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Abstract 20 

Several species of the marine diatom Pseudo-nitzschia can produce the neurotoxin domoic 21 

acid that is responsible for the seafood-borne illness amnesic shellfish poisoning in humans, 22 

marine wildlife mortalities, and prolonged closures of fisheries resulting in economic losses 23 

to coastal communities. Since the year 2000, Pseudo-nitzschia species have been monitored 24 

in the Pacific Ocean with the Continuous Plankton Recorder (CPR). This study used a 25 

combination of scanning electron microscopy with high-throughput and Sanger sequencing of 26 

CPR survey samples to compare the diversity of phytoplankton, including Pseudo-nitzschia 27 

species, from the north-eastern Pacific Ocean over three climatically different years: 2002, 28 

2005, and 2008. Using a Pseudo-nitzschia-specific primer set targeting a 320bp region of the 29 

large subunit ribosomal DNA (rDNA), revealed spatially-separated communities of Pseudo-30 

nitszschia. The coastal region was dominated by a diverse array of Pseudo-nitzschia 31 

fraudulenta unique sequences (OTUs) whilst the offshore region was rich in P. multiseries 32 

along with and contained a wide range of other Pseudo-nitzschia taxa, many not observed in 33 

this region. In 2008, exceptionally cold sea surface temperatures were observed, influenced 34 
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by a strong negative Pacific Decadal Oscillation signal. In that year, a more diverse 35 

assemblage of species was present in a Spring open water sample whilst P. fraudulenta was 36 

unusually rare in a coastal Autumn sample. This is the first application of high-throughput 37 

genetic methods to uncover patterns of Pseudo-nitzschia genetic diversity from archival CPR 38 

samples, demonstrating the value of using CPR for plankton community analysis in rarely 39 

sampled regions of the oceans. 40 

 41 

1. Introduction 42 

Marine diatoms in the genus Pseudo-nitzschia are closely monitored in the eastern Pacific 43 

Ocean due to their capacity to produce the potent neurotoxin domoic acid (DA). DA can 44 

accumulate in filter-feeding fish and shellfish and be transferred through foodwebs to poison 45 

humans, marine mammals and seabirds (Work et al. 1993, Scholin et al. 2000). Symptoms of 46 

this poisoning in humans, called amnesic shellfish poisoning (ASP), include gastrointestinal 47 

distress, seizures, coma, and permanent short-term memory loss, with severe intoxications 48 

resulting in death (Perl et al. 1990). Monitoring programs exist worldwide to protect human 49 

health from the effects of ASP. For example, in Washington State, USA, regular beach 50 

monitoring is conducted to look for cells of Pseudo-nitzschia in coastal waters (Trainer & 51 

Suddleson 2005) and shellfish are regularly tested for DA by the Washington State 52 

Department of Health. Shellfish harvesting closures are implemented when concentrations of 53 

DA exceed the regulatory limit for human consumption of 20 ppm in shellfish meat tissue. 54 

The first closure of recreational and commercial shellfish harvesting due to DA on the 55 

Washington State coast occurred in 1991 and resulted in a $15-20 million revenue loss to 56 

local fishing communities (Horner & Postel 1993, Anderson 1995). The total estimated 57 

economic impact associated with a coastwide, year-long closure of the razor clam fishery, 58 

such as those that occurred in 1991-1992, 1998-1999, and 2002-2003, has been estimated at 59 

$21.9 million (Dyson & Huppert 2010).  60 

 61 

The Pacific Decadal Oscillation (PDO) is a pattern of ocean-climate variability that gives rise 62 

to very different climate regimes with implications for environmental parameters that 63 

influence Pseudo-nitzschia growth and toxicity. The PDO index is the first mode of monthly 64 

ocean sea surface temperature (SST) variability in the North Pacific Ocean poleward of 20°N 65 

(Mantua et al. 1997). When the PDO index is positive (negative), the coastal ocean in the 66 

Pacific Northwest is typically warmer (cooler) and the central north Pacific Ocean is cooler 67 

(warmer) (Mantua et al. 1997). The regional climate is also influenced by the PDO, with 68 
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winter-time air temperature and precipitation in the USA Pacific Northwest typically below 69 

normal during warm phases of the PDO. Historically, the warm and cool phases of the PDO 70 

have persisted for 20-30 years, but in recent years the PDO has been switching phases 71 

approximately every 5 years and has closely tracked the El Niño/Southern Oscillation 72 

(ENSO). The mechanisms that give rise to the PDO are not fully understood; nevertheless, 73 

major changes in marine ecosystems and the distribution and ratios of nutrients in the Pacific 74 

Ocean have been documented to occur when the PDO changes phase (Botsford et al. 1997, 75 

Mantua et al. 1997). In general, biological productivity is enhanced off the coast of Alaska 76 

and inhibited off the coast of the contiguous USA during warm phases of the PDO, while the 77 

reverse is true during cold phases (Hare 1999). Phytoplankton communities, including 78 

Pseudo-nitzschia species, may be affected by changing temperature, salinity and nutrient 79 

distributions that may co-occur with PDO phase changes. In fact, recent work suggests that 80 

warm phases of the PDO (and ENSO) are directly related to USA west coast toxic Pseudo-81 

nitzschia bloom events (McCabe et al. 2016). 82 

 83 

The Continuous Plankton Recorder (CPR) is an instrument designed to be towed from 84 

merchant ships on their normal sailings and provides opportunities for sampling plankton 85 

communities in rarely sampled regions of the open oceans. It works by filtering plankton on a 86 

moving band of silk mesh over long distances. The CPR survey was originally designed to 87 

collect zooplankton and higher abundances of larger phytoplankton. As such, the silk gauze 88 

that collects plankton has a mesh size of ~270 µm. Collection of phytoplankton by the CPR 89 

survey would be considered suboptimal, yet phytoplankton to 5 µm (coccolithophorids) have 90 

been retained (Richardson et al. 2006). This is because the large volume of water filtered (3 91 

m3) deposits large amounts of plankton that clog the mesh, effectively reducing the aperture 92 

size and retaining smaller plankton (Batten et al. 2003b). Additionally, phytoplankton can be 93 

trapped on the silk collecting gauze; the silk material is thicker and stickier than nylon used in 94 

plankton nets, with micro-threads that extend into the aperture. The CPR measurement of 95 

phytoplankton colour index (PCI), a proxy for total phytoplankton abundance, also correlates 96 

well with fluorometric and satellite-measured chlorophyll a, although seasonally variable 97 

(Batten et al. 2003a, Raitsos 2005). Pseudo-nitzschia species are typically between 40-175 98 

µm long, smaller than the mesh size, but can occur in long chains and so may be retained 99 

more readily than other smaller or non-chain forming phytoplankton. 100 

 101 
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The CPR survey monitors phytoplankton from ships of opportunity on two routes in the 102 

North Pacific (Batten 2006). One is a 3000-km trans-Pacific route from Vancouver, Canada 103 

to Hokkaido, Japan, through subpolar waters. This latter route has been sampled seasonally 104 

since 2000 during both warm and cool phases of the PDO. CPR samples are immediately 105 

preserved in formalin and archived, and offer an opportunity to examine the spatial 106 

distribution of Pseudo-nitzschia species over different temperature and ocean-climate 107 

regimes. At present, Pseudo-nitzschia retained on the mesh are examined microscopically 108 

and classified into two cell-width morphotypes, P. seriata (>3µm) complex and P. 109 

delicatissima (<3µm) complex (hereafter referred to as P. seriata and P. delicatissima-sized 110 

cells, respectively). Identification to lower taxonomic levels is not possible due to the 111 

limitation of light microscopy in identifying the minute morphological differences between 112 

species (Hasle 1993). Because of the cryptic and pseudo-cryptic morphological diversity of 113 

Pseudo-nitzschia species, morphological and genetic taxonomic approaches are now often 114 

used in tandem (Lundholm et al. 2006). Most studies use all or part of the ribosomal internal 115 

transcribed spacer (ITS) for identification, which has been found to distinguish species and 116 

even intraspecific populations within species (Lundholm et al. 2003, Orsini et al. 2004, 117 

Amato et al. 2007, Hubbard et al. 2008, Andree et al. 2011, Lim et al. 2012, Penna et al. 118 

2012). The large subunit (LSU) ribosomal DNA (rDNA) has also been used successfully, 119 

although with a lesser degree of resolution to species or species groups (Lundholm et al. 120 

2002, McDonald et al. 2007).  121 

 122 

The use of genetic taxonomic approaches to identify Pseudo-nitzschia species from archived 123 

samples can be limited by how the samples are preserved. Despite the use of buffered-124 

formalin to reduce hydrolytic fragmentation of DNA molecules, formalin-preservation still 125 

causes methylation as well as methylol modification of nucleobases and cross-linking 126 

between nucleotides or together with proteins (Paireder et al. 2013, Karmakar et al. 2015). 127 

Therefore, genetic analysis of formalin-preserved CPR samples presents challenges. 128 

Nevertheless, recent successes in genetic identification of species from CPR samples dating 129 

as far back as 1961 include the coccolithophore Emiliania huxleyi (Ripley et al. 2008), 130 

various microbial eukaryotes from 1 µm in size (McQuatters-Gollop et al. 2015), the harmful 131 

algae Karenia mikimotoi (Al-Kandari 2012) and the bacterium Vibrio cholerae (Vezzulli et 132 

al. 2012, Vezzulli et al. 2016). The use of 454 GS FLX+ high-throughput sequencing 133 

technology (HTS), or similar HTS technology such as MiSeq (Illumina) are suitable for 134 

environmental barcoding of samples, as it uses small (150-300 bp) amplicon sizes and 135 
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provides 500-1000Mb per run (Scholz et al. 2012) .In this study, we examined Pseudo-136 

nitzschia species assemblages in the eastern North Pacific Ocean region in oligotrophic open 137 

waters compared to coastal waters off Vancouver Island, Canada, during both warm PDO 138 

(2002 and 2005) and cool (2008) phases of the PDO. We use rDNA LSU primers designed 139 

for the genus Pseudo-nitzschia (McDonald et al. 2007) to determine species-distributions in 140 

thirty CPR samples. Ten of these samples were able to generate PCR products for HTS and 141 

Sanger sequencing of Clone-libraries of PCR products (CLS), providing a species-level 142 

comparison of Pseudo-nitzschia diversity in coastal and open Pacific waters.  143 

 144 

2. Methods 145 

2.1 CPR samples 146 

The CPR is deployed on the trans-Pacific route between Vancouver, Canada and Hokkaido, 147 

Japan every 3 months. CPR transects along the route were divided into two regions; (1) the 148 

Eastern region, including the shelf of North America to -134˚E plus one sample at -136˚E, 149 

and (2) the Central region, including the open ocean region from -134˚ to -148˚E (Fig. 1). 150 

Thirty samples out of a total of 159 were initially selected for genetic analysis to represent 151 

three seasons (spring, summer and autumn) during 2002, 2005 and 2008 (Fig. 1 and Table 1). 152 

Eleven of the thirty samples successfully generated genetic results (see below). Samples were 153 

chosen on the basis of high Pseudo-nitzschia abundance determined from light microscopy. 154 

Mean abundances of total diatoms and Pseudo-nitzschia species from all 159 samples were 155 

calculated for each season, year, and region, to compare the community composition. In Fig. 156 

