∈ X and
{an} be a sequence in [b1, b2] for some b1, b2 ∈ (0, 1). If {un} and {vn} are
sequences in X such that lim supn−→∞ d(un, x) ≤ r, lim supn−→∞ d(vn, x) ≤ r
and limn−→∞ d(W (un, vn, an) , x) = rfor some r ≥ 0, then limn→∞ d(un, vn) =
0.

3. Convergence Analysis

We start with the following technical lemma.

Lemma 3.1. Let C be a nonempty, closed and convex subset of a uniformly
convex metric space X. Let Ti (i = 1, 2) : C → C be total asymptotically non-
expansive mappings where sequences {k1n,i}, {k2n,i} and functions ψi satisfy the
following conditions:

(C1):
∞∑
n=1

k1n,i <∞ and
∞∑
n=1

k2n,i <∞;

(C2): there exist constants ai, bi > 0 such that ψi (t) ≤ ait for all t ≥ bi.
If F = F (T1) ∩ F (T2) 6= φ and {xn} is the sequence in (4), then we have the
followings assertions:
(i) limn→∞ d (xn, x) exists for each x ∈ F
(ii) limn→∞ d(T n

1 xn, T
n
2 xn) = 0

(iii) limn→∞ d(xn+1, T
n
j xn) = 0 for j = 1, 2.

Proof. By (C2) and the strictly increasing function ψi, it follows that

ψi (t) ≤ ψi (bi) + ait for i = 1, 2. (6)
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With the help of (6), we calculate for x ∈ F that

d(xn+1, x) = d (W (T n
1 xn, T

n
2 xn, αn) , x)

≤ αnd (T n
1 xn, x) + (1− αn) d (T n

2 xn, x)

≤ αn

[
d(xn, x) + k1n,1ψ1 (d(xn, x)) + k2n,1

]
+ (1− αn)

[
d(xn, x) + k1n,2ψ2 (d(xn, x)) + k2n,2

]
≤ αn

[
d(xn, x) + k1n,1 [ψ1 (b1) + a1d(xn, x)] + k2n,1

]
+ (1− αn)

[
d(xn, x) + k1n,2 [ψ2 (b2) + a2d(xn, x)] + k2n,2

]
=

[
1 + a1αnk

1
n,1 + a2 (1− αn) k1n,2

]
d(xn, x)

+αnk
1
n,1ψ1 (b1) + (1− αn) k1n,2ψ2 (b2)

+αnk
2
n,1 + (1− αn) k2n,2

≤
[
1 + aδ

(
k1n,1 + k1n,2

)]
d(xn, x)

+δa
(
k1n,1 + k1n,2

)
+ δ

(
k2n,1 + k2n,2

)
where a = max1≤i≤2 (ai, ψi (bi)) and max (αn, 1− αn) ≤ δ.
By Lemma 2.1, we see that limn→∞ d(xn, x) exists for each x ∈ F, thus

proving (i).
Next, let limn→∞ d(xn, x) = c. For c = 0, there is nothing to prove. Suppose
c > 0. Since

lim sup
n→∞

d(T n
1 xn, x) ≤ c, lim sup

n→∞
d(T n

2 xn, x) ≤ c

and
lim
n→∞

d (W (T n
1 xn, T

n
2 xn, αn) , x) = c,

therefore by Lemma 2.3, we get that

lim
n→∞

d(T n
1 xn, T

n
2 xn) = 0, (7)

that is (ii).
To prove (iii), we use the definition of {xn} to get that

d
(
xn+1, T

n
j xn

)
= d

(
W (T n

1 xn, T
n
2 xn, αn) , T n

j xn
)

≤ (1− αn) d(T n
1 xn, T

n
2 xn)

≤ δd(T n
1 xn, T

n
2 xn).

Finally with the help of (7), we have that

lim
n→∞

d(xn+1, T
n
j xn) = 0 for j = 1, 2.

