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ABSTRACT 

Adsorption and ion exchange phenomena are encountered in several separation processes, which 

in turn, are of vital importance across various industries. Although the literature on adsorption 

kinetics modeling is rich, the majority of the  models employed are empirical, based on chemical 

reaction kinetics or oversimplified versions of diffusion models. In this paper, the fifteen most 
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popular simplified adsorption kinetics modelsare presented and discussed. A new versatile 

variable-diffusivity two-phase homogeneous diffusion model is presented and used to evaluate 

the analytical adsorption models. Aspects of ion exchange kinetics are also addressed. 

 

1. Introduction 

 

Adsorption and ion exchange processes prevail in separation technologies utilized across 

different industries, and they are important for wastewater and water treatment. In both 

processes, porous solids are employed, and thus diffusional mass transfer is the dominant 

mechanism of sorption. In solids with bi-dispersed pore structures, such as activated carbons and 

zeolites, macropores act as a path for the adsorbate to reach the interior of the particle. Mass 

transfer in macropores is typically dominated by molecular and/or Knudsen diffusion and is 

called pore diffusion. In micropores the adsorbent migrates on the surface of the adsorbent and 

the mechanism is called surface diffusion [1]. Adsorption of species from a fluid phase into a 

porous solid is comprised of three steps: (1) mass transfer by diffusion from the bulk fluid phase 

through the boundary fluid film to the solid’s external surface (film diffusion), (2) mass transfer 

by diffusion into the solid phase (intraparticle diffusion) by in series or in parallel pore diffusion 

and surface diffusion, and (3) adsorption (physical or chemical) on the solid’s surface. Ion 

exchange follows the same steps and is typically described using adsorption diffusion models. 

Nevertheless, it is important to underline that adsorption and ion exchange exhibit one major 

difference, namely the stoichiometric character of the later. Any ions which leave the solid phase 

are replaced by an equivalent number of ions coming from the liquid phase as a consequence of 

the electroneutrality requirement [2]. Due to the importance of adsorption and ion exchange in a 



variety of processes, kinetics models have been published in numerous papers for over a century. 

The models can generally be classified as reaction kinetics-based and diffusion-based models.  

Any single or combination of steps can be the controlling mechanism, but in porous materials, 

the adsorption step is typically much faster than the intraparticle diffusion. It is assumed that 

equilibrium between fluid and solid is instantaneously reached [3]. In ion exchange, the overall 

rate can be controlled by a chemical reaction but diffusion-controlled processes are more 

common. In fact, many ion exchange interactions do not involve any direct chemical reaction 

[2]. This predominance of the solid phase diffusion step in porous solids has not received the 

desired attention [4]. Diffusion-based models involve partial differential equations and unless the 

boundary conditions and equilibrium relationship are simple, their solution requires specialised 

software or the development of numerical methods. It is true that in many occasions, these 

options are either not readily available or it is impractical to use them, so researchers and 

industry practitioners prefer simple relations that can be solved quickly and easily. The virtue of 

simplified models is that the computational complexity is absent and the analytical expression 

involves only an algebraic equation in closed form which is easily used [5].  

There is a variety of analytical and approximate solutions to the diffusion-based models, and 

empirical equations are extensively used in the literature [1,6,7]. However, in many occasions, 

these simplified models are used without observing the underlying assumptions, namely the 

mechanism of diffusion, boundary conditions and equilibrium relationships. Besides the 

assumptions, different forms of the same solutions to the models and incomplete or wrong 

definitions of involved variables add to the confusion. The result is the proliferation of mistakes 

in calculations and the propagation of these mistakes in the literature.  



A characteristic example is the Weber-Moris model published in 1963 which has been used 

numerous times in the literature for liquid phase adsorption [3,8]. The persistence of this model 

in literature is such that there are papers dedicated to its application on experimental data, as for 

example the work of Malash and El-Khaiary [9]. Recently, Tran et al. [10] published an excellent 

work on several repeated mistakes in adsorption literature. However, in the section on adsorption 

kinetics, several reaction kinetics-based models and only a single diffusion-based model, that of 

Weber and Moris, are presented. The equation is: 

   (1)  

where  is the average loading of the solid phase, kp is a rate constant of the intraparticle 

diffusion and δ is a constant associated with the thickness of the fluid’s boundary layer. Tran et 

al. [10] stated that this model can be useful for identifying the reaction pathways and adsorption 

mechanisms and predicting the rate-controlling step. However, this model is not related to any 

reaction and it can be easily proved that is only valid at the beginning of the batch adsorption 

process, under constant bulk fluid concentration (infinite solution volume), absence of liquid 

phase resistance and linear isotherm; thus, its usefulness, if any, is very limited [3,11]. 

Reaction kinetics-based models are suitable when a surface reaction takes place, i.e., in 

chemisorption. Despite the fact that physical adsorption as well as most of the ion exchange 

processes, are purely mass transfer phenomena [2] reaction kinetics-based models are used 

extensively in the literature to model and interpret the adsorption kinetics and rate-limiting steps 

[8,12–14]. These models are typically empirical and most of them ignore the mass transfer 

mechanisms present in all heterogeneous systems. In an influencial paper published in 1998, Ho 

and McKay [15]  correctly state that diffusion-based models are extremely important particularly 

in processes where ion exchange and ionic bonding are not as prevalent as in chemisorption 



processes. In the same paper, the authors argue that the reaction kinetics-based models can be 

used to investigate the mechanism of sorption and potential rate controlling steps, such as mass 

transport and chemical reaction processes. However, as these models ignore diffusion are not 

able to interpret the sorption mechanisms. Furthermore, being empirical models, even if the fit to 

the experimental data is acceptable, they are suitable as a descriptive but not as a predictive tool 

[16]; in other words, the ability of a model to fit experimental data is not sufficient to validate the 

underlying mechanism [17,18]. The fundamental problem of these models, especially when 

applied on physisorption and ion exchange, is the absence of any physical significance and the 

limited usefulness of the empirical kinetic parameters derived by their application on 

experimental data [19]. Several studies have highlighted the pitfalls of reaction kinetics-based 

models advocating the use of diffusion-based models [11,14,20–24]. 

The published review papers on adsorption kinetic models are addressing: (i) only some of the 

reaction kinetics-based models, basically pseudo-first, pseudo-second order and Elovich 

equations [15,25] (ii) focus on reaction-kinetics models discussing only a few approximate 

diffusion-based models [4,13,26,27], or (iii) discuss solely analytical and approximate solutions 

of diffusion-based models [28,29]. Also, there is a lack of a systematic quantitative study on the 

comparison of simplified diffusion models with complete numerical models. Such a study 

requires the use of complex variable diffusivity models equipped with non-linear isotherms. 

Recently, Marban et al. [24] presented a variable diffusivity diffusion-based model. The authors 

claimed that no kinetic model for the adsorption onto porous solids that considers the 

dependence of the diffusion coefficient on the surface coverage has ever been fully solved. 

The present paper fills the gap in the literature of adsorption kinetics by presenting, analyzing 

and comparing both the available diffusion-based and reaction kinetics-based models. The merits 



and pitfalls of all models are discussed; as Tran et al. [10] correctly state, the observation and 

discussion of inconsistencies and mistakes can prevent their propagation in scientific knowledge. 

Thus, a review on mistakes related to adsorption kinetics and the presentation of the sound 

approaches is valuable to the scientific community. Also, this study comes to contribute by 

presenting a new versatile variable diffusivity diffusion-based model, which is used to discuss 

and evaluate the analytical and approximate models. In comparison to previously published 

studies, this model can deal with both increasing and decreasing surface diffusion coefficients 

with increasing solid loading. To the best of our knowledge, this combination is for the first time 

presented in the literature.   

 

2. Mass transfer diffusion-based models 

Diffusion-based models differ in the combinations of the mass transfer resistances, i.e., fluid 

film, pore fluid (macropore) and surface (micropore) diffusion steps. In addition, they assume an 

absence of chemical reactions. If a chemical reaction occurs, then reaction-diffusion models, 

such as the shrinking core model, are consistent with the physical reality and should be 

considered (see section 3). 

The complete diffusion-based model takes into account all diffusion steps in the solid phase and 

is called heterogeneous pore and surface diffusion model (PSDM). The variants of the complete 

model are the pore diffusion model (PDM), which assumes that pore diffusion is predominant, 

and the homogeneous surface diffusion model (HSDM), which assumes that surface diffusion is 

predominant [14,30,31]. HSDM is more common and models the solid phase as a homogeneous 

medium. When fluid film is taken into account, these models are called two-phase models (TP) 

(Figure 1). In the present paper, the HSDM, its TP form and aspects of the PSD are discussed. 



When the isotherm is linear, the two models are mathematically equivalent. For a detailed 

analysis of the PSDM, see elsewhere [14,32].  

 

Figure 1. PSDM graphical representation. 