7, the mean abundance of diatoms and Pseudo-nitzschia cells were calculated for  central or 157 

eastern Pacific regions per season per year  (termed seasonal means) from standard cell 158 

counts of all CPR samples (total 159) from 2002, 2005 and 2008 so that there was 2-4 CPR 159 

samples per seasonal mean. 160 

 161 

 162 

2.2 Phytoplankton community analysis 163 

Phytoplankton taxa were identified and counted from CPR samples as described in Batten et 164 

al. (2003a). Hard-shelled phytoplankton were counted under a light microscope by viewing 165 

20 fields of view (diameter 295 µm) across each sample under high magnification (× 450) 166 

and recording the presence of all the taxa in each field (presence in 20 fields is assumed to 167 

reflect a more abundant organism). These 20 fields amount to 1/10,000 of the area of the 168 
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filtering silk. Cell abundances per field (H) were then calculated for each taxon (Robinson & 169 

Hiby 1978): 170 

  H = –ln(k/20)         (1) 171 

where k is the number of empty microscope fields (out of 20) observed. Multiplication by the 172 

proportion of the sample examined gives cell abundances in each sample. A category system 173 

is used to calculate the average abundance per sample, ranging from 0-750,000 per sample 174 

(for a full explanation of the sampling technique see (Richardson et al. 2006)). The two main 175 

groups of Pseudo-nitzschia that are routinely recorded in CPR samples are distinguished by 176 

their width in valve view, with the Pseudo-nitzschia delicatissima sized cells being smaller 177 

than 3 µm in width and the P. seriata-sized cells having a width exceeding 3 µm. 178 

Inconclusive species are recorded as Nitzschia spp. The mean sample taxonomic abundances 179 

for each year/region/season unit were transformed using log10 (x+1), where x is abundance, 180 

for all 159 CPR samples.  181 

 182 

2.3 DNA extraction 183 

Each CPR sample represents a collection over 10 nautical miles and is equivalent to filtering 184 

~3 m3 of water (Richardson et al. 2006). A quarter piece of a CPR sample was cut so that it 185 

represented the entire 10 nautical miles but only a quarter of the volume of filtered plankton 186 

(0.75 m3). The CPR silk piece was cut into 1-cm2 square pieces and placed into 30 mL of TE 187 

buffer. The procedure for extracting DNA is described in detail elsewhere (Ripley et al. 2008) 188 

and is only briefly described here. The CPR silk piece was washed and agitated in TE buffer 189 

for 24 hours, the plankton was recovered by centrifugation, resuspended into 1 mL fresh TE 190 

buffer and divided in two 500 µL duplicate samples. Both duplicates were treated with 191 

Proteinase K and sodium dodecyl sulphate (SDS) for 48 hours, followed by a 192 

phenol/chloroform/isoamyl alcohol (25:24:1) extraction. The upper aqueous layer from the 193 

phenol-chloroform step was further extracted by chloroform/isoamyl alcohol (24:1). DNA 194 

was precipitated with ammonium chloride and ethanol extraction and the DNA was 195 

resuspended in 30 µL of TE buffer. 196 

 197 

2.4 PCR amplification and sequencing 198 

PCR amplification on 30 CPR samples and genomic DNA from two non-preserved cultures 199 

of Pseudo-nitzschia multiseries (culture lost) and Pseudo-nitzschia fraudulenta 200 

(CCAP1061/6) from the Culture Collection of Algae and Protozoa (SAMS, Scotland) was 201 

attempted using a 600-800bp LSU marker  (Scholin 1994)and ITS markers (White 1990, 202 
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Hubbard et al. 2008, Andree et al. 2011). The ITS marker amplifications yielded no 203 

amplicons except for very faint products for samples 139VJ5, 139VJ37 and 146VJ5 and 204 

genomic P. fraudulenta DNA. Amplification of diluted genomic DNA (1:10, 1:100, 1:1000) 205 

in a subset of samples also failed. A number of nested PCR strategies were used for ITS 206 

amplification with no success. With most amplification reactions (except for these three 207 

samples) resulting in failure using the ITS marker, it was eliminated from this study (see 208 

supplementary Table A1). However, a nested PCR amplification approach using LSU 209 

markers was successful in yielding products in CPR samples and the cultures. General 210 

eukaryotic LSU primers D1R and D2C (Scholin 1994) resulted in 22/30 amplicons from CPR 211 

samples (size 600-800 bp). Amplifications were carried out with the Promega PuReTaq kit 212 

(Promega, WI, USA) using 2 µL of genomic DNA (ranging from 25-1073 ng/µL, mean 288 213 

ng/µL) which were then diluted by 1:100 in a reaction volume of 25 µL containing 3 mM 214 

MgCl2, 0.2 mM dNTPs, 0.4 µM each of primers, , and 1 unit of Taq polymerase. PCR 215 

conditions were 95˚C for 5 minutes, then 35 cycles of denaturation at 95˚C for 30 seconds, 216 

annealing at 45˚C for 45 seconds and extension 72˚C for 45 seconds and a final extension 217 

step of 72˚C for 10 minutes. A Pseudo-nitzschia-specific LSU nested primer set D1-186F and 218 

D1-548R (McDonald et al. 2007) was then used on first round PCR products (D1R-D2C) to 219 

amplify a 362 bp product that was successful in 10/22 first round amplicons. PCR reaction 220 

conditions were as above except 1 µL of first round amplification product was used for a 221 

template. PCR cycling conditions were the same as for D1R/D2C, except the annealing 222 

temperature was 50˚C and the final 72˚C extension was for 5 minutes.   223 

 224 

2.5 Clone library sequence (CLS) analysis 225 

To confirm that only Pseudo-nitzschia were amplified using the LSU nested primer set, a 226 

clone-library sequencing study was performed on the six nested PCR products that 227 

successfully generated positive clones (note that four of the ten nested PCR products failed to 228 

generate positive clones). The six samples that successfully generated sequences from clone-229 

libraries are listed in Table 4. The cloning was carried out using the TOPO TA cloning kit 230 

(Life technologies, Paisley, UK) using 25 µl of one Shot® INVαF´ competent cells for 5 µl 231 

of PCR product with primer-dimers removed using ExosapIT (Affymetrix, CA, USA). A 232 

total of 162 transformed colonies from the remaining samples was prepared for sequencing 233 

according to the manufacturer’s instructions, except that DNA from colonies were prepared 234 

by dissolving a colony into 10 µL of sterile water and heat-denatured at 95˚C for 2 minutes. 235 
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Sequencing reactions were performed in 20 µL with 1 µL of BigDye v3.1 and 5× buffer 236 

(supplied by Applied Biosystems, CA, USA), 1 µL of 3.2 µM primer (either M13F or M13R) 237 

and 20-50 ng of PCR product. The amplicons were sequenced using capillary electrophoresis 238 

by Source Bioscience, Nottingham, UK. The CLS dataset was trimmed in using BioEdit v 239 

1999-2013 software (Hall 1999) removing cloning sites, checked using BLASTn (Altschul et 240 

al. 1990) for initial identification and added to the HTS dataset (see section 2.7). Repeat 241 

sequencing of Sp08C was carried out using freshly re-amplified nested products of D1-186F 242 

and D1-548R, as described above, but sequenced using primer PmultLSUR1 243 

(5’GAATCAACCAACCCAAACTCACGCAAGCC 3’). 244 

 245 

2.6 HTS analysis and OTU generation 246 

To obtain better diversity representation, HTS was conducted on the LSU products of nine 247 

samples (listed in Table 4) that contained sufficiently concentrated DNA. Despite a wide 248 

range of genomic DNA concentrations, the difference in PCR product concentrations from 249 

the Pseudo-nitzschia specific nested reaction was no more than 9 ng/µL between samples. All 250 

PCR products were diluted to 50 ng/µL and sent to MrDNA Molecular Research Laboratory 251 

(Shallowater, Texas, USA) for a custom assay with primers D1-186F and D1-548R, using a 252 

single-step 30 cycle PCR using HotStarTaq Plus Master Mix Kit (Qiagen, Valencia, CA) and 253 

PCR conditions as described earlier for this primer set. Following the PCR step, amplicon 254 

products from all samples were mixed in equal concentrations and purified using Agencourt 255 

Ampure beads (Agencourt Bioscience Corporation, MA, USA). Samples were sequenced 256 

utilizing Roche 454 FLX titanium instruments and reagents and following manufacturer’s 257 

guidelines. 258 

 259 

Various bioinformatics pipelines incorporated into the Bio-Linux (Field et al. 2006) operating 260 

software based on Ubuntu 10.4 were tailored toward the analysis of eukaryotic LSU 261 

amplicons. The Python-based QIIME software (Caporaso et al. 2010) script split_libraries.py 262 

was used to quality-check reads using default settings and to trim primers and tags. A total of 263 

14906 sequence reads were retrieved from nine samples from HTS sequencing ranging from 264 

2632-6505 reads per sample. Additional filtering criteria were applied with a sliding window 265 

quality score of 50 to remove poor quality sequences and to include reads greater than 300 bp 266 

(a primer mismatch of one) and manual chimera-checking was performed on aligned 267 

sequences (Denoise step). Operational taxonomic unit (OTU) picking steps were performed 268 

on denoised sequence data by clustering sequences at 99% and 90% using UCLUST to allow 269 
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for abundance pre-sorting (Trobajo et al. 2014) in order to obtain a range of representative 270 

taxa.  Each OTU is a unique sequence that was at least 1% different to other OTUs. These 271 

sequences were exported into BioEdit (Hall 1999) for more precise analysis of OTU 272 

identities. Additional quality checks were carried out by BLAST analysis to ensure no 273 

chimeras or low quality sequences were retained. All sequences were deposited in Genbank 274 

(see supplementary Table A2). 275 

 276 

2.7 Phylogenetic analysis of sequences  277 

An initial BLAST search of the 362bp trimmed D1-186F and D1-548R Pseudo-nitzschia-278 

specific LSU fragment (McDonald et al. 2007) was carried out to check all HTS and CLS 279 

datasets belonged to Pseudo-nitzschia and no chimeras were present. Non redundant hits to 280 

our sequences that contained species information were used for phylogenetic analysis. We 281 

also used the search term “Pseudo-nitzschia Large ribosomal” to capture 309 Pseudo-282 

nitzschia sequences. An additional 35 other pennate and centric diatom species were added as 283 

an outgroup. All reference sequences were downloaded in May 2016 and September 2017. 284 

These were combined with environmental (HTS and CLS) and automatically aligned and 285 

trimmed using CLUSTALW in BioEDIT (Hall 1999) to 320bp. The alignment was 439 bp 286 

long including gaps and contained 768 sequences in total (see supplementary Table A3). The 287 

alignment was exported into MEGA 6.0  (Tamura et al. 2013) for phylogenetic analysis using 288 

maximum likelihood (ML) method  using a Kimura-2 parameter nucleotide substitution 289 

model and four Gamma distribution categories to model evolutionary rate differences among 290 

sites (4 categories +G, parameter = 2.1723). A partial deletion option was selected in which 291 

all positions with less than 95% site coverage were eliminated, resulting in 169 positions 292 

analysed in the final dataset. ML bootstrap analyses were carried out with 1,000 pseudo-293 

replicates. Initial tree(s) for the heuristic search were obtained by applying the Neighbour-294 

Joining method to a matrix of pairwise distances (PWD) estimated using the Maximum 295 

Composite Likelihood (MCL) approach. The tree with the highest log likelihood (-296 

