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Abstract 

With growing interest in commercialization of synthetic zeolites, impetus is on the optimization of 

its production process. This, however, requires a thorough understanding of the zeolitization process 

and apropos reaction mechanism(s). The preferred commercial production route for synthesis of 

zeolites is hydrothermal treatment of coal fly ash in a strong alkali solution at elevated temperatures. 

The process involves several parameters, such as reaction temperature, time, the concentration and 

amount of alkali solution, and silica content in the fly ash, which strongly affect the conversion. 

These parameters appear to have an arbitrary effect on the yield of zeolite. In order to gain insights 

into the process and thereby, the reaction mechanism(s), we herein propose a conversion model 

using zero-order Takagi-Sugeno fuzzy system and optimize it further. The model is designed and 

developed, using the data, both from literature and our experiments, and is later optimized to 

provide accurate inferences. Results clearly illustrate that the model is able to accurately predict the 

conversion percentage of zeolite for a given set of reaction parameters. Average deviation between 

the model predictions and experimental values for zeolite yield is observed to be less than 5%. 

Moreover, the model also assists in characterizing the dependence of conversion on individual 

parameters, which further sheds light on the mechanism(s) of zeolite formation.   
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Introduction   

Environmental Protection Agency estimates a discharge of coal fly ash (CFA), a by-product 

from combustion of coal in electric power stations, to as high as 140 million tons per year. 

Considering the huge quantities of CFA generated and the fact that it causes serious environmental 

and health problems [1-3], further investigation on the management of CFA is essential. One of the 

efficient ways of converting CFA into a value-added product is producing synthetic zeolites [4-7], 

which have a wide range of application, particularly in the field of agricultural, pollution treatment, 

and catalysis [8]. While synthetic zeolites can also be produced using various raw materials as clay 

minerals [9-11] and siliceous minerals [12], CFA is considered as suitable stock material due to its 

negligible cost, abundant availability, and possibility to produce different zeolites by altering 

reaction conditions [13]. The chemical composition of zeolite and CFA is almost the same; 

however, these two differ in their crystallinity: CFA is mainly composed of amorphous structure, 

while zeolite has a well-defined crystalline structure [16]. In addition, zeolite has higher cation 

exchange capacity (CEC), larger surface area, and also demonstrates superior thermal stability [17] 

than CFA and hence further enhances utilization sectors. 

Immense interest has been shown by industries for commercializing the process to convert 

CFA. Following the interest, over the past decades, there have been numerous studies on synthesis 

of zeolites from CFA on lab-, pilot-, and also on industrial-scale [13-15]. For example, Wdowin et 

al. [13] with their sub-pilot scale converted 20 kg of CFA to NaP1 zeolite with a purity of 81%. 

Similarly, studies also demonstrate economic feasibility to manufacture zeolitic adsorbents from 

coal fly ash thereby allowing its potential utilization [14, 15]. There are several existing methods for 

production of zeolites from CFA, such as hydrothermal conversion using alkaline solutions [8, 16, 

17], microwave-assisted [2], ultrasound-assisted [4, 18, 19], fusion followed by hydrothermal 
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synthesis [20-23], and salt-thermal production [24] process. However, hydrothermal synthesis, that 

is multiphase crystallization including both amorphous and crystalline solid phases and at least one 

liquid phase [25], is still the most promising and widely applied method. According to this method 

the raw coal fly ash is dissolved in alkaline solution, usually NaOH, to extract aluminate and silicate 

constituents, which then undergoes heat treatment to produce zeolite crystals [15, 26]. Despite the 

fact that there are numerous investigations that have already been recorded and published on 

hydrothermal synthesis of zeolites, the underlying mechanism of zeolite formation is not well 

understood and thus the production process are still not optimized.  

There are several parameters that affect the zeolitization process, viz., alkali concentration, 

time, reaction temperature, loading ratio (volume of the alkali solution to weight of CFA, i.e, liquid 

to solid ratio, L/S), and Si/Al ratio in CFA [8, 16, 17, 27]. Depending on these conditions it is 

possible to obtain different purity and type of synthetic zeolites, such as zeolite A [6], zeolite Na-P 

[4], sodalite [28] etc. The available data in the literature on hydrothermal conversion of zeolites 

from CFA to emphasize the effect of process conditions on conversion efficiency are summarized in 

Table 1.   

