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Abstract The parameter estimation methods for the nonlinear exponential autoregressive (Ex-
pAR) model are investigated in this work. Combining the hierarchical identification principle with
the negative gradient search, we derive a hierarchical stochastic gradient algorithm. Inspired by
the multi-innovation identification theory, we develop a hierarchical-based multi-innovation iden-
tification algorithm for the ExpAR model. Introducing two forgetting factors, a variant of the
hierarchical-based multi-innovation identification algorithm is proposed. Moreover, to compare
and demonstrate the serviceability of these algorithms, a nonlinear ExpAR process is taken as
an example in the simulation.

Keywords Nonlinear ExpAR model · Parameter estimation · Hierarchical identification ·
Multi-innovation identification · Negative gradient search

1 Introduction

Nonlinear time series models can reveal nonlinear features of many practical processes, and they
are widely used in finance, ecology and some other fields [1]. The exponential autoregressive (Ex-
pAR) model [2] is a significant kind of nonlinear time series models. In the early days, the ExpAR
model is applied to the statistical analysis of the Canadian lynx data [3,4], and then it shows
the appropriateness in describing certain nonlinear behaviors, such as amplitude-dependent fre-
quency, jump phenomena and limit cycle, and in conducting accurate multistep-ahead predictions
[5]. In recent years, a good deal of publications are devoted to studying the stationarity, esti-
mation and application of the ExpAR model. For example, Chen et al. discussed the stationary
conditions of several generalized ExpAR models, developed a variable projection based estima-
tion algorithm, and adopted the generalized ExpAR models to model and predict the monthly
mean thickness ozone column [6].

Analyzing and controlling a nonlinear time series process relies on an appropriate dynamical
model. System identification is a common tool to construct the mathematical models of dynamical
systems, parameter estimation is generating the unknown system parameters via a
set of observations. System identification and parameter estimation are widely used in areas
of fault diagnosis [7], network communication [8,9] and so on. Many identification methods such
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as the maximum likelihood [10], the genetic algorithm [11], the blind identification [12] and the
subspace identification [13] have been developed for decades. The gradient-based methods are
a class of fundamental system identification methods. Combining with recursive and iterative
techniques, the gradient-based methods can be provided for identifying many kinds of systems.
However, the gradient-based methods have poor parameter estimation accuracies. By introducing
the forgetting factor, some variants of the gradient-based identification algorithms are derived,
which have improved parameter estimation accuracies. For instance, Chen and Jiang developed
a gradient-based identification method with several forgetting factors for nonlinear two-variable
difference systems [14].

In the area of system identification, many techniques have been exploited to improve the
identification results. For example, the hierarchical identification principle has been developed as
a significant branch of system identification [15]. Recently, a hierarchical gradient based iterative
algorithm was used to simultaneously estimate the unknown amplitudes and angular frequencies
of multi-frequency signals [16]. In addition, the multi-innovation identification has shown the
effectiveness in nonlinear system identification [17]. By expanding a scalar innovation into a multi-
dimensional vector, a multi-innovation stochastic gradient (SG) algorithm was derived for Wiener-
Hammerstein systems with backlash [18]; a multi-innovation fractional order SG algorithm was
developed for Hammerstein nonlinear ARMAX systems [19]. However, there is few research on
the nonlinear time series model identification using these novel identification techniques.

This communique investigates the recursive identification algorithms for the ExpAR model.
Applying the hierarchical identification principle, the ExpAR model is decomposed into two
sub-identification (Sub-ID) models, one of which contains the unknown parameter vector of the
linear subsystem, and the other contains the unknown parameter of the nonlinear part. With the
negative gradient search, two unknown parameter sets are estimated interactively. In order to
make the most of the information, the scalar innovations are expanded into innovation vectors.
Moreover, two forgetting factors are introduced into the multi-innovation algorithm, so that
we can present a new recursive identification algorithm with improved parameter estimation
accuracy. In brief, we list the following contributions provided in this paper.

• Considering the difficulty of the nonlinear optimal problem arising in identifying the ExpAR
model, we combine the hierarchical identification principle with negative gradient search so as to
derive a hierarchical stochastic gradient (H-SG) algorithm for the ExpAR model.

• Using the multi-innovation identification theory, a hierarchical multi-innovation stochastic
gradient (H-MISG) algorithm is presented for the ExpAR model. Introducing two forgetting
factors, we obtain a modified H-MISG algorithm.

• Comparing the parameter estimation accuracies of the proposed hierarchical algorithms,
we find that the modified version of the H-MISG algorithm has improved parameter estimation
accuracy and can be effectively used to identify the ExpAR model.

2 Problem description

Some notations used throughout this paper are first introduced in Table 1.
Given a time series {xk, xk−1, xk−2, · · · }, an ExpAR model can be expressed as

xk =
(
α1 + β1e−ξx2

k−1

)
xk−1 +

(
α2 + β2e−ξx2

k−1

)
xk−2 + · · ·

+
(
αn + βne−ξx2

k−1

)
xk−n + εk, (1)

where εk is a white noise with zero mean, n denotes the system degree, αi, βi and ξ are the
model parameters to be estimated.