The common assumption in adsorption diffusion–based models is that the local adsorption 

kinetics are much faster than the diffusion process in the solid phase. When the solute reaches 

the adsorption site, local equilibrium is instantaneously attained even though the fluid phase 

concentration at the external surface of the solid (HSDM) a within the particle (PSD) change 

over time. The term “local” identifies that the particular condition is only applicable to a given 

position, and as time approaches infinity (t→∞) and the concentration gradients in the solid 

disappear, the local equilibrium becomes global equilibrium (isotherm) [33]. The local 

equilibrium concept is used by the two-film theory of mass transfer for expressing the mass 

transfer driving forces. Local equilibrium and driving forces are shown in Figure 2 for the 

HSDM model, where the equilibrium and operating (material balance) lines are plotted. The true 

bulk phase equilibrium condition is represented by the  point and depends only on the 

equilibrium relationship and the material balance. The bars are used to denote average bulk 

phase concentrations and distinguish them from the local phase concentrations. The bulk phase 

concentrations of the fluid and solid phases at time (t) are represented by the  point on the 



operating line. The fluid phase concentration at the fluid-solid interface is Ct,r=rp and corresponds 

to the equilibrium solid phase concentration of qt,r=rp. According to the two-film theory 

representation, the driving force in the fluid film is ( -Ct,r=rp) and is used to express the mass 

transfer rate in the fluid film in all diffusion-based models. The driving force in the solid film 

(qt,r=rp- ) is called linear driving force approximation (LDF) and it is used in Glueckauf’s model 

which is discussed in section 2.7. Thus, in the general case, on the fluid-solid interface, the fluid 

and solid phase local equilibrium concentrations are time-dependent (see Figure 9). In this sense, 

local equilibrium concept is just a convenient way to connect the local fluid and solid phase 

time-dependent concentrations [21,24] and the description “equilibrium liquid phase 

concentration at time t” can be used for clarity [34]. 

 

Figure 2. Equilibrium line and the operating line (material balance).  

 

2.1 Two-Phase Homogeneous Surface Diffusion Model 



In the TP-HSDM for batch systems, the pertinent assumptions are dilute solutions (trace 

systems), isothermal process, perfect mixing, spherical particles, single component (adsorption) 

or binary system (ion exchange), and instantaneous local equilibrium at the fluid-solid interface. 

The mass balance in a batch reactor is [35]: 

  (2)  

where  and  are the average solid and fluid phase concentration at time t, M is the solid mass 

and VL is the fluid volume. The initial conditions are:  and , where   is the 

fluid phase initial concentration. The term solid phase concentration is used for the adsorbed 

(immobilized) solute concentration and should not be confused with the free solute concentration 

inside the pores of the solid phase. 

By integrating equation (2) from t = 0 to t:  

  (3)  

The mass transfer rate in the fluid film is: 

  (4)  

where kf is the fluid film mass transfer coefficient, rp is the particle radius, ρp is the particle 

density and Ct,r=rp is the local fluid phase solute concentration at the surface of the solid which is 

related to the local adsorbed solute concentration at the surface of the solid (qt,r=rp) by the 

equilibrium relationship (Figure 2): 

  (5)  

The solid phase mass transfer rate is an unsteady state diffusion process expressed by the Fick’s 

second law, which in radial coordinates is: 

  (6)  



where r is the distance from the solid’s center. The concentration-dependent surface diffusion 

coefficient Ds is defined as: 

  (7)  

where Dso is the constant zero-loading surface diffusion coefficient and Ds(q) is a correlation (see 

section 2.3). If the surface coefficient is constant then Ds(q)=1, Ds = Dso and the equation (6) 

becomes the constant diffusivity model: 

  (8)  

where Ds the constant solid phase diffusion coefficient. The average diffusion coefficient is 

calculated as follows: 

  (9)  

where  is the equilibrium average solid phase concentration. Note that the solid phase 

concentrations in equation (6) are local, while in the material balance (equation 3), average 

concentrations are used. The average solid phase concentration is [36]: 

  (10)  

The solid phase equations (6) and (10) can be combined in order to express the solid phase mass 

transfer rate in terms of the average solid concentration, which then can be used with the material 

balance. By differentiating the last equation and using the solid mass transfer rate expression 

(equation 6): 

  (11)  

For constant diffusivity: 



  (12)  

Due to symmetry the boundary condition at the center of the particle (r=0) is: 

  (13)  

The boundary condition at the external surface of the particle (r = rp) depends on the mass 

transfer controlling steps. For combined resistances, i.e., solid and fluid film mass transfer 

resistances, the rates at r = rp become equal (no accumulation at the solid surface) and from 

equations (4) and (11): 

  (14)  

 

2.2 Two-Phase Pore Diffusion Model 

While in TP-HSDM, there is no fluid in the solid phase and only the adsorbed phase of the solute 

exist, in TP-PDM the pores are filled with the fluid and the free solute diffuses into the solid 

phase. As a result, while in TP-HSDM, local equilibrium takes place at the solid’s external 

surface, and in TP-PDM, local equilibrium takes place in all points of the solid phase and the 

local concentrations at time t are related using the equilibrium equation: 

  (15)  

where Ct,p is the free solute concentration in the pores of the solid, which is in local equilibrium 

with the adsorbed solute concentration (qt,r). TP-PDM also differs in the expression of the solid 

phase mass transfer equation (Ruthven, 1984): 

  (16)  



where Dp is a constant pore diffusion coefficient and (εp) is the pore volume of the solid phase. 

This equation can be written as follows: 

  (17)  

A variable pore diffusion coefficient is defined as:  

  (18)  

Then equation (17) becomes: 

  (19)  

where  is the slope of the equilibrium curve. Note that although the pore diffusion coefficient 

is constant, the Dp,var is variable unless the isotherm is linear. However, this variability has no 

physical cause as in the case of the surface diffusivity, something that has created confusion in 

literature. Another equivalent form of equation (16) is: 

  (20)  

Under the condition of low pore fluid concentration and very favorable equilibrium the above 

equation becomes: 

  (21)  

The boundary conditions at r = 0 and r = rp are [35]: 

  (22)  



  (23)  

TP-PDM is more complex than the TP-HSDM as equilibrium is considered in all points in the 

solid phase. In the case of linear isotherm, the PDM is mathematically equivalent to the HSDM 

[1,28,36]. Ocampo-Perez et al. [20] compared HSDM and PDM for the adsorption of phenol 

from aqueous solution onto organobentonite. The authors concluded that although both models 

fit the experimental data well PDM results in a pore phase diffusion coefficient that is greater 

than the molecular diffusivity of phenol in water, which is unreasonable. On the contrary, HSDM 

gives a reasonable surface diffusion coefficient with expected dependence on the experimental 

conditions. Souza et al. [14] compared the PSDM, HSDM and PDM for the adsorption of a dye 

on bentonite. PSDM gave the best results, HSDM satisfactory results and PDM failed. In 

general, PDM is suitable for describing gas phase adsorption in mesoporous-macroporous 

materials such as silica and alumina while HSDM is more often used for liquid phase adsorption 

and microporous-mesoporous materials such as zeolites. For further information on the relative 

importance of surface and pore diffusion, see in Do and Rice [37].  

 

2.3 Variable surface diffusivity correlations  

The dependence of surface diffusion coefficient on the solid phase loading is discussed in several 

publications and, in many systems, is accepted as a fact. This practically means that the surface 

diffusion coefficient depends on the fluid phase concentration and more general on the 

conditions outside the solid structure. This is contrary to the classic approach which considers it 

as a constant for a specific system, i.e., function of temperature, solid’s internal structure and 

incoming species properties.  



There are several variable diffusivity correlations and detailed analysis that can be found in Do 

[33] and Choi et al. [38]. The equation presented by Chen and Yang [39] is the most useful as it 

has sound theoretical basis and covers both increasing and decreasing trends of the surface 

diffusion coefficient. The equation is: 

   (24)  

where θ is the dimensionless surface coverage equal to  , Qm the saturation capacity of the 

solid, λ the blockage parameter (whose value indicates the degree of pore blocking by the 

adsorbate), and H(1- λ) is the Heaviside step function. If  and if 

.  

The blockage parameter in the Chen-Yang equation indicates the degree of pore blocking of the 

solid’s pores by the adsorbate; λ > 0 indicates hindered diffusion, a situation common in zeolites 

and λ = 0 means unhindered surface diffusion [39]. Additionally, the surface diffusion 

coefficient is increasing at λ < 1, has a mixed trend at λ > 1, and practically decreases with solid 

loading at λ > 5 (Figure 3). For λ = 0the well-known Darken equation for systems following the 

Langmuir isotherm is derived: 

     (25)  

Darken’s theory states that the surface diffusion coefficient depends on the equilibrium isotherm 

between the two phases and it is equal to the value at zero-loading multiplied by a 

thermodynamic correction factor [33]: 

   (26)  



This factor is a function of the slope of the isotherm equation and for Langmuir isotherm is equal 

to (1-θ)-1 and equation (25) is derived. For linear isotherm, the slope is 1 and the surface 

diffusion coefficient is constant. Note that the Chen-Yung model does not take into account the 

equilibrium and there is no λ that gives Ds(θ) = 1.  

 

Figure 3. Effect of (λ) on the surface diffusion coefficient. 