�

Now we are in a position to approximate common fixed point of the
mappings T1 and T2 through 4−convergence of the sequence {xn} defined
in (4). Our first result in this direction uses L−Lipschitzian property of the
mappings and the second one uses uniform continuity.
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Theorem 3.1. Let C be a nonempty, closed and convex subset of a com-
plete and uniformly convex metric space X. Let Ti (i = 1, 2) : C → C be uni-
formly L−Lipschitzian and total asymptotically nonexpansive mappings satis-
fying jointly demiclosed principle and conditions (C1)− (C2) given in Lemma
3.1. If F 6= φ and {xn} is the sequence given in (4) with limn→∞ d (xn+1, xn) =
0, then {xn} 4−converges to an element of F.

Proof. Note that

d(T1xn+1, T2xn+1) ≤ d(T1xn+1, T
n+1
1 xn+1) + d(T n+1

1 xn+1, T
n+1
2 xn+1)

+d(T n+1
2 xn+1, T

n+1
2 xn) + d(T n+1

2 xn, T2xn+1)

≤ Ld(xn+1, T
n
1 xn+1) + d(T n+1

1 xn+1, T
n+1
2 xn+1)

+Ld(xn+1, xn) + Ld(T n
2 xn, xn+1)

≤ L [d(xn+1, T
n
1 xn) + d (T n

1 xn, T
n
1 xn+1)] + Ld(xn+1, xn)

+d(T n+1
1 xn+1, T

n+1
2 xn+1) + Ld(T n

2 xn, xn+1)

≤ L [d(xn+1, T
n
1 xn) + d(xn+1, T

n
2 xn)]

+d(T n+1
1 xn+1, T

n+1
2 xn+1) + L (1 + L) d(xn+1, xn).

This inequality together with Lemma 3.1 (ii)-(iii) and limn→∞ d (xn+1, xn) = 0
gives that

lim
n→∞

d(T1xn, T2xn) = 0. (8)

Suppose that T1 and T2 satisfy jointly demiclosed principle. Let {yn} be any
subsequence of {xn} such that A({yn}) = {y}. As {yn},4−converges to y and

lim
n→∞

d(T1yn, T2yn) = 0,

so y ∈ F. Therefore limn→∞ d(xn, y) exists by Lemma 6. If x 6= y, then by the
uniqueness of asymptotic centres(Lemma 2.2), we have

lim sup
n→∞

d(yn, y) < lim sup
n→∞

d(yn, x)

≤ lim sup
n→∞

d(xn, x)

< lim sup
n→∞

d(xn, y)

= lim sup
n→∞

d(yn, y),

a contradiction. Hence x = y.
Therefore, A({yn}) = {x} for all subsequences {yn} of {xn}. This proves that
{xn}, 4−converges to an element of F.

�

Theorem 3.2. Let C be a nonempty, closed and convex subset of a complete
and uniformly convex metric space X. Let Ti (i = 1, 2) : C → C be uniformly
continuous and total asymptotically nonexpansive mappings satisfying the in-
equality: d (xn, T

n
1 xn) ≤ d(T n

1 xn, T
n
2 xn) and conditions(C1) − (C2) given in
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Lemma 3.1. If F 6= φ and {xn} is the sequence in (4), then {xn} 4−converges
to an element of F.

Proof. The given inequality

d (xn, T
n
1 xn) ≤ d(T n

1 xn, T
n
2 xn)

together with Lemma3.1 (ii) provides that

lim
n→∞

d (xn, T
n
1 xn) = 0. (9)

Next the inequality

d (xn, T
n
2 xn) ≤ d (xn, T

n
1 xn) + d(T n

1 xn, T
n
2 xn),

Lemma 3.1 (ii) and (9) all together imply that

lim
n→∞

d (xn, T
n
2 xn) = 0. (10)

Also the following inequality

d (xn+1, xn) ≤ d(xn+1, T
n
2 xn) + d(xn, T

n
2 xn),

Lemma 3.1 (iii) and (10) all together provide that

lim
n→∞

d (xn+1, xn) = 0. (11)

Finally the inequality

d (xn+1, Tjxn+1) ≤ d
(
xn+1, T

n+1
j xn+1

)
+ d

(
T n+1
j xn+1, T

n+1
j xn

)
+d
(
Tj
(
T n
j xn

)
, Tjxn+1

)
with the help of Lemma 3.1 (iii), (9)-(11) and uniform continuity of Tj yields
that

lim
n→∞

d (xn, Tjxn) = 0 for j = 1, 2. (12)