When the parameters βi = 0, i = 1, 2, · · · , n, Equation (1) reduces to an autoregressive (AR)
model which has no nonlinear dynamics.

The form in (1) is the classic ExpAR model, some modified versions have been presented. For
instance, in order to give a more sophisticated specification of the dynamics of the characteristic
roots of AR models, Ozaki derived a variant of the ExpAR model in [3] using the Hermite type
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Table 1 The notations used throughout this paper

Item Notations Descriptions

1 xk ∈ R Measurement data

2 εk ∈ R Stochastic white noise

3 α ∈ Rn, β ∈ Rn, Θ ∈ R2n, ξ ∈ R Parameters to be estimated

4 α̂k ∈ Rn, β̂k ∈ Rn, Θ̂k ∈ R2n, ξ̂k ∈ R Parameter estimates at time k

5 Xk ∈ Rn, φ(ξ, k) ∈ R2n Information vectors

6 ψ(β) ∈ R Information item

7 x1,k ∈ R Intermediate variable

8 φ′(ξ, k) ∈ R2n Derivative of φ(ξ, k)

9 e1,k ∈ R, e2,k ∈ R Innovations

10 µ1,k ∈ R, µ2,k ∈ R Step-sizes

11 r1,k ∈ R, r2,k ∈ R Reciprocals of the step-sizes

12 E1(l) ∈ Rl, E2(l) ∈ Rl Innovation vectors

13 X(l) ∈ Rl Stacked information vector

14 Φ(l, ξ̂k−1) ∈ R(2n)×l Stacked information matrix

15 Φ′(l, ξ̂k−1) ∈ R(2n)×l Derivative of Φ(l, ξ̂k−1)

polynomials:

xk =
n∑

i=1

[
αi +

(
βi0 +

mi∑

j=1

βijx
j
k−1

)
e−ξx2

k−1

]
xk−i + εk.

Introducing a time-delay d and a scalar parameter ζ, Teräsvirta developed a different variant of
the ExpAR model in [4]:

xk =
[
α0 + β0e−ξ(xk−d−ζ)2

]
+

n∑

i=1

[
αi + βie−ξ(xk−d−ζ)2

]
xk−i + εk.

Some other generalized ExpAR models were summarized by Chen [6]. After parametrization,
we can derive the corresponding identification models, which have different parameter and in-
formation vectors, for the ExpAR family. This paper copes with the recursive identification for
the classic ExpAR model. The proposed hierarchical algorithms are also appropriate for other
ExpAR models.

Assume that the degree n is known, the data xk is measurable. The initial values are taken
as xk = 0 and εk = 0 for t ≤ 0.

It is obvious that xk is linear with respect to the parameters αi and βi, and is nonlinear with
respect to the parameter ξ. Define the parameter vectors of the linear subsystem

α := [α1, α2, · · · , αn]T ∈ Rn,

β := [β1, β2, · · · , βn]T ∈ Rn,

and the information vector

Xk := [xk−1, xk−2, · · · , xk−n]T ∈ Rn.

Then Equation (1) can be transformed into

xk =
n∑

i=1

αixk−i + e−ξx2
k−1

n∑

i=1

βixk−i + εk

= XT
kα + e−ξx2

k−1XT
kβ + εk. (2)

Furthermore, define the following vectors:

Θ := [αT,βT]T ∈ R2n,

φ(ξ, k) := [XT
k , e−ξx2

k−1XT
k ]T ∈ R2n.

Then Equation (2) can be equivalently transformed into the identification model

xk = φT(ξ, k)Θ + εk. (3)
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Since the unknown parameter of the nonlinear subsystem ξ exists in φ(ξ, k), the identification
problem becomes a complex nonlinear optimization problem and the least squares method cannot
be used for parameter estimation. The previous work aims to explore new recursive identification
methods for the ExpAR model.

3 The hierarchical stochastic gradient algorithm

Hierarchical identification is the decomposition based identification. The key idea is
to decompose the identification model into several subsystems, such that the scale of
the optimization problem becomes small [20]. In this section, by the hierarchical identifi-
cation principle, the ExpAR model is decomposed into two subsystems, one of which contains Θ,
and the other contains ξ, both these two parameter sets are to be estimated. In addition, the
negative gradient search is widely adopted to deal with some optimization problems
and to determine the extreme point of the objective function. Applying the negative
gradient search, an H-SG algorithm is proposed for the ExpAR model.

Define the information item ψ(β) and the intermediate variable x1,k as

ψ(β) := XT
kβ ∈ R,

x1,k := xk −XT
kα ∈ R.

From (2), we can see that the ExpAR model is decomposed into these two Sub-ID models:

S1 : xk = φT(ξ, k)Θ + εk, (4)

S2 : x1,k = ψ(β)e−ξx2
k−1 + εk. (5)

The parameter sets Θ and ξ in Sub-ID models (4) and (5) contain all the parameters to be
estimated. The parameter ξ in φ(ξ, k) and the parameter vector β in ψ(β) are the associate
terms between these two Sub-ID models. Decomposing the identification model in (2) or (3) into
the above fictitious subsystems, we can obtain a hierarchical structure which is demonstrated in
Figure 1.