Table 1: Effect of process conditions on hydrothermal synthesis of synthetic zeolites from CFA. 

# 
Conc.a Time Temperature L/Sb 

Si/Al Zeolite type 
Conv.c Ref. 

(M)  (h) (°C) (ml/g) % 
 

1 1 24 80-130 2 1.29 NaP1 20 {d} 

2 1 48 122-166 2 1.29 NaP1 60 {d} 

3 1 48 126-192 2 1.29 NaP1/Analcime 80 {d} 

4 1 48 100-130 2 1.29 NaP1/Analcime 75 {d} 

5 2 24 92-114 1.25 1.29 NaP1/Analcime 75 {d} 

6 2 24 100-110 1.25 1.29 NaP1 75 {d} 

7 2 24 90-100 1.25 1.29 NaP1 75 {d} 

8 2 48 80-130 1.25 1.29 NaP1 65 {d} 

9 2 22 125-187 2 1.29 NaP1 60 {d} 

10 2 72 120-190 2 1.29 NaP1/Analcime 80 {d} 
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11 2 72 130-160 2 1.29 NaP1/Analcime/chabazite 80 {d} 

12 2 24 131-174 2.5 1.29 NaP1/Analcime 65 {d} 

13 2 48 110-180 2.5 1.29 NaP1/Analcime 75 {d} 

14 2 48 110-160 2.5 1.29 Analcime 60 {d} 

15 1 24 90 20 1.44 NaP1 19.8 {e} 

16 1 24 110 20 1.44 NaP1 45.3 {e} 

17 1 48 90 20 1.44 NaP1 48.3 {e} 

18 3 24 90 20 1.44 NaP1 39.6 {e} 

19 1 48 110 20 1.44 NaP1 47 {e} 

20 3 24 110 20 1.44 NaP1 55.9 {e} 

21 3 48 90 20 1.44 NaP1 35.5 {e} 

22 3 48 110 20 1.44 NaP1 78 {e} 

23 0.5 24 150 18 2.9 NaP1/Analcime 44 {f} 

24 1 24 150 18 2.9 NaP1/Analcime 50 {f} 

25 0.5 24 150 18 2.7 NaP1/Analcime 44 {f} 

26 3.5 24 150 18 2.7 Cancrinite/Sodalite/Z-X 21 {f} 

27 1 24 150 18 2.7 NaP1/Analcime 60 {f} 

28 2 24 100 18 2.7 NaP1 17 {f} 

29 3 24 100 18 2.7 NaP1/Sodalite/Z-X 48 {f} 

30 3.5 24 100 18 2.7 NaP1/Sodalite 35 {f} 

31 3 24 75 20 1.88 Na-X 50 {g} 

a: Concentration of alkali; b: volume of the alkali solution to weight of CFA; c: Total conversion of CFA to zeolite; irrespective of 

the type of zeolite formed; d: As reviewed by Wang et al. [29], e: Our experiments; details mentioned below, f: Experiments by 

Cardoso et al. [27], g: Experiments by Derkowski et al. [30].   

 

Table 1 indicates strong, non-monotonic, and to some degree, random dependence of 

conversion on process conditions. For example, a slight change in loading ratio from 2 to 1.25 

strongly increases conversion from 20% to 75% (see point 1 and 7). However, increasing the 

loading ratio to 18 brings conversion to 50% (see point 1 and 15). There are several other 

comparisons that can be done to highlight the random behavior. At this point, we also emphasize 

that the values reported in the literature are all experimentally determined and thus might be 

subjected to statistical errors but we presume that all the values are repeatable. In this reference, the 

experiments presented in this paper had maximum standard deviation of 5% for conversion. The 

details of experimentations are mentioned later.  



6 
 

In order to commercialize zeolitization of CFA, optimization of process conditions is 

essential to maximize the yield. The intricacy of the reaction mechanism(s) is too complicated to be 

analytically model, which is vital in order to optimize the zeolitization process. However, as shown 

above, the interdependence between the antecedents and the consequents of the process is quite 

uncertain, ambiguous and nonlinear. To the best of our knowledge, no theoretical or mathematical 

reaction model exists to explain or determine zeolite conversion from CFA. While conventional 

numerical and analytical modelling techniques may not emulate such processes with precision, there 

exist heuristic methods which can effectively modeled uncertain and ambiguous systems.  

