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Abstract 16 

 17 
Environments furnish multiple information sources for making predictions about future 18 
events. Here we use behavioural modelling and fMRI to describe how humans select 19 
predictors that might be most relevant. First, during early encounters with potential 20 
predictors, participants’ selections were explorative and directed towards subjectively 21 
uncertain predictors (positive uncertainty effect). This was particularly the case when many 22 
future opportunities remained to exploit knowledge gained. Then, preferences for accurate 23 
predictors increased over time, while uncertain predictors were avoided (negative uncertainty 24 
effect). The behavioural transition from positive to negative uncertainty- driven selections 25 
was accompanied by changes in representations of belief uncertainty in ventromedial 26 
prefrontal cortex (vmPFC). The polarity of uncertainty representations (positive or negative 27 
encoding of uncertainty) changed between exploration and exploitation periods. Moreover, 28 
the two periods were separated by a third transitional period in which beliefs about 29 
predictors’ accuracy predominated. VmPFC signals a multiplicity of decision variables, the 30 
strength and polarity of which vary with behavioural context.  31 
 32 

  33 
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Introduction 34 
 35 
Humans and other animals are often presented with multiple information sources in the 36 
environment that can predict different outcomes such as reward. Selecting the right predictor 37 
to guide behaviour towards a particular outcome requires determining the predictors’ 38 
relevance in forecasting that outcome1,2. Biases in information seeking can lead to mistaken 39 
beliefs about the relationships that prevail in the world3,4. It has been argued that animals 40 
should attend either to certain predictors5 or, on the contrary, to uncertain predictors6. Certain 41 
predictors might be relevant as they deliver an outcome with known prediction accuracy, 42 
while attending to uncertain predictors might turn out to be more beneficial in the long-term. 43 
 44 
We propose that which type of predictor should be considered most relevant changes during 45 
different phases of the learning process. When selecting between multiple predictors for the 46 
first time, selections should maximize information about available predictors. Selections 47 
should be “explorative” and directed towards “uncertain” predictors. The degree of 48 
exploration should also be determined by the time horizon. The time horizon is the remaining 49 
time in the current context (or block in the current experiment)7,8: exploration is beneficial in 50 
longer compared to shorter time horizons as the knowledge gained can be used in later 51 
predictor selections. Once an estimate about a predictor’s accuracy has formed, selections 52 
should be “exploitative” and guided by the “accuracy” and “certainty” of predictors in line 53 
with reward maximization. This perspective draws on both previously formulated hypotheses 54 
in the field of learning theory5,6. Predictors should be selected based on the learner’s 55 
uncertainty about predictors’ accuracy during exploration and on the learner’s certainty about 56 
predictors’ accuracy during exploitation. Our first aim in the current study was to examine 57 
whether this was the case. 58 
 59 
Evidence for uncertainty-guided exploration has, however, recently been questioned9. It has 60 
been argued that behaviour may sometimes appear exploratory but on closer inspection the 61 
decisions that people make can be understood as having been guided by noisy estimates of 62 
the values of the choices that are formed during learning. In other words, when people appear 63 
exploratory, they may in fact be attempting to make exploitative decisions, but their 64 
exploitative decisions are informed by noisy estimates of choice values. Our second aim was 65 
to ascertain whether people genuinely engage in exploratory behaviour. This can be tested by 66 
comparing rates of exploratory behaviour when past experience is held constant, but the 67 
length of the future time horizon is manipulated; a longer future time horizon should elicit 68 
more exploration even when previous learning opportunities are the same. Moreover, the 69 
appropriateness of computational models of exploratory behaviour can also be tested by 70 
obtaining more direct empirical indices of participants’ subjective uncertainty; we obtained 71 
such measures in our experiment. In addition, the computational model can be used to 72 
identify trials in which exploratory behaviour appears to be guided by information seeking in 73 
order to reduce uncertainty and trials in which exploratory behaviour simply reflects 74 
randomness in the response selection or learning process9. 75 
 76 
Our third aim was to examine neural activity related to exploratory and exploitative modes of 77 
decision making. Many previous studies have shown that vmPFC activity reflects 78 
information relevant for making value-guided decisions between choices. When making a 79 
decision between choice options, vmPFC activation covaries with the decision variable that 80 
guides the decision – the difference in value between the choice taken as opposed to the 81 
choice rejected10–18. If, as has been argued, such vmPFC activity changes reflect allocation of 82 
attention to a choice option19–21, then it is possible that vmPFC activity also reflects selection 83 
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of a predictor to guide behaviour and the reason why it is being selected to guide behaviour: 84 
either because of its predictive accuracy, because of the certainty of its prediction, or because 85 
of the uncertainty of its prediction. 86 
 87 
We use a combination of behavioural analysis, computational modelling, and functional 88 
magnetic resonance imaging (fMRI) to investigate at both behavioural and neural levels 89 
which predictors are classified as informative, uncertain or certain, as a function of time 90 
horizon, and the current behavioural mode (exploration, exploitation, or the period of 91 
transition from exploration to exploitation). We designed a novel task in which participants 92 
selected between multiple predictors which gave partial information about the location of a 93 
target that the participants were asked to find. During the course of multiple experimental 94 
blocks, participants encountered a series of potential predictors while transitioning through 95 
time horizons of different lengths, inducing explorative and exploitative selections. We used 96 
a Bayesian model to extract trial-by-trial estimates of participants’ beliefs about both the 97 
accuracy of predictors and their subjective uncertainty in those beliefs. This allowed us to test 98 
their independent and complementary impact on selection behaviour and their neural 99 
representations.  100 
  101 
We found predictor selections are made as a function of time in two important ways. They 102 
change as a function of the time that has elapsed since learning began and they change as a 103 
function of the remaining time horizon – the time period over which the learner expects the 104 
current conditions to prevail. These changes occur in tandem with the evolution of predictor-105 
related activity patterns in vmPFC. Activity in vmPFC was sensitive to participants’ 106 
uncertainty in their beliefs about predictors but the polarity of uncertainty representations 107 
(positive or negative encoding of uncertainty) changed with the behavioural mode: a positive 108 
uncertainty decision signal was present in vmPFC during exploration, while activity in the 109 
same region signalled negative uncertainty during exploitation. By contrast, other brain areas 110 
such as anterior cingulate cortex (ACC) and other dorsomedial frontal cortical areas, 111 
signalled uncertainty only during explorative phases. We also found that exploration and 112 
exploitation modes were separated by a transitional period in which beliefs about predictors’ 113 
accuracy predominated in their impact on vmPFC activity. These results show that a 114 
predictor’s relevance for guiding behaviour is not defined by a single attribute (accuracy, 115 
positive or negative uncertainty), but rather it is dynamically modulated by the behavioural 116 
modes of exploration, exploitation, and their transition. We show that vmPFC carries similar 117 
information, representing a multiplicity of predictor selection variables, the strength and 118 
polarity of which vary according to their relevance for the current behavioural mode. 119 
 120 
 121 
Results 122 
 123 
On each trial of the experiment (Figure 1A), participants made two decisions. First, they 124 
made a binary choice between two predictors to find a target’s location on a circle (decision 125 
phase). Participants knew that the target location changed constantly on every trial and could 126 
not be predicted directly from previous observations of its location. The only way to infer the 127 
target’s location was through learning how well each predictor predicted the target location. 128 
Participants learned how well a predictor predicted the target by observing the distance 129 
between the location estimated by the selected predictor and the true target location (which 130 
we refer to as “angular error”). Importantly, predictors differed in how well they estimated 131 
the target location (see S1 for details on the cover story). Selecting a better predictor led to 132 
more rewards at the time of a second decision in the trial. During the second decision, the 133 
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predictor’s estimate of the target location was revealed, and participants expressed their 134 
confidence in it (confidence phase). They did this by adjusting the size of an interval around 135 
the predictor’s estimate such that the true target location would fall within this interval. At 136 
the end of a trial, the true target location and possible points were revealed (outcome phase). 137 
Participants gained points when the target fell within the chosen interval and the amount of 138 
points increased when the interval size was small. This payoff scheme incentivised selecting 139 
predictors with smaller angular errors in the first place. In addition to being informed about 140 
whether they had won or lost, the outcome phase enabled participants to update their beliefs 141 
about how well the chosen predictor estimated the target by observing the angular error. 142 
Participants took part in two versions of the task that differed in their framing aspect 143 
(social/non-social framing). Here, we collapsed data across versions after finding that 144 
versions did not differ in the results depicted here (see details on task versions in 145 
Supplementary Information). 146 
 147 

<insert Figure 1 about here> 148 
 149 
The value of exploration lies in revealing more accurate predictors, but this is only useful if 150 
the time horizon (the amount of trials remaining) offers sufficient opportunity to exploit the 151 
newly discovered predictors7. To test this idea, participants transitioned through blocks of 152 
different lengths (45, 30 and 15 trials) each with a unique set of four predictors (Figure 1B-i). 153 
This made it possible to examine the balance between exploration and exploitation as a 154 
function of time horizon. Time horizon and current progress were explicitly cued on each 155 
trial. Each block comprised two good predictors with a relatively low average angular error 156 
between predicted reference point and target and two bad predictors with a higher angular 157 
error (Figure 1B-ii). 158 
 159 
Dissociable effects of uncertainty and accuracy on predictor selections and subjective 160 
confidence judgments 161 
 162 
Exploration should not only be guided by one’s belief in the predictor’s accuracy, but also by 163 
one’s own uncertainty in that belief. For this reason, we used a Bayesian model to capture 164 
participants’ belief distribution over the angular error between the reference point and the 165 
true target location (Figure 2A-i). The trial-by-trial angular errors were derived from a 166 
normal distribution centred on the true target location. Predictors’ normal distributions varied 167 
in their standard deviations (referred to here as sigma), making some predictors better in 168 
estimating the target location (lower sigma value) and other predictors worse (higher sigma 169 
value). Hence, by tracking the angular errors of a predictor, participants could estimate the 170 
sigma value associated with each predictor’s distribution (see Figure 2A-ii). We used the 171 
Bayesian model to capture participants’ beliefs in the sigma value after observing the angular 172 
error of the chosen predictor at each trial (Figure 2A-iii;2B). This belief distribution allowed 173 
us to derive two independent model-based estimates that we hypothesized to influence choice 174 
in parallel: first, an estimate in the “accuracy” of a predictor (a point-estimate derived by the 175 
mode of the belief distribution, representing the sigma believed to be the most likely of that 176 
of the chosen predictor):  177 

accuracy = max [belief distribution] * (-1) 178 
           (1) 179 
Note that a higher accuracy value denoted in Eq.(1) indicates bigger deviations of the target 180 
from the reference point. To derive an accuracy estimate that can be interpreted intuitively, 181 
the sign of Eq.(1) is reversed so that positive values can be interpreted as higher accuracy. 182 
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Second, an estimate of the “uncertainty” in that predictor (variability around the accuracy 183 
estimate, representing the uncertainty) (Figure 2A-iv): 184 
 185 

uncertainty =  (cumulative belief distribution = 97.5%) -  (cumulative belief distribution = 2.5%). 186 

           (2) 187 
The terms “accuracy” and “uncertainty” will from now onwards refer to the model-derived 188 
parameters defined in Eq. (1) and (2), respectively (Figure 2A-iv). We used a Bayesian model 189 
that assumed uniform prior beliefs for all four predictors at each block start. However, we 190 
compared this Bayesian model to two competing models: a Bayesian model using 191 
informative priors (Extended Data Figure 1) and a reinforcement learning (RL) model 192 
tracking payoff history (Extended Data Figure 2). The Bayesian model with uniform priors 193 
provided a better model fit to choice behaviour compared to either of the other models (see 194 
Method; Supplementary Information: alternative computational models; Extended Data 195 
Figures 1 and 2). 196 
 197 