Ko et al. (2005) [40] studied the batch sorption kinetics of metal ions on bone char and found 

that surface diffusion coefficients were increasing with solid loading. They applied a constant 

diffusivity diffusion-based model in combination to Langmuir and Sips isotherms. Several one-

parameter variable diffusivity correlations, which is suitable for systems where surface diffusion 

coefficients increase with surface coverage, were compared. Yang et al. [41] presented a variable 

diffusivity TP-HSDM model in combination to Fritz–Schlünder isotherm and it was evaluated 

using experimental data of toluene and dye adsorption on activated carbon. The variable 

diffusivity correlation used was a simple exponential, suitable for systems where surface 

diffusion coefficient is increasing with the increase of the solid loading. Marban et al. [24] 



studied the removal of a protein onto mesoporous materials and observed the opposite trend, i.e., 

decrease of surface diffusion coefficient with increasing surface coverage. They applied a 

variable diffusivity TP-HSDM model in combination to Redlich-Peterson isotherm. The variable 

diffusivity correlation used in Marban et al. is empirical and involves, apart from (Dso) two more 

adjustable parameters. In the present paper, a variable diffusivity TP-HSDM model in 

combination to a double-selectivity equilibrium model (DSM) is used. In comparison to 

previously published studies, this model is equipped with the Chen-Yang variable diffusivity 

correlation, which can deal with both increasing and decreasing surface diffusion coefficients 

with increasing solid loading while the DSM can handle S-shaped isotherms.  

 

2.4 Equilibrium isotherms  

At this point, it is important to further clarify the differences between the solid phase 

concentrations used in several equations. For a specific adsorption system, the equilibrium 

isotherm depends only on temperature. It can be constructed by starting with an initial fluid 

phase concentration ( ) and by varying the fluid volume/solid mass ratio (VL/M). By doing this, 

several equilibrium   -   pairs are generated (Worch, 2012). The maximum possible liquid 

phase equilibrium concentration is equal to the initial concentration ( ), which corresponds to a 

maximum solid phase equilibrium concentration ( ). The procedure is repeated for higher 

concentrations until the solid phase loading reaches the saturation capacity (Qm) (Figure 4). It 

should be noted that the saturation capacity is not always an asymptotic value as in Figure 4, as 

this depends on the shape of the isotherm. On the other hand, ion exchange equilibrium depends 

on temperature and total normality due to the concentration-valence effect [42]. The liquid phase 

concentration of the incoming ion can vary, but it cannot be higher than the total normality [43]. 



This means that the maximum solid phase equilibrium concentration  is also the saturation 

capacity Qm for the particular total normality and is called maximum exchange level (MEL). An 

alternative method for the isotherm construction and qo (or MEL) measurement is the repeated 

equilibrations method, where the solid phase is stepwise saturated [6,44]. The equilibrium point, 

  - , can also be obtained by a fixed bed experiment, which is essentially a stepwise 

saturation procedure. Note that, by operating at a constant inlet fluid phase concentration, a fixed 

bed experiment provides only a single equilibrium point, i.e.,  -   (or MEL). Also, the 

discrepancies between equilibrium data obtained in batch and fixed systems must not be 

overlooked [45]. 

 

Figure 4. The construction of the equilibrium isotherm. (-VL/M) is the slope of the operating 

line, expressing the material balance of the system.  

Concerning the equilibrium models, of particular interest are the inhomogeneous models which 

are used to describe multisite (heterogeneous) solid phases behaving differently towards the 



same component [45]. A simple approach is to assume that the solid is composed of two distinct 

regions with no interaction between them. Bricio et al. [46] and later Pepe et al. [47] developed 

the double-selectivity model (DSM) for heterogeneous ion exchangers using the concept of 

multisite adsorption. In the case of the exchange of monovalent ions, the derived equation in 

dimensionless form is [23]: 

  (27)  

where  and  are the dimensionless fluid and solid phase equilibrium 

concentrations, K1 and K2 the equilibrium constants, and p the proportion of sites on the solid 

surface, all positive numbers. Although this equation was derived for the exchange of 

monovalent ions, it is used in the present paper due to its simplicity and flexibility, as is able to 

model both Langmurian and S-shaped isotherms. The model can be viewed as two-sites 

Langmuir isotherm with Lai = 1/Ki [45]:  

  (28)  

 

2.5 Numerical solution of the variable diffusivity TP-HSDM model  

2.5.1 Variable diffusivity TP-HSDM dimensionless numerical model 

In a batch reactor kinetics experiment, according to the local equilibrium approach used in 

kinetics models (Figure 2), the local equilibrium solid phase concentration at the surface qt,r=rp is 

decreasing from  to  and the system eventually reaches the   -   point. On the other 

hand, in fixed bed reactors, the system reaches the   -   point. Typically in both operation 

modes, the part of the isotherms used in the kinetics models is up to the   -   point and these 



concentrations are typically used for the normalization of the model equations. Nevertheless, any 

equilibrium point higher than the   -  can be used and this can be convenient when kinetics 

at different initial concentrations are studied. When the whole isotherm is used and the model 

equations are normalized by using the point   -  the material balance equation and the 

dimensionless initial condition at t=0 must be adapted accordingly. Note that in this case,   

and  replace   and  in all equations and dimensionless numbers. 

The dimensionless averaged fluid and solid concentrations at any time t are  and 

. The partition ratio Λ is [35]: 

  (29)  

As discussed above,  is an equilibrium pair and  is the MEL in ion exchange systems. 

The dimensionless time (T) is: 

  (30)  

The Biot number is defined as follows [35]: 

  (31)  

 The material balance equation (3) becomes: 

  (32)  

If the concentration  is used for the normalization of the model, then the term  must be 

replaced by the term . 

The fluid phase mass transfer rate equation (4) becomes: 

  (33)  



Due to the material balance equation: 

  (34)  

In the solid phase, mass transfer equation (6) becomes: 

  (35)  

R = r/rp is the dimensionless distance from the solid’s center.  In the expression of Ds the variable 

Y is used for consistency and thus in equation (24), the surface coverage is , where 

 .  

By expanding equation (35): 

  (36)  

where: 

  (37)  

For constant surface diffusion coefficient, Ds(Y)=1. The solid phase average concentration 

equation (10) becomes: 

  (38)  

By multiplying both terms of the solid mass transfer rate dimensionless equation (36) by 3∙R2 

and integrating by use of equation (38), we get: 

  (39)  



The initial conditions for T = 0 are  and . If another equilibrium point   - 

  is used for the normalization of the model equations then the initial condition at T=0 must be 

changed to . The boundary condition at the center of the solid (R = 0) is: 

  (40)  

At the solid-fluid interface (R=1), local equilibrium is assumed to take place and the 

dimensionless equilibrium equation is: 

  (41)  

For combined solid and fluid phase mass transfer resistances at R = 1, equation (14) becomes: 

  (42)  

The average surface diffusion coefficient is: 

  (43)  

where . The subscript (∞) denotes average bulk phase concentrations at t → ∞, i.e., 

after global equilibrium is reached. At global equilibrium, the material balance equation (32) 

becomes:  

  (44)  

 represents the equilibrium relationship, i.e., the DSM model. The above algebraic 

equation can be solved to obtain an analytical expression for  : 

  

 

 



 (45)  

where: 

  (46)  

  (47)  

  (48)  

For a solid phase free of solute at t = 0, the fractional attainment of equilibrium is [6]: 

  (49)  

If the initial fluid concentration in the kinetics experiment  is used for the normalization of the 

concentration, then . 

 

2.5.2 Numerical methods 

The partial differential equation (36) is spatially discretized using central differences, hence the 

spatial derivatives are approximated as follows: 

  (50)  

  (51)  

  (52)  

where the last equation was obtained using the chain rule, and  can be obtained 

analytically. The notation used, is common in numerical analyses, and the details can be found in 

any textbook [48]. Using above notation, equation (36) can be expressed as follows: 



     

(53)  

while the material balance equation (34) takes the form: 

   (54)  

The system of ordinary differential equations (53) and (54) is solved numerically using the 

modified Euler method [48]. Two points that need clarification are the way the boundary 

conditions of equation (36), i.e., equations (40) and (42), are incorporated in the numerical 

method. Equation (40), the symmetry boundary condition, leads to a division by zero when 

applied to equation (36) at . This is addressed by applying L’ Hôpital’s rule to the singular 

term  , which simplifies to . The non-linear boundary condition equation (42) is made 

explicit by evaluating the right-hand side on the previous time step, i.e., if  symbolizes the 

current time step, then, 

  (55)  

To estimate the distance (error) between two curves, i.e., numerical  vs analytical or 

numerical , the standard method is to use the sum of the square of the difference between 

the dependent variables  for the same value of the independent variable (T), i.e., measure 

the error (distance) parallel to the y-axis. Minimizing this sum is called curve-fitting using the 

least square approach [48]. This method, also called ordinary least square (OLS), amplifies the 

error when the curves have large slope even if the distance between them is small. An example is 

the -T curves for small values of T where they become almost vertical (Figure 5). To 

alleviate this, the total least squares (TLS), and its special case called Deming regression [49], 



can be used where the distance of two curves is measured with respect to the perpendicular 

distance between them. This accounts for errors on both the x- and y-axes. For simplicity in the 

present paper an analogous method is used where the error is calculated as the normalized area 

between the two curves.The normalization parameter is the area above the curve of the numerical 

solution. In this way, the error does not depend on the curves orientation. 