Total identification model

xk = XT
k α + e−ξx2

k−1XT
k β + εk

? ?
xk = φT(ξ, k)Θ + εk

-β
x1,k = ψ(β)e−ξx2

k−1 + εk¾
ξ

Sub-ID model 1 Sub-ID model 2

Fig. 1 The hierarchical structure of the identification models for the ExpAR model

Define two criterion functions

J1(Θ) :=
1
2
[xk − φT(ξ, k)Θ]2, (6)

J2(ξ) :=
1
2
[x1,k − ψ(β)e−ξx2

k−1 ]2. (7)

Computing the gradients of J1(Θ) and J2(ξ), we have

grad[J1(Θ)] =
∂J1(Θ)

∂Θ
= −φ(ξ, k)[xk − φT(ξ, k)Θ],

grad[J2(ξ)] =
∂J2(ξ)

∂ξ
= x2

k−1ψ(β)e−ξx2
k−1 [x1,k − ψ(β)e−ξx2

k−1 ]

= x2
k−1ψ(β)e−ξx2

k−1 [xk −XT
kα− ψ(β)e−ξx2

k−1 ]
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= −ΘTφ′(ξ, k)[xk −XT
kα− ψ(β)e−ξx2

k−1 ]
= −ΘTφ′(ξ, k)[xk − φT(ξ, k)Θ],

where

φ′(ξ, k) :=
∂φ(ξ, k)

∂ξ
= [0T

n,−x2
k−1e

−ξx2
k−1XT

k ]T ∈ R2n.

Let Θ̂k and ξ̂k signify the estimates of Θ and ξ at time k, µ1,k and µ2,k represent the step-sizes
to be given later. Employing the negative gradient search, we have:

Θ̂k = Θ̂k−1 − µ1,kgrad[J1(Θ̂k−1)]

= Θ̂k−1 + µ1,kφ(ξ, k)[xk − φT(ξ, k)Θ̂k−1], (8)

ξ̂k = ξ̂k−1 − µ2,kgrad[J2(ξ̂k−1)]

= ξ̂k−1 + µ2,kΘTφ′(ξ̂k−1, k)[xk − φT(ξ̂k−1, k)Θ]. (9)

The following finds the optimal step-sizes µ1,k and µ2,k. One method is to apply the one-
dimensional search, that is, to solve the optimization problems

min
µ1,k≥0

J1{Θ̂k−1 − µ1,kgrad[J1(Θ̂k−1)]},

min
µ2,k≥0

J2{ξ̂k−1 − µ2,kgrad[J2(ξ̂k−1)]}.

Remark 1: The one-dimensional search method is a fundamental method of finding the opti-
mal step-size in the minimization problem. The key idea is to determine the negative gradient
direction (i.e., the direction where the criterion function descends fastest) and to compute the
step-size, which makes the criterion function minimal, by the one-dimensional search of the neg-
ative gradient direction.

For the sake of convenience, we define the innovations e1,k and e2,k as

e1,k := xk − φT(ξ, k)Θ̂k−1 ∈ R, (10)

e2,k := xk − φT(ξ̂k−1, k)Θ ∈ R. (11)

Substituting Θ = Θ̂k into (6) gives

g1[µ1,k] := J1[Θ̂k] =
1
2
[xk − φT(ξ, k)Θ̂k]2

=
1
2
{xk − φT(ξ, k)[Θ̂k−1 + µ1,kφ(ξ, k)e1,k]}2

=
1
2
{xk − φT(ξ, k)Θ̂k−1 − µ1,k‖φ(ξ, k)‖2e1,k}2

=
1
2
{e1,k − µ1,k‖φ(ξ, k)‖2e1,k}2

=
1
2
{1− µ1,k‖φ(ξ, k)‖2}2e2

1,k.

In order to make J1[Θ̂k] minimum, we take the optimal step-size µ1,k as

µ1,k =
1

‖φ(ξ, k)‖2 . (12)

To avoid the denominator being zero, the above equation can be modified to

µ1,k =
1

1 + ‖φ(ξ, k)‖2 . (13)

Substituting (12) or (13) into (8), we obtain the gain vector φ(ξ,k)

‖φ(ξ,k)‖2 or φ(ξ,k)

1+‖φ(ξ,k)‖2 . Neither of

these two gain vectors approaches zero with increasing k. From (8), we can see that when Θ̂k−1
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is close to Θ, the large gain vector µ1,kφ(ξ, k) will make Θ̂k deviate from Θ. To address this
problem, we let the step-size µ1,k tend to zero with increasing k. Therefore, µ1,k is taken as

µ1,k :=
1

r1,k
,

r1,k = r1,k−1 + ‖φ(ξ, k)‖2. (14)

Similarly, substituting ξ = ξ̂k into (7) gives

g2[µ2,k] := J2[ξ̂k] =
1
2
[x1,k − ψ(β)e−ξ̂kx2

k−1 ]2

=
1
2
[xk −XT

kα− ψ(β)e−ξ̂kx2
k−1 ]2

=
1
2
[xk − φT(ξ̂k, k)Θ]2.