<insert Figure 2 about here> 198 
 199 
We measured the degree to which participants were exploiting accurate predictors and the 200 
degree to which they were exploring uncertain predictors. We hypothesized, first, that 201 
uncertainty drives exploration between choices at the beginning of a block and so choices 202 
might be directed to uncertain predictors. Then, over the course of a block, participants 203 
should become increasingly uncertainty avoiding in other words, choices should be directed 204 
towards certain predictors (negative uncertainty effect) (Figure 2C-i). Second, we 205 
hypothesized that the initial choice pattern in a block should depend on how many more trials 206 
were still to be encountered in the block (effect of time horizon). Longer blocks favour more 207 
uncertainty-driven exploration and less accuracy-driven exploitation compared to shorter 208 
blocks (Figure 2C-ii). 209 
 210 
To test the first hypothesis, we applied a logistic general linear model (GLM, see GLM1 in 211 
Methods) to participants’ selections during the decision phase and then averaged beta weights 212 
across participants (Figure 3A, Supplementary Figure 1). Regressors of interest (accuracy and 213 
uncertainty) were coded as the difference between left and right predictors to predict leftward 214 
selections. As would be expected if participants were attempting to maximize payoff, 215 
participants generally sought out accurate predictors (main effect of accuracy: t(23)=7.5, 216 
p<0.001, d=1.53, 95% confidence interval=[0.82 1.45]). There was no credible evidence that 217 
uncertainty impacted choice behaviour (t(23)=-1.9, p= 0.07, d=-0.39,95% confidence 218 
interval=[-0.51 0.018], Bayes factor10=1.05, %error=1.1017e-4). Next, to examine the time-219 
dependent effect of uncertainty and accuracy on selection, we included the percentage of 220 
trials remaining in a block (referred to as ‘block time’) into the GLM model and examined its 221 
interaction with accuracy and uncertainty. Participants alternated between behavioural modes 222 
of exploration and exploitation by integrating information about the remaining trials into their 223 
predictor selections: a positive interaction term between uncertainty and block time 224 
(t(23)=5.8, p<0.001, d=1.18,95% confidence interval=[0.53 1.1]) showed that uncertain 225 
sources were explored when many trials remained. By contrast, a negative interaction term 226 
between accuracy and block time indicated that, as time passed, choices were increasingly 227 
directed towards accurate predictors (accuracy x block time interaction: t(23)=7.5, p<0.001, 228 
d=-1.53,95% confidence interval=[-0.91 -0.52]; Figure 3A).  229 

 230 
<insert Figure 3 about here> 231 

 232 
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In a follow-up analysis, we further examined the interaction effects. We binned trials into 233 
those that occurred in the first and second halves of each time horizon (Figure 3B-i). A 234 
logistic GLM with accuracy and uncertainty as regressors was fitted to both halves of each 235 
block’s trials. Once again we found that decisions were influenced by both factors but in 236 
dynamically distinct ways (paired t-test between the differences of block halves for accuracy 237 
and uncertainty: t(23) = -8.1, p<0.001, d=-1.7, 95% confidence interval =[-2.27 -1.02]; Figure 238 
3B-i). Uncertain predictors were more likely to be sought out early compared to late in a 239 
block (paired t-test early vs late: uncertainty (t(23)=-8.1, p<0.001, d=1.66,95% confidence 240 
interval=[1.06 1.8]): while during the first half there was only anecdotal support for the 241 
interpretation that participants sought out uncertain predictors (positive uncertainty effect in 242 
half 1: t(23)=2, p =0.057, d=0.41, 95% confidence interval=[-0.007 0.48], Bayes 243 
factor10=1.18, %error=9.954e-5), during the second half of blocks, uncertain predictors were 244 
avoided (negative uncertainty effect in half 2: t(23)=-6.2, p<0.001, d=-1.27,95% confidence 245 
interval=[-1.59 -0.79]). Accurate predictors were preferred to inaccurate ones and this was 246 
increasingly the case in the second half of the blocks (paired t-test early vs late time points 247 
accuracy: t(23)=-4.2, p<0.001, d=-0.85,95% confidence interval=[-1.63 -0.55]). These results 248 
replicated when regressors were normalised across or within blocks. 249 
 250 
In response to the reviewers’ comments, we considered the possibility that such a result 251 
might have arisen because the overall model fit was better for either the first or second half of 252 
the block. It is important to consider differences in model fit across sets of trials (or 253 
participants) because a poor model fit might indicate that the model is not appropriate for the 254 
behaviour under investigation in one part of the data. However, a priori such an argument 255 
would predict that an effect, such as uncertainty, would be stronger in the part of the data that 256 
was better fit by the model than in the part worse fit by the model; it cannot predict a polarity 257 
change in the uncertainty prediction effects when moving from exploration (earlier trials) to 258 
exploitation (later trials). We excluded trials on the basis of the trial wise choice residuals so 259 
that both first and second block halves were no longer different in their residual variance 260 
(Extended Data Figure 3). Even under such conditions, we were able to replicate evidence for 261 
the same pattern of results (Extended Data Figure 3D). Moreover, below we show that 262 
several brain regions only represent uncertainty prediction difference during exploration and 263 
not exploitation (Supplementary Figure 7, in particular 7B) even though model fits were 264 
better for later compared to earlier phases. 265 
 266 
Next, we tested our second hypothesis that the degree of exploration during initial choices 267 
should be stronger in longer time horizons, i.e. if subsequent encounters with the same 268 
predictor are expected to be more frequent. We compared choices during the first 15 trials 269 
across all time horizons by fitting a linear robust GLM to data from each time horizon. The 270 
first 15 trials in all three horizons were identical in their order presentation and importantly, 271 
their trial-by-trial target estimates were drawn from a Gaussian distribution with the same 272 
parameters (sigma of either 50 or 70). As predicted, participants adjusted their behavioural 273 
strategy in the initial trials according to the horizon type: participants explored more in longer 274 
than shorter horizons and in a complementary manner, shorter horizons led to a rapid 275 
convergence onto accurate predictors (3x2 repeated measures ANOVA with horizon (long, 276 
medium, short) and variable (accuracy, uncertainty); horizon x variable interaction: 277 
F(2,46)=36.7, p<0.001, η2=0.61, assumption of sphericity is met with Mauchly’s test: 278 
x2(2)=0.28, p=0.87; Figure 3B-ii). Uncertain predictors were particularly sought out during 279 
initial trials within long and medium time horizons (long horizon: t(23)=4, p<0.001, 280 
d=0.8,95% confidence interval=[0.053 0.164]; medium horizon: t(23)=2.8, p=0.009, 281 
d=0.56,95% confidence interval=[0.02 0.13]). 282 
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 283 
So far we have shown that model-derived estimates of the accuracy and uncertainty 284 
determined participants selections between predictors. Next, we examined whether 285 
participants also relied on both of these estimates when making their subjective confidence 286 
report during the second phase of each trial (the confidence phase in Figure 1A). Accuracy 287 
reflects a point-estimate of the most likely angular error between target and the predictor’s 288 
estimate and should therefore have an impact on the interval size the participants use to 289 
indicate their subjective confidence during the confidence phase. Indeed, participants 290 
indicated higher confidence for predictors that were believed to be accurate (t(23)=11.7, 291 
p<0.001, d=2.4,95% confidence interval=[0.66 0.98]). The Bayesian model also suggests that 292 
participants form a representation about other possible angular errors that might underlie a 293 
predictor’s distribution (i.e. the width of the belief distribution). If participants are very 294 
uncertain in their point-estimate of the angular error (i.e. if the Bayesian belief distribution is 295 
very wide), then they should report a larger interval size to guarantee that the target falls 296 
within the interval. In tandem with above effect of accuracy, participants were less confident 297 
and selected a larger interval size when they evaluated predictors they believed were 298 
uncertain (uncertainty: t(23)=-10.4, p<0.001, d=-2.12,95% confidence interval=[-1.1 -0.73]; 299 
Figure 3C).  300 
 301 
In summary, accuracy, uncertainty, and a time modulation of both effects influenced 302 
participants’ predictor selections. Early selections were uncertainty-driven explorative 303 
selections and occurred particularly when time horizons were longer. Later selections were of 304 
exploitative selections, directed towards accurate and away from uncertain predictors. The 305 
exploratory behaviour we identify cannot simply be the result of noise in the learning 306 
process9; people are more exploratory when the future time horizon is longer even if learning 307 
opportunities are identical. Moreover, we show that our model-derived estimates of 308 
participants’ beliefs about the accuracy of a predictor and uncertainty about those beliefs 309 
correspond to features of their subjective confidence judgments. 310 
 311 
Polarity of uncertainty decision signal in vmPFC changes from exploration to exploitation 312 
 313 
Our behavioural analyses show that participants incorporated the uncertainty in their beliefs 314 
when selecting between two predictors. We went on to examine the coding of uncertainty in 315 
the brain during predictor selection (fMRI-GLM1, see Methods). Our variable of interest was 316 
the difference in uncertainty (as captured by our model) between the chosen and unchosen 317 
predictors, i.e. “uncertainty prediction difference”. This is similar to studies of value-guided 318 
decision-making, where the difference in value between the option chosen and the option 319 
rejected is regressed against the BOLD signal. A value difference signal often prominently 320 
implicates the vmPFC in decision making processes10–14,17.  321 
 322 
When testing for an uncertainty prediction difference signal across all trials, we found a 323 
negative uncertainty prediction difference in vmPFC (whole brain cluster-corrected; Figure 324 
4A-i, Supplementary Table 1). This neural effect was in line with the negative effect 325 
uncertainty exerted on choice behaviour towards the end of a block when participants 326 
avoided uncertain predictors or in other words, sought out certain predictors. In addition, we 327 
also found an “accuracy prediction difference” in a similar anatomical location in vmPFC 328 
(Figure 4A-ii, Supplementary Table 1). Again, this accords with participants’ general 329 
preference for selecting accurate predictors to help them find the target location. To 330 
additionally show that both accuracy and uncertainty prediction differences were encoded in 331 
a similar anatomical region, we derived a domain general prediction difference by first, 332 
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calculating the mean across both absolute contrasts “((chosen uncertainty – unchosen 333 
uncertainty) + (chosen accuracy – unchosen accuracy))” and second, by deriving a 334 
conjunction between both absolute contrasts (Supplementary Figure 3A, 3B, respectively, 335 
and Supplementary Table 3). A domain general prediction difference peaked within vmPFC. 336 
Accuracy and uncertainty prediction differences are independent variables sharing across all 337 
trials, on average, 0.01% of their variance (0.137% and 0.09 % of their variance is shared 338 
when exploration and exploitation trials are each considered separately; Figure 4D) 339 
suggesting both variables have independent effects on activity but within the same part of 340 
vmPFC (for more details on regressor correlations, see Supplementary Figures 1,2). These 341 
findings underline the role of vmPFC in guiding predictor selection as a function of both the 342 
differences in accuracy and uncertainty of the predictors. 343 
 344 
Having identified vmPFC as representing a negative uncertainty prediction difference across 345 
all trials, we then went on to test whether this signal was modulated by distinct behavioural 346 
modes of exploration and exploitation. We have shown that uncertainty tended to drive 347 
exploration of predictors at the beginnings of blocks; at that time, selections were directed to 348 
uncertain predictors (i.e. there was a positive effect of uncertainty during the first 15 trials in 349 
medium and long horizons, Figure 3B-ii). Then, over the course of the block, participants 350 
became increasingly uncertainty avoiding shown by a negative effect of uncertainty on 351 
choice behaviour. We refer to this pattern of change as an “uncertainty polarity change”. We 352 
investigated whether there was a brain region with similar characteristics: transitioning from 353 
encoding a positive to negative uncertainty-based prediction difference as participants 354 
switched from exploration to exploitation (Figure 4B). To test this hypothesis, we made use 355 
of the fact that our computational model allowed us to classify individual trials into 356 
exploration or exploitation according to the selection made on each trial: an exploitative 357 
selection was defined as one in which the more accurate and less uncertain predictor was 358 
selected while a directed uncertainty-guided explorative selection was defined as the 359 
opposite: a trial in which the more inaccurate and uncertain predictor was chosen (Extended 360 
Data Figure 4). Importantly this is distinct to other types of decision that might initially 361 
appear exploratory, because the less accurate predictor was chosen, but which may simply be 362 
due to noise in the learning or decision process9,22. On such trials, selection is not just of the 363 
less accurate predictor but are also made with certainty (Supplementary Figure 4A). 364 
 365 