Fuzzy logic is one of such heuristic methods whereby the available quantitative data is 

converted into qualitative data and a logical inference is drawn using appropriately designed rule-

base. In the present research, a fuzzy logic-based system is developed in order to identify and model 

the mechanism of zeolitization process. Building blocks of the proposed system and their 

development is further elaborated in the next section. We believe the method we propose will 

inherently assist in better understanding of zeolitization mechanism and in finding optimum reaction 

parameters, which correspondingly emphasizes the necessity for this type of research. We begin 

with details on experiments conducted to convert fly ash to zeolites followed by the architecture of 

the fuzzy system used.  

Materials and Methodology 

A representative coal fly ash (CFA) sample with a composition typical of the average CFA 

output was collected from the electrostatic precipitators of coal-fired power plant of Astana, 

Kazakhstan under maximum electricity load. All CFA samples were used as received without 

preliminary washing and sieving. Prior to experiment CFA samples were homogenized and dried in 
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oven at 70 °C for 12 h.  The sodium hydroxide of analytical grade (Fischer Scientific, pearls, >97%) 

was used to prepare an alkaline solution with various concentrations.   

To produce synthetic zeolite (ZFA), CFA underwent an alkaline hydrothermal treatment at 

90-110°C, using NaOH with concentrations of 1 or 3 M as an activation solution, in a 1L heavy-

walled glass reactor. The incubation period was set at 24 hours (unless specified otherwise) and a 

mixing rate was set constant at 125 rpm for all experiments. After set period, the mixture was 

filtered and washed several times until no NaOH was detected. The mineralogical compositions of 

the CFA and zeolites were determined by X-Ray Diffraction (XRD, Rigaku SmartLab) and the 

compositions were used to compute percentage conversion to zeolites. Factorial analysis was carried 

using three parameters, namely the reaction temperature, time, and alkali concentration, following 

which eight experiments were designed, as mentioned later in Table 4, to investigate the effects of 

the parameters on CFA on zeolite conversion.  

Fuzzy system architecture 

The proposed fuzzy logic based system is also known as Takagi-Sugeno (TS) fuzzy system 

which was first introduced by Takagi and Sugeno [31] and has been extensively used in diverse 

applications across disciplines. Essentially, there are three main building blocks which are required 

to be defined in developing a fuzzy based system. Fuzzification of antecedent and consequent 

variables is the first block while construction of a rule-base, describing the relationship between 

variables, is the second building block. Formulation of an inference mechanism to provide 

numerical values of output or consequent variables is the third building block of the fuzzy systems. 

The fuzzy system developed during this research is further explained in terms of these building 

blocks in the ensuing section.  
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Fuzzification: Fuzzification is the process whereby crisp antecedent and consequent 

variables are defined as fuzzy variables. In the present research there are five antecedent variables 

namely, molar concentration, temperature, time, mixture loading ratio (L/S), and Si/Al. The output 

variable is the percentage zeolite conversion (Conv.) from Table 1. First, we convert the antecedent 

variables into fuzzy variables using fuzzy sets. We choose the Gaussian distribution for the shape of 

the Activation Functions (AFs) since they provide smooth transition between AFs. Later, we decide 

on the number of AFs and their parameters such as mean and standard deviation. Number of AFs for 

𝑖𝑡ℎ input (𝑀𝑖), can be two or more depending on the accuracy of results required. However, we can 

automatically compute the points of minimum fuzziness (or center points of AFs shown by B & C in 

Figure 1) and standard deviations (𝜎𝑖) of AFs along with the range of variables (𝑅𝑖) using extreme 

values (i.e. minimum and maximum) of variables (𝑣𝑖) during execution of the algorithm using eq. 

(1-3).  

𝑅𝑖 = (1.25 ∗ max(𝑣𝑖) − 0.75 ∗ min(𝑣𝑖))                                                   (1) 

𝐴𝑖 = 0.75 ∗ min(𝑣𝑖) ; 𝐵𝑖 = 𝐴𝑖 +
 𝑅𝑖

(2𝑀𝑖−1)
; 𝐶𝑖 = 𝐵𝑖 +

 𝑅𝑖

(2𝑀𝑖−1)
; 𝐷𝑖 = 1.25 ∗ max(𝑣𝑖)                     (2)                                      

𝜎𝑖 = 𝑅𝑖/(2 ∗ (2𝑀𝑖 − 1))                                                                    (3) 

 

Figure 1: Minimum fuzziness points of a Gaussian AF  

Heuristic models such as the one we discuss here can be assessed based on two parameters 

namely, interpretability and accuracy. Unfortunately, these two parameters are conversely related 
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and the designers normally have to trade off the accuracy for the sake of interpretability. 