Plugging the first-order Taylor expansion of φ(ξ, k) at ξ = ξ̂k−1 into the above equation, we have

g2[µ2,k] =
1
2
{xk − [φT(ξ̂k−1, k) + [φ′(ξ̂k−1, k)]T(ξ̂k − ξ̂k−1) + o(ξ̂k − ξ̂k−1)]Θ}2

=
1
2
{xk − [φT(ξ̂k−1, k) + [φ′(ξ̂k−1, k)]T[µ2,kΘTφ′(ξ̂k−1, k)e2,k] + o(ξ̂k − ξ̂k−1)]Θ}2

=
1
2
[xk − φT(ξ̂k−1, k)Θ − [φ′(ξ̂k−1, k)]T[µ2,kΘTφ′(ξ̂k−1, k)e2,k]Θ + o(ξ̂k − ξ̂k−1)]2

=
1
2
[e2,k − µ2,k‖ΘTφ′(ξ̂k−1, k)‖2e2,k + o(ξ̂k − ξ̂k−1)]2

=
1
2
[1− µ2,k‖ΘTφ′(ξ̂k−1, k)‖2]2e2

2(k) + o(ξ̂k − ξ̂k−1)2.

The optimal µ2,k can be obtained by minimizing g2[µ2,k], i.e., by solving the equation

1− µ2,k‖ΘTφ′(ξ̂k−1, k)‖2 = 0.

Thus, the step-size µ2,k can be chosen as

µ2,k =
1

‖ΘTφ′(ξ̂k−1, k)‖2 .

Similarly, considering the stability of the identification algorithm, the above equation can be
modified to

µ2,k :=
1

r2,k
,

r2,k = r2,k−1 + ‖ΘTφ′(ξ̂k−1, k)‖2. (15)

Plugging (10), (14) into (8), and (11), (15) into (9), we obtain the following recursive relations:

Θ̂k = Θ̂k−1 +
1

r1,k
φ(ξ, k)e1,k, (16)

e1,k = xk − φT(ξ, k)Θ̂k−1, (17)
r1,k = r1,k−1 + ‖φ(ξ, k)‖2, (18)

ξ̂k = ξ̂k−1 +
1

r2,k
ΘTφ′(ξ̂k−1, k)e2,k, (19)

e2,k = xk − φT(ξ̂k−1, k)Θ, (20)

r2,k = r2,k−1 + ‖ΘTφ′(ξ̂k−1, k)‖2. (21)

Here, a difficulty arises. Since the parameter sets Θ and ξ, existing in the right-hand sides of
(16)–(21), are to be estimated later, the algorithm in (16)–(21) cannot be realized. Inspired by
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the hierarchical identification principle, we replace the unknown parameters ξ in (16)–(18) and
Θ in (19)–(21) with the estimates ξ̂k−1 and Θ̂k. It follows that

Θ̂k = Θ̂k−1 +
1

r1,k
φ(ξ̂k−1, k)e1,k, (22)

e1,k = xk − φT(ξ̂k−1, k)Θ̂k−1, (23)

r1,k = r1,k−1 + ‖φ(ξ̂k−1, k)‖2, (24)

φ(ξ̂k−1, k) = [XT
k , e−ξ̂k−1x2

k−1XT
k ]T, (25)

Xk = [xk−1, xk−2, · · · , xk−n]T, (26)

Θ̂k = [α̂T
k , β̂

T

k ]T, (27)

ξ̂k = ξ̂k−1 +
1

r2,k
Θ̂

T

kφ′(ξ̂k−1, k)e2,k, (28)

e2,k = xk − φT(ξ̂k−1, k)Θ̂k, (29)

r2,k = r2,k−1 + ‖Θ̂T

kφ′(ξ̂k−1, k)‖2, (30)

φ′(ξ̂k−1, k) = [0T
n,−x2

k−1e
−ξ̂k−1x2

k−1XT
k ]T. (31)

The above computational process forms the H-SG algorithm for the ExpAR model.
The process of computing Θ̂k and ξ̂k by the H-SG algorithm is exhibited in the following list.

1. To initialize, let k = 1, Θ̂0 = [α̂T
0 , β̂

T

0 ]T = 12n/p0, ξ̂0 = 1/p0, p0 = 106, r1,0 = 1 and r2,0 = 1,
give an error tolerance η > 0.