<insert Figure 4 about here> 366 
 367 
To test for a neural polarity change of uncertainty prediction difference, we extracted time 368 
courses from an independent region of interest (ROI) associated with the accuracy prediction 369 
difference effect across all trials. This ensured that we did not bias the analysis towards 370 
finding an effect in an area that was previously associated with the uncertainty prediction 371 
difference. First, we used a time course analysis to extract both components of the 372 
uncertainty prediction difference signal (variance in activity related to the chosen predictor 373 
and variance in activity related to the unchosen predictor) during exploration and 374 
exploitation. Activation in vmPFC covaried with a decision signal that changed its polarity 375 
depending on the current behavioural mode: during exploitation, vmPFC carried a decision 376 
signal that reflected a negative uncertainty prediction difference (negatively encoding the 377 
uncertainty of the chosen predictor as opposed to the unchosen predictor; Figure 4C-ii); in 378 
exploration, when behaviour was guided by uncertainty, vmPFC activity carried a positive 379 
uncertainty prediction difference (positively encoding the uncertainty of the chosen predictor 380 
as opposed to the unchosen predictor; Figure 4C-i). Given that the same variable is reflected 381 
in both increase and decrease in activity at different task stages suggests an important change 382 
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in the nature of the representation. In response to reviewers’ comments, we verified the 383 
robustness of these results when the precise criteria for drawing boundaries between 384 
exploration/ exploitation categories were modified (Supplementary Figure 8). It might be 385 
argued that the vmPFC activity pattern simply reflects absolute uncertainty differences 386 
between the presented predictors irrespective of behavioural mode (exploration versus 387 
exploitation). We repeated the analysis and included the absolute uncertainty prediction 388 
difference as an additional regressor. Nevertheless, we replicated the uncertainty polarity 389 
change across modes in vmPFC (Supplementary Figure 5). 390 
 391 
The trials we define as uncertainty-guided exploration trials are comparable to trials that have 392 
previously been described as directed explorative choices7. They are, however, hypothesized 393 
to be distinct to apparently random choice selections that may result simply from noise in the 394 
decision process22 or the learning process9. In the current experiment, random exploration 395 
trials were defined as ones on which participants selected predictors that they believed to be 396 
inaccurate with certainty (i.e. negative uncertainty) (Supplementary Figure 4A). While it is 397 
not possible to be sure that all uncertainty-guided exploration and all noise-based exploration 398 
trials are classified correctly, on average the classification should capture a potential 399 
difference in exploration type that may be associated with different neural mechanisms. To 400 
test this possibility we therefore, in addition examined vmPFC activity on random 401 
exploration trials. We extracted a time course from vmPFC associated with the previous 402 
cluster of accuracy prediction difference and tested for an uncertainty prediction difference 403 
during random exploratory trials. We tested beta weights extracted from the time course with 404 
a leave-one-out procedure and found that unlike on uncertainty-guided exploratory trials, 405 
there was no credible evidence that vmPFC represented uncertainty prediction difference 406 
during these random exploratory selections (Supplementary Figure 4B). 407 
 408 

<insert Figure 5 about here> 409 
 410 
We have shown that behavioural modes were associated with different polarities of 411 
uncertainty representation in vmPFC. Next, we were interested in whether the different 412 
behavioural modes were associated with any distinct neural networks. We performed a 413 
whole-brain GLM of exploration and exploitation trials and focused again on the uncertainty 414 
prediction difference during the decision phase (fMRI-GLM2). During exploitation, we 415 
observed activity centred on vmPFC related to a negative uncertainty prediction difference 416 
(Figure 5A; Supplementary Table 2), confirming our previous findings. During exploration, a 417 
positive uncertainty prediction difference signal was represented in vmPFC, but also across 418 
an extensive network of brain regions, including dorsomedial frontal areas (Figure 5B). A 419 
direct contrast of activation patterns in exploration and exploitation trials confirmed these 420 
differences between behavioural modes (compare panels A, B, and C of Figure 5). Dorsal 421 
ACC (dACC) in particular has been associated with exploratory22 and foraging behaviour23. 422 
We show that dACC represents uncertainty prediction differences during directed exploration 423 
(Figure 5B, Supplementary Figures 6, 7A-iii), but there was no credible evidence for such a 424 
representation during random exploration (Supplementary Figure 4B) or, unlike vmPFC, 425 
exploitation (Supplementary Figure 7B-iii). We also observed an uncertainty prediction 426 
difference in frontopolar cortex and dorsolateral prefrontal cortex (dlPFC), replicating results 427 
of previous exploration studies24,25 (Supplementary Figure 7A). However, like dACC and 428 
other dorsomedial frontal areas, both dlPFC and frontopolar cortex have distinct profiles 429 
compared to vmPFC, as there was no credible evidence for a representation of uncertainty 430 
prediction difference during exploitation and hence unlike vmPFC did not show an 431 
uncertainty polarity change across behavioural modes (Supplementary Figure 7B).  432 
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 433 
In summary, we have shown a polarity change in the influence that uncertainty in one’s belief 434 
exerts not just on behaviour but also on vmPFC activity. During exploitative modes, when 435 
differences in predictor certainty are the key decision variable, vmPFC reflects negative 436 
uncertainty prediction difference, but when participants are in an explorative mode, vmPFC 437 
activity reflects positive uncertainty prediction differences. During exploration, vmPFC is co-438 
active with an extensive network of regions carrying a similar uncertainty-related signal. 439 
 440 
Uncertainty-related signals in subcortical structures during exploration and exploitation 441 
 442 
We used a region-of-interest approach to test for an uncertainty prediction difference in 443 
subcortical structures during both behavioural modes. We focused on amygdala and ventral 444 
striatum as they have been previously associated with modes of exploration and 445 
exploitation26. We also focused on ventral tegmental area (VTA) which exhibited cluster-446 
corrected positive and negative uncertainty prediction difference during exploration and 447 
exploitation respectively (Figure 5). All three subcortical regions represented uncertainty 448 
prediction difference during at least one behavioural mode – either exploration or 449 
exploitation – but with a different pattern of activation in each case: amygdala predominantly 450 
represented uncertainty prediction difference during exploration (Extended Data Figure 5A), 451 
while VS (Extended Data Figure 5B) activation was most apparent during exploitative phases 452 
when it reflected a negative uncertainty prediction difference. VTA activity suggested a 453 
representation of uncertainty prediction difference during both, exploration and exploitation 454 
in the decision phase (Extended Data Figure 5C). These patterns show that a network of areas 455 
including multiple cortical and subcortical areas represent uncertainty-related information 456 
during both exploration and exploitation. While it was not identical, the pattern in the VTA 457 
most closely resembled that seen in the vmPFC; it carried uncertainty signals that reversed in 458 
polarity between exploration and exploitation but there was no credible evidence for an 459 
accuracy-related signal during the transition phase between exploration and exploitation (see 460 
paragraph on transition between exploration and exploitation; t(23) = -0.97, p=0.35, d=-461 
0.197,95% confidence interval=[-0.07 0.026], Bayes factor10=0.325,%error=0.037). These 462 
analyses were conducted in response to the reviewers’ comments. 463 
 464 
Uncertainty representation in vmPFC scales with predictor repetition 465 
 466 
We have shown a polarity change in the effect of uncertainty on guiding behaviour and 467 
influencing vmPFC activity when comparing exploratory and exploitative behavioural 468 
modes. One possible way to interpret the negative uncertainty representation during 469 
exploitation is that vmPFC encodes a default choice21,23,27. In the context of the current task, 470 
an effective default choice is repetition of previously made choices particularly when there 471 
has been certainty about the predictor’s accuracy. We therefore asked whether there was 472 
evidence of a higher frequency of choice repetition on exploitation as opposed to exploration 473 
trials; this was indeed the case (paired t-test explore vs exploit: t(23)=-16.2, p <0.001, d= -474 
3.3,95% confidence interval = [-0.36 -0.28]; Figure 6A). Moreover, activity in the same 475 
location in vmPFC reflected whether, on each trial, participants would repeat a choice they 476 
had made the last time it was offered. There was more activity in vmPFC when participants 477 
were repeating a choice made previously (repetition: t(23) = 4, p <0.001, d= 0.8,95% 478 
confidence interval=[0.017 0.06]; Figure 6B, grey time course). In addition, the effect was 479 
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greater when there was a stronger negative uncertainty signal (repetition x chosen 480 
uncertainty: t(23) = -3.4216, p =0.002, d= -0.7,95% confidence interval=[-0.07 -0.02], Figure 481 
6B, red time course): in other words, the repetition signal was greater when there was more 482 
certainty about the selected predictor during repetitive trials compared to non-repetitive trials 483 
during which they switched to a new choice that had not been made on a previous trial, a 484 
behaviour more likely to occur during exploration (Figure 6A), then vmPFC had the opposite 485 
polarity (positively related to uncertainty; Figure 6B, right panel).  486 
 487 

<insert Figure 6 about here> 488 
 489 
The transition from positive to negative uncertainty representations is accompanied by the 490 
processing of accuracy between predictors 491 
 492 
So far we have shown that the transition from exploration to exploitation and choice 493 
repetition behaviour is accompanied by a change in the polarity of uncertainty signals and 494 
emergence of choice repetition signals in vmPFC. However, it remains unclear how the 495 
transition between directing behaviour towards uncertain and then certain predictors occurs 496 
as the behavioural mode shifts from exploration to exploitation. It is possible that, after initial 497 
exploration but before repetitively choosing certain predictors there might be a phase in 498 
which participants focus on how well – how accurately – each predictor estimates the target’s 499 
location (Figure 7A, see illustration). Such a period might naturally precede a period when 500 
the most accurate predictors are identified and continuously chosen. During such a transition 501 
period, one would expect neural activity correlating with an accuracy prediction difference, 502 
the difference between the accuracy estimates associated with the chosen and unchosen 503 
predictors. Moreover, because participants are transitioning from positive to negative 504 
uncertainty-guided behaviour, the accuracy estimates held by participants for the chosen and 505 
unchosen predictors should be close in value. This would suggest that participants have no 506 
strict preference between predictors yet, as they are still learning about them. We identified a 507 
new subset of trials by selecting trials with accuracy prediction differences close in value 508 
(Supplementary Figure 9A). We hypothesized that vmPFC computes decision variables that 509 
are most relevant for guiding choice behaviour in the current context, therefore when the 510 
accuracy difference is small in value, participants need to carefully compare accuracy 511 
estimates between predictors to make their choice. First, we tested whether these trials 512 
occurred in time between the exploration and exploitation periods that we had previously 513 
identified. Indeed, these transition trials occurred later in time compared to previously 514 
defined explorative choices (paired t-test, explore vs. transition: t(23)=6, p<0.001, d =1.2, 515 
95%confidence interval= [0.056 0.12]) and earlier in time compared to exploitative choices 516 
(paired t-test, exploit vs. transition: t(23)=-2.8, p=0.01, d =-0.57, 95%confidence interval= [-517 
0.04 -0.006]) (Figure 7A). 518 
 519 