It has been taken in Theorem 3.1 that A({xn}) = {x} and A({yn}) = {y} for
any subsequence {yn} of {xn}. Also for the subsequence {yn}, we have

lim
n→∞

d(yn, Tjyn) = 0 for j = 1, 2. (13)

Define a sequence {zi} in C by zi = T i
1y. In the presence of strictly increasing

function ψ1,(C2) and uniformly L−Lipschitzian mapping T1, we calculate that

d(zi, yn) ≤ d(T i
1y, T

i
1yn) + d(T i

1yn, T
i−1
1 yn) + · · ·+ d(T1yn, yn)

≤ d (y, yn) + k1n,1ψ1 (d (y, yn)) + k2n,1 +
i−1∑
r=0

d(T r
1 yn, T

r+1
1 yn)

≤
(
1 + k1n,1a1

)
d(y, yn) + k1n,1ψ1 (b1) + k2n,1 +

i−1∑
r=1

d(T r
1 yn, T

r+1
1 yn)

≤
(
1 + k1n,1a1

)
d(y, yn) + k1n,1ψ1 (b1) + k2n,1 + iLd(T1yn, yn).
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This estimate together with (13) implies that

r(zi, {yn}) = lim sup
n→∞

d(zi, yn) ≤ lim sup
n→∞

d(y, yn) = r(y, {yn}).

That is, |r(zi, {yn})− r(y, {yn})| → 0 as i → ∞. It follows from Lemma 2.2
that limi→∞ T

i
1y = y. Utilizing the uniform continuity of Tj, we have that

Tj(y) = Tj(limi→∞ T
i
jy) = limi→∞ T

i+1
j y = y.Therefore y ∈ F (T1) . Similarly,

we can show that y ∈ F (T2) . That is, y ∈ F. The rest of the proof is the same
as carried out in Theorem 3.1. �

We now prove a strong convergence theorem in general convex metric
space.

Theorem 3.3. Let C be a nonempty, closed and convex subset of a convex
metric space X. Let Ti (i = 1, 2) : C → C be total asymptotically nonexpansive
mappings satisfying conditions (C1) − (C2) given in Lemma 3.1. If F 6= φ,
then {xn} given in (4), strongly converges to an element of F if and only if
lim infn→∞ d(xn, F ) = 0.

Proof. Necessity is obvious. Conversely, suppose that lim infn→∞ d(xn, F ) = 0.
In the proof of Lemma 3.1, we have shown that

d(xn+1, x) ≤
[
1 + aδ

(
k1n,1 + k1n,2

)]
d(xn, x)

+ δa
(
k1n,1 + k1n,2

)
+ δ

(
k2n,1 + k2n,2

)
.

(14)

On setting d1n = aδ
(
k1n,1 + k1n,2

)
and d2n = δa

(
k1n,1 + k1n,2

)
+ δ

(
k2n,1 + k2n,2

)
, we

note that
∑∞

n=1 d
1
n <∞ and

∑∞
n=1 d

2
n <∞. Hence (14) becomes

d (xn+1, x) ≤
(
1 + d1n

)
d (xn, x) + d2n. (15)

By taking infx∈F on both sides of (15), we obtain that

d (xn+1, F ) ≤
(
1 + d1n

)
d (xn, F ) + d2n.

Applying Lemma 2.1 to (15), we get that limn→∞ d(xn, F ) exists; but by the
hypothesis lim infn→∞ d(xn, F ) = 0, we conclude that limn→∞ d(xn, F ) = 0.
Next, we claim that {xn} is a Cauchy sequence. Assume that

∑∞
n=1 d

1
n =

d0 and hence
∏∞

n=1 (1 + d1n) = d0. For ε > 0,there exists n0 ≥ 1 such that
d(xn0 , F ) < ε

4d0+4
and

∑∞
n=n0

d2n <
ε

4d0
. Let m > n ≥ n0. Then with the help
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of (15), we obtain

d (xm, xn) ≤ d (xm, F ) + d (xn, F )