2. Collect the measurement data xk, form the information vectors Xk and φ(ξ̂k−1, k) by (26)
and (25).

3. Compute the reciprocal of the step-size r1,k by (24) and the innovation e1,k by (23).
4. Update the parameter estimation vector Θ̂k by (22), and read out α̂k and β̂k from Θ̂k in

(27).
5. Form the derivative of φ(ξ̂k−1, k) with respect to ξ̂k−1 by (31).
6. Compute the reciprocal of the step-size r2,k by (30) and the innovation e2,k by (29).
7. Update the parameter estimate ξ̂k by (28).
8. Compare {Θ̂k, ξ̂k} with {Θ̂k−1, ξ̂k−1}: if ‖Θ̂k− Θ̂k−1‖+‖ξ̂k− ξ̂k−1‖ > η, increase k by 1 and

return to Step 2; otherwise, terminate this computational process.

The H-SG algorithm in (22)–(31) estimates the parameter sets Θ and ξ in an interactive
way. The innovations e1,k and e2,k in (23) and (29) are scalars. In order to make the most of the
information, we derive an interactive multi-innovation parameter estimation method in the next
section.

4 The hierarchical multi-innovation stochastic gradient algorithm

The innovation is the useful information which can improve the parameter and state
estimation accuracy. The multi-innovation identification is the innovation expansion
based identification [21]. Applying the multi-innovation identification theory, we expand the
scalar innovations e1,k and e2,k in (23) and (29), and develop an H-MISG algorithm for the
ExpAR model in this section.

Let l denote the innovation length. Expand the scalar innovations in (23) and (29) into the
l-dimensional vectors:

E1(l) :=




xk − φT(ξ̂k−1, k)Θ̂k−1

xk−1 − φT(ξ̂k−1, k − 1)Θ̂k−1

...
xk−l+1 − φT(ξ̂k−1, k − l + 1)Θ̂k−1


 ∈ R

l,
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E2(l) :=




xk − φT(ξ̂k−1, k)Θ̂k

xk−1 − φT(ξ̂k−1, k − 1)Θ̂k

...
xk−l+1 − φT(ξ̂k−1, k − l + 1)Θ̂k


 ∈ R

l.

Define the following stacked vector and matrix:

X(l) :=




xk

xk−1

...
xk−l+1


 ∈ R

l, Φ(l, ξ̂k−1) :=




φT(ξ̂k−1, k)
φT(ξ̂k−1, k − 1)

...
φT(ξ̂k−1, k − l + 1)




T

∈ R(2n)×l.

Then the innovation vectors can be equivalently transformed into

E1(l) = X(l)−ΦT(l, ξ̂k−1)Θ̂k−1,

E2(l) = X(l)−ΦT(l, ξ̂k−1)Θ̂k.

Since E1(l) = e1,k, Φ(l, ξ̂k−1) = φ(ξ̂k−1, k) and X(l) = xk for l = 1, Equation (22) can be
written as

Θ̂k = Θ̂k−1 +
1

r1,k
Φ(l, ξ̂k−1)E1(l).

Similarly, Equation (28) can be transformed into

ξ̂k = ξ̂k−1 +
1

r2,k
Θ̂

T

kΦ′(l, ξ̂k−1)E2(l),

where

Φ′(l, ξ̂k−1) := [φ′(ξ̂k−1, k),φ′(ξ̂k−1, k − 1), · · · ,φ′(ξ̂k−1, k − l + 1)] ∈ R(2n)×l.

In summary, the H-MISG algorithm for the ExpAR model can be derived as follows,

Θ̂k = Θ̂k−1 +
1

r1,k
Φ(l, ξ̂k−1)E1(l), (32)

E1(l) = X(l)−ΦT(l, ξ̂k−1)Θ̂k−1, (33)

r1,k = r1,k−1 + ‖φ(ξ̂k−1, k)‖2, (34)
X(l) = [xk−1, xk−2, · · · , xk−l+1]T, (35)

Φ(l, ξ̂k−1) = [φ(ξ̂k−1, k),φ(ξ̂k−1, k − 1), · · · ,φ(ξ̂k−1, k − l + 1)], (36)

φ(ξ̂k−1, k) = [XT
k , e−ξ̂k−1x2

k−1XT
k ]T, (37)

Xk = [xk−1, xk−2, · · · , xk−n]T, (38)

Θ̂k = [α̂T
k , β̂

T

k ]T, (39)

ξ̂k = ξ̂k−1 +
1

r2,k
Θ̂

T

kΦ′(l, ξ̂k−1)E2(l), (40)

E2(l) = X(l)−ΦT(l, ξ̂k−1)Θ̂k, (41)

r2,k = r2,k−1 + ‖Θ̂T

kφ′(ξ̂k−1, k)‖2, (42)

φ′(ξ̂k−1, k) = [0T
n,−x2

k−1e
−ξ̂k−1x2

k−1XT
k ]T, (43)

Φ′(l, ξ̂k−1) = [φ′(ξ̂k−1, k),φ′(ξ̂k−1, k − 1), · · · ,φ′(ξ̂k−1, k − l + 1)]. (44)

When l = 1, the H-MISG degenerates into the H-SG algorithm.
The H-MISG algorithm in (32)–(44) can be implemented by the following steps.