Accordingly, in order to have better interpretability and avoid overfitting of data, the antecedent 

variables are all defined using only two AFs as shown in the Figure 2. The AFs, for the sake of 

discrimination, are named as Low (L) and High (H). 

The consequent variables are not defined in the beginning rather these are obtained during 

the course of the algorithm. We obtained a set of real numbers for consequent variables while using 

a zero order TS fuzzy system. We are not considering higher order fuzzy systems in the present 

case, which provide polynomial functions for consequent variables, due to their non-linearity and 

subsequent higher complexity. We should also note that in Table 1, certain data points have range of 

values for temperature; and in such cases, an average value was used.     

 

Figure 2: Fuzzification of antecedent variables of the fuzzy system 

Rule-base Development: During design of fuzzy systems, development of a rule-base is an 

important task which requires expert knowledge and meticulous data analysis. The rule-base of a TS 
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fuzzy system relates the fuzzy antecedent and crisp consequent variables using if-then statements 

and has the following structure. 

𝐼𝑓𝑐𝑜𝑛𝑐. 𝑖𝑠 𝑙𝑜𝑤, 𝑡𝑖𝑚𝑒 𝑖𝑠 ℎ𝑖𝑔ℎ, … … … . 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 (𝐶𝑅)𝑖𝑠 𝑦𝑖 

Fundamentally, we derive the total number of rules (𝑁𝑟) from the number of input variables 

(𝑛) and AFs (𝑚𝑘) using following relation. 

𝑁𝑟 = ∏ 𝑚𝑘
𝑛
𝑘=1                                                                           (4) 

  Therefore, in the present system where there are five input variables and each of these is 

defined using two AFs, the total number of rules in the rule-base is 25=32. Accordingly, the set of 

consequent variables shall also have 32 real numbers for the present zero order TS fuzzy system. We 

identify the consequent variables using the pseudo-inverse operator in the inference mechanism 

block as explained in the following Section. 

Inference mechanism: In order to calculate output conversion of zeolite (𝐶𝑜𝑛𝑣.) from the 

fuzzy model for given inputs, we compute weighted average from all the individual rules and 

multiply with the set of consequent variables. In fact, computation of output from the fuzzy model is 

a two-step procedure which is based on a weighted average defuzzifier [32]. Firstly, we evaluate 

degrees of fulfilment (𝑤𝑖) for 𝑘𝑡ℎ input (𝐼𝑘) from all the rules using (5-8). Here activations of input 

variables in ‘Low’ and ‘High’ AFs are given by 𝐴𝑘𝐿(𝐼𝑘) and 𝐴𝑘𝐻(𝐼𝑘) respectively and calculated 

using (5 & 6). Constant ‘𝑎’ in the equations is given by 1/(σ√2π) while 𝑒 denotes the Euler’s 

number. The degrees of fulfilment (𝑤𝑖) for ith input from all the rules are calculated using a product 

operation (8). In the subsequent step we compute the final output (𝐶𝑜𝑛𝑣.) using weighted average of 

the individual rule fulfilments using (9). 𝑃𝑖𝑘 is the selection vector which chooses the activation 

function to be used in input 𝑘 and rule 𝑖.
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𝐴𝑘𝑚(𝐼𝑘) = 𝑎𝑒
−

(𝐼𝑘−�̅�𝑘𝑚)
2

2𝜎𝑘𝑚
 ; 

                𝑤ℎ𝑒𝑟𝑒    𝑚 = 𝐿, 𝐻                                        (5) 

𝐴𝑘(𝐼𝑘) = [𝐴𝑘𝐿 𝐴𝑘𝐻]𝑇                                                                    (7) 

𝑤𝑖 = ∏ 𝑃𝑖𝑘𝐴𝑘(𝐼𝑘)5
𝑘=1                                                                    (8) 

𝐶𝑜𝑛𝑣. =
∑ (𝑤𝑖.𝑦𝑖)

𝑁𝑟
𝑖=1

∑ 𝑤𝑖
𝑁𝑟
𝑖=1

                                                                       (9) 

In equation (9) above 𝑦𝑖 is the vector of 32 consequent values which is required to be identified 

in order to compute the final output from the model. As explained above, this vector is also the 

consequent part of the rule-base. Apparently, (9) can be further rewritten as (10), with 𝑋 being a 

regressor vector or a vector of normalized weights (𝑤𝑖/𝑠𝑢𝑚(𝑤𝑖)) coming from all the rules for a 

given set of inputs. Here 𝑊 is the weight vector and it consists of the consequent parameters. 