<insert Figure 7 about here> 520 
 521 
We then examined whether vmPFC activity reflected the accuracy prediction difference 522 
during this transitional period. To test for this effect, we chose an independent ROI in vmPFC 523 
extracted from the cluster-corrected uncertainty prediction difference effect across all trials 524 
(Figure 4A). As predicted, activation in vmPFC correlated with an accuracy prediction 525 
difference during this transitional phase (t(23) = 3.5, p= 0.002, d=0.71,95% confidence 526 
interval=[0.03 0.1]; Figure 7B). In further support of the suggestion that accuracy processing 527 
is especially prominent during this transition phase (in which chosen and unchosen predictors 528 
have similar accuracy values), we found no credible evidence of an accuracy prediction 529 
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difference signal in vmPFC when very inaccurate predictors (accuracy prediction difference: 530 
t(23) = -0.84, p =0.41, d=-0.17, 95%confidence interval=[-0.13 0.055], Bayes 531 
factor10=0.296,%error=0.037; Supplementary Figure 9B-i) or very accurate predictors were 532 
selected (accuracy prediction difference: t(23) = -1.3, p =0.21, d=-0.27, 95% confidence 533 
interval=[-0.06 0.02], Bayes factor10=0.447,%error=1.178e-4; Supplementary Figure 9B-ii). 534 
This pattern of results suggests that the periods in which vmPFC activity reflects first positive 535 
and then negative uncertainty prediction difference are separated by a transition period in 536 
which vmPFC reflects the accuracy estimate of the predictor chosen to guide behaviour. 537 
 538 
We tested whether activation during the transition phase was related to behavioural changes 539 
across time – from positive to negative uncertainty-driven behaviour – when selecting 540 
between predictors. As the transition phase bridges exploration (positive uncertainty) to 541 
exploitation (negative uncertainty), we tested whether accuracy-related vmPFC activation 542 
during the transition period was related to a behavioural effect of uncertainty that changes 543 
across time, i.e. the interaction term uncertainty x block time (see behavioural choice GLM, 544 
Figure 3A). We used a partial correlation analysis to examine the relationship between each 545 
individual’s accuracy-related vmPFC activity extracted from the vmPFC cluster (accuracy 546 
prediction difference effect across all trials) and the behavioural transition from positive to 547 
negative uncertainty-driven predictor selection. In the same analysis, we controlled for all 548 
other behavioural variables included in the previous GLM1 (Figure 3A). We found that 549 
accuracy prediction difference-related activity in vmPFC during the transition period was 550 
positively correlated with uncertainty x block time (r= 0.58, p= 0.007, 95% confidence 551 
interval= [0.23 0.8]; Figure 7C-i). That is, the larger the vmPFC signature encoding accuracy 552 
prediction difference during the transition period, the stronger the behavioural transition from 553 
positive to negative uncertainty-driven behaviour over the course of a block (Figure 7C-ii). 554 
Notably, these results were not confounded by variation across participants’ in the number of 555 
transition trials that were identified; a partial correlation that controlled additionally for the 556 
number of transition trials remained significant (r=0.57, p=0.01, 95% confidence interval= 557 
[0.22 0.79]). 558 
 559 
This result suggests that a transition phase during which the accuracy between predictors is 560 
represented in vmPFC may facilitate a neural polarity change from first representing positive 561 
uncertainty when selections are exploratory to later, representing negative uncertainty when 562 
repeatedly selecting the same certain predictor during exploitation (Figure 8). Participants 563 
exhibiting stronger predictor accuracy signals in vmPFC during the transition period 564 
exhibited a more drastic change from positive to negative uncertainty-driven behaviour. 565 
 566 

<insert Figure 8 about here> 567 
 568 
 569 
Discussion 570 
 571 
Humans select between multiple information sources that can predict outcomes in an 572 
adaptive manner that enables them efficiently both to gather information about the predictors 573 
and to use that information to make choices. Using Bayesian modelling, we derived estimates 574 
of two kinds of beliefs that simultaneously influenced choice and neural activity. To select 575 
between predictors, participants integrated beliefs about how accurately a predictor predicted 576 
the target (“accuracy”) and beliefs about the uncertainty in that estimate (“uncertainty”). How 577 
much these beliefs influenced predictor selection depended on how many opportunities 578 
participants had had to learn about the predictors already7. Behaviourally, participants 579 
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initially gathered information about available predictors by selecting more uncertain 580 
predictors, while over time they converged towards accurate and certain (i.e. the negative 581 
uncertainty effect) predictors. However, importantly the influence of accuracy beliefs and 582 
their uncertainty depended on the future time horizon; participants explored uncertain 583 
predictors more during initial phases of a block when they knew that they had a longer time 584 
horizon remaining to exploit the knowledge gained. Behaviour that initially appears 585 
uncertainty-directed and exploratory in nature may simply reflect noise in the decision 586 
process22 or the learning process9 but in the present study behaviour is uncertainty seeking 587 
and exploratory in nature because it manifests to a greater degree when the future time 588 
horizon is longer even when the decision context and past learning opportunities remain the 589 
same. 590 
 591 
Similar flexibility was also observed on a neural level. VmPFC activity reflected different 592 
decision variables at different times in a manner that reflected their relevance for the current 593 
context of exploration or exploitation. Behaviour and neural activity in vmPFC were not 594 
determined by only exploration or exploitation, but rather it reflected several different 595 
variables but only when they were relevant to the current mode. 596 
 597 
Our findings are related to studies of attention during the learning of cue-outcome 598 
relationships. Here, two influential models have made opposite predictions: one model 599 
suggests that selective attention is driven by cues that are most predictive of reward2,5, 600 
reminiscent of the accuracy-driven, repetition-driven, and certainty-driven predictor 601 
selections in the present study. The second model assumes that the uncertainty of a predictor 602 
is crucial for selective attention6. By using a Bayesian model to dissociate participants’ 603 
beliefs about accuracy and uncertainty, we were able to show that in fact, both are important 604 
to determine whether a predictor will be selected to guide behaviour. Importantly, the 605 
magnitude of their influence on predictor selection depends on their relevance to the current 606 
context which varies across time. 607 
 608 
In accordance with the behavioural results, we found that neural activity reflected predictor 609 
differences. Activity in vmPFC reflected the difference between the selected and rejected 610 
predictor, in terms of the key feature that was currently of relevance for guiding behaviour: 611 
first positive uncertainty, then accuracy, and then negative uncertainty. Previous studies have 612 
often focused on the manner in which activation in vmPFC is correlated with differences in 613 
the reward values of chosen and rejected choices11,28,29. In such studies, differences in the 614 
reward values associated with the choices constitute the evidence in favour of taking one 615 
choice rather than the other. Although we focus on vmPFC’s role in representing 616 
information-based belief estimates of accuracy and uncertainty, on sub-threshold vmPFC also 617 
represented the difference in expected value between predictors (Extended Data Figure 2). 618 
Here, we show when selecting between predictors to guide behaviour, multiple types of 619 
information, rather than just a single one, can be of importance. This can be linked to the idea 620 
that vmPFC integrates a diverse set of variables that are currently choice-relevant30 and to 621 
recent evidence that exploitation and exploration are not simply behaviours that are 622 
controlled by completely separate neural circuits but rather they are, at least in part, 623 
controlled by changes in mode within neural structures26. An alternative interpretation could 624 
be that vmPFC’s signal represents variables that are relevant for long-term reward 625 
expectation: early uncertainty-driven exploration is beneficial for reward maximization 626 
during later exploitative phases. Although we do not differentiate between immediate or 627 
long-term representations, other studies have shown that dACC in particular represents value 628 
expectations modulated by different timescales 8,31–33. 629 
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 630 
Our results also suggest that vmPFC does not guide behaviour in isolation, but that there are 631 
additional broader differences in the recruitment of choice-relevant brain networks between 632 
exploration and exploitation. Although activation associated with negative uncertainty 633 
prediction difference during exploitation was mainly present in vmPFC, positive uncertainty 634 
prediction difference during exploration was associated with a wider network including areas 635 
such as dACC, dlPFC, and frontopolar cortex that have previously been associated with 636 
exploration24,25. Activation in dACC has often been related to behavioural adaptation and the 637 
search for better alternatives, for example during foraging8,22,23,33–40and to the update of 638 
internal models during environmental changes41–43. Our results may therefore suggest that in 639 
some cases during exploration wider updates in decision networks occur that encompass both 640 
vmPFC, dACC and prefrontal areas in a similar fashion. Nevertheless, it is important to 641 
remember that the pattern of activity in vmPFC, when considered across both behavioural 642 
modes, is different from that seen in dACC, dlPFC, and frontopolar cortex where activity 643 
only reflects uncertainty during exploration while the change in the polarity of positive to 644 
negative uncertainty-related activation, between exploration and exploitation, only occurs in 645 
vmPFC. Additionally, vmPFC did not carry a clear uncertainty signal during random 646 
exploration as opposed to uncertainty-guided exploration. An important new finding is that 647 
effective exploratory behaviour may simply emerge from noise in the learning process9 and 648 
this may impact on activity in brain areas such as dACC that reflect choice value learning at 649 
multiple time scales31,33,44. However, the current findings suggest that an uncertainty signal is 650 
also carried in these areas when it is relevant for behaviour.  651 
 652 
A related line of research supports the notion that vmPFC not only represents the value 653 
difference between choice options, but also a second-order representation, that is one’s own 654 
confidence in a choice13,45. These results are compatible with our finding that both accuracy 655 
and uncertainty are represented in vmPFC. However, we show in addition that the polarity of 656 
the uncertainty representation (which is a second-order representation similar to confidence) 657 
in vmPFC changes depending on the behavioural mode. This suggests that in some cases 658 
second-order representations in vmPFC are themselves choice-guiding and highly context 659 
sensitive. The change in signal in vmPFC from signalling positive to negative uncertainty 660 
prediction differences, i.e. uncertainty polarity change in vmPFC, might be related to the 661 
presence of a learning phase during which predictors’ accuracies are compared. We identified 662 
a transition phase between exploration/exploitation periods, when no clear preference had yet 663 
been formed for predictors. At that point, we observed that vmPFC most prominently 664 
reflected participants’ accuracy estimates for the predictors. Notably, the accuracy effect in 665 
vmPFC during the transition phase was related to the degree of change from positive to 666 
negative uncertainty-driven behaviour exhibited by each participant: participants exhibiting 667 
stronger accuracy-related vmPFC activation during the transition period also showed more 668 
drastic behavioural changes.  669 
 670 
Although predictor selections were accuracy-guided throughout the task, we did not observe 671 
an accuracy prediction difference in vmPFC during the final exploitation stages of predictor 672 
selection. This is similar to the way in which vmPFC activity related to value comparison 673 
during choice selection has been shown to be stronger during earlier compared to later phases 674 
of a task28. A predictor accuracy representation was present in vmPFC during the transition 675 
phase between exploration and exploitation when accuracy estimates between predictors 676 
were close in value, meaning that a careful comparison between predictors was required to 677 
guide predictor selections successfully. In comparison, during exploitative trials participants 678 
established which predictors were accurate resulting in repeated selections of the same 679 
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predictors. At that point vmPFC activity reflected this repetitive mode of decision making 680 
and it did so in a manner that interacted with the representation of certainty (i.e. negative 681 
uncertainty) about the predictor. 682 
 683 
Summary 684 
 685 
In summary, the combination of computational modelling and fMRI made it possible to show 686 
that beliefs concerning the accuracy of predictors and the uncertainty of those beliefs inform 687 
predictor selection to guide behaviour. Their influence on both behaviour and activity in 688 
vmPFC changed and transitioned in tandem. The vmPFC carried information about a 689 
multiplicity of decision variables (uncertainty, accuracy and repetition), the strength and 690 
polarity of which varied according to their relevance for the current context.  691 
 692 
 693 
  694 
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Methods 695 
 696 
Participants 697 
 698 
Thirty participants took part in the experiment. Participants were excluded because they fell 699 
asleep repeatedly during the scan (N=2), exhibited excessive motion during the scan (N=1), 700 
or because of premature termination of an experimental session (N=3) (final sample: 24 701 
participants; 14 female, age range:19-35, mean age:25.6, standard deviation:4). No statistical 702 
methods were used to pre-determine sample sizes but our sample sizes are larger to those 703 
reported in previous publications31,33. Moreover, participants took part in two versions of the 704 
task which were averaged within participant and thereby statistical power was increased. The 705 
study was approved by the Central Research Ethics Committee (MSD-IDREC-C1-2013-13) 706 
at the University of Oxford. All participants gave informed consent.  707 
 708 
Experimental Procedure 709 
 710 
Participants took part in two magnetic resonance imaging (MRI) sessions on separate days 711 
(Supplementary Information, details on task versions). We collapsed participants data across 712 
two versions of the task (social/non-social) as the presented results did not show differences 713 
between versions. The order of task version was counterbalanced across participants. Stimuli 714 
used in each version were randomized across participants. Data collection and analysis were 715 
not performed blind to the conditions of the experiments. Each session lasted approximately 716 
two hours, including one hour of scanning. Participants received £15 per hour and a bonus 717 
based on task performance (per session: £5 - £7). 718 
 719 
Before each scanning session, participants were instructed about the task and performed 720 
seven practice trials outside the scanner. After completion of both sessions, participants filled 721 
in a questionnaire that assessed their understanding of the study. 722 
 723 
Experimental design 724 
  725 
On every trial, participants made decisions to maximise rewards over the course of the 726 
experiment. The experiment was subdivided into six blocks. Each block included four new 727 
predictors associated with four new stimuli. Although each predictor was unique, every block 728 
comprised two good and two bad predictors. After selecting between a pair of predictors, the 729 
chosen predictors suggested the location of a target. The true target location varied from trial 730 
to trial and could not be predicted directly. The only way to estimate the target location was 731 
to learn about the distance, in terms of the angular error, between true target location and the 732 
predictor-suggested target location. The goal was to identify and exploit the good predictors 733 
in each block. On every trial, at the first stage, participants made a binary choice between the 734 
two presented predictors pseudo-randomly drawn from the four-predictor set (decision 735 
phase). Choosing better predictors at this first stage of each trial led potentially to more 736 
rewards through a decision that was made in the second stage of each trial (confidence 737 
phase). The predictors’ estimates varied around a true target location according to a normal 738 
distribution with a given standard deviation. Better options were characterised by a smaller 739 
standard deviation of the normal distribution. At the second stage, participants expressed 740 
their confidence by changing the size of an interval (symmetric interval around the predicted 741 
target location) and were rewarded if the target fell within the selected area (Figure 1A). The 742 
payoff scheme was such that participants earned most if they indicated a small angular error 743 
and the target appeared within the selected area in the subsequent outcome phase. Therefore, 744 
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choosing a better predictor in the decision phase allowed participants to earn more rewards in 745 
the long run. 746 
 747 
Overall, each MRI session comprised 180 trials, subdivided into 6 blocks, and lasted 748 
approximately one hour. The length of a block (time horizon) was either short (15 trials), 749 
medium (30 trials), or long (45 trials) (Figure 1B-i). Each time horizon was presented twice 750 
and their order was pseudo-randomised with the constraint that blocks of the same horizon 751 
did not succeed each other directly. Note that there was only one temporal order of predictor 752 
presentation: the order for short and medium horizons were extracted from the long horizon 753 
such that the first 15 trials were identical across horizons. The order of predictors was 754 
carefully constructed such that variables of interest, model-derived estimates of accuracy and 755 
uncertainty, were decorrelated statistically and across time. As shown in the Figure 4D, the 756 
critical correlations between accuracy and uncertainty prediction differences are r= 0.1 (95% 757 
confidence interval=[-0.32 0.48]) across all trials, r= 0.37 (95% confidence interval=[-0.04 758 
0.67]) within exploration and r= 0.30 (95% confidence interval=[-0.12 0.63]) within 759 
exploitation, on average across participants. This means that the maximum shared variance in 760 
these conditions is 0.14 (in exploration). For more information on how experimental design 761 
features helped to further decorrelate accuracy and uncertainty estimates across time, see 762 
Supplementary Figure 2. In response to the reviewers’ comments, we simulated a scenario 763 
during which accuracy and uncertainty are correlated across time and show that this scenario 764 
does not exist in the current study because of multiple precautions that were taken when 765 
designing the experiment. One of the main precautions was the order of predictors across 766 
time. We created the sequence of predictors in each block such that all possible binary 767 
combinations of high/low uncertainty and high/low accuracy predictors were likely to occur 768 
irrespective of the particular choice pattern of the participant. To achieve this, we introduced 769 
two of the four predictors at slightly later times in each block, making them more uncertain 770 
compared to the earlier presented predictors. We determined the precise order of predictors in 771 
behavioural pilot experiments. 772 
 773 
How good a predictor was, was determined by how well it estimated the target in the 774 
confidence phase. Estimations followed a Gaussian distribution centred on the true target 775 
location (Figure 1B-ii). Values, , for each predictor were drawn from a Gaussian 776 
distribution and represented the difference between the true target location and the predictor’s 777 
estimate:  778 ~ Ν (μ, σ) with -180 <  < 180 779 