1. Set the innovation length l and initialize: let k = 1, Θ̂0 = [α̂T
0 , β̂

T

0 ]T = 12n/p0, ξ̂0 = 1/p0,
p0 = 106, r1,0 = 1 and r2,0 = 1, give an error tolerance η > 0.
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2. Collect the measurement data xk, form the stacked information vector X(l) by (35), the
information vectors Xk and φ(ξ̂k−1, k) by (38) and (37), and Φ(l, ξ̂k−1) by (36).

3. Compute the reciprocal of the step-size r1,k by (34) and the innovation vector E1(l) by (33).
4. Update the parameter estimation vector Θ̂k by (32), and read out α̂k and β̂k from (39).
5. Form the derivative of φ(ξ̂k−1, k) by (43), and Φ′(l, ξ̂k−1) by (44).
6. Compute the reciprocal of the step-size r2,k by (42) and the innovation vector E2(l) by (41).
7. Update the parameter estimate ξ̂k by (40).
8. Compare {Θ̂k, ξ̂k} with {Θ̂k−1, ξ̂k−1}: if ‖Θ̂k− Θ̂k−1‖+‖ξ̂k− ξ̂k−1‖ > η, increase k by 1 and

return to Step 2; otherwise, stop this computational process.

Remark 2: In order to obtain more accurate parameter estimates but not increase the compu-
tational cost of the H-MISG algorithm, we introduce the forgetting factors (FF) λ1 and λ2 into
(34) and (42):

r1,k = λ1r1,k−1 + ‖φ(ξ̂k−1, k)‖2, 0 ≤ λ1 < 1, (45)

r2,k = λ2r2,k−1 + ‖Θ̂T

kφ′(ξ̂k−1, k)‖2, 0 ≤ λ2 < 1. (46)

Replacing (34) and (42) in the H-MISG algorithm with (45) and (46), we obtain the variant of
the H-MISG, i.e., the FF-H-MISG algorithm for the ExpAR model. When λ1 = 1 and λ2 = 1,
the FF-H-MISG degenerates into the H-MISG algorithm.
Remark 3: Before using the proposed algorithms to identify the ExpAR model, we need to
determine the order from input-output data by using the order estimation methods, such as the
orthogonalization procedure and the correlation analysis in [22].

At each recursion, the H-SG algorithm involves the current measurement data and innovation,
the H-MISG or the FF-H-MISG algorithm applies all the current and the preceding (l − 1)
measurement data and innovations, which makes the latter has a higher parameter estimation
accuracy.

5 Example

Consider the following ExpAR time series

xk =
(
α1 + β1e−ξx2

k−1

)
xk−1 +

(
α2 + β2e−ξx2

k−1

)
xk−2 + · · ·

+
(
αn + βne−ξx2

k−1

)
xk−n + εk

=
(
1.25 + 2.00e−2.30x2

k−1

)
xk−1 +

(
−0.28 + 1.85e−2.30x2

k−1

)
xk−2 + εk.

The parameters to be identified are

Θ = [α1, α2, β1, β2]T = [1.25,−0.28, 2.00, 1.85]T, ξ = 2.30.

In simulation, the variance of the white noise {εk} is set to be σ2, the measurement data length
is taken as Le = 3000. For simplicity, we define ϑ := [ΘT, ξ]T.

Taking σ2 = 0.202 and using the H-SG algorithm, H-MISG algorithm with l = 5 and FF-H-
MISG algorithm with l = 5, λ1 = 0.91 and λ2 = 1.00 to identify this ExpAR model, respectively,
the parameter estimates and their errors are shown in Tables 2–4, the parameter estimation
errors δ := ‖ϑ̂k − ϑ‖/‖ϑ‖ × 100% versus k are shown in Figure 2.

To illustrate the advantage of the proposed multi-innovation identification algorithms, we fix
the noise variance σ2 = 0.202, the forgetting factors λ1 = 0.91 and λ2 = 1.00, and adopt the
FF-H-MISG algorithm to identify this ExpAR model with the innovation length l = 5, l = 6 and
l = 7. The corresponding results are demonstrated in Table 5 and Figure 3.

To demonstrate how the performance of the proposed FF-H-MISG algorithm depends on the
forgetting factors, we fix the noise variance σ2 = 0.202, the innovation length l = 7, the forgetting
factor λ2 = 1.00, and adopt the FF-H-MISG algorithm to identify this ExpAR model with the
forgetting factor λ1 = 0.91, λ1 = 0.97 and λ1 = 0.99. The corresponding results are exhibited in
Table 6 and Figure 4.
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To show the influence of the noise level on the proposed FF-H-MISG algorithm, we fix the
innovation length l = 7, the forgetting factors λ1 = 0.91, λ2 = 1.00, and adopt the FF-H-MISG
algorithm to identify this ExpAR model with the noise variance σ2 = 0.202, σ2 = 0.232 and
σ2 = 0.262. The results are shown in Table 7 and Figure 5.