5044.1453) was selected and the percentage of trees in which the associated taxa clustered 297 

together is shown next to the branches. The tree was drawn to scale, with branch lengths 298 

measured in the number of substitutions per site. Two replicate public sequences were 299 

manually removed (JN050300, AF417666). Visualization of the ML tree  was only possible 300 

by compressing clades that contained a large number of taxa by exporting newick files into 301 

interactive tree of life (ITOL (Letunic 2016) and labelled using Adobe Illustrator. An 302 
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additional ML phylogeny of longer (381bp) CLS reads of the D1-186F, D1-548R LSU 303 

fragment from six CPR samples was performed for better identification of environmental 304 

sequences (supplementary Fig. A1).The alignment was 430bp long including gaps with 352 305 

environmental and public sequences and the phylogeny was and built using the same tree 306 

building methods described above (+G, parameter = 0.4345) with 280 positions analysed in 307 

the final dataset. Investigation of genetic pairwise distances (PWD) was also carried out but 308 

did not reveal clear distinction within and between species (see supplementary Fig. A2) 309 

Hence PWD metrics were not used to evaluate species here. 310 

 311 

2.8 Scanning electron microscopy  312 

In order to confirm the morphological types of Pseudo-nitzschia captured by the CPR survey, 313 

eight of the genetically analysed CPR samples from the trans-Pacific route from Vancouver, 314 

Canada to Hokkaido, Japan during 2002-2008 (see Table 1) and an additional set from 2014 315 

were analysed by Scanning Electron Microscopy (SEM) and Pseudo-nitzschia cells were 316 

identified to species level. Small subsamples of CPR mesh containing preserved 317 

phytoplankton material were cut to size, inserted into 15 mL centrifuge tubes and vortexed 318 

with 10 mL of MilliQ® water. Subsamples (1-2 mL) were removed and centrifuged in micro-319 

centrifuge tubes. Pellets were rinsed in MilliQ® water 1-2 more times to remove any 320 

remaining preservative and then oxidized with 4-5 drops of saturated potassium 321 

permanganate solution, cleared with 3 rinses of concentrated hydrochloric acid (HCl) and 322 

finally washed in 3 rinses of MilliQ® water to remove HCl. Finally, pellets were resuspended 323 

in approximately 0.5 mL MilliQ® water and filtered onto 13 mm diameter, 0.2 µm pore size 324 

polycarbonate filters (Millipore Corp.). Filters were then glued to aluminum SEM stubs, 325 

coated with gold-palladium and examined in a JEOL 6360LV SEM. 326 

 327 

2.9 Satellite-derived SST and PDO 328 

Satellite-derived SST values were obtained on a 1° latitude by 1° longitude grid in the 329 

Eastern (-134 to -125°E, 49 to 56°N) and Central (-148 to -134°E, 49 to 56°N) regions of the 330 

NE Pacific  3. Optimum Interpolation (OI) SST V2 data are provided by the National 331 

Oceanic and Atmospheric Administration (NOAA), Office of Oceanic and Atmospheric 332 

Research (OAR), Earth System Research Laboratory (ESRL), Physical Sciences Division 333 

(PSD), Boulder, Colorado, USA, from their website at http://www.esrl.noaa.gov/psd/. 334 

Seasonal mean values of SST were interpolated for the Eastern and Central regions to 335 

determine spatial variability in the regions during seasons and years when CPR samples were 336 

http://www.esrl.noaa.gov/psd/
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collected. Temporal variability in monthly SST was determined by examining standardized 337 

anomalies for grid cells that encompassed locations where CPR samples were collected (grid 338 

cells A-H in Fig. 1) from 2000 through 2010. Standardized anomalies were calculated by 339 

dividing the anomalies by the climatological standard deviation, using the 11-year baseline 340 

period from 2000 through 2010, such that the time series for each grid cell had a mean of 341 

zero and a standard deviation of one. Monthly values of the PDO index were obtained from 342 

the University of Washington Joint Institute for the Study of the Atmosphere and Ocean 343 

(JISAO 2014). Seasonal mean values of the PDO index (sPDO) were calculated for seasons 344 

and years when CPR samples were collected. 345 

 346 

3. Results 347 

 348 

3.1 OTU identification of Pseudo-nitzschia 349 

ML phylogenetic analysis of public and environmental sequences using the 362bp Pseudo-350 

nitzschia-specific LSU fragment (D1-186F, D1-548R,(McDonald et al. 2007) on 11 CPR 351 

samples (Fig.2) identified 28 terminal clades, most with low support. Seventeen of these 352 

clades related to single species containing strains identified from previous studies (Table 3, 353 

Fig. 2). Seven con-specific clades consisted of two species each (Fig. 2, Table 3).However, 354 

due to the lack of resolution of the small region used, these conspecific clades could not be 355 

resolved further. P. galaxiae and P. sabit, identified as sister species by (Teng 2015) split into 356 

two sister groups containing different subpopulations of both species (Fig. 2, Table 3). Other 357 

species appear in multiple clades, due to the lack of resolution of the smaller LSU fragment 358 

which has separated distinct populations such as P. delicatissima (Amato et al. 2007, 359 

McDonald et al. 2007). P. brasiliana was split into a core group and an additional sister clade 360 

to P.americana and P.linea.  P. delicatissima was found in 5 clades, two of which contained 361 

P. delicatissma and P. arenysensis. A large multi-species clade of P. delicatissima clustered 362 

with single sequences of P. turgidula, P. fraudulenta, P. turgidula, P. galaxiae and 363 

P.pseudodelicatissima. This larger multi-species group contains a distinct population of P. 364 

delicatissima (Amato et al. 2007). P. turgidula, a common and geographically distinct open 365 

Pacific water species, appears twice but no strains could be confirmed to determine the true 366 

species group. P. pseudodelicatissima appeared in several clades: a core group containing 367 

previously identified strains from four confirmed studies including P. 368 

pseudodelicatissima/cuspidata group (Lundholm et al. 2003, Fernandes 2014) but was 369 

indistinguishable from multiple species including other diatom species, Neodenticula seminae 370 



12 
 

and Fragilariopsis spp. because of a lack of marker resolution. Pseudo-nitzschia arctica 371 

grouped with one P. pseudodelicatissima public sequence from Pacific Northwest (Stehr 372 

2002) that may indicate a population of P. pseudodelicatissima that is indistinguishable from 373 

P. arctica, or that these strains are both P. arctica. An unknown Pseudo-nitzschia sp. genetic 374 

clade labelled MVR2015 related to P. lineola was also found. 375 

 376 

The remaining 28 other diatom species (excluding Neodenticula spp. and Fragilariopsis spp.) 377 

formed an outgroup that was separate and basal to other Pseudo-nitzschia species (Fig. 2). 378 

This phylogeny is not as resolved as those using longer LSU reads (Lim et al. 2013) but there 379 

was good correspondence in some cases at the species level: P. pungens and P. multiseries 380 

were sister clades. P.multistriata and P. australis are sister clades using larger D1-D3 (Lim et 381 

al. 2013) but formed one clade in this study. P. hasleana and P. calliantha are sister taxa both 382 

in this study and that of Lim et al. (2013). P. fraudulenta and P. subfraudulenta are not sister 383 

clades but both are monophyletic.   384 

 385 

ML phylogeny of longer reads derived from the CLS dataset of the D1-186F, D1-548R LSU 386 

fragment (381bp after trimming) confirmed the presence of P. fraudulenta and P. multiseries 387 

in these samples (supplementary Fig.A1). This tree was more robust with P. multiseries, P. 388 

pungens as sister species adjacent to clades containing P. brasiliana, P. americana, P. 389 

multistriata, P. seriata, P. australis that could be separated into their respective species, as 390 

also recovered by (Lim et al. 2013) using the longer D1-D3 LSU region. P. subfraudulenta is 391 

a separate subclade of P. fraudulenta, normally these are sister taxa. 392 

 393 

3.2 Environmental species distribution: genetic and SEM identification  394 

ML Phylogeny of environmental sequences (Fig. 2, Table 3) of the 320bp trimmed LSU 395 

fragment (D1-186F, D1-548R, McDonald et al. (2007) from 11 CPR samples generated a 396 

total of 424 sequences; 163 CLS (many identical) and the 261 OTUs from HTS dataset . All 397 

sequences are identified in supplementary Table A2). CLS reads from 6 CPR samples were 398 

identified either as P. multiseries, P. fraudulenta or P. pungens (Table 4, supplementary Fig. 399 

A1). Thirteen groups of OTUs from CLS and HTS dataset were found by ML phylogenetic 400 

analysis (Fig. 2, Table ).  Pseudo-nitzschia fraudulenta clade contained 242 environmental 401 

sequences (Fig. 2B) and 142 environmental sequences were identified as P. multiseries (Fig. 402 

2C) both from HTS and CLS. As P. multiseries was an usual finding we confirmed its 403 

presence in the Sp08C sample by sequencing the same LSU PCR product using a different 404 
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primer (see materials and methods, Genbank accession-awaiting). A minority of OTUs were 405 

related to other species (Table 3): P. abrensis and P. batesiana, P. kodamae and P. hasleana, 406 

P. delicatissima and P. arenysensis (2), P.seriata, P. pungens (also identified by CLS), P. 407 

subfraudulenta, P. galaxiae (group I, identified by McDonald) and P. sabit and P. galaxiae 408 

(groups II, III, IV, identified by McDonald) and P. sabit. Four OTUs could not be identified: 409 

Environmental taxa 1 (OTUs 124 132VJ17,190 132VJ17), with 99% BLAST identity to P. 410 

hasleana.  OTU 17 83VJ5 (Environmental taxa 2) showed 99% identity by BLAST to P. 411 

fraudulenta that clustered with P. galaxiae and P. delicatissima identified by (Ruggiero et al. 412 

2015). Finally OTU 166 132VJ1, Environmental taxa 3, (98% identify to P. multiseries) was 413 

sister to several species of Pseudo-nitzschia including P. cuspidata, P. fukuyoi and P. 414 

pseudodelicatissima, showing 1% similarity by pairwise distance equally to P. delicatissima, 415 

P. cf. delicatissima, P. lineola, P. galaxiae, P.multistriata and P. pseudodelicatissima. 416 

BLAST identities inaccurate and were not in agreement with phylogeny. HTS generated 417 

more diversity than CLS and all species identified using CLS were also generated by HTS 418 

(see Table 4) in samples where both methods were used, showing consistency in detection. 419 

Even in the two cases where duplicate samples were analysed instead of the same samples, P. 420 

fraudulenta was identified in both samples by CLS and HTS. The only inconsistencies were 421 

the detection of a single P. multiseries sequence in Au02C(2) by CLS but not in its duplicate 422 

sample Au02C. Only CLS identified P. pungens in Au08E and P. fraudulenta in Sp05C, 423 

absent in HTS analysed samples.    424 

 425 

SEM identification was applied to a subset of the 2002-2008 samples used for genetic 426 

analysis (Table 4). This revealed typical coastal and open water species composition also 427 

found in earlier studies of this region (Table 2).  Since no Pseudo-nitzschia cells were found 428 

in two Eastern samples, additional SEM analysis of samples from 2014 (Table 5, Fig. 3) were 429 

carried out from the same area to determine the extent that SEM can uncover species 430 

diversity from CPR samples. Both 2002-2008 (Table 4) and 2014 (Table 5) samples showed 431 

typical coastal and open water species compositions compared to earlier Pacific studies 432 

(Table 2) confirming that CPR sampling is representative for Pseudo-nitzschia. Central 433 

samples from 2002-2008 could be compared with those of 2014 and revealed different 434 

communities in which only P. turgidula was common to both sets. P. heimii and unidentified 435 

species were the only taxa identified from 2002-2008 coastal samples and was not present in 436 