𝐶𝑜𝑛𝑣. = 𝑋 ∗ 𝑊                                                                      (10) 

Interestingly, when multiple observations (of inputs and corresponding outputs) are available 

from experiments, we can obtain the weight vector (𝑊) using a regression technique. Normally, the 

regressor matrix is non invertible and therefore we use its pseudoinverse to solve for 𝑊 (11).  

𝑊 = 𝑋−1 ∗ 𝐶𝑜𝑛𝑣.                                                                   (11) 

𝑊 = (𝑋𝑇 ∗ 𝑋)−1 ∗ 𝑋𝑇 ∗ 𝐶𝑜𝑛𝑣.                                                       (12) 

Using (11 & 12) we can obtain a vector of consequent parameters which will minimize the error 

between the predicted 𝐶𝑜𝑛𝑣. and the target 𝐶𝑜𝑛𝑣. from experiments.   
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Optimization of fuzzy model  

To begin with, we intuitively decide the parameters of fuzzy system such as mean and 

standard deviation of the fuzzy AFs. However, such a system may not accurately represent the 

zeolitization process and therefore fuzzy system parameters are required to be tuned in order to 

optimize the fuzzy model for enhanced accuracy. Or in other words, we need to optimize the fuzzy 

model in such a manner so that we minimize the prediction error from the model. Since, we tune the 

parameters within their limiting values; it is a constrained optimization problem which involves 

multiple variables which may be non-linear in nature. We use the available data (set of inputs and 

zeolite yield) to tune fuzzy parameters and produce the desired system model. Herein, we tune the 

fuzzy parameters by using a gradient descent algorithm which minimizes an objective error function 

(𝐸) as described below.  

Minimize  

𝐸 =
1

𝑁
∑ [

1

2
(|𝐶𝑝| − |𝐶𝑝

𝑒|)2]𝑁
𝑝=1                                                    (13) 

Here, 𝐸 is the expected value of the squared errors for the magnitude of zeolite yield while 𝑁 

stands for the total number of experimental observations. Further, we denote the output from the 

fuzzy model by 𝐶𝑝 whereas 𝐶𝑝
𝑒 is the zeolite yield from 𝑝𝑡ℎ experiments for the same set of inputs. 

We propose zero order TS fuzzy model that has five inputs and each of these we define using two 

AFs (Figure 2), which means that the total number of AFs is 10. Further, we describe each of the 

Gaussian AF by two parameters namely, mean and standard deviation. Therefore, there are 20 

parameters for the antecedent fuzzy variables which are required to be tuned. 

Using gradient descent method, we can update the fuzzy parameters in order to minimize the 

objective error function (13). We can formulate the update rule for various parameters as (14).  
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𝑝𝑘𝑚(𝑡 + 1) = 𝑝𝑘𝑚(𝑡) −
𝛼

𝑁
∑

𝜕𝐸𝑝

𝜕𝑝𝑘𝑚

𝑁
𝑝=1                                               (14) 

Here in equation (14), 𝑝𝑘𝑚 is the vector of antecedent fuzzy AF parameters for 𝑘𝑡ℎ input and 

𝑚𝑡ℎ AF. Number of epochs is given by ‘𝑡’, constant ‘𝛼’ is used for the learning rate which usually 

decide the quantum of change in the parameters following every iteration and ‘𝑁’ denotes the 

number of observations available for tuning. Partial derivatives for the parametric updates shown in 

(14) we can calculate using the following chain rule. 

𝜕𝐸𝑝

𝜕𝑝𝑘𝑚
= ∑ (

𝜕𝐸𝑝

𝜕𝐶𝑝
.

𝜕𝐶𝑝

𝜕𝑤
𝑖
𝑝 .

𝜕𝑤𝑖
𝑝

𝜕𝐴𝑘𝑚
𝑝 .