Table 2 The H-SG estimates and errors (σ2 = 0.202)

k α1 α2 β1 β2 ξ δ (%)
100 0.23837 0.24173 0.23671 0.23995 -0.00786 92.65856
200 0.24113 0.24281 0.23950 0.24102 -0.00885 92.60908
500 0.24379 0.24329 0.24217 0.24145 -0.00850 92.54419
1000 0.24513 0.24309 0.24350 0.24120 -0.00738 92.49927
2000 0.24640 0.24283 0.24477 0.24090 -0.00610 92.45321
3000 0.24725 0.24263 0.24562 0.24068 -0.00538 92.42506

True values 1.25000 -0.28000 2.00000 1.85000 2.30000

Table 3 The H-MISG estimates and errors (σ2 = 0.202, l = 5)

k α1 α2 β1 β2 ξ δ (%)
100 0.48056 0.44219 1.12466 1.13314 1.54026 45.49540
200 0.51411 0.45249 1.12335 1.13063 1.54783 45.17986
500 0.52195 0.43228 1.12051 1.12670 1.58769 44.49311
1000 0.53864 0.42754 1.11815 1.12327 1.63957 43.76030
2000 0.54514 0.41393 1.11625 1.12065 1.72130 42.77483
3000 0.55058 0.40671 1.11540 1.11946 1.76471 42.26100

True values 1.25000 -0.28000 2.00000 1.85000 2.30000

Table 4 The FF-H-MISG estimates and errors (σ2 = 0.202, l = 5, λ1 = 0.91, λ2 = 1.00)

k α1 α2 β1 β2 ξ δ (%)
100 0.49534 0.27397 1.13043 1.13351 1.53723 43.59349
200 0.69813 0.22973 1.13034 1.12075 1.53837 41.16763
500 0.99277 0.03144 1.12374 1.09265 1.53952 38.09418
1000 1.16897 -0.17448 1.13851 1.08685 1.52340 36.81494
2000 1.28966 -0.33550 1.20027 1.14395 1.48566 35.47039
3000 1.31692 -0.39613 1.26166 1.20153 1.45519 34.38786

True values 1.25000 -0.28000 2.00000 1.85000 2.30000

From Tables 2–7 and Figures 2–5, we draw the following conclusions.
• The parameter estimation errors decrease as the data length k increases for all the algorithms

proposed in this paper. The FF-H-MISG algorithm has the highest parameter estimation accuracy
among these three algorithms – see Tables 2–4 and Figure 2.

• The parameter estimation accuracy becomes higher with the innovation length l increasing
and the forgetting factor decreasing for the FF-H-MISG algorithm – see Tables 5–6 and Figures 3–
4.

• The estimation errors of the FF-H-MISG algorithm tend to zero with the decreasing of
noise levels – see Table 7 and Figure 5.

• The proposed FF-H-MISG algorithm with appropriate innovation length and forgetting
factors is effective to identify the nonlinear ExpAR process – see Tables 5–6 and Figures 3–4.

For the model validation, we use Lr = 200 observations from k = Le + 1 to k = Le + Lr and
the predicted model gave by the FF-H-MISG algorithm with λ1 = 0.91, λ2 = 1.00 and l = 7.
The predicted data x̂k and the measurement data xk are plotted in Figure 6. To evaluate the
prediction performance, we define and compute the mean square error (MSE)

MSE :=

[
1
Lr

Le+Lr∑

k=Le+1

(x̂k − xk)2
]1/2

= 0.19635.
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Fig. 2 The H-SG, H-MISG and FF-H-MISG estimation errors δ versus k

Table 5 The FF-H-MISG estimates and errors (σ2 = 0.202, λ1 = 0.91, λ2 = 1.00)

l k α1 α2 β1 β2 ξ δ (%)
5 100 0.49534 0.27397 1.13043 1.13351 1.53723 43.59349

200 0.69813 0.22973 1.13034 1.12075 1.53837 41.16763
500 0.99277 0.03144 1.12374 1.09265 1.53952 38.09418
1000 1.16897 -0.17448 1.13851 1.08685 1.52340 36.81494
2000 1.28966 -0.33550 1.20027 1.14395 1.48566 35.47039
3000 1.31692 -0.39613 1.26166 1.20153 1.45519 34.38786

6 100 0.53946 0.26806 1.36935 1.36071 1.92855 33.18161
200 0.73563 0.20753 1.37115 1.35494 1.92911 29.86680
500 1.02242 0.02122 1.37425 1.34767 1.92839 25.37927
1000 1.16564 -0.15212 1.39993 1.36572 1.91305 23.12858
2000 1.23194 -0.27820 1.48535 1.45777 1.87609 20.42404
3000 1.24631 -0.31193 1.57122 1.54571 1.84419 18.38652

7 100 0.54603 0.29172 1.60914 1.61667 2.36236 26.83406
200 0.73972 0.20569 1.61202 1.61533 2.36188 22.17354
500 1.03169 0.02289 1.62143 1.62111 2.35862 15.35780
1000 1.14722 -0.12360 1.65573 1.65741 2.34266 11.57955
2000 1.18572 -0.20994 1.75055 1.76906 2.30523 7.36433
3000 1.18065 -0.23155 1.84794 1.87601 2.27055 4.70866