 

2.5.3. Numerical model results and discussion 

Characteristic solutions of the variable diffusivity model for Ys=1 are shown in Figures 5 (effect 

of λ) and 6 (effect of Dso). As is evident, the effect of (λ) is insignificant at the beginning of 

adsorption and becomes gradually potent at higher values of (T). This insensitivity of the model 

at low (T) is due to the relatively fast adsorption at the beginning of the adsorption, mostly 

controlled by the fluid phase mass transfer resistance. The effect of (Dso) is profound, especially 

when surface diffusion coefficient is below 10-8 cm2/s. Also, in order to compare the solutions in 

Figures 6 to 8, U(T) is plotted versus to t/rp
2 (s/cm2), equivalent to T/Ds,avr for the constant 

diffusivity model and T/Dso for the variable diffusivity model.  

 

   



Figure 5. Effect of (λ) on the numerical solution for a DSM favorable isotherm (r = 0.5, K1 = 12, 

K2 = 10), Λ = 0.5 and Bi = 5: λ = 0 (solid curve), λ = 1 (dashed curve), λ = 2 (dotted curve), λ = 

5 (dashed-dot curve). Left: U(T)-T, middle Y(R)-R for T = 0.01 and right Y(R)-R for T = 0.1. 

 

Figure 6. Effect of (Dso) on the numerical solution for a DSM favorable isotherm (r = 0.5, K1 = 

12, K2 = 10), Λ = 0.5 and λ = 1: Dso = 10-7 (Bi = 0.5, solid curve), Dso = 10-8 (Bi = 5, dashed 

curve) and Dso = 10-9 (Bi=50, dashed-dot curve).  

The comparison between variable and constant diffusivity models is made for the favorable 

isotherm systems shown in Table 1 for Ys=1. In the constant diffusivity model, the average 

surface diffusion coefficient of the variable diffusivity model obtained by equation (43) is used.  

Table 1. Variable diffusivity systems for a DSM favorable isotherm (r = 0.6326, K1 = 12.045, K2 

= 5). 

 A1 A2 B1 B2 C1 C2 D1 D2 

Λ (-) 0.01 0.01 0.01 0.01 1 1 1 1 

Bi (-) 0.5 0.5 5 5 0.5 0.5 5 5 



Dso (cm2/s) 10-7 10-7 10-8 10-8 10-7 10-7 10-8 10-8 

λ (-) 0.1 10 0.1 10 0.1 10 0.1 10 

Ds,avr
 (cm2/s) 3.92×10-7 5.32×10-8 3.92×10-7 5.32×10-8 1.81×10-7 6.28×10-8 1.81×10-7 6.28×10-8 

Error  0.0036 0.0234 0.0222 0.032 0.0036 0.0223 0.05 0.1974 

 

Figure 7. Comparison of constant diffusivity (dotted lines) and variable diffusivity (solid lines) 

solutions for the infinite solution volume condition and intermediate Biot number for surface 

diffusion (left, B1) and hindered diffusion (right, B2). 

  



Figure 8. Comparison of constant diffusivity (dotted lines) and variable diffusivity (solid lines) 

solutions for the finite solution volume condition and intermediate Biot number for surface 

diffusion (left, D1) and hindered diffusion (right, D2). 

The results show that the constant diffusivity solution can be reasonably close to the variable 

diffusivity solution for U(T) lower than about 0.7. The differences are smaller at low Biot 

number while the effect of λ depends on the Biot number. Similar results can be obtained for 

different combinations of parameters. These results show that constant diffusivity model can be 

used even if the solid phase diffusion coefficient is variable, at least for the first part of the 

adsorption kinetic curve. Further discussion on this matter is conducted in section 2.7. 

 

2.6 Analytical solutions and comparison to the constant diffusivity HSDM numerical 

solutions 

The solid phase concentration at R = 1  is variable in time leading to time-dependent 

boundary condition which, in the general case, is non-linear due to the isotherm shape (equation 

41). This is shown in Figure 9 where the constant diffusivity HSDM numerical solution Y(R)-R 

profiles are plotted for surface diffusion control, linear and a favorable equilibrium and three 

times T = 0.01 (beginning), T = 0.1 (intermediate) and T = 0.3 (near to equilibrium).  



   

Figure 9. Solid phase concentration profiles for Bi = 100 and Λ = 1 for DSM isotherms. Left: p 

= 1, K1 = 1, K2 = 1 (linear) and right p = 1, K1 = 25, K2 = 1 (favorable). 

The effect of the isotherm type on the constant diffusivity HSDM solutions is shown in Figure 

10. An interesting feature of the U(T)-T curve is that depending on (Λ), the solution of the 

unfavorable or linear isotherm may approach the equilibrium faster or slower than the favorable 

isotherm (Figures 10, 20 and 21). This seems controversial, but it should be noted that U(T) 

expresses the relative rate, while the absolute rate is: 

  (56)  

or 

  (57)  

Thus, the relative rate of adsorption depends on both the absolute rate and the equilibrium 

concentration. The absolute rate is represented by the slope of the -T curve and the rate of 

the unfavorable isotherm, as expected, is always lower than the rate of the favorable isotherm 

(Figure 10). 



   

Figure 10. Effect of different isotherms on the numerical solution for Bi = 100, Λ = 1 and DSM 

favorable isotherm (p = 1, K1 = 10, K2 = 1, solid), sigmoidal (r = 0.5, K1 = 10, K2 = 0.1, dashed-

dot) and unfavorable isotherm (p = 1, K1 = 0.1, K2 = 1, dashed). 

Due to the boundary condition at the fluid-solid interface, analytical solutions to TP-HSDM and 

TP-PDM are possible only for constant intraparticle diffusion coefficient and linear or 

rectangular isotherms. Here, the most common solutions are presented which are those of HSDM 

and several of PDM, i.e., single controlling mechanism (Table 2). Analytical solutions to the 

PDM, combined fluid film-solid phase resistances and rectangular isotherms can be found in 

Weber [28] and Suzuki [1]. The following analysis is done for the TP-HSDM model, unless 

otherwise specified. The numerical model was validated by comparing its predictions to the 

HSDM analytical solutions under the conditions shown in Table 2 and constant diffusivity, i.e., 

Ds(Y) = 1. 



   Table 2. Summary of analytical models  

Model 

(equation) 

Boundary condition Controlling diffusion 

step 

Isotherm type 

Boyd (69) Infinite solution 

volume 

Λ < 0.1 

Surface diffusion 

Bi > 100 

Not needed 

Boyd (69) Finite solution volume 

 

Surface diffusion 

Bi > 100 

Rectangular 

Crank (60) Finite solution volume Surface diffusion 

Bi > 100 

Linear 

Perry & Green 

(76) 

Infinite solution 

volume 

Λ < 0.1 

Fluid film diffusion 

Bi < 1 

Langmuir 

Helfferich (67) Finite solution volume Fluid film diffusion 

Bi < 1 

Linear 

 

2.6.1. Linear isotherm 

In the case of linear isotherm ( ), the following relationship holds: 

  (58)  

Then, (Λ) becomes: 

  (59)  



In this case, the boundary condition at R=1 becomes linear, simplifying the solution of the 

differential equations. The solution’s versions found in the literature are derived from this given 

by Crank [50]:  

  (60)  

where Α = 1/Λ and (un) are the roots of the equation: 

  (61)  

Helfferich [6] gives the same equation for isotopic exchange, i.e., ion exchange between 

isotopes, which is equivalent to linear equilibrium of an adsorption system. Equation (60) holds 

for PDM as well but (T) should be multiplied by /ρp∙  [1,35]. In some papers, Crank’s 

equation is named linear adsorption model (LAM) [51–53]. By using the material balance 

(equation 32), the concentration in the fluid phase can be calculated [35]: 

  (62)  

Ruthven [36]and Perry and Green [54] give the following form of the solution: 

  (63)  

where pn are the roots of the equation: 

  (64)  

Ruthven [36] defines (Λ∞) as follows: 

  (65)  

It should be noted that Ruthven’s equation cannot be used when Λ∞ → 0 or  . Both 

Ruthven and Perry and Green give equation (63) for surface diffusion control and then use the 

same equation for pore diffusion control and linear isotherm, which is misleading. Also, both 



sources do not mention the condition of linear isotherm and, because equations (60) and (63) 

look different it might be wrongly assumed that the latter is applicable for any isotherm. 

However, a closer inspection of the equations shows that they are the same if: 

  (66)  

which is true only for a linear isotherm (equation 59). In Figure 11, the equations of Crank 

(equation 60) and Ruthven (equation 63) are compared to the complete numerical solution. For a 

linear isotherm, as expected, all models coincide but for non-linear isotherm they all diverge. 

Note that for non-linear isotherm the  needed for the calculation of Λ∞ in Ruthven’s solution 

is calculated by using equation (45). 

 

Figure 11. Comparison of the numerical solution (lines), Cranks’s equation (dots) and Ruthven’s 

equation (circles for linear and star for non-linear isotherm) for Bi = 1,000 and Λ = 1 for non-

linear isotherm (solid curve, DSM: p = 0.5/K1 = 50/K2 = 50) and linear isotherm (dashed curve).  



The effect of Biot number on the numerical solution is shown in Figure 12. As is clear Crank’s 

model coincides with the numerical model only for linear isotherm and high Biot number, i.e. 

surface diffusion control condition. Besides this observation, the effect of Biot number is 

profound for both types of isotherm.  