2014 coastal samples. SEM-identification showed little correspondence with genetic results 437 

(Table 4). P. fraudulenta, P. seriata, P. multiseries and P. pungens were observable by both 438 
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SEM and genetics but only one sample (Au08C) showed correspondence by genetics and 439 

SEM and only for P. fraudulenta. Little seasonal variation was observed from both sets of 440 

SEM results (Tables 4 and 5), in contrast to genetic results. P. turgidula and P. inflatula were 441 

found to be exclusively open water species in previous studies but were not found genetically 442 

in any sample. Particularly striking was that only one species, Pseudo-nitzschia turgidula, 443 

was found by SEM in Sp08C sample yet genetic results showed this sample was the most 444 

diverse with 10 different genetic taxa. Pseudo-nitzschia multiseries was not previously 445 

observed in central samples and Pseudo-nitzschia galaxiae or P. sabit has not been reported 446 

at all for both regions.  447 

 448 

3.3 Ocean conditions 449 

The last “full” PDO cycle consisted of a cool phase from 1947 through 1976 followed by a 450 

warm phase from 1977 through (at least) the mid-1990s (Mantua et al. 1997, Zhang et al. 451 

1997). In late 1998, the PDO entered a cold phase that lasted 4 years, followed by a warm 452 

phase that lasted 3 years (2002 through 2005), neutral until August 2007, and then a 6-year 453 

cold phase through 2013 (interrupted briefly by the moderate El Niño in fall/winter of 454 

2009/10). Monthly values of the PDO index from 2000 through 2010 are shown in Fig. 4 455 

sPDO values were weakly positive during Autumn 2002 (Au02) and Spring 2005 (Sp05), 456 

and strongly negative during Spring 2008 (Sp08), Summer 2008 (Su08), and Autumn 2008 457 

(Au08; Table 1). Note that even though the sPDO value was weakly positive during Au02, 458 

the PDO had just reversed polarity from cool to warm phase and conditions may have been 459 

more representative of transitional periods. 460 

 461 

Temporal patterns of monthly SST anomalies for grid cells that encompassed locations 462 

where CPR samples were collected closely followed the PDO index in both the Central and 463 

Eastern regions (Fig. 4; supplementary Fig. A4). No strong differences in local SST 464 

variability was apparent between the two regions, except that the cool PDO phase from late 465 

1998 through 2001 was less pronounced in the Eastern region compared to the Central 466 

region. Within a region (Central or Eastern), temporal patterns of local SST variability for 467 

grid cells that encompassed locations where CPR samples were collected were very similar 468 

to one another and responded similarly to warm and cool phases of the PDO (Fig. 4; 469 

supplementary Fig. A4). Synoptic snapshots of SST in the NE Pacific Ocean during 470 

months when CPR samples were collected are shown in Fig. 5. These plots show the 471 

spatial patterns in the monthly average SST values across the regions during the cool (2002 472 
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and 2008) and warm (2005) PDO years and for months in the Spring, Summer and 473 

Autumn. The synoptic snapshots of the regions during May 2005 and May 2008 allow a 474 

direct comparison of a warm and cool PDO year, respectively, with the average SST across 475 

both regions ~2.9°C cooler in 2008 (Fig. 5C, D). During all months, the Central region was 476 

always cooler than the Eastern region, and Southern waters were generally warmer 477 

compared to Northern waters within the study area (Fig. 5). A strong seasonal pattern is 478 

also evident whereby SST is cooler in the spring compared to the summer and autumn 479 

(Fig. 5).  480 

 481 

3.4 CPR diatom community analysis  482 

Comparing diversity of HTS-generated OTUs between samples (Fig. 6) revealed Eastern 483 

samples dominated by P. fraudulenta whilst Central samples were more variable.  P. 484 

fraudulenta diversity was present in eight of the nine HTS samples and was common in all 485 

coastal (Eastern Pacific) samples, except for Au08E. A large proportion of P. fraudulenta 486 

OTUs was observed in Au02C. By contrast, P. multiseries OTU diversity was generally 487 

dominant when P. fraudulenta was rare. P. multiseries was common in Spring and Autumn 488 

samples. Three samples contained a large proportion of P. multiseries OTUs (Sp05C, 489 

Au08C, Au08E). A small proportion of P. multiseries OTUs were present in Au02C, 490 

Sp08C, Sp05E, and Su08E. Endemic diversity was observed within P. fraudulenta and P. 491 

multiseries (Fig. 2B and 2C, respectively). Six P. fraudulenta environmental OTU clades 492 

were found from single samples, from Au02C (2 clades), or Sp05NE (2 clades), Su08E (1 493 

clade) and Au08E (1 clade) whilst one clade contained OTUs from Sp05NE and Sp05E. 494 

By contrast, 12 clades of P. multiseries environmental OTUs belonged to Au08E (4 495 

clades), Sp05C (4 clades), Au08C (2 clades), and one clade each to Sp08C, Su08E. Five of 496 

the P. multiseries clades also corresponded with public sequences of strains (KC710107, 497 

EF521880, AF417655, KC017458,). These public sequences were related to each other, 498 

but globally distributed (Thessen et al. 2009, Ajani et al. 2013). For example there were 31 499 

site differences between Sp05C specific OTU 8 and 183 from 83VJ41 and a clade 500 

containing KC710107 and three CLS from 409239201 2 146VJ5 (A6, B5 and B12) from 501 

Au08E . No seasonality was detected by SEM in the 2002-2008 or 2014 samples (Tables 4 502 

and 5) but geographical differences were detected between central and eastern regions. 503 

Community composition by SEM analysis was very homogenous within each region. 504 

Within this small sample set, no clear trend was observed between genetically detected 505 

species or population patterns and PDO phase, in which the patterns were more 506 



16 
 

biogeographical.  However, taxa composition in Sp08C stood out as unusually diverse 507 

compared to all other samples (Fig. 6). Furthermore, the dominance of P. multiseries in 508 

A08E, the was different to genetic community composition of other eastern samples. It is 509 

worthy to note that no pattern emerged between sample age and species richness that might 510 

indicate degradation related alterations, nor were any patterns related to genomic DNA 511 

concentration. 512 

 513 

Fig. 7 compares the seasonal mean (mean per region over a season for a given year) 514 

abundance of total diatoms versus the larger-sized P. seriata-sized cells (>3 µm width), and 515 

smaller sized P. delicatissima sized cells (<3 µm width). No correspondence was found 516 

between the seasonal means (Fig. 7) or average cell counts Pseudo-nitzschia spp. (data not 517 

shown) in samples used for genetic analysis and the number of LSU sequences (Table 4). The 518 

abundance of Pseudo-nitzschia was not related to the genetic diversity of species found in 519 

samples or to SEM detection. The Sp05E sample contained the highest number of Pseudo-520 

nitzschia (~7000 cells), mostly consisting of P. seriata-sized cells. In comparison, other 521 

samples contained fewer than 2000 Pseudo-nitzschia cells. In total, P. seriata-sized cells 522 

were present in 9 out of 16 seasonal means. Four seasonal means recorded P. delicatissima-523 

sized cells with only one of those not recording P. seriata-sized cells. More Pseudo-nitzschia 524 

were recorded in the warmer year of 2005 compared to 2002 and 2008. Pseudo-nitzschia spp. 525 

ranged from 1.5-33% (seasonal mean) of the total diatoms. Total diatoms were generally 526 

more abundant in eastern versus central regions, except for Autumn 2005 and 2008, but no 527 

geographic pattern was discernible for Pseudo-nitzschia seasonal means.  528 

 529 

4. Discussion 530 

High-throughput genetic analysis is becoming cheaper and can complement microscopic 531 

counts to delineate Pseudo-nitzschia in more detail. Our study reveals that HTS sequencing 532 

can be utilised on formalin-preserved samples and that these genetic studies are an important 533 

addition to microscopic diversity studies in the Pacific, uncovering novel diversity of species 534 

and their distributions.  Six taxa found using genetics were not previously reported from this 535 

region, including three novel genotypes that could not be attributed to current species. 536 

Species diversity identified from SEM in these samples were different to those generated by 537 

genetics, but similar in composition to previous studies in Table 2, mostly based on 538 

microscopic identification. Pseudo-nitzschia multiseries was the second most dominant 539 

species group found in this study and an unexpected finding as it has not been reported in 540 
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open Pacific waters. The finding of potentially harmful species in open Pacific waters has 541 

implications for monitoring harmful species in Pacific waters and modelling their 542 

distribution. 543 

 544 

Both genetic and SEM diversity revealed contrasting species communities from Coastal 545 

waters in this region, which are generally iron-rich, nitrate-poor with high phytoplankton 546 

productivity compared to open waters  communities characterised by lower (and smaller) 547 

phytoplankton productivity regions because these waters (called HNLC regions) are iron-548 

poor, but nitrate-rich (Harrison et al. 1999, Ribalet 2010). Studies in NE Pacific waters 549 

revealed phytoplankton and Pseudo-nitzschia spp. communities were structured  by a nutrient 550 

gradient from coastal transitional to open water zones, revealing different communities in 551 

coastal, transitional and open water zones (Ribalet 2010). The sampling sites from Ribalet et 552 

al. (2010) were near to our CPR sampling stations where we found extraordinary intra-553 

species diversity in  Pseudo-nitzschia fraudulenta and P. multiseries by HTS,  in which 554 

OTUs were exclusively found in  only one sample in many cases. This leads us to 555 

hypothesize that this may be a species complex with local isolated populations adapted to 556 

different regions. On the other hand examples of variants of a globally-distributed P. 557 

multiseries population, described by Ajani et al. (2013), Thessen et al. (2009), was evident, 558 

showing local possible local adaptation in a cosmopolitan population. This study confirms 559 

physiological findings of (Thessen et al. 2009) revealing Pseudo-nitzschia can adapt to 560 

multiple environments due to its high genetic variability in which multiple ecotypes of one 561 

species succeed each other. DA producing strains of P. multiseries (Pn-1) and P. fraudulenta 562 

(Pn-9, Pn-12) studied by (Thessen et al. 2009) were identical to environmental sequences 563 

uncovered in this study. These strains where showed physiological differences to nutrients 564 

and interestingly Pn-9 and Pn-12 which were identical, showed different Domoic acid 565 

production patterns with growth. Such studies might indicate epigenetic control mechanisms 566 

at play and show that defining ecological niches for Pseudo-nitzschia requires genetic and 567 

physiology studies.  568 

 569 

Pseudo-nitzschia abundances determined from microscopic counts of CPR samples were 570 

found to be greater in 2005, when SST was warmest, compared to 2002 and 2008 (with 571 

cooler SST), indicating greater growth of potentially toxic species with warmer waters 572 

potentially a link with PDO.  The small sample size prohibits the identification of any 573 

conclusive patterns with the PDO or seasonality but our results suggest temperature may 574 
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influence species composition. Both central and eastern Autumn samples in 2002 and 2008 575 

were similar in SST and were similar in species composition, despite different nutrient 576 

regimes in these regions. Spring samples were the most diverse and harboured all novel 577 

diversity particularly Sp08C with the lowest SST. P. multiseries appears to prefer cooler 578 

waters, its diversity was highest during cooler SST in 2008 and in cooler waters of central 579 

regions during the warmer PDO phase in 2005. The transitional state of the waters in Autumn 580 