𝜕𝐴𝑘𝑚
𝑝

𝜕𝑝𝑘𝑚
)𝑁

𝑝=1                                                      (15) 

The partial derivatives in the chain rule we can further calculate as below. 

Since      𝐸𝑝 =
1

2
(|𝐶𝑝| − |𝐶𝑝

𝑒|)2;         
𝜕𝐸𝑝

𝜕𝐶𝑝
= (|𝐶𝑝| − |𝐶𝑝

𝑒|)                                         (16)                                 

Further since   𝐶𝑝 =
∑ (𝑤𝑖.𝑦𝑖)

𝑁𝑟
𝑖=1

∑ 𝑤𝑖
𝑁𝑟
𝑖=1

;         
𝜕𝐶𝑝

𝜕𝑤
𝑖
𝑝 =

(𝑦𝑖
𝑝

−𝐶𝑝)

∑ 𝑤
𝑖
𝑝𝑁𝑟

𝑖=1

                                                   (17) 

Using     𝑤𝑖
𝑝 = ∏ 𝑃𝑖𝑘𝐴𝑘

𝑝(𝐼𝑘
𝑝)5

𝑘=1 ;    for   
𝜕𝑤𝑖

𝑝

𝜕𝐴𝑘𝑚
𝑝 = 𝑃𝑖𝑘

𝜕𝐴𝑘
𝑝

𝜕𝐴𝑘𝑚
𝑝 ∏ 𝑃𝑖𝐾𝐴𝐾

𝑝 (𝐼𝐾
𝑝)𝐾≠𝑘                                (18) 

Finally, we can compute a partial derivative 
𝜕𝐴𝑘𝑚

𝑝

𝜕𝑝𝑘𝑚
 where 𝐴𝑘𝑚

𝑝 (𝐼𝑘
𝑝) = 𝑎𝑒

−
(𝐼𝑘−�̅�𝑘𝑚)

2

2𝜎𝑘𝑚
 ; 

 with respect 

to two parameters namely,  𝐼�̅� and 𝜎𝑘 taking care that the activation values should always be greater 

than zero. Thus, having obtained all the partial derivatives, we compute the chain rule mentioned in 

(15) and use it to update equation (14) to revise the parameters and reduce the error function. The 

results are shown in Figure 3. We are not optimizing the consequent variables in the fuzzy model, 

which we identify using pseudo-inverse of the previously obtained regressor matrix (11, 12).  
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The gradient descent approach that we describe here works iteratively in two stages: initially we 

perform the pseudo-inverse operation to identify the consequent variables for the initial assumed 

antecedent parameters and then we update the antecedent parameters using the error signal and the 

update equation (14). The expected value of the squared errors, Ep, decreases gradually with the 

number of iterations, reaching a minimum value of 4.3 within approximately 100 iterations. Further, 

Table 2 shows the values of vector, 𝑦𝑖 after optimization, whereas the corresponding values of 

parameters B, C, and sigma are mentioned in Table 3.  

 

  Figure 3: Minimization of expected value of the squared errors 

Table 2: Vector of optimized consequent parameters (W) used in the fuzzy model for 

conversion prediction. 

𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 𝑦7 𝑦8 
865172.0 -4372720 -117809.0 510856.0 -119494.0 574073.0 15231.11 -64196.02 

𝑦9 𝑦10 𝑦11 𝑦12 𝑦13 𝑦14 𝑦15 𝑦16 
64706.02 341811.8 4192.489 -8472.62 -2940.70 43662.40 8661.60 34265.87 

𝑦17 𝑦18 𝑦19 𝑦20 𝑦21 𝑦22 𝑦23 𝑦24 
-13166.55 -8997.181 489.3450 2049.933 -6313.479 193230.8 3220.417 -22374.79 

𝑦25 𝑦26 𝑦27 𝑦28 𝑦29 𝑦30 𝑦31 𝑦32 
12235.96 1252.068 1835.888 -9821.161 -30171.53 8724.090 4004.200 -6834.360 
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Table 3: Points of minimum fuzziness (B & C in Figure 1), and standard deviation (σ) before 

and after optimization, for all five variables. 