(1) 780 
where at a given trial, value  was derived from a normal distribution with mean of μ = 0 and 781 
sigma of either σ = 50 for good predictors or σ = 70 for bad predictors. Note that sigma 782 
determined the distance (i.e. the angular error) between the true target location and the target 783 
position indicated by the predictor. Averaging across all observations of the angular error 784 
allowed participants to estimate the sigma associated with each predictor (see Figure 2A for 785 
detailed mapping between task space and belief estimates). As participants learned about the 786 
predictor’s performance through observing the angular error, they learned about the sigma of 787 
each predictor’s distribution. 788 
  789 
Participants maximized their points by decreasing the interval size during the confidence 790 
phase (Figure 1A). Participants changed the interval size with a precision of up to 20 steps on 791 
each side of the reference location, that is a maximum of 40 steps as the interval was set 792 
symmetrically. A step size was derived by dividing the circle size (6.3 radians) by the 793 
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maximum number of possible steps, resulting in a step size of approximately 0.16 radians. 794 
The interval size was determined like follows: 795 
 796 

Interval size = (number of steps x 2)/ 40  797 
            (2) 798 
When the target fell within the interval set by the participant, the magnitude of the payoff was 799 
determined by subtracting the interval size from 1. However, if the target fell outside the 800 
confidence interval, it resulted into a null payoff. This meant that the payoff per trial ranged 801 
between 0 and 1. 802 
 803 Payoff =  (1 − interval size) if target is included0                                 if target is excluded  804 

             (3) 805 
 806 

Trial structure 807 
 808 
Each trial included a decision, confidence, and outcome phase (Figure 1A). Trials started 809 
with the presentation of two options, a time bar, and question mark (1.5 sec on screen, 810 
decision phase). The time bar indicated the amount of trials left in the current block; it 811 
decreased after each trial until the end of a block. At the start of a new block, the type of 812 
horizon was identifiable by inspecting the time bar. After the question mark disappeared, 813 
participants chose between two predictors to receive information about the location of the 814 
target on the circle. The chosen predictor was marked with a red box (0.5 sec). In the 815 
confidence phase, the chosen predictor was shown in the centre of a circle and an interval 816 
was depicted around a reference point (i.e., predictor’s suggested target location) which was 817 
indicated by a dot. The interval covered a portion of the circle symmetrically around the 818 
reference point. The interval size was randomly initiated on each trial between a minimum of 819 
one and a maximum of 20 steps (one step corresponds to one button press) away from the 820 
predictor’s estimated target location. After participants made a choice how to set the interval 821 
size, a black frame appeared around the chosen predictor to indicate their response (0.5 sec). 822 
The duration of the confidence phase was determined by the participant’s reaction time. 823 
Finally, a second marker appeared on the circle representing the true target location and the 824 
number of points (between zero and one) below the predictor (3 sec, outcome phase).  825 
 826 
To decorrelate variables of interest between trial phases, short intervals were included 827 
between trials (inter-trial-intervals) and randomly, but equally allocated to either the 828 
transition between decision- and confidence phase or confidence- and outcome phase. The 829 
duration of an interval was drawn from a Poisson distribution with the range of 4s to 10s and 830 
a mean of 4.5s. During these intervals, a fixation cross was shown on the screen. 831 
 832 
Bayesian Model 833 
 834 
We used a Bayesian model to estimate the beliefs participants might optimally hold about the 835 
sigma (σ) characterising the normal distribution of each predictor. Sigma (σ) refers to the 836 
standard deviation of the normal distribution from which observations of the angular error 837 
were drawn, i.e. distance between target and reference location at each trial. Participants learn 838 
about how well a predictor predicts the target location across time and by doing so, they 839 
implicitly estimate the sigma value (σ) of the distribution (see Figure 2 for detailed mapping 840 
between task parameters and subjective estimates). Using a Bayesian model, we derived 841 
subjects’ beliefs about the sigma value (σ) of each predictor’s distribution, resulting in 842 
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sigma-hat () that denotes participants’ estimated sigma. Before a belief can be formed, 843 
participants selected a predictor and then made an observation x of how good the predictor 844 
was on a given trial, defined by the angular error between the true target location and the 845 
predictor-estimated location (reference location): 846 
 847 

x (angular error) = reference location – true target location, 848 
(4) 849 

where the reference location indicated the predictor’s prediction of the target location. Key 850 
features of beliefs can be captured by a probability density function (pdf) over sigma (Figure 851 
2A-iii,iv; 2B). The parameter space comprised possible sigma values that could be estimated 852 
by the participant. The parameter space of sigma was bound between 1 and 140 degrees to 853 
allow a broad range of sigma values considering the circle shape. 854 
 855 
Following Bayes’ rule, a belief is updated by multiplication of a prior belief and a likelihood 856 
distribution resulting in a posterior belief, i.e. belief update (Figure 2B). Before the very first 857 
observation, participants’ belief in sigma, , was assumed to be uniformly distributed across 858 
parameter space, i.e. possible sigma values in parameter space were predicted to occur with 859 
equal probability: 860 
 861 

p() = U(1,140). 862 
(5) 863 

A likelihood function was then calculated that described the probability of the observation x 864 
given each possible sigma value: 865 
 866 

p(x ) = Ν (x  μ=0, ). 867 
(6) 868 

With Bayes rule, we derived a trial-by-trial posterior distribution that was proportional to the 869 
multiplication of a prior distribution and likelihood: 870 
 871 (| x) (x |  ) () 

        (7) 872 
where, 873 

a. p () is the prior distribution.  874 
b. p(x | ) is the likelihood function. 875 
c. p(| x), is the posterior pdf across parameter space. The posterior pdf is the updated 876 

belief across sigma space and is used as prior for the next trial of the same predictor. 877 
Each posterior was normalised to ensure that probabilities across all sigma values added up to 878 
one: 879 ( | x) =  ( | x)∑ ( | x) 

          (8) 880 
 881 
Model parameters 882 
 883 
We used features of an option’s prior distribution on every trial to approximate participants’ 884 
estimates of the accuracy of the predictor and their uncertainty in those accuracy estimates. 885 
The mode (peak of distribution) of the prior pdf was used to define “accuracy”, while a 95% 886 
interval around the mode was used to define “uncertainty”. Note that both variables depended 887 
on choices made by participants, because feedback was only provided for the chosen 888 
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predictor and hence only beliefs for the chosen predictor could be updated. On trial i, 889 
variables of interest were defined as follows (Figure 2A-iv): 890 
 891 

accuracy = max [p ()] * (-1) 892 
(10) 893 

Note that a higher max[p ()] of the pdf indicated bigger deviations of the target from the 894 
reference point. To derive an accuracy estimate that can be interpreted intuitively, the sign of 895 
max[p()] is reversed (multiplication with (-1)) so that positive values can be interpreted as 896 
higher accuracy. The accuracy estimate represents a point-estimate of a subject’s belief 897 
distribution in sigma-hat (). This means it represents the subject’s belief in the sigma value 898 
associated with the predictors’ distribution.  899 
 900 
To derive a trial-wise uncertainty estimate from the distribution, we identified a percentage 901 
(2.5%) of the lower and upper tail of the prior pdf, representing the distribution around the 902 
believed sigma value (). We extracted the estimated sigma value high and low at each of the 903 
two positions. The difference of both sigma values constituted the estimated “uncertainty” 904 
variable: 905 
 906 