≤
m−1∏
i=n0

(
1 + d1i

)
d (xn0 , F ) +

m−1∏
i=n0

(
1 + d1i

) m−1∑
n=n0

d2i

+
n−1∏
i=n0

(
1 + d1i

)
d (xn0 , F ) +

n−1∏
i=n0

(
1 + d1i

) n−1∑
n=n0

d2i

≤
∞∏

i=n0

(
1 + d1i

)
d (xn0 , F ) +

∞∏
i=n0

(
1 + d1i

) ∞∑
n=n0

d2i

+
∞∏

i=n0

(
1 + d1i

)
d (xn0 , F ) +

∞∏
i=n0

(
1 + d1i

) ∞∑
n=n0

d2i

< 2

[(
1 + d0

) ε

4d0 + 4
+
εd0

4d0

]
= ε.

This proves that {xn} is a Cauchy sequence in C. Let limn→∞ xn = q. Then
d (q, F ) = d (limn→∞ xn, F ) = limn→∞ d (xn, F ) = 0. As F is closed, so we
obtain q ∈ F. Hence {xn} strongly converges to a point of F. �

Our next theorems are applications of Theorem 3.3 and make use of
condition(J) and condition(D) .

Theorem 3.4. Let C be a nonempty, closed and convex subset of a com-
plete and uniformly convex metric space X. Let Ti (i = 1, 2) : C → C be uni-
formly L−Lipschitzian and total asymptotically nonexpansive mappings sat-
isfying condition(J) and conditions (C1) − (C2) as given in Lemma 3.1. If
{xn} is the sequence in (4) with limn→∞ d (xn, xn+1) = 0, then {xn} strongly
converges to an element of F.

Proof. In the proofs of Theorem 3.1 and Theorem 3.3, we have shown that
limn→∞ d(T1xn, T2xn) = 0 and limn→∞ d(xn, F ) exists, respectively.

By using condition (J), we have that

lim
n→∞

h(d(xn, F )) ≤ lim
n→∞

d(T1xn, T2xn) = 0.

Since h is a nondecreasing function and h(0) = 0,therefore limn→∞ d(xn, F ) =
0. Now, applying Theorem 3.3, we get the required conclusion. �

Theorem 3.5. Let C be a nonempty, closed and convex subset of a complete
and uniformly convex metric space X. Let Ti (i = 1, 2) : C → C be uniformly
continuous and total asymptotically nonexpansive mappings satisfying condi-
tion(D) and conditions (C1)−(C2) given in Lemma 3.1. If {xn} is the sequence
in (4) with d (xn, T

n
1 xn) ≤ d(T n

1 xn, T
n
2 xn), then {xn} strongly converges to an

element of F.
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Proof. In the proof of Theorem 3.2, we have shown that limn→∞ d(xn, T1xn) =
0 = limn→∞ d(xn, T2xn). Also limn→∞ d(xn, F ) exists as shown in Theorem 9.

By using condition (D), we have that

lim
n→∞

h(d(xn, F )) ≤ max
[

lim
n→∞

d(xn, T1xn), lim
n→∞

d(xn, T2xn)
]

= 0.

The rest of the proof is the same as the proof of Theorem 3.4. �

4. Conclusions

We conclude that:
(i) Hilbert spaces and CAT (0) spaces are uniformly convex metric spaces,
therefore our results hold in these spaces immediately.
(ii) Nonexpansive mappings, asymptotically nonexpansive mappings, general-
ized asymptotically nonexpansive mappings and asymptotically nonexpansive
mappings in the intermediate sense all are total asymptotically nonexpansive,
therefore our theorems hold for these mappings straightforward.
(iii) When T1 = I(the identity mapping), T2 = T, all the above theorems re-
main valid for the Mann’s iterative algorithm(5).
(vi) One can easily establish results of this paper for nonself total asymp-
totically nonexpansive mappings in CAT(0) spaces. The new results will be
analogue of the results of Zhou et al. [26].
(v) The variational inequality problem and split feasibility problem in certain
situations can be converted into a fixed point problem, therefore it is expected
that our results will be helpful to address these types of problems; for instance,
see [21, 22, 23, 24, 25].
(vi) The established results are interesting for applied mathematics and can
be utilized for further research studies; to explore more in this direction, we
refer the reader to consult [18, 19, 20, 21, 22, 23, 24, 25].
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