Parameter 

B C SIGMA 

Initial 

values 

After 

optimization 

Initial 

values 

After 

optimization 

Initial 

values 

After 

optimization 

Concentration 01.71 00.33 03.04 03.74 00.80 00.62 

Time 41.00 22.03 65.50 72.03 14.70 21.26 

Temperature 103.75 75.01 151.25 159.00 28.50 35.68 

L/S 08.96 01.26 16.98 19.97 04.81 07.99 

Si/Al 01.85 01.33 02.74 02.79 00.53 00.82 

 

Results and Discussion 

We begin with the results of our experiments on synthesis of zeolites. As mentioned above, the 

parameters that were varied during synthesis of zeolite are concentration of alkaline solution, 

reaction time, temperature. Liquid to solid (L/S) was kept fixed at 20 ml/g and silica to alumina 

(Si/Al) ratio at 1.44 (the CFA samples collected in Astana, Kazakhstan has a Si/Al ratio of 1.44). 

The experiments were performed in duplicates and the reported conversion values are the average of 

two runs. The standard deviation between all the duplicate experiments was less than 5%. According 

to factorial analysis results, as shown in Table 4, if we consider the effect of one experimental 

parameter while keeping the others constant, it is obvious that the effect of reaction temperature and 

time is essential. In addition, we note that the effect of alkali concentration is minor compared to 

other parameters. When we consider the synergetic effect of two experimental parameters, we could 

observe a significant positive effect of temperature in combination with time and alkali 

concentration. However, the most noticeable positive effect in terms of conversion was observed 

when three experimental parameters were increased to highest values (within our experimental 

range). 
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Table 4: Parameters applied in production of synthetic zeolite from CFA based on factorial 

analysis. L/S = 20 ml/g and Si/Al = 1.44 are constant in all experiments. The conversion reported is 

an average of two runs.   

# 
# as in 

Table 1 

Concentration 

(M) 

Time 

(h) 

Temperature 

(°C) 

Conversion 

(%) 

Factor(s) 

effect (%) 

1 15 1 24 90 19.8 0 

2 16 1 24 110 45.3 25.5 

3 17 1 48 90 48.2 28.4 

4 18 3 24 90 39.6 19.8 

5 19 1 48 110 47.0 27.2 

6 20 3 24 110 55.9 36.1 

7 21 3 48 90 35.5 15.7 

8 22 3 48 110 78.0 58.2 

 

Further, the results for the fuzzy model and its optimization were mentioned in the previous 

sections along with the model for the ease of reader. Herein, we present the output of the model in 

comparison with the experimental values, followed by a discussion on effects of the parameters on 

zeolite formation. Figure 4 shows the percentage conversion to zeolites, for all 31 points as 

computed from the model, in comparison with the experimental values as noted in table 1. The 

output of model after optimization is found in close agreement with the experimental results. As 

noted above, points 15-22 are based on our experiments, whereas other observations are taken from 

the literature. Further, the percentage error between outputs from the experiments and the model are 

also shown in figure 4, wherein the average error is 4.7 % and the maximum error is 18.6 % for 

point 30.   
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Figure 4: Zeolite conversion as obtained from the model in comparison with the experiments for all 

31 data points as noted in Table 1. Points 15 to 22 are our experiments, with less than 5% standard 

deviation of error. Percentage error in predicting conversion using the fuzzy model is also shown. 

 

Next, we discuss the effects of individual parameters, i.e., alkali concentration, time, 

temperature, L/S, and Si/Al on zeolite conversion. Taking into account the experimental results and 

the statistical data from literature on the effect of reaction parameters on conversion, we use the 

fuzzy model to analyze and investigate the effect of individual parameter on conversion. To this end, 

based on the model we systematically constructed dependence graphs by applying lowest, average, 

and highest values of parameters under study, while keeping the remaining parameters on their 

average values. For example, to see how the conversion changes with reaction time; concentration 

of alkali solution, reaction temperature, and L/S ratio were kept constant at their average values.  
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Figure 5 demonstrates the dependence of conversion on alkali concentration. In Figure 5a 

temperature was kept at 130 oC, time at 48 h, and L/S ratio at 10.625 ml/g, whereas in Figure 5b, the 

values were 117oC, 48 h, and 20 ml/g, respectively. We also note in all the analysis mentioned 

below, Si/Al was kept fixed at 1.44, which is a constraint for our experiments, as mentioned above. 