high  cumulative (p ()) = 97.5% 907 
low  cumulative (p ()) = 2.5% 908 

uncertainty = high - low 909 
(11) 910 

From now onwards, the terms of accuracy and uncertainty refer to the model-derived 911 
estimates defined in equations (10) and (11) respectively. 912 
 913 
Alternative computational models  914 
 915 
We used a Bayesian model with uniform priors at the start of each block for all four 916 
predictors, assuming participants do not have prior knowledge about the underlying 917 
distributions associated with predictors. We refer to this model as ‘the original model’ 918 
because it is the model used elsewhere in this study. We compared the original model to two 919 
alternative computational models: a Bayesian model with informative priors (Extended Data 920 
Figure 1) and a reinforcement learning (RL) model which tracks the payoff history of each 921 
predictor (Extended Data Figure 2). We explain in detail the rationale behind each 922 
computational model, their construction and the results in the Supplementary Information 923 
(Section 2: Alternative computational models). The results demonstrate that a Bayesian 924 
model using uniform priors had a better model fit compared to a Bayesian model with 925 
informative priors or an RL model. However, a combination of the original Bayesian model 926 
with uniform priors and value-based variables derived from an RL model showed the best 927 
model fit to choice behaviour. In conclusion, RL value terms complement the Bayesian 928 
model but do not substitute for the Bayesian model terms as an explanation of behaviour; 929 
participants’ beliefs in the accuracy and uncertainty of a predictor explained additional 930 
variance in choice behaviour above and beyond that explained by their choice value 931 
estimates. These analyses were conducted in response to the reviewers’ comments. 932 
 933 
 934 
Behavioural Analyses  935 
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 936 
We applied a set of general linear models (GLM) to the behavioural data. All GLM analyses 937 
were applied to both versions (social and non-social) of the experiment separately. The 938 
resulting beta weights for each subject were first averaged across versions and then across 939 
participants. We used two-tailed statistical tests for all analyses. Additionally, we report 940 
effect size as Cohen’s d (d) for t-tests and eta squared (η2) for ANOVAs, a 95% confidence 941 
interval and Bayes factors for non-significant results. 942 
 943 
Decision Phase 944 
 945 
We analysed the trial-wise impact of Bayesian-derived estimates of accuracy, uncertainty, 946 
and their modulations across time in a block on choice behaviour. Our first analysis aimed to 947 
show that the belief in the accuracy of a predictor (“accuracy”) and the uncertainty in that 948 
belief (“uncertainty”) influenced choice behaviour. Moreover, we focused on how these 949 
effects changed with the percentage of remaining trials in a block (referred to as block time), 950 
suggesting a transition between exploration and exploitation as time within a block pass. We 951 
used a logistic general linear model (GLM) to investigate these effects across all trials on 952 
choice behaviour (Choice GLM1). For all GLM analyses, regressors were normalised across 953 
all trials (mean of 0 and standard deviation of 1). The first GLM comprised the following 954 
regressors. 955 
 956 
Choice GLM1 (Figure 3A) 957 
accuracy difference (left – right),  958 
uncertainty difference (left – right), 959 
block time, 960 
accuracy difference (left – right) x block time, 961 
uncertainty difference (left – right) x block time. 962 
 963 
The dependent variable was whether or not participants made a leftward choice on the current 964 
trial. Accordingly, for each regressor (except block time), we calculated the difference in the 965 
variable for the left and right option. To calculate the interaction term, we multiplied the 966 
normalised uncertainty and accuracy variables with the normalised block time variable and 967 
then normalised this interaction term again. Note that we use the accuracy and uncertainty 968 
regressors as defined in the “Bayesian model” section. 969 
 970 
To further examine how the influence of uncertainty and accuracy on choice changed over 971 
time in a block, we binned trials within a given time horizon into first and second halves 972 
(Figure 3B-i). We fitted a logistic GLM on each half with uncertainty and accuracy as 973 
regressors, irrespective of the overall time horizon length of the block. Although we 974 
normalise regressors here within blocks, results replicate when regressors are normalised 975 
across blocks. 976 
 977 
Time GLM 1 (Figure 3B-i): 978 
accuracy difference (left – right) 979 
uncertainty difference (left – right) 980 
 981 
Next, we predicted an effect of time horizon (Figure 3B-ii) on the first trials of a block. We 982 
fitted a robust linear GLM on the first 15 trials (a multiple of all horizons, which were 15, 30 983 
and 45) with accuracy and uncertainty as regressors to investigate whether a variable’s effect 984 
covaried with the amount of remaining trials.  985 
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 986 
Time GLM 2, for the first 15 trials within horizons (Figure 3B-ii): 987 
accuracy difference (left – right) 988 
uncertainty difference (left – right) 989 
 990 
We used a linear robust regression to better estimate effects given the small amount of trials 991 
included in the analysis. The first 15 trials were identical across horizons in terms of their 992 
predictor order and statistical properties (apart from the specific choice sequence taken by 993 
participants). All significant results reported in Figure 3B-ii remained significant when 994 
basing the statistical tests on the t-stats of the effect sizes obtained from a logistic regression 995 
(reported interaction effect: 3x2 repeated measures ANOVA with horizon (long, medium, 996 
short) and variable (accuracy, uncertainty); horizon x variable interaction: F(2,46)=27.6, 997 
p<0.001, η2=0.965, 95% confidence interval [0.052 1.13], assumption of sphericity is met 998 
with Mauchly’s test: x2(2)=0.26, p=0.88; reported main effects: positive uncertainty during 999 
long horizon: t(23)=4.7, p<0.001, d=0.96, 95%confidence interval=[0.51 1.3]; medium 1000 
horizon: t(23)=2.6, p=0.017,d=0.5,95%confidence interval=[0.1 1]). 1001 
 1002 
Confidence phase 1003 
 1004 
We analysed the effect of accuracy and uncertainty on confidence judgments reported at the 1005 
second phase of a trial (Figure 1A). Confidence judgments were indicated by modifying the 1006 
interval size around the chosen predictor with a smaller interval representing higher 1007 
confidence. To make this measure intuitive, we sign-reversed their relationship such that a 1008 
higher confidence index represents greater confidence in the chosen predictor. We analysed 1009 
the trial-by-trial confidence judgements by applying the following linear GLM: 1010 
 1011 
Confidence GLM1 (Figure 3C): 1012 
chosen accuracy, 1013 
chosen uncertainty. 1014 
 1015 
Exploration, exploitation and transitional trials  1016 
 1017 
We subdivided trials into exploration and exploitation trials to compare neural signals 1018 
between both behavioural modes. For each subject, we categorized trials based on the 1019 
predictor selections during the decision phase (Extended Data Figure 3). On each trial, we 1020 
calculated the difference between chosen and unchosen accuracy and chosen and unchosen 1021 
uncertainty. Exploitative trials were defined by a positive “accuracy prediction difference” 1022 
(chosen predictor had higher accuracy than unchosen ones) and negative “uncertainty 1023 
prediction differences” (the chosen predictor was the predictor participants were more certain 1024 
about). Vice versa, exploration trials were defined by a negative accuracy prediction 1025 
difference and positive uncertainty prediction differences (the more uncertain predictor is 1026 
picked even though it has yielded less accurate results in the past). Trials with both positive 1027 
accuracy prediction difference and uncertainty prediction difference (i.e. that were both 1028 
accuracy and uncertainty guided) were allocated to either the exploitative or the exploratory 1029 
bin depending on the relative predominance of the accuracy prediction difference or the 1030 
uncertainty prediction difference. For example, if the chosen predictor and the unchosen 1031 
predictor differed more in the uncertainty of their predictions as opposed to the accuracy of 1032 
their predictions (the chosen predictor was more uncertain than the unchosen predictor and 1033 
the chosen predictor was, to a smaller degree, more accurate in its predictions than the 1034 
unchosen predictor) then the predictor selection on that trial was labelled as exploratory. 1035 
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Finally, trials with differences between both accuracy and uncertainty close to zero (absolute 1036 
difference of 5) were assigned to both categories. We elaborate on the robustness of the 1037 
current classification and compare it to those used in previous studies in the Supplementary 1038 
information (Supplementary Figure 8). 1039 
Furthermore, we defined a new subset of trials to understand the transition from positive 1040 
uncertainty prediction difference signals (exploration) to a negative uncertainty prediction 1041 
difference signal (exploitation) in vmPFC. Because predictor selections are not driven by 1042 
uncertainty alone, we tested whether accuracy prediction difference signals were particularly 1043 
prominent in a transitional phase between exploration and exploitation in vmPFC. We 1044 
defined a threshold in a range of accuracy prediction difference values between [5 20] that 1045 
classified trials into the transition period. We chose this subset such that it would comprise 1046 
trials that are close in accuracy values for both options and at the same time predictor 1047 
selection would still be guided rationally by accuracy. Moreover, this window resulted in a 1048 
sufficiently large sample for analysis (approximately 20% of the trials in the range of positive 1049 
accuracy prediction difference). The threshold is arbitrary and slightly smaller or greater 1050 
ranges (compromising positive values) did not alter the results. To show that the transition 1051 
period was characterized by learning about predictors, and that periods outside this transition 1052 
were defined by the processing of either positive uncertainty or negative uncertainty, we 1053 
defined two separate subsets of trials (Supplementary Figure 9A). One subset included 1054 
extreme positive accuracy-driven trials [accuracy values > 20] (Supplementary Figure 9A-ii), 1055 
while a second subset contained extreme negative accuracy-driven [accuracy values < -5] 1056 
trials (Supplementary Figure 9A-i).  1057 
 1058 
 1059 
FMRI data acquisition and data processing 1060 

Imaging data were acquired with a Siemens Prisma 3T MRI using a multiband T2*-weighted 1061 
echo planar imaging sequence with acceleration factor of two and a 32-channel head-coil. 1062 
Slices were acquired with an oblique angle of 30 ° to the PC-AC line to reduce signal dropout 1063 
in frontal pole. Other acquisition parameters included 2.4x2.4x2.4 mm voxel size, TE = 20 1064 
ms, TR = 1030 ms, 60° flip angle, a 240 mm field of view and 60 slices per volume. For each 1065 
session, a fieldmap (2.4x2.4x2.4mm) was acquired to reduce spatial distortions. Bias 1066 
correction was applied directly to the scan. A structural scan was obtained with slice 1067 
thickness = 1 mm; TR = 1900 ms, TE = 3.97 ms and 1x1x1 mm voxel size.  1068 