  

Figure 12. Effect of Biot number on the numerical solution (curves) and on Crank’s solution 

(points) for Λ = 2 and Bi = 1 (dashed-dot line – fluid film diffusion control), Bi = 10 (dashed 

line) and Bi = 100 (solid line – surface diffusion control). Left: DSM isotherm (p = 0.6326/K1 = 

12.045/K2 = 121.33) and Right: Linear isotherm. 

The preceding equations can be used for any finite value of (Λ), a condition called finite solution 

volume. Chen et al. [51] and Pritzker [53] successfully applied Crank’s equation for the removal 

of Cu2+ on calcium alginate gel. The models presented, as Inglezakis and Grigoropoulou [29] and 

more recently Schwaab et al. [3] have shown, are not used as often as other simpler ones. Also, 

the condition of linear isotherm is not always respected, as for example in Kurtoglu and Atun 

[55], who used Worch’s version (equation 62) for the Pb/Na exchange on clinoptilolite that 

follows non-linear isotherm, Araujo and Teixeira [52] who applied Crank’s equation for the 



removal of Cr3+ on alginate that follows a S-shaped isotherm, Inglezakis and Grigoropoulou [29] 

who applied a similar to Ruthven’s version for the sorption of Pb2+ on natural and modified 

clinoptilolite and Dyer and White [56], who used another version of the same model, called 

Carman-Haul equation for cations exchange on clinoptilolite without presenting the isotherm. 

This is discussed further in section 2.7. 

Fluid film diffusion control is rarely considered, as adsorption in porous materials is more often 

controlled by the diffusion in the solid phase. Helfferich [6] gives the following solution for 

finite solution volume and linear isotherm: 

  (67)  

By using the material balance (equation 32), the concentration in the fluid phase can be 

calculated [35]:  

  (68)  

The comparison of numerical and analytical solutions for fluid film diffusion control are 

provided in Figure 13. The agreement between the models is perfect.  

 

Figure 13. Comparison of the numerical solution (solid line) and Helfferich’s equation (points) 

for Bi = 0.1 and linear isotherm. Left: Λ = 0.1 and Right: Λ = 2. 



 

2.6.2 Constant adsorbed phase concentration at the surface of the solid  

If the boundary condition at R = 1 is independent of time, solutions of the model are further 

simplified. This condition is valid in two cases: (a) infinite solution volume and (b) irreversible 

equilibrium under excess adsorbate in the fluid phase ( ).  

The infinite solution volume condition is reached when Λ→0 and, in the absence of fluid film 

resistance, the fluid phase concentration at the external surface of the solid remains constant and 

equal to the bulk fluid phase concentration ( ) at all times [28]. Also, when (VL/M)→∞ the 

global equilibrium concentrations become equal to the maximum values, i.e., (Co) and (qo) 

(Figure 4). Thus, in the absence of fluid film resistance, the local equilibrium condition at the 

external surface of the solid is  and at t→∞ is . While in pore 

diffusion control the model solutions still depend on the isotherm curvature, whereas in surface 

diffusion control the isotherm becomes irrelevant resulting in a single analytical solution (Figure 

14) [28]. Because  from equation (49),  while the material balance becomes 

irrelevant because  at all times. Under the infinite solution volume condition, the solution 

to the HSDM model was given by Boyd [28,54,57]: 

  (69)  

The same solution is derived for PDM and linear isotherm but (T) should be multiplied by 

/ρp∙  [1]. 



 

Figure 14. Numerical solution for Bi = 1,000 and Λ = 0.001 for different DSM isotherms: p = 

0.6326/K1 = 12.045/K2 = 121.33 (strongly favorable – line), p = 0.6326/K1 = 12.045/K2 = 1 

(favorable - points) and p = 1/K1 = 1/K2 = 1 (linear isotherm - cycles). 

The comparison of the numerical solution with Boyd’s and Crank’s equation for Bi = 1,000 and 

linear isotherm is shown in Figure 15. All solutions coincide for low (Λ), which is the infinite 

solution volume condition, while for higher Λ, Boyd’s model diverges, and Crank’s model 

coincides with the numerical solution.  

 



Figure 15. Comparison of the numerical solution (curves), Boyd’s equation (circles) and Crank’s 

equation (points) for Bi = 1,000 and linear isotherm: Λ = 0.01 (left - infinite solution volume), Λ 

= 0.5 (middle) and Λ = 1 (right).  

Boyd’s equation has been extensively used in adsorption and ion exchange systems, regardless of 

its obvious limitation of being based on the infinite solution volume condition. This condition 

implies constant fluid phase concentration and is often overlooked in literature. For instance, it 

has been applied for the sorption of Cu2+ on hydroxyapatite and zeolite [58], several heavy 

metals on zeolite [59], and freon on activated carbon [60] under finite solution volume 

conditions.  

The rectangular isotherm (irreversible equilibrium) is shown in Figure 16. The equilibrium 

concentrations depend on Λ. For , the solute amount in fluid phase is equal to or in excess 

of the amount that the solid phase can take. The equilibrium relationship becomes then  

regardless the value of . Thus, as in the case of infinite solution volume, the amount 

adsorbed at the external surface of the particle is constant regardless of the decrease of the fluid 

phase concentration, i.e.,  (Figure 17). Also, the boundary condition at R = 1 is 

identical to the infinite solution volume condition resulting in identical solutions to the HSDM 

model [1]. Note that at global equilibrium  and (equation 44). Because 

 the material balance reads  (equation 32). When Λ > 1 the solid 

phase is in excess and , while the local solid phase concentration changes by time, i.e., 

 varies (Figure 17). Thus the constant solid phase concentration condition at the external 

surface area of the solid becomes invalid, i.e., the boundary condition at the solid external 



surface is time-dependent. At global equilibrium  and . Finally, the material 

balance reads .  

 

Figure 16. Rectangular isotherm representation.  

 

 

Figure 17. Solid phase concentration profiles for Bi = 100 and irreversible isotherm (p = 1, K1 = 

5000, K2 = 1) for Λ = 0.5 (left), Λ = 1 (middle) and Λ = 2 (right)  

 



Thus, Boyd’s equation (69) holds in the case of surface diffusion control, finite solution volume, 

 and rectangular isotherm. The concentration in the fluid phase is given by using the 

material balance [1]: 

  (70)  

In Figure 18 the numerical solution for the irreversible isotherm is compared with the favorable 

isotherms and Boyd’s equation. As expected, for Λ = 0.9 the solution for irreversible equilibrium 

coincides with Boyd’s equation due to the boundary condition at R = 1, but for Λ = 2 Boyd’s 

equation diverges as the boundary condition becomes time-dependent. 

  

Figure 18. Boyd’s equation (points) and numerical solution for Bi = 100 and Λ = 0.9 (left) and 

Λ = 2 (right) for different favorable DSM isotherms: p = 1/K1 = 5/K2 = 1 (solid), p = 1/K1 = 

10/K2 = 1 (dashed), p = 1/K1 = 50/K2 = 1 (dashed-dot) and p = 1/K1 = 5000/K2 = 1 (irreversible - 

dotted).  

As far as ion exchange is concerned, rigorous ion exchange kinetic models superimpose the 

electric transference on ordinary diffusion driven by the concentration gradient, as described by 



the Nernst-Planck theory [61]. An infinite solution volume version of the Nernst-Plank model 

was presented by Helfferich [6]:  

  (71)  

The dimensionless time (TA) is: 

  (72)  

where DA is the surface diffusion coefficient of the incoming ion (A). The parameter  ai is the 

ratio of the surface diffusion coefficients of the incoming ion (A) to the ion initially in the solid 

phase (B). The functions f1, f2 and f3 take several forms depending on the valences of the ions. 

For example, for univalent-bivalent exchange and 1 < ai < 20: 

  (73)  

  (74)  

  (75)  

For univalent-bivalent exchange the isotopic exchange model (Boyd’s equation) can be used 

instead of the more complex ion exchange model (Nernst-Plank) under certain conditions [29]. 

However, away from the infinite solution volume condition, ion exchange kinetics depend on 

selectivity, and Crank’s equation is not valid unless the isotherm is linear (isotopic exchange). 

Nernst-Plank model has been occasionally used without always examining the infinite solution 

volume condition. Some examples of the applications of this model include the isotopic 

exchange of molybdate ions on calcium molybdate [62], the adsorption of dyes onto zeolites 

[63], and the removal of U(VI) by hydrogels [64]. A review of several ion exchange kinetics 

models is presented in Petruzzelli et al. [61].  



Finally, Perry and Green [54] give the following equation for fluid film diffusion control, infinite 

solution volume condition, and Langmuir isotherm: 

  (76)  

Langmuir isotherm is equivalent to the DSM for 0 ≤ (1/K1) ≤ 1, K2 = 1 and p = 1. The solution 

for linear isotherm (K1 = 1) is given by Boyd et al. (1947) [57]. Note that when the fluid film 

diffusion step is involved, the isotherm is needed as the boundary condition at R = 1 becomes 

concentration-dependent. The comparison of numerical and analytical solutions for fluid film 

diffusion control are provided in Figure 19. The agreement between the models is perfect. Again, 

the effect of the isotherm is profound and for rectangular isotherm the U(T)-T curve becomes 

linear.  