True values 1.25000 -0.28000 2.00000 1.85000 2.30000
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Fig. 3 The FF-H-MISG estimation errors δ versus k (σ2 = 0.202, λ1 = 0.91, λ2 = 1.00)

From Figure 6, we can see that the predicted data is close to the measurement data, which means
the predicted model can reveal the dynamics of this ExpAR process.
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Table 6 The FF-H-MISG estimates and errors (σ2 = 0.202, l = 7, λ2 = 1.00)

λ1 k α1 α2 β1 β2 ξ δ (%)
0.91 100 0.54603 0.29172 1.60914 1.61667 2.36236 26.83406

200 0.73972 0.20569 1.61202 1.61533 2.36188 22.17354
500 1.03169 0.02289 1.62143 1.62111 2.35862 15.35780
1000 1.14722 -0.12360 1.65573 1.65741 2.34266 11.57955
2000 1.18572 -0.20994 1.75055 1.76906 2.30523 7.36433
3000 1.18065 -0.23155 1.84794 1.87601 2.27055 4.70866

0.97 100 0.50182 0.39921 1.60333 1.61150 2.35988 29.37939
200 0.59836 0.37113 1.60352 1.60999 2.35995 27.26498
500 0.75346 0.24373 1.60370 1.60784 2.35917 22.70653
1000 0.91250 0.07740 1.60520 1.60535 2.35349 17.90619
2000 1.08223 -0.08715 1.62537 1.62689 2.32268 13.35437
3000 1.15777 -0.18392 1.65491 1.65908 2.28378 10.99554

0.99 100 0.49891 0.44383 1.60125 1.60958 2.35939 30.19217
200 0.54791 0.43635 1.60106 1.60860 2.36015 29.23940
500 0.59940 0.36804 1.60001 1.60648 2.36314 27.25883
1000 0.68393 0.28638 1.59785 1.60200 2.36847 24.60749
2000 0.81932 0.17078 1.59786 1.60014 2.36203 20.72777
3000 0.93413 0.05726 1.60147 1.60275 2.34243 17.41429

True values 1.25000 -0.28000 2.00000 1.85000 2.30000
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Fig. 4 The FF-H-MISG estimation errors δ versus k (σ2 = 0.202, l = 7, λ2 = 1.00)

Table 7 The FF-H-MISG estimates and errors (l = 7, λ1 = 0.91, λ2 = 1.00)

σ2 k α1 α2 β1 β2 ξ δ (%)
0.202 100 0.54603 0.29172 1.60914 1.61667 2.36236 26.83406

200 0.73972 0.20569 1.61202 1.61533 2.36188 22.17354
500 1.03169 0.02289 1.62143 1.62111 2.35862 15.35780
1000 1.14722 -0.12360 1.65573 1.65741 2.34266 11.57955
2000 1.18572 -0.20994 1.75055 1.76906 2.30523 7.36433
3000 1.18065 -0.23155 1.84794 1.87601 2.27055 4.70866

0.232 100 0.56746 0.24224 1.59956 1.60044 1.97636 27.25173
200 0.80713 0.13856 1.59557 1.58461 1.97839 22.22129
500 1.13045 -0.08102 1.58406 1.55834 1.98164 16.96918
1000 1.22336 -0.21425 1.59756 1.56192 1.97465 15.74527
2000 1.26659 -0.29252 1.66707 1.63962 1.95573 13.81780
3000 1.25020 -0.30111 1.73947 1.71097 1.94113 12.27984

0.262 100 0.59214 0.19257 1.58259 1.57361 1.67381 30.08145
200 0.87582 0.07124 1.56283 1.52826 1.67857 25.64775
500 1.21452 -0.17371 1.51219 1.44412 1.68690 23.47748
1000 1.27296 -0.28121 1.49179 1.40197 1.68458 24.16677
2000 1.31721 -0.34485 1.51491 1.42746 1.67419 23.81738
3000 1.28663 -0.33779 1.54898 1.45054 1.66876 23.10347

True values 1.25000 -0.28000 2.00000 1.85000 2.30000
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Fig. 5 The FF-H-MISG estimation errors δ versus k (l = 7, λ1 = 0.91, λ2 = 1.00)
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Fig. 6 The predicted data x̂k and the measurement data xk for the FF-H-MISG algorithm

6 Conclusions

Applying the hierarchical identification principle and the multi-innovation identification theory,
this paper derives an H-SG algorithm and an H-MISG algorithm for the ExpAR model. For the
sake of the improved estimation accuracy, two forgetting factors are introduced into the H-MISG,
and a variant of the H-MISG, i.e., the FF-H-MISG algorithm is presented in this work. The sim-
ulation results demonstrate that the FF-H-MISG algorithm with appropriate innovation length
and forgetting factors is effective to identify the ExpAR model. Jointing the neural network [23,
24], the kernel collocation [25,26] and other mathematical tools [27], the algorithms proposed
in this paper can be exploit to study parameter identification of different systems and can be
applied to other fields.
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