Imaging data was analysed using FMRIB’s Software Library (FSL)46. Preprocessing stages 1069 
included motion correction, correction for spatial distortion by applying the fieldmap, brain 1070 
extraction, high-pass filtering and spatial smoothing using full-width half maximum of 5mm. 1071 
Images were co-registered to an individuals’ high-resolution structural image and then 1072 
nonlinearly registered to the MNI template using 12 degrees of freedom47.  1073 
 1074 
FMRI Data analysis 1075 
 1076 
MRI whole-brain analyses 1077 
 1078 
We used FSL FEAT for first-level analysis46. First, data was pre-whitened with FSL FILM to 1079 
account for temporal autocorrelations. Temporal derivatives were included into the model. 1080 
We used two GLMs to analyse fMRI data across the whole brain. FMRI-GLM1 was applied 1081 
to all trials and fMRI-GLM2 was fitted separately to trials that had been identified as 1082 
exploration and exploitation trials. Results were calculated using FSL’s FLAME 1 with a 1083 
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cluster-correction threshold of z>2.3 and p<0.05, two-tailed. To analyse BOLD changes 1084 
associated with the processing of uncertainty and accuracy across participants, a second-level 1085 
analysis was applied in a two-step approach: data was first average across both versions 1086 
within subject (fixed-effect analysis) and then sessions were analysed across participants 1087 
(FLAME1). We included all three phases of a trial (decision, confidence and outcome) into 1088 
the fMRI-GLM. Each phase included a constant regressor, which was the onset of each phase 1089 
as well as parametric regressors that were modelled as stick functions (i.e. duration of zero) 1090 
time-locked to the relevant phase onset.  1091 
 1092 
The decision phase began at the time the predictor appeared and lasted until a selection was 1093 
made by the participant (Figure 1A). The decision phase was modelled as a constant and was 1094 
accompanied by the following parametric regressors: 1095 
 1096 
fMRI-GLM 1, decision phase: 1097 
chosen uncertainty, 1098 
unchosen uncertainty, 1099 
chosen accuracy, 1100 
unchosen accuracy, 1101 
 1102 
All regressors were normalised before inclusion into the analysis. We calculated the 1103 
difference between chosen and unchosen predictors for both accuracy and uncertainty to 1104 
derive prediction differences. To derive a “domain general prediction difference”, we 1105 
calculated the mean across absolute uncertainty and accuracy prediction differences: ((chosen 1106 
– unchosen uncertainty) + (chosen – unchosen accuracy)) (Supplementary Figure 3A) and 1107 
calculated a conjunction between both cluster-corrected maps of accuracy and uncertainty 1108 
prediction differences with a cluster-correction of z>2.3 and p<0.05 (Supplementary Figure 1109 
3B). For the conjunction analysis, we used the provided FSL script ‘easythresh_conj’ with 1110 
z>2.3 and p<0.05. 1111 
 1112 
The confidence phase was defined from the onset of circle and interval presentation (Figure 1113 
1A) until a decision about the interval size was made. It included a constant and the following 1114 
parametric regressors: 1115 
 1116 
fMRI-GLM 1, confidence phase: 1117 
chosen uncertainty, 1118 
chosen accuracy, 1119 
block time, 1120 
chosen uncertainty x block time, 1121 
chosen accuracy x block time. 1122 
  1123 
All regressors were normalized before, and, where relevant, after building the interaction 1124 
term (chosen accuracy/ uncertainty x block time). We only included the chosen predictor, as 1125 
participants evaluated their uncertainty and accuracy estimates according to the predictor they 1126 
selected during the decision phase. 1127 
 1128 
The outcome phase was defined by the onset of the target and payoff presentation and lasted 1129 
for a fixed duration of three seconds. In addition to the constant regressor, we included the 1130 
following parametric regressors: 1131 
 1132 
fMRI-GLM 1, outcome phase: 1133 
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chosen accuracy, 1134 
chosen uncertainty, 1135 
payoff (as defined in equation 3). 1136 
 1137 
In the second fMRI-GLM2, trials were binned into exploratory and exploitative trials as 1138 
described above. For this purpose, we included decision, confidence and outcome phases for 1139 
exploratory and exploitative trials separately. This meant that, in total, there were six phases 1140 
within the fMRI-GLM2. We included the same set of regressors in the exploratory and 1141 
exploitative phases. The constants for each phase was modelled as in the previous GLM, but 1142 
we used separate constants for exploration and exploitation phases. 1143 
 1144 
fMRI-GLM 2, decision phase (for explore and exploit separately): 1145 
uncertainty prediction difference (i.e., chosen – unchosen) 1146 
accuracy prediction difference (i.e., chosen – unchosen) 1147 
fMRI-GLM 2, confidence phase (for explore and exploit separately): 1148 
chosen accuracy 1149 
chosen uncertainty 1150 
fMRI-GLM 2, outcome phase (for explore and exploit separately): 1151 
chosen accuracy 1152 
chosen uncertainty 1153 
payoff. 1154 
 1155 
To test whether the uncertainty prediction difference significantly differed between 1156 
exploration and exploitation, we built a contrast comparing uncertainty prediction differences 1157 
between exploration and exploitation (Figure 5C). 1158 
 1159 
In addition, fMRI-GLM1 contained one regressor time-locked to all button presses, modelled 1160 
as a stick function. For fMRI-GLM2, two regressors were time-locked to the button presses: 1161 
one relating to the exploration phase and the other related to the exploitation phase. 1162 
 1163 
Region of Interest (ROI) analyses 1164 
 1165 
We calculated ROIs with a radius of three voxels that were centred on the peak voxel of 1166 
significant clusters derived from whole brain fMRI-GLM1 and fMRI-GLM2. The selected 1167 
ROI was transformed from MNI space to subject space and the pre-processed BOLD time 1168 
courses were extracted for each participant’s session. Time courses were averaged across 1169 
volumes, then normalized and oversampled by a factor of 20 for visualisation. Time courses 1170 
were time-locked to the onsets of each phase consistent with timings used in whole-brain 1171 
fMRI-GLMs (decision, confidence or outcome). Then, a GLM was applied to each timepoint 1172 
to derive beta weights per time point for each regressor. For analyses across versions, we 1173 
used the same principle as applied to the whole-brain fMRI-GLMs and our behavioural 1174 
analyses: first, we averaged the time course within a subject across both social and non-social 1175 
versions, then we averaged across participants. For all ROI analyses, regressors were 1176 
normalized (mean of zero and standard deviation of one).  1177 
 1178 
To illustrate positive and negative uncertainty in exploration and exploitation phases, 1179 
respectively, we included the following regressors: 1180 
 1181 
ROI-GLM 1, decision phase (for explore and exploit separately), Figure 4C: 1182 
chosen uncertainty, 1183 
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unchosen uncertainty, 1184 
chosen accuracy, 1185 
unchosen accuracy. 1186 
 1187 
Effects of ROI-GLM1 were extracted from the whole-brain cluster corrected accuracy 1188 
prediction difference effect in vmPFC to allow for an unbiased test.  1189 
 1190 
Next, we tested whether the uncertainty effect changed when repeating the same predictor as 1191 
on the last encounter. We used a ROI analysis to test for a main effect of repetition and 1192 
interaction effect between repetition and chosen uncertainty. We used ROI-GLM1 and 1193 
additionally included the following regressors: 1194 
 1195 
ROI-GLM 2, decision phase (across all trials), Figure 6: 1196 
additional regressors to ROI-GLM1: 1197 
repetition (1= repetition of the same predictor as during last encounter with same predictor; 1198 
0=no repetition of the same predictor) 1199 
repetition x chosen uncertainty, 1200 
repetition x chosen accuracy. 1201 
 1202 
Then, we split trials into repetition and no-repetition categories to investigate the simple 1203 
effect of chosen uncertainty per category (ROI-GLM3). We used ROI-GLM1, but now 1204 
applied separately to repetition and no-repetition trials (Figure 6). For both ROI-GLM2 and 1205 
3, we used an unbiased ROI extracted from the whole-brain cluster corrected accuracy 1206 
prediction difference effect across all trials in vmPFC. 1207 
 1208 
Next, we applied a ROI analysis to show activation for accuracy prediction difference during 1209 
the transitional phase (Figure 7) in vmPFC, using fMRI-GLM2. We were interested whether 1210 
the accuracy prediction difference effect occurred in the transition between the previously 1211 
observed positive and then negative uncertainty prediction differences. Because we 1212 
hypothesized that the accuracy prediction difference effect would occur in the same ROI as 1213 
the uncertainty prediction difference effects, we used an independent ROI based on the 1214 
cluster-corrected accuracy prediction difference effect across all trials (fMRI-GLM 1). The 1215 
same ROI and GLM was used to test extreme positive and negative accuracy-driven trials 1216 
(Supplementary Figure 9B).  1217 
 1218 
ROI-GLM 4, decision phase (transition trials and extreme positive and negative accuracy 1219 
trials), Figure 7B; Supplementary Figure 9B: 1220 
see fMRI-GLM2. 1221 
 1222 
Leave-one-out procedure 1223 
 1224 
A leave-one-out procedure was used to test the unbiased significance of the time courses 1225 
extracted from ROI-GLM2,3. For every participant (n = 24), we extracted the average time 1226 
course based on the 23 remaining participants. We identified the peak of the group time 1227 
course in a time window between 4-8 seconds and then extracted the beta value for the 1228 
excluded subject at the time of the group peak. This procedure was repeated for all 1229 
participants which resulted in individual peak values that were independent from the subject 1230 
to be analysed. The extracted peak values were tested with a one-sample t-test against zero.  1231 
 1232 
Correlations between neural and behavioural beta weights 1233 
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 1234 
To calculate the correlation between the time course of neural activations and behavioural 1235 
beta values, we used neural beta weights extracted from the group peak. We calculated a 1236 
partial correlation between the vmPFC accuracy prediction difference effect during the 1237 
transition phase and the behavioural interaction term of uncertainty x block time (Figure 7C), 1238 
controlling for all other behavioural variables (main effects of accuracy, uncertainty, block 1239 
time (in percentage) and the interaction between block time and accuracy, see behavioural 1240 
GLM1). A second partial correlation additionally included the number of individual 1241 
transition trials.  1242 
 1243 
 1244 
  1245 
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Data availability  1246 

 1247 
We have deposited all choice raw data used for the analyses in an OSF repository. The 1248 
accession code is: https://osf.io/d5qzw/?view_only=037ea3b875914623a06999cef97ac57f. 1249 
We have deposited unthresholded fMRI maps of all contrasts depicted in the manuscript on 1250 
Neurovolt. The accession code is: https://identifiers.org/neurovault.collection:8073.  1251 
The source data underlying Figure 3,6,7 and Extended Data Figure 1,2,3,5 are provided as a 1252 
Source Data file. 1253 
 1254 
 1255 