   

Figure 19. Comparison of the numerical solution (solid line) and Perry & Green’s equation 

(points) for Bi = 0.1 and Λ = 0.01. Left: (1/K1) = 0 (irreversible equilibrium), Middle: (1/K1) = 

0.5 (favorable equilibrium) and Right: (1/K1) = 1 (linear isotherm).  

 

2.7 Approximate solutions to the HSDM 

Paterson (1947) worked out an approximation to his finite solution volume equation for linear 

isotherm or isotopic exchange [6]: 



 

  (77) 

where α and b are the roots of the equation: 

  (78)  

Crank’s equation (60) and Paterson’s approximation give practically the same results for the 

entire range of U(T) with an error of 0.001-0.005 for 0.5≤Λ≤2. Paterson’s approximation has 

been used in isotopic exchange studies, as for example the exchange of sodium and cesium ions 

on hydrous zirconia [65], sodium and cesium ions on titanium(IV) antimonite [66], and 

molybdate ions on calcium molybdate [62]. Furthermore, it has been used for systems that follow 

non-linear isotherms, such as the removal of organic cations by clinoptilolite [67], the ion 

exchange of calcium on zeolite A [68], the ion exchange of several metals on clinoptilolite [69], 

the adsorption of a herbicide on bituminous shale [70], the adsorption of basic dye onto zeolitic 

materials synthesized from fly ash [63], the removal of U(VI) by hydrogels [64], the ion 

exchange of copper on weak acid resins [71], and the adsorption  of Cr(VI) on sawdust [72]. A 

discussion on this issue is done later in this section. 

Concerning ion exchange, Inglezakis and Grigoropoulou [29] showed that Paterson’s 

approximation can provide an acceptable estimate of the surface diffusion coefficients in ion 

exchange systems under certain conditions. It is important to underline that in the definition of 

Λ, Helfferich is using the term “total concentration of counter ions” for  and  [6]. In ion 

exchange, both concentrations, if expressed as normality, are constant during the exchange as the 

phenomenon is stoichiometric. Paterson [73], originally working on a heat transfer problem, also 

uses the respective constant properties of the two phases, i.e., heat capacities. However, this has 



caused misinterpretations in literature. The reason is that the total concentration of counter ions 

in the solid phase is the real exchange capacity (REC) that may or may not be available for 

exchange under specific experimental conditions [44]. However, in the adsorption models the 

equilibrium solid phase concentration ( ) corresponding to a fluid phase equilibrium 

concentration equal to ( ) is used which is equivalent to the the maximum exchange level 

(MEL). The later expresses the concentration of the solid phase counter ions actually 

exchangeable under the specific initial liquid phase concentration ( ).  

Under the infinite solution volume condition, Vermeulen’s approximation can be used [6]: 

  (79)  

Vermeulen’s and Boyd’s equation (69) give practically the same results the whole range of U(T) 

with an error of 0.0045. Vermeulen’s approximation has been frequently used without always 

observing the infinite solution volume condition. For example, Viegas et al. [74] discuss the 

applicability of Vermeulen’s approximation for the adsorption on carbons and compares it to the 

HSDM model, without mentioning the infinite solution volume condition. Trgo et al. [75] apply 

the model to zinc and lead ion exchange on a zeolite, Naiya et al. [76] to the adsorption of metal 

ions onto clarified sludge, and Sarkar and Bandyopadhyay [77] to the adsorption of dyes on rice 

husk ash, but the infinite solution volume condition was not verified, and most probably were not 

met.  

Inglezakis and Grigoropoulou [29] showed that Vermeulen’s approximation can be used for ion 

exchange systems under infinite solution volume conditions and also for isotopic exchange and 

finite solution volume with acceptable errors for Λ < 0.1 and α < 20, provided that is applied in 

the range of U(T) of 0.3-0.8. The lower limit depends on Λ and the higher limit attains a higher 

value depending on the lower U(T) limit. However, as is common in the literature, the error was 



calculated as the vertical distance between the U(T) predictions of the models, i.e., the error for 

the same T, which amplifies the error when T is small as the U(T)-T curves have large slope. The 

upper limit depends on ai and is relevant to the assumption of the constant surface diffusion 

coefficient. The higher the value of ai the lower the upper limit should be (see also section 2.5.3). 

Inglezakis and Grigoropoulou [29]argued that Paterson’s approximation can be used for any 

U(T) value up to 0.8, depending on ai. Although an upper limit in the vicinity of 0.7 is used in 

several publications, the conclusion derived by Inglezakis and Grigoropoulou [29] was based on 

the comparison of the isotopic and ion exchange infinite solution volume models, not on the 

comparison of finite solution volume solutions. The experiments performed in the same 

publication, as in several others mentioned above, showed that Paterson’s approximation can 

give satisfactory estimation of surface diffusion coefficients for ion exchange systems away from 

the isotopic exchange/linear isotherm condition, for an upper limit of U(T) around 0.9. The 

question then is why the approximations based on linear isotherms are working in non-linear 

isotherm systems? 

In order to facilitate the discussion, the effect of the isotherm on the numerical solution for Bi = 

100 (surface diffusion control) and Bi = 0.1 (fluid film diffusion control) are presented in Figures 

20 and 21. As is evident, for low U(T) values the distance between the curves is not large. 

Focusing on the surface diffusion control case, which is the most common, it is clear that for 

U(T)<0.7 the distance between the numerical solutions for linear (representing Crank’s equation) 

and non-linear isotherms is negligible (Table 3). Also, for Λ = 0.4 Boyd’s equation perfectly fits 

the numerical solution for the strongly favorable isotherm for the whole range of U(T). This is 

expected as discussed in section 2.6.2 in the analysis of the surface diffusion control, finite 

solution volume, Λ≤1 and irreversible isotherm. 



Table 3. Error (distance between the curves) for Bi = 100. 

 

Curves 

Λ = 0.4 Λ = 2 

0<U(T)<0.7 0.7<U(T)<1 0<U(T)<0.7 0.7<U(T)<1 

Linear-Boyd 0.0039 0.0083 0.0113 0.0296 

Strongly favorable-Boyd 0.00031 0.0006 0.0142 0.0413 

Strongly favorable-linear 0.005 0.0115 0.0005 0.012 

 

Although the results depend on the type of isotherm and value of (Λ), it can be concluded that 

the analytical and approximate solutions can be used up to a certain limit of U(T). This upper 

limit of U(T) depends not only on the linearity of the isotherm but also on the concentration 

dependence of the surface diffusion coefficient (see section 2.5.3).  

These results justify the use of analytical and approximate equations, but the pitfalls must be 

highlighted and a discussion on the fitting of a non-linear model is necessary. The constant 

diffusivity TP-HSDM used to derive the above results is a parametric non-linear model, whose 

solutions are a function of the independent variable T and a set of parameters (Λ, Bi, p, K1, K2), 

which are typically known except the one used as a fitting parameter. The convergence of two 

solutions of such a model does not necessarily mean that the fitting parameter is the same; the 

convergence alone is merely indicting that the model is insensitive to this parameter for a range 

of the independent variable. The difference is that the results presented above are generated for 

the same fitting parameter. In an adsorption experiment the initial fluid concentration ( ), fluid 

volume (VL), solid’s properties (rp and ρp), solid mass (M), and the isotherm ( , p, K1, K2) are 

known while, in the typical case, the fluid phase mass transfer coefficient (kf) is calculated by 

use of correlations. Thus, the only unknown parameter is the solid phase diffusion coefficient 



(Ds) which is the fitting parameter of the model. The above analysis shows that different 

numerical solutions converge up to a value of U(T) for the same Λ and Bi, which in practice are 

calculated by use of the experimental values and the Ds, which is the same for all solutions. In 

this case the solutions are interchangeable, meaning that if they are applied to an experimental 

kinetic curve up to a certain U(T), they will give similar fit quality and Ds. Clearly, the 

application of a simplified model, which is not in agreement with the system’s physical reality 

(the isotherm in this case), is justified only when the objective is the estimation of the Ds, and 

conclusions should not be extended to the mechanism of the process.  

 

Figure 20. Effect of the isotherm on the numerical solution for Bi = 100 (surface diffusion 

control). Left: Λ = 0.4 (points for Boyd’s equation) and Right: Λ = 2 for different DSM 

isotherms: p = 1/K1 = 100/K2 = 1 (dashed line-strongly favorable), p = 1/K1 = 10/K2 = 1 (dashed-

dot line), p = 1/K1 = 2/K2 = 1 (dotted line) and p = 1/K1 = 1/K2 = 1 (solid line - linear isotherm). 



  

Figure 21. Effect of the isotherm on the numerical solution for Bi = 0.1 (fluid film diffusion 

control). Left: Λ = 0.4 and Right: Λ = 2 for different DSM isotherms: p = 1/K1 = 100/K2 = 1 

(dashed line-strongly favorable), p = 1/K1 = 10/K2 = 1 (dashed-dot line - favorable), r = 1/K1 = 

2/K2 = 1 (dotted line – slightly favorable) and p = 1/K1 = 1/K2 = 1 (solid line - linear isotherm).  