2002 may have brought about similar habitats that allowed Pseudo-nitzschia fraudulenta to 581 

thrive in both central and eastern environments, as both regions are connected through by 582 

local and long-ranging currents (Harrison et al. 2004, Whitney and Roberts, 2002).  583 

 584 

P. multiseries  is a large-sized cosmopolitan species (Hasle 2002) that has been reported from 585 

coastal locations (Forbes & Denman 1991, Horner & Postel 1993, Hasle 2002, Trainer et al. 586 

2012). Our finding that P. multiseries dominated the genetically analysed Pseudo-nitzschia 587 

species assemblages in two of the four Central region samples is therefore unusual and was 588 

not supported with SEM results from partially destroyed samples. P. multiseries was 589 

however, observed in three eastern samples from 2014, indicating it is captured by the CPR. 590 

One possible explanation of its presence is from P. multiseries environmental DNA (e-DNA) 591 

disseminated from coastal regions but undetectable by microscopy. However, studies have 592 

shown e-DNA has a rapid degradation rate in seawater, even small fragments of 100bp can 593 

only last days (Thomsen & Willerslev 2015). Thus it would be difficult to conceive e-DNA 594 

surviving the approximately 800 kilometres (430 nautical miles) from coastal to open water 595 

communities. The possibility of sample contamination remains from DNA of broken cells 596 

taken from Eastern samples leaking through on the CPR sample roll or from the formalin 597 

tank to contaminate Central samples. CPR samples are collected on a role of silk with another 598 

layer of silk sandwiched over the plankton layer. Several layers of silk separate samples 599 

collected from open and coastal regions (Richardson et al. 2006). Central and Eastern 600 

samples are separated by approximately 430 nautical miles. The longest CPR tow route is 601 

500 nautical miles, requiring 5 metres of silk so these samples are farthest away from each 602 

other, separated by no less than 4m of silk on a roll (Richardson et al. 2006). The possibility 603 

remains but is remote and minor. The diversity of OTUs in four independent central samples, 604 

should be equivalent or more in their eastern counterparts if contamination from the latter 605 

was the source of P. multiseries. However, this is not the case and furthermore OTUs specific 606 

only to Central samples are found not present in Eastern samples from the same tow, making 607 

contamination an unlikely option. The alternative explanation is that  local populations of P. 608 
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multiseries are supported by mesoscale-level Haida eddies currents containing large volumes 609 

of water and nutrients  transported up to 1000 kilometers from their point of origin to HNLC 610 

regions of NE Pacific (Whitney & Robert 2002). These currents could also bring and support 611 

local coastal and cosmopolitan populations for extended periods that may create new hybrid 612 

forms thus resulting in a mixture of localised and global populations.  613 

 614 

A good match was found between HTS and CLS genetic approaches in terms of species 615 

detected. However, the diversity within species from CLS was severely depleted compared to 616 

HTS and thus this approach is not recommended for diversity studies. Several potential 617 

reasons could cause the lack of congruity between genetic and SEM results.  Sampling and 618 

processing differences using the two method is likely a main contributor. Diatoms are one of 619 

a few examples where genetics and SEM correspond with adequately resolved genetic 620 

markers (Malviya 2016). However, SEM is not a high-throughput method that may mean 621 

diversity is lost, especially in this case where part of the sample was destroyed for genetic 622 

analysis. A second main issue is the lack of resolution of this marker, combined with 623 

population structure within several species common to Pacific Eastern waters, such as P. 624 

pseudodelicatissima groups, and conspecific species groups P. hasleana/P. kodamae, P. 625 

galaxiae/P.sabit and P. delicatissima/P. arenysensis that were resolved with longer LSU 626 

region as shown in previous studies (Lim et al. 2012, Lundholm 2012). The use of new 627 

technology such as MinION sequencing (Oxford Nanopores Ltd) that directly sequences 628 

long-reads of genomic DNA without an amplification step would reduce bias brought about 629 

by PCR analysis of mixed templates (Suzuki 1996, Kalle et al. 2014) and allow better 630 

delineation of species with longer reads. The lack of public reference sequences especially for 631 

Pacific open water species such as P. turgidula and P. inflatula could be an additional factor 632 

in identification. Increased database representation would improve the phylogeny delineating 633 

species or populations within species improving the identification of unknown environmental 634 

sequences. For example, P. turgidula public sequence appears outside the core group 635 

identified, which may be a misidentification or a genuine population variant of that species.  636 

Traditional pairwise alignment sequence dissimilarity (PSD, as it is referenced in (Nguyen 637 

2016) clustering, similar to the method used in this paper, has been shown to create poor 638 

OTU clusters. Better clustering methods-using curated and representative sequence databases 639 

to identify OTUs within the bioinformatic pipeline would also improve OTU retrieval 640 

process. 641 

 642 
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It is clear from this study that better characterisation and more comparative work with both 643 

genetics and SEM would benefit characterisation of Pseudo-nitzschia in this region. 644 

Nevertheless new species to this region have been uncovered using HTS approach on 645 

archival formalin-preserved samples. P. galaxiae, P. sabit, and P. kodamae or 646 

P.subfraudulenta have not been described in Northern Pacific Eastern waters  whilst P. 647 

hasleana has only been identified in coastal waters of this region (Table 2) that demonstrates 648 

that diversity in NE Pacific is under-characterised. All but P. hasleana (Lundholm 2012) 649 

have mainly been identified in warmer waters (Lundholm 2002, Teng et al. 2014, Teng 650 

2015). Our findings show a broader distribution range of Pseudo-nitzschia species in Pacific 651 

waters. Open water species deserved further study to capture and culture representatives to 652 

determine their environmental preferences. Their response to nutrients and temperature make 653 

them valuable indicators of ocean health.  654 

 655 

5. Acknowledgements 656 

We wish to thank the officers and crew of the M/V Skaubryn operated by Seaboard 657 

International for towing the CPR from their ship and to SAHFOS staff for providing data for 658 

this paper. This project was funded by the SAHFOS associated researcher scheme. Sample 659 

collection was funded by the North Pacific CPR Consortium managed by the North Pacific 660 

Marine Science Organisation (PICES). Funding for sample collection was provided by the 661 

North Pacific Research Board, Canadian Department of Fisheries and Oceans and the Exxon 662 

Valdez Oil Spill Trustee Council. We thank the reviewers of this manuscript for their helpful 663 

advice. 664 

 665 

References 666 

Ajani P, Murray S, Hallegraeff G, Lundholm N, Gillings M, Brett S, Armand L (2013) The 667 
diatom genus Pseudo-nitzschia (Bacillariophyceae) in New South Wales, Australia: 668 
morphotaxonomy, molecular phylogeny, toxicity, and distribution. Journal of 669 
Phycology 49:765-785 670 

Al-Kandari M (2012) Molecular characterisation of diversity in an exceptional harmful algal 671 
bloom forming species, Karenia mikimotoi, in the Celtic Sea shelf break region. PhD, 672 
University of Plymouth, Plymouth 673 

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search 674 
tool. Journal of Molecular Biology 215:403-410 675 

Amato A, Kooistra WH, Ghiron JH, Mann DG, Proschold T, Montresor M (2007) 676 
Reproductive isolation among sympatric cryptic species in marine diatoms. Protist 677 
158:193-207 678 

Anderson DM (1995) The ecology and oceanography of harmful algal blooms. A national 679 
research agenda. Woods Hole Oceanographic Institution, Woods Hole, MA 680 



21 
 

Andree KB, Fernández-Tejedor M, Elandaloussi LM, Quijano-Scheggia S, Sampedro N, 681 
Garcés E, Camp J, Diogène J (2011) Quantitative PCR Coupled with Melt Curve 682 
Analysis for Detection of Selected Pseudo-nitzschia spp. (Bacillariophyceae) from the 683 
Northwestern Mediterranean Sea. Appl Environ Microbiol 77:1651-1659 684 

Auro ME (2007) Nitrogen dynamics and toxicity of the pennate diatom Pseudonitzschia 685 
cuspidata: a field and laboratory study. Masters Thesis, San Francisco State 686 
University, San Francisco, CA 687 

Batten SD, Clark. R., Flinkman J, Hays G, John  E, John AWG, Jonas T, Lindley JA, Stevens 688 
DP, Walne A (2003a) CPR sampling: the technical background, materials and 689 
methods, consistency and comparability. Progress in Oceanography 58:193-215 690 

Batten SD, Hyrenbach, K.D., Sydeman, W.J., Morgan, K.H., Henry, M.F., Yen, P.Y., Welch, 691 
D.W. (2006) Characterising Meso-Marine Ecosystems of the North Pacific. . Deep 692 
Sea Research II 53:270-290 693 

Batten SD, Walne AW, Edwards M, Groom SB (2003b) Phytoplankton biomass from 694 
continuous plankton recorder data: an assessment of the phytoplankton colour index. J 695 
Plankton Res 25:697-702 696 

Botsford LW, Castilla JC, Peterson CH (1997) The Management of Fisheries and Marine 697 
Ecosystems. Science 277 277 698 

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, 699 
Gonzalez Pena A, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, 700 
Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, 701 
Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J., R. 702 
K (2010) QIIME allows analysis of high-throughput community sequencing data. 703 
Nature Methods 704 

Dyson K, Huppert DD (2010) Regional economic impacts of razor clam beach closures due 705 
to harmful algal blooms (HABs) on the Pacific coast of Washington. . Harmful Algae 706 
9: =264–271 707 

Fernandes LF, Hubbard KA, Richlen ML, Smith J, Bates SS, Ehrman J, Léger C, Mafra LL, 708 
Kulis D, Quilliam M, Libera K, McCauley L, Anderson DM (2014) Diversity and 709 
toxicity of the diatom Pseudo-nitzschia Peragallo in the Gulf of Maine, Northwestern 710 
Atlantic Ocean. Deep Sea Research Part II: Topical Studies in Oceanography 711 
103:139-162 712 

Fernandes LF, Hubbard, K.A., Richlen, M.L., Smith, J., Bates, S. S., Ehrman, J. et al. (2014) 713 
Diversity and toxicity of the diatom Pseudo-nitzschia Peragallo in the Gulf of Maine, 714 
Northwestern Atlantic Ocean. . Deep-sea research Part II, Topical studies in 715 
oceanography 103:139-162 716 

Field D, Tiwari B, Booth T, Houten S, Swan D, Bertrand N, Thurston M (2006) Open 717 
Software for biologists: from famine to feast. . Nature Biotechnology 24:801 - 803  718 

Forbes JR, Denman KL (1991) Distribution of Nitzschia pungens in coastal waters of British 719 
Columbia. Can J Fish Aquat Sci 48:960–967 720 

Fryxell GA, Célia-Villac M, Shapiro LP (1997) The  occurrence  of the  toxic  diatom  genus  721 
Pseudo-nitzschia (Bacillariophyceae)  on  the  West  Coast  of the  USA,  1920-1996:  722 
a  review. . Phycologia 36:419-437 723 

Garćia-Mendoza E, Rivas D, Olivos-Ortiz A, Almazán-Becerril A, Castañeda-Vega C (2009) 724 
A toxic Pseudo-nitzschia bloom in Todos Santos Bay, northwestern Baja California, 725 
Mexico. Harmful Algae 8:493-503 726 

Gómez F, Claustre H, Raimbault P, Souissi S (2007) Two High-Nutrient Low-Chlorophyll 727 
phytoplankton assemblages: the tropical central Pacific and the offshore Peru-Chile 728 
Current. . Biogeosciences 4:1101-1113 729 



22 
 

Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis 730 
program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95-98 731 