From the figure, we observe that in both cases the conversion increases with concentration reaching 

a maximum value of 85% and 95%, respectively. It is interesting to note that the conversion is 

increased by 10% when the L/S ratio is changed from 10.625 to 20, while temperature is decreased 

from 130oC to 117oC. The pattern is probably due to  change in the crystallinity of zeolites when the 

concentration of alkali solution is increased and the higher value of L/S creates the conditions for 

better reaction kinetics by forming more active sites to reach for Na+ ions to further form crystals.   
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Figure 5: Dependence of conversion on alkali concentration as derived from the fuzzy model. The 

other parameters were (a) t = 48 h, T = 130 oC, L/S = 10.625 ml/g, Si/Al = 1.44 and (b) t = 48 h, T = 

117 oC, L/S = 20 ml/g, Si/Al = 1.44 

Further, as shown in Figure 6a and b, we clearly see the positive effect of reaction time, 

which is also confirmed from our experimental findings. Once again, the other parameters were kept 

constant at their average values. The modelling results reveal that over time the conversion 

gradually increases and reaches around 60% and 80%, correspondingly. It should also be noted that 
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when the reaction temperature is increased from 75 oC to 117 oC, the conversion obtained from our 

model is significantly raised by 20%. This pattern is also observed in in our experiments, where the 

effect of reaction temperature was the highest amongst others. The reason why the conversion 

increases over time and temperature could be explained by the fact that the crystal formation is a 

direct function of time: the more we allow crystals to grow, the higher the conversion [33]. 

Although, the alkali concentration is high in Figure 6b, we see that the effect of this parameter is 

relatively close to 0.5 M in terms of factorial analysis. We also see in figure 5 that, the transition 

point, i.e. the beginning of the curvature in the sigmoidal graph,  is around 2 M, indicating that at 

concentrations less than 2 M, conversion does not depend on alkali concentrations. Figure 6c, 

further confirms the experimental results and hypothesis that when the L/S ratio is decreased, it 

reversely affects the conversion because less active sites are available for reaction to occur and for 

crystals to form and grow (conversion drops by approximately 15%).    
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Figure 6: Dependence of conversion on reaction time. The other parameters were (a) T = 117 oC, C 

= 0.5 M, L/S = 10.625 ml/g, (b) T = 75 oC, C = 2M, L/S = 10.625 ml/g, and (c) T = 117 oC, C = 2 

M, L/S = 1.25 ml/g 

Similarly, the reaction temperature positively affects the kinetics of synthesis, which in turn 

leads to production of more crystal phases that are the building blocks of zeolites as opposed to 

mainly amorphous CFA (See figure 7a and b). Although a constraint for us in our experiments, we 
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also analyze the effect of Si/Al ratio on conversion. As known from literature (See Garcia G., et al. 

[34, 35]), a high Si content in raw CFA accelerates the formation of crystalline phase, which in turn 

results in high synthesis of zeolites upon annealing at elevated temperature under appropriate 

alkaline environment. Comparing the figure 7a and b, we observe that even at relatively low change 

in Si/Al (from 1.29 to 1.44), an essential positive effect on conversion is observed, with about 22% 

increase in conversion. In addition, Figure 8 demonstrates the effect of L/S ratio on the conversion 

wherein a stepwise upward trend towards higher L/S ratio, as expected and explained above.  
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Figure 7:  Dependence of conversion on reaction temperature, with a change in Si/Al. The other 

parameters were (a) t = 24 h, C = 2.0 M, L/S = 10.625 ml/g, Si/Al = 1.29 and (b) t = 24 h, C = 2.0 

M, L/S = 10.625 ml/g, Si/Al = 1.44. 
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Figure 8: Dependence of conversion on L/S. The other parameters were C = 3.5 M, t = 48 h, T = 

117  oC, Si/Al = 1.44 
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Conclusion 

 The work presented herein provides experimental results on the synthesis of zeolites from 

CFA under various reaction parameters, such as time, temperature, alkali concentration, Si/Al and 

L/S ratio. Depending on reaction parameters, an average conversion of CFA into synthetic zeolite, 

both in literature and our experiments, varies from ~20 to ~80%. The experimental results and 

literature data from two other sources were further investigated using heuristic approach in order to 

optimize the system identification of conversion. According to our findings, the optimized fuzzy 

models demonstrate an accurate correlation with average deviation of 5%, both with experimental 

results and literature values. These enable to conclude the possibility of use of heuristic approach 

with fuzzy models in conversion of CFA into zeolites, which allows predicting the effect of reaction 

parameters and guide on the possible formation mechanism of zeolite.     
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