While Paterson’s and Vermeulen’s equations are approximations of the HSDM model this of 

Glueckauf (1955) is based on the linear driving force (LDF) approximation. This implies the 

substitution of Fick’s diffusion equation (6) with the following one [78]:  

  (80)  

where  is the solid phase concentration that would be in equilibrium with the 

instantaneous (at time t) fluid phase concentration, i.e., an imaginary solid phase equilibrium 

concentration (see Figure 2). The constant (kG) has a physical meaning and is related to the 

surface diffusion coefficient as follows: 

  (81)  



where (g) is a constant that Glueckauf set equal to 15 [79]. For a linear equilibrium an analytical 

solution is possible: 

  (82)  

For infinite solution volume A → ∞ the above equation becomes: 

  (83)  

Glueckauf’s model is valid for T > 0.1 [80]. This model is not as common as other adsorption 

diffusion-based models in literature, but it has been applied in a number of systems, such as for 

the ion exchange of nickel and zinc on Amberlite IR-120 resin [81]. Glueckauf’s equation with 

g=15 and Vermeulen’s equation were successfully applied by El-sharkawy et al. [60] on the 

kinetics of a mixture of pentafluoroethane, 1,1,1,2-tetrafluoroethane, and difluoromethane onto 

granular activated carbon. Jribi et al. [82] studied the adsorption of CO2 on activated carbon and 

found that the LDF equation with a constant mass transfer coefficient cannot fit the experimental 

data. Hence, they proposed a solid phase concentration-dependent mass transfer coefficient. A 

comparison of equation (83) with Vermeulen’s equation shows that the two equations converge 

for g = 20.06, but the errors are significant (Figure 22). Sircar and Hufton [78] evaluated the 

LDF model and concluded that although the shape is similar to the HSDM analytical solutions 

for the finite solution volume, there is a lack of quantitative fit with the divergence being a 

function of g.  



 

Figure 22. Comparison of Glueckauf and Vermeulen equations for g = 20.06. 

 

3. Reaction-diffusion based models 

An important theoretical model is the shrinking core model (SCM), which has been successfully 

used to describe the rate of a variety of processes, including sorption [53]. This model was 

originally proposed by Yagi and Kunii [83] and later modified by Wen [84] and Levenspiel [85] 

for non-catalytic solid-fluid chemical reactions. According to the model, the reaction occurs first 

at the outer skin of the particle (core) and moves into the solid, leaving behind completely 

converted material and inert solid (shell) (Figure 23). The solid is initially non-porous, and as the 

reaction advances the shell becomes porous while the core remains non-porous [84]. The model 

assumes an irreversible first order reaction (rectangular isotherm), takes into account both fluid 

and solid phase (pore fluid) diffusion steps, and assumes steady state diffusion in the solid phase.  



 

Figure 23. SCM graphical representation. 

The reaction considered in the classic form of the model is [85]: 

A(fluid) +bB(so1id) → products 

The fractional conversion can be defined as:  

  (84)  

where rc is the core radius and  is the initial concentration of reactant B. In adsorption 

terminology,  represents the maximum possible loading of the solid phase with the incoming 

solute (binding sites), is constant and for an irreversible reaction (rectangular isotherm), and is 

analogous to saturation capacity Qm. If equilibrium is attained, then,  is the final equilibrium 

solid phase concentration , and Xr becomes equal to the fractional attainment of equilibrium 

U(t) (equation 49). 

Originally, the model was derived for constant fluid phase concentration, i.e., infinite solution 

volume but it has been adapted for the finite solution condition [51,53,86,87]. Under the 

assumptions stated above, the solution of the model for fluid film diffusion control is: 

  (85)  



For pore diffusion control: 

  (86)  

For chemical reaction control:  

  (87)  

where b is the stoichiometric coefficient of the reaction and kr the chemical reaction rate 

constant. The equations presented were developed for a simple reaction, but when the reaction is 

fast they can be used for any reaction type as the mechanism becomes irrelevant. In this case, the 

SCM solutions for fluid film and pore diffusion control become essentially diffusion-based 

models [86]. Hence, for chemisorption and ion exchange, accompanied by a fast irreversible 

chemical reactions (rectangular isotherm), the SCM model is suitable and independent of the 

reaction mechanism. The shrinking core concept has been used with purely diffusion-based 

models and irreversible equilibrium for the derivation of analytical solutions. For instance, the 

infinite solution volume version of pore diffusion control (equation 86) can represent the PDM 

under an infinite solution volume condition and a rectangular isotherm [1,36]. Other diffusion-

based models can be also used when the reaction rate is fast, however, the physical significance 

is compromised.  

The existence of sharp advancing fronts in ion exchange systems is observed in several systems, 

and this led to the routine application of the SCM. However, as Helfferich [88] underlines, there 

must be some physical cause for the shell-core boundary to remain sharp, and this cannot be 

other than a fast chemical reaction that immobilizes the entering species on the core’s periphery 

preventing them from penetrating further. An example of such reaction is the complexation of 

metal ions by fixed chelating groups in resins. The assumption of a non-porous core further 



ensures the absence of diffusion towards the center of the solid. If the solid is porous, the solute 

can diffuse freely into it and the SCM becomes invalid [53,84]. In this case the solute interacts 

with the solid’s surface homogeneously throughout the solid producing a gradual variation of 

concentration in the particle. Another weakness of the SCM is the assumption of steady state 

diffusion in the pores’ fluid phase, which implies that equation (17) becomes [84]: 

  (88)  

where Dp is the pore diffusion coefficient. Note that SCM is based on the PDM discussed in 

section 2.2. The steady state diffusion condition in the pores means that the shrinkage of the 

unreacted core is slower than the transfer rate of the solute towards the unreacted core. Under 

this condition the unreacted core can be considered as stationary [85]. Wen [84] states that the 

pseudo-steady state approximation is valid for most of the solid-gas reaction systems but not for 

solid-liquid systems unless the liquid reactant concentration is very low.  

There are some studies where the SCM is used, as for instance in Rao and Gupta [86] for the ion 

exchange of heavy metals on chelating resins, Dicinoski et al. [89] for the kinetics of gold, silver 

and nickel cyanide complexes onto anion exchange resins, Inglezakis et al. [87] for the ion 

exchange of Pb2+ on a chelating resin, Barzamini et al. [90] for the adsorption of mercaptans on 

zeolites, and Sancho et al. [91] for the removal of ammonia from aqueous solutions on 

membranes and a zeolite. McKay [92] developed an analytical solution for combined fluid and 

solid phase diffusion resistances and applied it on the adsorption of a basic dye on silica. The 

SCM’s weaknesses however are obvious; irreversible equilibrium and pseudo-state solid 

diffusion assumptions are not met in many systems. For instance, Chen et al. [51] applied SCM 

on the removal of Cu2+ on calcium alginate gel and found that the derived diffusion coefficients 

were unrealistic as a result of invalid assumptions made by the SCM. Consequently, the SCM 



has been modified to accommodate different types of isotherms, but the solutions are only 

numerical. Jena et al. [34] presented a modified SCM based on the PDM under the pseudo-state 

assumption, which is applicable for any isotherm. This model was applied on the adsorption of 

astrazone blue dye on silica, para-nitrophenol on granular activated carbon, toluene on activated 

carbon [34], the adsorption of metals onto sludge [76], arsenic adsorption on natural laterite [93], 

and the adsorption of dyes on rice husk ash [77]. Maria and Mansur [94] studied the removal of 

manganese on bone char and applied a modified form of the SCM based on the PDM, with 

Langmuir isotherm and the pseudo-state state assumption in the solid phase. The results using 

the SCM were erroneous as they showed that the solid/liquid ratio affects the pore phase 

diffusion coefficient. Pritzker [53] presented a modified SCM based on HSDM (see section 2.1) 

to account for an incompletely reacted shell. The model is valid for any isotherm under the 

pseudo-state state assumption in the solid phase. Pritzker [53] applied the modified SCM on the 

removal of Cu2+ ions onto calcium alginate gel. In Figure 24, the solid phase concentration 

profiles of the SCM and modified SCM for pore diffusion control are shown for comparison. 

Wen [84] presents SCM-HSDM combined models, applicable mostly for solid phase non-

catalytic reactions.  

The major difference between SCM, HSDM and PDM is that in SCM the adsorbate is rapidly 

and totally adsorbed at the shell-core interface, i.e., the shell is inert to the diffusing species and 

the core is free of solute, while in HSDM and PDM diffusion happens in all points of the solid. 

Also, in PDM the adsorbent concentration gradient is due to a combination of diffusion and 

equilibrium in all points, in HSDM a combination of equilibrium at the fluid-solid interface and 

diffusion, in modified SCM a combination of diffusion and equilibrium in the shell, and in SCM 



a consequence of diffusion alone. The result is that models display continuous but dissimilar 

solute concentration gradients as shown in Figure 24.  

 

Figure 24. Intraparticle concentration profiles. From left to right: SCM, modified SCM, HSDM 

and PDM.  

In HSDM, a concentration profile is developing in the solid phase reaching the center of the solid 

and gradually becomes horizontal as it moves closer to equilibrium over time (Figure 9). For 

small T the HSDM gives a profile that progressively moves towards the center, resembling the 

modified SCM, but the curvatures of the two profiles are different (Figure 24). Furthermore, as 

Chen et al. [51] and Priztker [53] showed, the HSDM profile penetrates the solid phase and 

reaches its center much faster than the SCM profile. This is a result of the assumptions behind 

the models; the entire solid phase is available for diffusion in HSDM but only the shell in SCM. 