Hare SR, Mantua, N.J., Francis, R.C. (1999) Inverse Production Regimes: Alaska and West 732 
Coast Pacific Salmon. . Fisheries 24:6-14 733 

Harrison PJ, Boyd PW, Varela DE, Takeda S, Shiomoto A, Odate T (1999) Comparison of 734 
factors controlling phytoplankton productivity in the NE and NW subarctic Pacific 735 
gyres. Progress in Oceanography 43:205-234 736 

Hasle GR (1993) Nomenclatural notes on marine planktonic diatoms.The family 737 
Bacillariaceae. Nova Hedwigia, Beiheft 106:315-321 738 

Hasle GR (2002) Are most of the domoic acid-producing species of the diatom genus 739 
Pseudo-nitzschia cosmopolites? Harmful Algae 1:137-146 740 

Hernández-Becerril DU (1998) Species of the planktonic diatom genus Pseudo-nitzschia of 741 
the Pacific coasts of Mexico. Hydobiologica 379:77-84 742 

Hernández-Becerril DU, Bravo-Sierra, E., Aké-Castillo, J.A. (2007) Phytoplankton on the 743 
western coasts of Baja California in two different seasons in 1998. Sci Mar 71:735-744 
743 745 

Horner RA, Postel JR (1993) Toxic diatoms in western Washington waters (U.S. West 746 
Coast). Hydrobiol 269/270:197-205 747 

Hubbard KA, Rocap GE, Armbrust V (2008) Inter and intraspecific community structure 748 
within the diatom genus Pseudo-nitzschia (Bacillariophyceae). J Phycol 44 749 

JISAO (2014) University of Washington Pacific Decadal Oscillation (PDO) Accessed 10 July 750 
2014. http://jisao.washington.edu/pdo/PDO.latest 751 

Karmakar S, Harcourt EM, Hewings DS, Scherer F, Lovejoy AF, Kurtz DM, 752 
Ehrenschwender T, Barandun LJ, Roost C, Alizadeh AA, Kool ET (2015) 753 
Organocatalytic removal of formaldehyde adducts from RNA and DNA bases. Nat 754 
Chem 7:752-758 755 

Letunic I, Bork, P. (2016) Interactive Tree Of Life (iTOL) v3: an online tool for the display 756 
and annotation of phylogenetic and other trees. Nucleic Acids Res 757 

Lim H-C, Leaw C-P, Su SN-P, Teng S-T, Usup G, Mohammad-Noor N, Lundholm N, Kotaki 758 
Y, Lim P-T (2012) Morphology and molecular characterization of  Pseudo-nitzschia 759 
(Bacillariophyceae) from  Malaysian Borneo, including the new species Pseudo-760 
nitzschia circumpora sp. nov. Journal of Phycology 48:1232-1247 761 

Lim HC, Teng ST, Leaw CP, Lim PT (2013) Three novel species in the Pseudo-nitzschia 762 
pseudodelicatissima complex: P. batesiana sp. nov., P. lundholmiae sp. nov., and P. 763 
fukuyoi sp. nov. (Bacillariophyceae) from the Strait of Malacca, Malaysia. . J Phycol 764 
49:902–916. 765 

Lundholm N (2012) Cryptic and pseudo-cryptic diversity in diatoms-with descriptions of 766 
Pseudo-nitzschia hasleana sp. nov and P. fryxelliana sp. nov. J Phycol 48:436-454 767 

Lundholm N, Daujberg N, Moestrup Ø (2002) Phylogeny of the Bacillariaceae with emphasis 768 
on the genus Pseudo-nitzschia (Bacillariophyceae) based on partial LSU rDNA. Eur J 769 
Phycol 37:115-134. 770 

Lundholm N, Moestrup Ø, Hasle GR, Hoef-Emden K, (2003) A study of the Pseudo-771 
nitzschia pseudodelicatissima/cuspidata complex (Bacillariophyceae): what is P. 772 
pseudodelicatissima? J Phycol 39:797–813. 773 

Lundholm N, Moestrup Ø, Kotaki Y, Hoef-Emden K, Scholin C, Miller P (2006) Inter- and 774 
Intraspecific Variation of the Pseudo-nitzchia delicatssima Ccomplex 775 
(Bacillariophyceae) illustrated by rRNA probes, morphological data and phylogenetic 776 
analysis J Phycol 42:464-481. 777 

http://jisao.washington.edu/pdo/PDO.latest


23 
 

Lundholm N, Moestrup, Ø  (2002) The marine diatom Pseudo-nitzschia galaxiae sp. nov. 778 
(Bacillariophyceae): morphology and phylogenetic relationships. Phycologia 41 594-779 
605 780 

Malviya S, Scalco, E., Audic, S., Vincent, F., Veluchamy, A. et al. (2016) Insights into global 781 
diatom distribution and diversity in the world’s ocean. PNAS Early edition:1-10 782 

Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific Interdecadal 783 
Climate Oscillation with impacts on salmon production. Bulletin of the American 784 
Meteorological Society 78:1069-1079 785 

Marchetti A, Maldano MT, Lane ES, Harrison PJ (2006) Iron requirements of the pennate 786 
diatom Pseudo-nitzschia: Comparison of oceanic (high-nitrate, low-chlorophyll 787 
waters) and coastal species. Limnol Oceanog 51:2092-2101 788 

McCabe RM, Hickey BM, Kudela RM, Lefebvre KA, Adams NG, Bill BD, Gulland FMD, 789 
Thomson RE, Cochlan WP, Trainer VL (2016) An unprecedented coastwide toxic 790 
algal bloom linked to anomalous ocean conditions. Geophys Res Lett 791 

McDonald SM, Sarno D, Zingone A (2007) Identifying Pseudo-nitzschia species in natural 792 
samples using genus-specific PCR primers and clone libraries. Harmful Algae 9:849-793 
860 794 

McQuatters-Gollop A, Edwards M, Helaouët P, Johns DG, Owens NJP, Raitsos DE, 795 
Schroeder D, Skinner J, Stern RF (2015) The Continuous Plankton Recorder survey: 796 
how can long-term phytoplankton datasets deliver Good Environmental Status? Estua 797 
Coast Shelf S 162:88-97 798 

Nguyen N-P, Warnow, T., Pop, M., White, B. (2016) A perspective on 16S rRNA operational 799 
taxonomic unit clustering using sequence similarity. npj Biofilms and Microbiomes 800 
2:16004 801 

Orsini L, Procaccini G, Sarno D, Montresor M (2004) Multiple rDNA ITS-types within the 802 
diatom Pseudo-nitzschia delicatissima (Bacillariophyceae) and their relative 803 
abundances across a spring bloom in the Gulf of Naples. . Mar Ecol Prog Ser 271:87-804 
98 805 

Orsini L, Sarno, D., Procaccini, G., Poletti, R., Dahlman, J., Montresor, M. (2002) Toxic 806 
Pseudo-nitzschia multistriata (Bacillariophyceae) from the Gulf of Naples: 807 
morphology, toxin analysis and phylogenetic relationships with other Pseudo-808 
nitzschia species. Eur J Phycol 37:247-257 809 

Paireder S, Werner B, Bailer J, Werther W, Schmid E, Patzak B, Cichna-Markl M (2013) 810 
Comparison of protocols for DNA extraction from long-term preserved formalin fixed 811 
tissues. Anal Biochem 439 152–160 812 

Penna A, Casabianca S, Perini F, Bastianini M, Riccardi E, Pigozzi S, Scardi M (2012) Toxic 813 
Pseudo-nitzschia spp. in the northwestern Adriatic Sea: characterization of species 814 
composition by genetic and molecular quantitative analyses. Journal of Plankton 815 
Research 816 

Percopo I, Ruggiero MV, Balzano S, Gourvil P, Lundholm N, Siano R, Tammilehto A, 817 
Vaulot D, Sarno D, Mock T (2016) Pseudo‐nitzschia arctica sp. nov., a new 818 
cold‐water cryptic Pseudo‐nitzschia species within the P. pseudodelicatissima 819 
complex. Journal of Phycology 52:184-199 820 

Perl TM, Teitelbaum J, Hockin J, Todd EC (1990) Domoic acid toxicity. Panel discussion: 821 
definition of the syndrome. Canada Diseases Weekly Report 16 (Suppl 1E):41-45 822 

Raitsos DE, Reid, P.C., Lavender, S.J., Edwards, M., Richardson, A.J. (2005) Extending the 823 
SeaWIFS chlorophyll data set back 50 years in the northeast Atlantic. Geophys Res 824 
Lett 32:LO6603 825 

Ribalet F, Marchetti, A., Hubbard, K. A., Brown, K., Durkin, C. A., Morales, R., Robert, M., 826 
Swallwell, J.E., Tortell, P.D., Armbrust, E. V. (2010) Unveiling a phytoplankton 827 



24 
 

hotspot at a narrow boundary between coastal and offshore waters. . PNAS 828 
107:16571-16576 829 

Richardson AJ, Walne AW, John AWG, Jonas T.D., Lindley J.A., Sims DW, Stevens D, Witt 830 
M (2006) Using continuous plankton recorder data. Prog Oceanogr 68:27-74 831 

Ripley SJ, Baker AC, Miller PI, Walne AW, Schroeder DC (2008) Development and 832 
validation of a molecular technique for the analysis of archived formalin-preserved 833 
phytoplankton samples permits retrospective assessment of Emiliania huxleyi 834 
communities. J Microbiol Methods 73:118-124 835 

Robinson GA, Hiby AR (1978) The Continuous Plankton Recorder Survey. In: Sournia A 836 
(ed) Phytoplankton Manual. UNESCO., Paris  837 

Ruggiero MV, Sarno D, Barra L, Kooistra WHCF, Montresor M, Zingone A (2015) Diversity 838 
and temporal pattern of Pseudo-nitzschia species (Bacillariophyceae) through the 839 
molecular lens. Harmful Algae 42:15-24 840 

Scholin CA, Gulland F, Doucette GJ, Benson S, Busman M, Chavez FP, Cordaro J, DeLong 841 
R, De Vogelaere A, Harvey J, Haulena M, Lefebvre K, Lipscomb T, Loscutoff S, 842 
Lowenstine LJ, Marin Iii R, Miller PE, McLellan WA, Moeller PDR, Powell CL, 843 
Rowles T, Silvagni P, Silver M, Spraker T, Trainer V, Van Dolah FM (2000) 844 
Mortality of sea lions along the central California coast linked to a toxic diatom 845 
bloom. Nature 403:80-84 846 

Scholin CA, Herzog, M., Sogin, M., Anderson, D.M. (1994) Identification of Group- and 847 
Strain-specific genetic markers for globally distributed Alexandrium (Dinophyceae). 848 
II. Sequence analysis of a fragment of the LSU rRNA gene. J Phycol 30:999-1011 849 

Scholz MB, Lo. CC, Chain PSG (2012) Next generation sequencing and bioinformatic 850 
bottlenecks: the current state of metagenomic data analysis. Curr Opin Biotechnol 851 
23:9-15 852 

Silver MW, Bargu S, Coale SL, Benitez-Nelson CR, Garcia AC, Roberts KJ, Sekula-Wood 853 
E, Bruland KW, Coale KH (2010) Toxic diatoms and domoic acid in natural and iron 854 
enriched waters of the oceanic Pacific. . Proc Natl Acad Sci USA 107:20762-20767 855 