Code availability  1256 

 1257 
The above OSF repository includes the full Bayesian modelling pipeline. Relevant 1258 
behavioural and neural regressors were derived from this pipeline. We also provide the code 1259 
for behavioural GLMs shown in Figure 3. Please follow the README file inside the 1260 
repository for details of its use: 1261 
https://osf.io/d5qzw/?view_only=037ea3b875914623a06999cef97ac57f. 1262 
  1263 
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Figure legends 1397 
 1398 
Figure 1. Experimental Task and Design. 1399 
(A) Trial timeline. In each trial, participants made two choices. First, a binary choice between 1400 
two predictors (coloured boxes; decision phase) to receive information about a target’s 1401 
location on a circle. The goal was to choose predictors that accurately predicted the target 1402 
location. The length of a black bar at the bottom of the screen informed participants about the 1403 
number of remaining trials in the current block. Second, participants indicated their belief in 1404 
the accuracy of the chosen predictor by modifying the size (dotted lines) of an interval 1405 
symmetrical around the reference point (confidence phase). In the outcome phase, the target 1406 
location (star) and any points earned were indicated. Two possible example outcomes are 1407 
illustrated. In the above case, the participant’s prediction was incorrect as the target fell 1408 
outside the interval, resulting in a null payoff. In the bottom case, the target fell within the 1409 
interval, resulting in a positive payoff. Positive payoffs increase with narrower intervals as 1410 
long as the target falls within the interval. (B) Design. (B-i) Participants transitioned through 1411 
blocks of different numbers of trials (time horizons). (B-ii) Each time horizon introduced four 1412 
new predictors (illustrated as boxes) that were categorised into two good (green and yellow 1413 
boxes) and two bad predictors (orange and blue boxes) according to how well they predicted 1414 
the target. The quality of predictions was determined by the angular error between target and 1415 
reference location with a smaller angular error representing better target predictions. 1416 
 1417 
Figure 2. Task statistics, Bayesian model, and choice hypotheses. 1418 
(A) Panels depict the mapping between observations during the task (i), their statistical 1419 
properties (ii), and subjective beliefs about these properties derived with Bayes’ rule (iii;iv). 1420 
(A-i) A predictor’s performance can be evaluated by the angular error at each trial (left 1421 
panel), and by comparing angular errors between predictors across observations (right panel). 1422 
Better predictors have on average smaller angular errors (green is better than orange). (A-ii) 1423 
Predictors’ angular errors were derived from normal distributions centred on the true target 1424 
location. Critically, the normal distributions for good and bad predictors differed in their 1425 
standard deviation (sigma): smaller sigma’s reflected smaller angular errors, i.e. more 1426 
accurate predictions of the true target location. Learning about a predictor’s angular error 1427 
across time corresponded to forming beliefs about a predictor’s sigma value. (A-iii) To 1428 
capture this learning process, we used Bayesian modelling and derived trial-wise belief 1429 
distributions over sigma for each predictor. In other words, we estimated a probability density 1430 
function that expressed the belief strength in each possible sigma over a large range of 1431 
sigmas, and that was updated with each new observation via Bayes’ rule. The coloured 1432 
vertical lines indicate the true underlying sigmas of the predictors and the black distributions 1433 
reflect the Bayesian approximation after extensive training. (A-iv) We captured two 1434 
separable estimates about participants’ beliefs concerning predictors: an estimate of the 1435 
accuracy of a predictor (the mode of the distribution indicated by the position of the vertical 1436 
line on the abscissa) and the uncertainty in that belief (width of the belief distribution). (B) In 1437 
all panels, light to dark orange represents earlier and later trials, respectively, in a block. Left: 1438 
Prior beliefs are updated after observing the angular error in the trial’s outcome phase, 1439 
resulting in a posterior belief. The posterior belief forms the prior for the next encounter with 1440 
the same predictor. Right: Belief distribution when selecting the same predictor multiple 1441 
times. Across time, the belief distribution will converge towards the true value of sigma 1442 
(here, true sigma is 50). (C) Experimental hypotheses. Note that panels depict an illustration 1443 
of hypothesized effect sizes of accuracy and uncertainty on choice akin to logistic GLM 1444 
analyses of choice. (C-i) Participants’ patterns of explore/exploit choices should 1445 
systematically change over the course of the blocks. At the beginning of a block (light orange 1446 
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area), participants should pursue the more uncertain predictor, that is choices should be 1447 
driven by a positive uncertainty effect, but this tendency should reverse over time. Accurate 1448 
predictors should be sought out throughout (positive accuracy effect), but particularly 1449 
towards the end of the block (dark orange area) when the value of exploration diminishes. 1450 
(C-ii) At the time of initial choices (indicated by black boxes in inset), the value of 1451 
exploration should be modulated by the time horizon and choices towards uncertain 1452 
predictors should systematically increase if there are more trials remaining in which to 1453 
exploit the knowledge gained, i.e. in longer horizons (vice versa for accuracy-driven 1454 
choices).  1455 
 1456 
Figure 3. Dissociable effects of accuracy and uncertainty on predictor selections and 1457 
subjective confidence judgments.  1458 
(A) Decision phase. By using logistic GLM analyses we predict leftward predictor selection 1459 
as a function of several variables (coded as left minus right). In general, participants preferred 1460 
accurate predictors (accuracy: t(23)=7.5, p<0.001, d=1.52,95% confidence interval=[0.8 1461 
1.45]). There was no credible evidence for an uncertainty effect on behaviour (t(23)=-1.9, p= 1462 
0.07, d=-0.39,95% confidence interval=[-0.51 0.018], Bayes factor10=1.05, %error=1.1017e-1463 
4). However, uncertainty and accuracy exerted different effects depending on when choices 1464 
were made: uncertain predictors were explored when many trials remained (positive 1465 
interaction term with percentage of remaining trials, i.e. block time; t(23)=5.8, p<0.001, 1466 
d=1.18,95% confidence interval=[0.53 1.1]), whereas decisions were accuracy-driven as the 1467 
end of a block approached (negative interaction effect with block time; t(23)=7.5, p<0.001, 1468 
d=-1.53,95% confidence interval=[-0.91 -0.52]). (B) Decision phase. (B-i) Trials were 1469 
binned into first and second halves of each block (independent of time horizon length) to 1470 
examine the interaction effects shown in panel A. Earlier choices (i.e. first half) were more 1471 
uncertainty-driven compared to later (i.e. second half) choices when uncertainty was avoided 1472 
(paired-test early vs late: t(23) = -8.1, p<0.001, d=1.66, 95%confidence interval=[1.06 1.8]). 1473 
In contrast, accuracy determined choices throughout both early and late block halves, but 1474 
increasingly so in the second half (paired t-test early vs late: t(23) =-4.2, p<0.001, d=-1475 
0.85,95%confidence interval=[-1.63 -0.55]). Both accuracy and uncertainty changed 1476 
differently across block halves (paired t-test between differences of block halves for accuracy 1477 
and uncertainty: t(23) = -8.1, p<0.001, d=-1.7, 95% confidence interval =[-2.27 -1.02]). (B-ii) 1478 
Accuracy and uncertainty effects on choice also varied as a function of how many trials still 1479 
remained within a block: differences in the initial choice patterns (first 15 trials; see inset) 1480 
across horizons showed that the exploration of uncertain predictors was more pronounced 1481 
when horizons were longer while shorter horizons demanded more rapid exploitation of 1482 
predictors estimated as most accurate (3x2 ANOVA: F(2,46)=36.7, p<0.001, η2=0.62). (C) 1483 
Confidence phase. Trial-by-trial confidence judgments increased (i.e. the confidence interval 1484 
size decreased) when selecting predictors that were believed to be accurate (t(23)=11.7, 1485 
p<0.001, d=2.4, 95%confidence interval=[0.66 0.98]) but decreased when predictors were 1486 
believed to be uncertain according to the Bayesian model (t(23)=-10.4, p<0.001, d=-1487 
2.12,95% confidence interval=[-1.1 -0.73]. Note that we used the inverse of the confidence 1488 
interval such that a greater confidence index also represents higher confidence. (n = 24; error 1489 
bars are SEM across participants). 1490 
 1491 
 1492 
  1493 
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 1494 
Figure 4. Modulation of uncertainty prediction difference in vmPFC according to 1495 
behavioural mode.  1496 
(A) Across all trials, a negative uncertainty (i) and positive accuracy (ii) prediction 1497 
differences covaried with activation in vmPFC. (B) We found a polarity change in the impact 1498 
uncertainty exerted on predictor selection at a behavioural level; initial trials in longer 1499 
horizons were more likely to be explorative and directed towards more uncertain predictors 1500 
while behaviour in later trials was more exploitative and directed away from uncertain 1501 
predictors, in other words they selected certain predictors (see labels on y-axis). We tested for 1502 
a neural uncertainty polarity change in vmPFC comparing behavioural modes of exploration 1503 
and exploitation, respectively, representing a positive and then negative uncertainty 1504 
prediction difference. (C) Time courses extracted from vmPFC for both chosen and unchosen 1505 
components of an uncertainty prediction difference signal during exploration (i) and 1506 
exploitation (ii). VmPFC BOLD activity changed in accordance with the behavioural results; 1507 
it transitioned from activity positively related to uncertainty prediction difference (positively 1508 
encoding the uncertainty of the chosen predictor as opposed to the unchosen predictor) during 1509 
initial choices to activity negatively related to uncertainty prediction difference (negatively 1510 
encoding the uncertainty of the chosen predictor as opposed to the unchosen predictor) in 1511 
later trials. All effects were time-locked to the decision phase. (n = 24; error bars are SEM 1512 
across participants; whole-brain effects family-wise error cluster corrected with z > 2.3 and p 1513 
< 0.05). (D) The relationship between accuracy and uncertainty prediction differences used 1514 
for all neural analyses across all trials (left) exploration trials (centre), and exploitation trials 1515 
(right). Average correlations between accuracy and uncertainty prediction differences across 1516 
all participants are reported at the bottom of each panel, while panels show variables across 1517 
time taken from a representative participant for each analysis. Accuracy and uncertainty 1518 
prediction differences are similarly decorrelated in all other analyses (for details on 1519 
correlation, see Supplementary Figure 1, 2).  1520 
 1521 
Figure 5. Whole brain maps for uncertainty prediction difference during exploration 1522 
and exploitation.  1523 
Illustrations above whole-brain images clarify the polarity (positive or negative) of the 1524 
uncertainty prediction difference signal represented in vmPFC (indicated by the black circle) 1525 
during exploitation, exploration and their contrast. (A) During exploitation, activity related to 1526 
an uncertainty prediction difference was restricted to a region centred on vmPFC and was 1527 
represented with a negative polarity (see inset). (B) However, during exploration uncertainty 1528 
prediction difference was represented with a positive polarity and associated with an 1529 
extended network including vmPFC but also dorsomedial frontal areas peaking in dorsal 1530 
anterior cingulate cortex (dACC) (see also Supplementary Figure 6). (C) Difference in 1531 
uncertainty prediction difference between exploration and exploitation. Contrasting 1532 
activations between the behavioural modes of exploration and exploitation confirmed the 1533 
presence of mode-specific (e.g. dACC) and mode-general (e.g. vmPFC) activations. Note that 1534 
the sign of activation patterns resulting from a contrast between exploration and exploitation 1535 
need to be interpreted with reference to the levels of activity found in the exploration and 1536 
exploitation phases with respect to baseline (see illustration above each whole-brain map) (n 1537 
= 24; whole-brain effects family-wise error cluster corrected with z > 2.3 and p < 0.05).  1538 
 1539 
  1540 
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 1541 
 1542 
 1543 
Figure 6. Interaction of repetition and uncertainty representation in vmPFC. (A) The 1544 
percentage of choice repetitions during exploitation was significantly higher than during 1545 
exploration (paired t-test explore vs exploit: t(23)=-16.2, p <0.001, d= -3.3,95% confidence 1546 
interval = [-0.36 -0.28]). Also note that within the two phases, this indicates a relative 1547 
predominance of repetitions versus no repetitions in exploitation, but a relative predominance 1548 
of no repetition choices versus repetitions in exploration. (B) VmPFC activity increased when 1549 
participants repeated the same predictor selection as they had made on the last encounter with 1550 
the predictor (grey time course; repetition is coded as “repeat – no repeat”; t(23) = 4, p 1551 
<0.001, d= 0.8,95% confidence interval=[0.017 0.06]). Moreover, we found a significant 1552 
interaction effect of repetition x chosen uncertainty (red time course; t(23) = -3.4, p =0.002, 1553 
d= -0.7,95% confidence interval=[-0.07 -0.02]). The interaction effect is illustrated in the 1554 
right panel by decomposing it into the binned effects of chosen uncertainty during 1555 
“repetition” and “no repetition” trials at the time of the interaction effect time course peak. 1556 
This indicates that the increase in BOLD response accompanying choice repetition was even 1557 
stronger if participants were very certain about their choice (i.e. negative uncertainty during 1558 
repetition; green bar in right panel); whereas in case of switching choices, the BOLD signal 1559 
increased as a function of chosen uncertainty (i.e. positive uncertainty; blue bar in right 1560 
panel). Note that the statistical test comparing the blue and green bars was performed in the 1561 
leftward panel of B by testing the interaction effect against zero (n = 24; error bars are SEM 1562 
across participants).  1563 

 1564 
Figure 7. Accuracy processing mediates uncertainty polarity change from exploration to 1565 
exploitation. 1566 
(A)Transition trials (Supplementary Figure 9A) occurred later than exploratory selections and 1567 
earlier than exploitative selections (left panel) (explore vs transition: t(23)=6, p<0.001, d=1.2, 1568 
95%confidence interval= [0.056 0.12]; transition vs exploit: t(23)=-2.8, p=0.01, d=-0.57, 1569 
95%confidence interval= [-0.04 -0.006]). We hypothesized activation in vmPFC to be 1570 
correlated with positive uncertainty, accuracy and negative uncertainty prediction differences 1571 
between predictors, but at different times during the experiment (see illustration, right panel). 1572 
(B) During transition trials, activation in vmPFC covaried with the difference in the accuracy 1573 
between the chosen and unchosen predictor, i.e. accuracy prediction difference (t(23) = 3.5, 1574 
p= 0.002, d=0.71,95% confidence interval=[0.03 0.1]. (C-i) Participants who showed a 1575 
stronger vmPFC accuracy prediction difference during the transition period (variability 1576 
around time course peak from panel b), also integrated more drastically the uncertainty 1577 
between predictors across time into their choice behaviour (uncertainty x block time from 1578 
Figure 3A; r= 0.58, p= 0.007, 95% confidence interval=[0.23 0.8]). (ii) For illustration, this 1579 
means that participants with stronger accuracy-related vmPFC activation had a stronger 1580 
change in integrating uncertainty across time, i.e. a stronger slope in the uncertainty x block 1581 
time effect. The illustration depicts two example participants, dark orange indicates a subject 1582 
with both a strong vmPFC accuracy activation and pronounced behavioural change in how 1583 
uncertainty was used to drive choice behaviour. By contrast, the participant indicated in light 1584 
orange shows a weak vmPFC BOLD accuracy effect and only a small change in how 1585 
uncertainty was used over time. These findings support the idea that the transition between 1586 
positive uncertainty-driven exploration to negative uncertainty-driven exploitation is 1587 
mediated by representing the accuracy between predictors. (n = 24; error bars are SEM across 1588 
participants). 1589 
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 1591 
 1592 

Figure 8. Summary. From exploration to exploitation: polarity of subjective uncertainty 1593 
in vmPFC changes with behavioural mode.  1594 
At the beginning of a block, choices are exploratory and directed towards uncertain 1595 
predictors (like a shuffle mode when playing music, left panel). VmPFC and an extended 1596 
network centred in dACC represent the difference in uncertainty between the predictors that 1597 
might be selected. With time passing, participants learn about the predictors’ accuracy 1598 
through observing how well they predict an outcome. A participant’s belief in the accuracy of 1599 
the predictors exerts the predominant influence on vmPFC activity during this transition 1600 
phase (middle panel). Towards the end of a block, vmPFC activity represents the difference 1601 
in negative uncertainty, in other words the certainty between predictors. In this exploitative 1602 
period, choices are repeatedly directed towards certain predictors (like a repeat mode, right 1603 
panel). We show that vmPFC carries information about a multiplicity of decision variables, 1604 
the strength and polarity of which vary according to their relevance for the current context of 1605 
exploration, exploitation or their transition. 1606 
 1607 
 1608 
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