The differences between the SCM and HSDM hold for the rectangular isotherm as well. 

Another reaction-diffusion based model is the Langmuir kinetics model (LKM), which is 

theoretical and the basis of Langmuir isotherm [5]: 

  (89)  



where kL is the Langmuir rate coefficient and bL a constant. The model is valid for systems that 

follow the Langmuir isotherm, which is derived from equation (89) at equilibrium for d /dt = 0. 

The solution to the LKM is: 

  (90)  

where, γ is the solid mass M to liquid volume VL ratio and: 

  (91)  

  (92)  

The Langmuir rate coefficient kL is a lumped parameter which accounts for both the intrinsic 

adsorption kinetics and mass transfer steps and Chu [5] showed that the solid phase diffusion 

coefficient can be estimated by using the following equation: 

  (93)  

The equilibrium constant La in equation (28) is related to the LKM constant bL as follows: 

  (94)  

LKM was successfully applied for the adsorption of pyridine on activated carbon and 5-

hydroxymethylfurfural and acrylonitrile on a polymeric resin [5]. Also, Al-Jabari [95] used LKM 

in combination to fluid film diffusion resistance for fitting experimental results for the adsorption 

of Cr3+ on marlstone and stone cutting particles. 

 

4. Reaction kinetics-based models  



Most of the reaction kinetics-based models consider the adsorption kinetics on the surface of the 

solid phase assuming that mass transfer is fast enough to be neglected. Strictly speaking, these 

models are applicable in chemisorption on solids that are either non-porous or porous exhibiting 

high diffusion coefficients. Excellent reviews on the use of these models for the adsorption of 

organic and inorganic pollutants from water/wastewater are these of Febrianto et al. [12], Gupta 

and Bhattacharyya [4], Malamis and Katsou [96], and Tan and Hameed [27]. 

Probably the most popular model of this type is the pseudo-first-order (PFO) rate equation of 

Lagergren which originally appear in literature in 1898 [25]: 

  (95)  

where k is the reaction rate constant. After integration: 

  (96)  

The PFO model has been extensively used in adsorption studies, including the adsorption of 

metal ions on a large number of inorganic materials and biosorbents [12,96]. The first order 

kinetic processes signify reversible interactions with an equilibrium being established between 

fluid and solid phases [4]. The PFO model has the same form as the linear driving force (LDF) 

diffusion-based model of Glueckauf (equation 80); however, the models are equivalent only 

when the isotherm is linear and under the infinite solution volume condition [97]. This is 

happening because the driving force in the solid film, used in Glueckauf’s model, is the 

difference between the surface concentration qt,r=rp and the average solid loading at time t (Figure 

2), while in the PSO model it is the difference between the true equilibrium  and the average 

loading of the solid at time t [35]. Despite its simplicity and relativelly sucessful implementation 

in many systems, Lagergren’s model is criticized in a number of papers as theoretically 

inconsistent.  



Tran et al. [10] discussed a number of reaction kinetics-based models, including the pseudo-

second-order rate equation (PSO), which was first presented by Blanchard et al. in 1984 [98] : 

  (97)  

After integration: 

  (98)  

The PSO model assumes that the rate-limiting step is most likely to involve chemical interactions 

leading to the binding of the ions to the surface by strong covalent bonding [4]. PSO has been 

extensively used on several studies, such as the removal of metals by use of inorganic materials 

and biosorbents [12,96]. 

Elovich’s equation was first proposed by and Roginsky and Zeldovich in 1934 [99] for the 

adsorption of carbon monoxide onto manganese dioxide and it has been used for chemisorption: 

  (99)  

where ak  is the initial adsorption rate and b is the desorption constant. The integrated form of 

this equation is [100]: 

  (100)  

According to several researchers, the Elovich equation is suitable for highly heterogeneous 

sorbents and is based on the assumption that the sorption sites increase exponentially with 

sorption, which implies a multilayer sorption, and each layer exhibits a different activation 

energy for chemisorption [101]. In comparison to PFO and PSO models, Elovich’s equation is 

only occasionally used, for instance, for the adsorption of Cd(II) on natural clinoptilolite and 

hexadecyltrimethylammonium-clinoptilolite [4]. Wu et al. [100] provided a comparison between 

Elovich, Lagergren and Weber-Moris equations. 



The models presented above are empirical in nature and, as Tan and Hameed [27] noted, most 

publications focus on the solid material employed, and the kinetic models serve merely to 

complement the adsorbent evaluation and, inevitably, the origins, strengths, limitations, and 

interpretation of the underlying phenomena are not addressed. Rudzinski and Plazinski  [102] 

showed that they are simplified forms of a more general theoretical equation when the adsorption 

kinetics is governed by the rate of surface reactions. However, the analysis is based on 

completely different physical assumptions and can not be interpreted as general one. Azizian 

[103] theoretically derived the PFO and SFO rates as special cases of the Langmuir adsorption 

rates. Plazinski [11] and Tan and Hameed [27] rightfully argue that these models do not 

represent any specific mechanism, that they lack physical significance, and that they are simply 

highly flexible mathematical formulas able to fit well kinetic curves. The shape of the 

experimental kinetics curves can be easily represented with several equations having two fitting 

constants, and this is why the kinetic models can be sucessful in many cases [22]. It is also true 

that researchers often ignore the assumptions of reaction kinetics-based models and evaluate 

their applicability solely on the quality of the fit on the experimental data [104]. This has been 

nicely illustrated by Ocampo-Perez et al. [20], who studied phenol adsorption on 

organobentonite; the results showed that the reaction kinetic-based models fitted the 

experimental data reasonably well, but the derived kinetic parameters varied with experimental 

conditions without any physical significance or plausible explanation. Thus the answer to the 

question Simonin [17] poses on the PFO and PSO models “which of the two rate laws better 

describes an adsorption process controlled by diffusion?” is plainly “none”.  

The analytical and approximate models discussed in this paper are summarized in Table 4. 



  Table 4. Summary of analytical and approximate models 

Model (equation) Isotherm Controlling step Chemical 

reaction 

Solution 

volume 

Chemical kinetics-based 

PFO (96) None Chemical reaction Yes Finite 

PSO (98) None Chemical reaction Yes Finite 

Elovich (100) None Chemical reaction Yes Finite 

LKM (90) Langmuir Adsorption reaction No Finite 

SCM (85-87) 

SCM (86) 

Rectangular  

Rectangular 

Any single 

Pore diffusion 

Yes 

No 

Finite 

Infinite 

Mass transfer diffusion-based 

Crank (60) 

Paterson (77) 

Linear 

 

Surface/Pore diffusion 

 

No Finite 

Boyd (69) 

Vermeulen (79) 

Any 

Linear 

Rectangular 

Surface/Pore diffusion 

 

No Infinite 

 

Finite ( ) 

Glueckauf (82) Linear Surface diffusion No Finite 

Weber and Moris (1) Linear Surface diffusion No Infinite 

Nernst-Plank (71) Any Surface diffusion No Infinite 

Perry and Green 

(76) 

Langmuir 

Linear 

Rectangular 

Fluid film diffusion  

 

No Infinite 

Helfferich (67) Linear Fluid film diffusion No Finite 

 

5. Conclusions 

A new versatile variable diffusivity two-phase homogeneous diffusion model incorporating a 

flexible non-linear isotherm is presented and used for the evaluation of the analytical and 

approximate models. The numerical model is equipped with the Chen-Yang variable diffusivity 

correlation, which can deal with both increasing and decreasing surface diffusion coefficients 



with increasing solid loading. Due to the non-linearity of the boundary condition at the surface of 

the solid phase, analytical solutions are possible only for constant intraparticle diffusion 

coefficient and linear or rectangular isotherms unless the volume of the solution is infinite. The 

weaknesses of the analytical diffusion-based models include the assumption of a constant solid 

phase diffusion coefficient and the limitations on the isotherm shape. Nevertheless, the 

comparison of the analytical models to the numerical solution demonstrated that the deviation 

can be small  away from equilibrium, i.e. for U(T) lower than 0.5-0.7, depending on the system. 

This upper limit of U(T) depends on the linearity of the isotherm, the controlling diffusion step 

(Biot number) and the blockage of the solid’s pores (hindered diffusion). Clearly, the application 

of a simplified model, which is not in accordance with the system’s physical reality, i.e. the 

constant diffusion coefficient or the isotherm is justified only when the objective is the 

estimation of the solid phase diffusion coefficient and conclusions should not be extended to the 

mechanism of the process. Despite their weaknesses, reaction kinetics-based models are easy to 

use and can provide some insights into the adsorption mechanism, if applied carefully in well-

designed experiments. Also, under the range of experimental conditions they are applied, they 

can be used for process design. The LKM and the SCM are superior to the empirical kinetics-

based models but are not as widely applied as the later.  

It is imperative to underline that the adsorption mechanisms cannot be directly assigned by 

simply fitting kinetic models; a good knowledge of the surfaces and interactions involved 

supported by analytical techniques, such as XPS, FTIR and SEM, are necessary. As Helfferich 

[88] puts it “Even a faulty model can usually be made to fit a limited number of experimental 

results by adjustment of its parameters. However, if it seriously violates physical reality, it is apt 

to produce erroneous predictions and conclusions.”. 
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