Stehr CM, Connell, L., Baugh, K. A., Bill, B. D., Adams, N. G., Trainer, V. L. (2002) 856 
Morphological, toxicological, and genetic differences among Pseudo-nitzschia 857 
(Bacillariophyceae) species in inland embayments and outer coastal waters of 858 
Washington State, USA. . J Phycol 38:55–65 859 

Stonik IV, Orlova, T.Y., Lundholm, N. (2011) Diversity of Pseudo-nitzschia H. Peragallo 860 
from the western North Pacific. Diatom Research 26:121-134 861 

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular 862 
Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 863 
30:2725-2729 864 

Teng ST, Lim HC, Lim PT, Dao VH, Bates SS, Leaw CP (2014) Pseudo-nitzschia kodamae 865 
sp. nov. (Bacillariophyceae), a toxigenic species from the Strait of Malacca, Malaysia. 866 
Harmful Algae 34:17-28 867 

Teng ST, Lim, P.T., Lim, H.C., Rivera-Vilarelle, M., Quijano-Scheggia, S., et al. (2015) A 868 
non- toxigenic but morphologically and phylogenetically distinct new species of 869 
Pseudo-nitszschia, P. sabit sp. nov. (Bacillariophyceae. J Phycol 51:706-725 870 

Thessen AE, Bowers HA, Stoecker DK (2009) Intra- and interspecies differences in growth 871 
and toxicity of Pseudo-nitzschia while using different nitrogen sources. Harmful 872 
Algae 8:792-810 873 

Thomsen PF, Willerslev E (2015) Environmental DNA – An emerging tool in conservation 874 
for monitoring past and present biodiversity. Biol Cons 183:4-18 875 



25 
 

Trainer VL, Bates SS, Lundholm N, Thessen AE, Cochlan WP, Adams NG, Trick CG (2012) 876 
Pseudo-nitzschia physiological ecology, phylogeny, toxicity, monitoring and impacts 877 
on ecosystem health. Harmful Algae 14:271-300 878 

Trainer VL, Hickey B. M., Horner RA (2002) Biological and physical dynamics of domoic 879 
acid production off the Washington U.S.A. coast. . Limnol Oceanogr 47:1438-1446 880 

Trainer VL, Suddleson M (2005) Monitoring approaches for early warning of domoic acid 881 
events in Washington State Oceanography 18:228–237 882 

Trick CG, Bill BD, Cochlan WP, Wells ML, Trainer VL, Pickell LD (2010) Iron enrichment 883 
stimulates toxic diatom production in high-nitrate, low-chlorophyll areas. . Proc Natl 884 
Acad Sci USA 107:5887-5892 885 

Vezzulli L, Brettar I, Pezzati E, Reid PC, Colwell RR, Hofle MG, Pruzzo C (2012) Long-886 
term effects of ocean warming on the prokaryotic community: evidence from the 887 
Vibrios. The ISME Journal 6:21-30 888 

Vezzulli L, Grande C, Reid PC, Helaouet P, Edwards M, Hofle MG, Brettar I, Colwell RR, 889 
Pruzzo C (2016) Climate influence on Vibrio and associated human diseases during 890 
the past half-century in the coastal North Atlantic. PNAS 891 

White TJ, Bruns, T., Lee, S., Taylor, J. (1990) Amplification and direct sequencing of fungal 892 
ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand, D.H., Sninsky, J.J., 893 
White, T.J. (ed) PCR Protocols: a guide to methods and applications. Academic Press, 894 
New York, U.S.A. 895 

Whitney FA, Robert M (2002) Structure of Haida eddies and their transport of nutrient from 896 
coastal margins into the NE Pacific Ocean. . J Oceanogr 58:715-723 897 

Work TM, Barr B, Beale AM, Fritz L, Quilliam MA, Wright JLC (1993) Epidemiology of 898 
Domoic Acid Poisoning in Brown Pelicans (Pelecanus occidentalis) and Brandt's 899 
Cormorants (Phalacrocorax penicillatus) in California. J Zoo Wildl Med 24:54-62 900 

Zamudio-Resendiz ME, Gónzalez-Rivas D, Meave del C ME (2014) Evaluation of Pseudo-901 
nitzschia spp. in a tropical bay of the Mexican Pacific. In: Kim HG, B. Reguera, G.M. 902 
Hallegraeff, C.K. Lee, M.S. Han and J.K. Choi. (ed) 15th International Conference of 903 
Harmful Algae, Book ISBN 978-87-990827-4-2. International Society for the Study 904 
of Harmful Algae, Changwon, Korea 905 

Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900-93. J 906 
Climate 10:1004-1020 907 

 908 

  909 



26 
 

Figures 910 

 911 

Fig. 1. Continuous Plankton Recorder samples collected from in 2002 (+), 2005 (o), 2008 912 

(∆), and 2014 (×; SEM). Samples were selected from 1-2 transects conducted during different 913 

seasons.  Grid cells indicate the 1° latitude by 1° longitude spatial resolution of satellite-914 

derived SST used in this study. Gray-shaded grid cells (labelled A-H) contain the ten CPR 915 

samples used for molecular analysis represented by shaded symbols +, ● and▲. These 916 

correspond to the time series of SST anomalies shown in Supplementary Fig. A4. Details of 917 

samples subjected to molecular analysis are listed in Table 1 and Table 4. Central and Eastern 918 

regions are bisected by the -134˚E longitude line (-136˚E for the northern transect) for the 919 

community composition analyses.  920 

 921 

Fig. 2. LSU Maximum Likelihood (ML) phylogeny from a 439bp alignment of partial LSU 922 

fragment from public reference sequences and environmental Pseudo-nitzschia sequences 923 

from 11 CPR samples (A). Some clades have been collapsed for clarity, those marked with an 924 

asterix also have environmental sequences. Genetic distances are not shown here for clarity 925 

but are shown in supplementary Fig.A3). Expanded subtrees with genetic distances show 926 

microdiversity of  Pseudo-nitzschia fraudulenta (panel B) and Pseudo-nitzschia multiseries 927 

with Pseudo-nitzschia pungens (panel C) . Grey boxes and indicate clades that correspond to 928 

Fig. 2B. Asterix indicates sequences recovered together in Fig, 2C.Environmental sequences 929 

are in bold type. Bootstrap values over 70 and branch length are shown by their respective 930 

clades. Genetic distances of the whole tree are indicated on the top left corner.  931 

 932 

Fig. 3. SEM images of (A) Pseudo-nitzschia fraudulenta and (B) Pseudo-nitzschia inflatula 933 

(C) Pseudo-nitzschia pungens in 2014 CPR samples. See Table 4 for locations. 934 

 935 

Fig. 4. Time series of monthly values of the PDO index from 2000 through 2010 indicating 936 

warm, cool, and neutral phases. Asterisks indicate months when CPR samples used in the 937 

molecular analyses were collected; October 2002 (Au02E, Au02C and Au02C(2)); April 938 

2005 (Sp05NE); May 2005 (Sp05E and Sp05C); May 2008 (Sp08C); July 2008 (Su08E); and 939 

September 2008 (Au08E and Au08C). 940 

 941 
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Fig. 5. Spatial variability in monthly averages of satellite-derived SST in the NE Pacific 942 

during months when the CPR samples used in the molecular analyses were collected. Maps 943 

show contoured SST during (A) October 2002 (Au02E, Au02C and Au02C(2)); (B) April 944 

2005 (Sp05NE); (C) May 2005 (Sp05E and Sp05C); (D) May 2008 (Sp08C); (E) July 2008 945 

(Su08E); and (F) September 2008 (Au08E and Au08C). 946 

 947 

Fig. 6. Diversity of Environmental Pseudo-nitzschia OTUs diversity per taxa found in 948 

samples analysed from HTS environmental reads, clustered at 99% and 90% identity. 949 

 950 

Fig. 7. Average cell counts of all diatoms (open bars) compared to Pseudo-nitzschia seriata-951 

sized cells and Pseudo-nitzschia delicatissima-sized cells in each region. Asterix indicates 952 

that there are genetic data available from at least one sample from each seasonal mean. 953 

 954 

 955 
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Tables 956 

Table 1. Summary of CPR samples used in this study and the seasonal mean values of the 957 

PDO index (sPDO) for the season in which the sample was collected. Samples are provided 958 

with codes to denote the season (Autumn, Summer, Spring), year (2002, 2005, 2008) and 959 

region (Eastern or Central) that they come from and are listed following their longitudinal 960 

position. Lat= Latitude, Long= Longitude. sPDO values for autumn (“Au”) are the mean of 961 

September, October, and November; summer (“Su”) is the mean of June, July, and August; 962 

and spring (“Sp”) is the mean of March, April, May. Samples 21VJ5 (Au02E(2)) and  963 

21VJ45 (Au02C(2)) are regional duplicates of 21VJ1 and 21VJ41  964 

CPR 

Sample Month Year 

Lat 

(°N) 

Long 

(°E) Location Code sPDO 

 

21VJ1 10 2002 48.71 -125.42 Eastern Au02E 0.79  

21VJ5 10 2002 48.71 -125.42 Eastern Au02E(2) 0.79  

139VJ1 7 2008 48.76 -125.99 Eastern Su08E -1.57  

146VJ5 9 2008 48.7 -126.17 Eastern Au08E -1.52  

83VJ5 5 2005 48.88 -126.48 Eastern Sp05E 0.69  

77VJ7 4 2005 54.97 -134.97 Eastern Sp05NE 1.42  

21VJ41 10 2002 51.75 -134.61 Central Au02C 0.79  

132VJ1

7 5 2008 48.76 -136.79 Central Sp08C -1.20 

 

146VJ3

7 9 2008 49.92 -134.11 Central Au08C -1.52 

 

83VJ41 5 2005 51.3 -135.02 Central Sp05C 0.69  

21VJ45 10 2002 51.95 -135.64 Central Au02C(2) 0.79  
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Table 2. Coastal and open ocean Pseudo-nitzschia species reported from the Pacific Ocean in the literature with their approximate dimensions. 965 

LM = light microscopy; TEM = transmission electron microscopy; SEM = scanning electron microscopy. Shaded cells indicate species that 966 

overlap both coastal and open ocean niches. Question mark indicates uncertain identification in citation. 967 

 968 

Pseudo-nitzschia sp. Niche Pacific Ocean region Width (µm) Length (µm) Identification method Reference 

P. pungens  Coastal USA (WA, OR, CA); Peru; 

Mexico; SE Pacific  

2.4-5.3 74-174 Genetic; LM; TEM (Fryxell et al. 1997, Hubbard et al. 

2008, Stonik 2011, Trainer et al. 2012)  

P. multiseries Coastal USA (WA, CA); Peru; SE 

Pacific 

3.4-6.0 68-140 Genetic; LM; TEM (Fryxell et al. 1997, Hubbard et al. 

2008, Stonik 2011, Trainer et al. 2012) 

P. seriata Coastal USA (WA, CA); Peru; 

SEPacific 

5.5-8.0 75-160 Genetic; LM; TEM (Gómez et al. 2007, Hubbard et al. 

2008, Stonik 2011) 

P. australis  Coastal USA (WA, OR, CA) 6.5-8.0 75-144 Genetic, SEM (Fryxell et al. 1997, Hubbard et al. 

2008, Garćia-Mendoza et al. 2009, 

Trainer et al. 2012)  

P. subpacifica Coastal USA (WA, CA) 5-7 33-70 Genetic, LM (Fryxell et al. 1997, Hubbard et al. 

2008) 

P. cuspidata Coastal USA (CA, WA) ~3 30-80 Genetic; LM (Fryxell et al. 1997, Auro 2007, 

Lundholm 2012, Trainer et al. 2012) 

P. calliantha Coastal USA (WA); Peru; Western 

Pacific 

4-6 30-72 LM; TEM (Marchetti et al. 2006, Stonik 2011) 

P. multistriata Coastal Peru; SE Pacific 2.5-3.8 38-65 LM; TEM (Gómez et al. 2007, Stonik 2011) 

P. obtusa Coastal Peru; SE Pacific  4.5-5.5 61-100 LM; TEM (Gómez et al. 2007, Stonik 2011) 

P. cf. caciantha Coastal Peru;SE Pacific 3.5-5 53-75 LM; TEM (Gómez et al. 2007, Stonik 2011) 

P. americana Coastal Peru ~3 16-40 LM (Gómez et al. 2007) 
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P. subfraudulenta Coastal Mexico, USA (CA) 3.7-7.0 65-133 LM (Fryxell et al. 1997, Zamudio-Resendiz 

et al. 2014)  

P. hasleana Coastal USA (WA) 1.5-2.8 37-79 Genetic, SEM (Lundholm 2012) 

P. australis  Coastal USA (WA, OR, CA) 6.5-8.0 75-144 Genetic, SEM (Fryxell et al. 1997, Hubbard et al. 

2008, Garćia-Mendoza et al. 2009, 

Trainer et al. 2012)  

Open NE Pacific 6.5-8.0 75-144 SEM Trainer et al. 2012 

P. fraudulenta  Coastal USA (WA); Peru; SE Pacific 4.5-10.0 50-119 Genetic; LM; SEM; 

TEM 

(Horner & Postel 1993, Fryxell et al. 

1997, Hubbard et al. 2008, Stonik 2011) 

Open NE Subarctic Pacific (Station 

AL) 

4.5-10.0 50-119 LM, SEM; TEM (Silver et al. 2010) 

P. 

pseudodelicatissima 

Coastal USA (WA); Mexico 1.3-2.5 59-140 LM; SEM (Fryxell et al. 1997, Trainer et al. 2002, 

Zamudio-Resendiz et al. 2014) 

Open NE Subarctic Pacific (Station 

AL) 

1.3-2.5 59-140 LM; SEM; TEM (Silver et al. 2010) 

P. delicatissima Coastal USA (WA); SE Pacific 1-2 40-76 Genetic; LM; TEM (Fryxell et al. 1997, Hubbard et al. 

2008, Stonik 2011, Trainer et al. 2012) 

Open SE Pacific HNLC 1-2 40-76 LM (Gómez et al. 2007) 

P. heimii/ P. cf. 

heimii 

Coastal USA (WA); Peru; SE Pacific 4-6 67-120 LM; TEM (Fryxell et al. 1997, Gómez et al. 2007, 

Stonik 2011) 

Open NE Pacific (Ocean Station 

PAPA); NE Subarctic Pacific 

(Station AL) 

4-6 67-120 LM; SEM; TEM (Marchetti et al. 2006, Silver et al. 

2010) 

P. lineola Coastal 

 

1.8-2.7 56-112 

Genetic; LM; SEM 

(Fryxell et al. 1997, Hernández-Becerril 

1998, 2007, Garćia-Mendoza et al. 
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2009) 

Open NE Subarctic Pacific (Station 

AL) 

1.8-2.7 56-112 LM; SEM; TEM (Silver et al. 2010) 

P. turgidula/ P. cf. 

turgidula 

Coastal California 1.3-2.5 30-80 LM (Fryxell et al. 1997)? 

Open NE Pacific (Ocean Station 

PAPA); NE Subarctic Pacific 

(Station AL) 

1.3-2.5 30-80 LM; SEM; TEM (Silver et al. 2010, Trick et al. 2010) 

P. grannii, P. cf. 

grannii 

Open NE Pacific (Ocean Station 

PAPA); NE Subarctic Pacific 

(Station AL) 

1.5-2.5 25-79 LM; SEM; TEM (Silver et al. 2010, Trick et al. 2010) 

P. dolorosa Open NE Pacific (Ocean Station 

PAPA) 

2-3.2 30-59 LM; TEM (Marchetti et al. 2006) 

P. inflatula 

 

Coastal USA (CA) 1.5-2.5 6-100 LM (Fryxell et al. 1997)? 

Open NE Subarctic Pacific (Station 

AL) 

1.5-2.5 6-100 LM; SEM; TEM (Silver et al. 2010) 

 969 

 970 

Table 3: Species groups identified using in this study from ML phylogeny (Fig. 2) and related to previous studies showing the number of 971 
environmental sequences from this study that corresponds to each group. 972 

MP clade group name species in clade 
Strain correspondence with 

previous studies 

Number 
environmental 

sequences 
P. abrensis, P. batesiana P. abrensis, P. batesiana No 2 

P. dolorosa, P. micropora 
P. dolorosa, P. micropora, P. cf. 
delicatissima (2) 

(Lim et al. 2012, Ajani et al. 
2013) 

0 
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P. pseudodelicatissima  P. pseudodelicatissima (Orsini 2002) 0 

P. mannii P. mannii  
(Lim et al. 2012, Lundholm 
2012, Ajani et al. 2013) 

0 

P. kodamae, P. hasleana P. kodamae, P. hasleana 
(Lundholm 2012, Ajani et al. 
2013) 

11 

P. delicatissima, P .arenysensis (clade 2) 
P. delicatissima, P. arenysensis, 
Pseudonitzschia sp. 

P. delicatissima not confirmed 
by other studies. One sequence 
of P. arenysensis was formerly 
P. delicatissima (Ajani et al. 
2013), not in same clade as 
other P. arenysensis. Pseudo-
nitzschia sp. identified as 
Pseudo-nitzschia new 
genotype, sister to P. 
delicatissima  (McDonald et al. 
2007) 

5 

P. multistriata, P. australis P. multistriata, P. australis 
(Lim et al. 2012, Ajani et al. 
2013, Lim et al. 2013) 

0 

P. brasiliana (sensu stricto) P. brasiliana 
(Lim et al. 2012, Ajani et al. 
2013, Lim et al. 2013) 

0 

P. linea P. linea No 0 
P. americana P. americana (Ajani et al. 2013) 0 

P. seriata P. seriata 

Only one sequence separate 
from a second sequence but 
recognised in 3 studies (Lim et 
al. 2012, Ajani et al. 2013, Lim 
et al. 2013) 

4 

P. pungens 
P. pungens,  Pseudonitzschia pungens var. 
aveirensis 

(Lim et al. 2012, Ajani et al. 
2013, Lim et al. 2013) 

2 

P. multiseries P. multiseries 
(Lim et al. 2012, Ajani et al. 
2013, Lim et al. 2013) 

142 

P. subfraudulenta P. subfraudulenta (Lim et al. 2012, Ajani et al. 4 
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2013, Lim et al. 2013) 
P. lundholmiae P. lundholmiae (Lim et al. 2013) 0 

P. lineola P. lineola 
(Lundholm 2012, Ajani et al. 
2013) 

0 

MVR2015 
Pseudo-nitzschia sp. MVR2015, 
Bacillariophyceae  MVR2015 No 

0 

P. inflatula P. inflatula 
(Lim et al. 2012, Lundholm 
2012) 

0 

P. delicatissima, P. arenysensis 

P. delicatissima, P. arenysensis, P. 
pseudodelicatsissima , P. multistriata , P. 
galaxiae  

P. delicatissima and P. 
arenysensis strains confirmed 
by 4 studies (Orsini 2002, 
Stehr 2002, Lim et al. 2012, 
Lundholm 2012). P. 
pseudodelicatissima (Orsini 
2002) sister to P. 
pseudodelicatissima group. 

0 

P. subpacifica, P.heimii P. subpacifica, P.heimii 
(Lim et al. 2012, Ajani et al. 
2013) 

0 

P. fraudulenta P. fraudulenta 
(Lim et al. 2012, Ajani et al. 
2013, Lim et al. 2013) 

242 

P. fryxelliana P. fryxelliana 

(Lim et al. 2012, Lundholm 
2012, Ajani et al. 2013, Lim et 
al. 2013) 

0 

P. circumpora P. circumpora (Lim et al. 2012) 0 

P. turgidula P. turgidula 
(Lundholm 2012, Lim et al. 
2013) 

0 

P. caciantha P. caciantha No 0 
P. arctica P. arctica, P. pseudodelicatissima (Percopo et al. 2016) 0 

P. galaxiae I, P. sabit 
P. galaxiae, P. sabit, P. fraudulenta , P. 
delicatissima  

P. galaxiae and P. sabit sister 
clades (Teng 2015). P. 
galaxiae group I strains 
identified by (McDonald et al. 

1 
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2007) and P. galaxiae 
identified by (Lundholm 2012). 
P. sabit confirmed by (Teng 
2015) 

P. galaxiae II, III, IV, P. sabit P. galaxiae II, III, IV and P. sabit 

P. galaxiae and P. sabit sister 
clades (Teng 2015). P. 
galaxiae group II, III, IV 
strains confirmed by 
(McDonald et al. 2007, Lim et 
al. 2013) 

7 

None (multiple spp.) 

Pseudo-nitzschia pseudodelicatissima , P. 
cuspidata, P. plurisecta, P. fukuyoi, 
Fragilariopsis kurta, Fragilariopsis 
vanheurkii, Fragilariopsis kurguelensis, 
Fragilariopsis rhombica, Fragilariopsis 
cylindricus, Neodenticula seminae 

P. pseudodelicatissima 
confirmed by (Ajani et al. 
2013, Lim et al. 2013). P. 
cuspidata confirmed by  
(Lundholm 2012, Ajani et al. 
2013, Lim et al. 2013). P 
fukuyoi confirmed by (Lim et 
al. 2012, Lim et al. 2013). P. 
pseudodelicatissima/cuspidata 
complex confirmed by 
(Fernandes et al. 2014) 

 

None (multiple spp.) 

P. delicatissima, P. pseudodelicatissima, P. 
decipiens, P. galaxiae, P. fraudulenta, P. 
turdigula 

P. delicatissima identified as 
del 2 (Amato et al. 2007). No 
strain confirmation on other 
sequences. 

 

Environmental 1 (this study) None None 

2 

Environmental 2 (this study) P. galaxiae, P. delicatissima 

Both public sequences 
identified from Ruggiero et al. 
2015)  

1 
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Table 4. List of Pseudo-nitzschia species identified by SEM in from a subset of the genetically analysed sample set. Sample ID relates to the 973 

CPR sample. The sequence analysis method indicates whether the samples were analysed using NGS 454 technology or clone library (CL) 974 

sequencing technology. The number of raw reads generated from the HTS sequence analysis are indicated, where applicable.  975 

CPR 

Sample method 

HTS 

reads Code 

Pseudo-nitzschia species 

found by SEM 

Pseudo-nitzschia species 

found by HTS  

Pseudo-nitzschia species found by 

CLS 

21VJ1 454 3178 Au02E 

P. heimii plus small 

undetermined species 

P. fraudulenta N/A 

21VJ5 CL  Au02E(2) N/A N/A  P. fraudulenta 

139VJ1 454, CL 5001 Su08E 

None (Thalassiosira spp. 

abundant) 
P. fraudulenta, P. multiseries P. fraudulenta, P. multiseries 

146VJ5 454, CL 5902 Au08E 

N/A  P. multiseries, P. 

fraudulenta, P. 

subfraudulenta, P. galaxiae 

II, III, IV/P. sabit, P. 

abrensis/P. batesiana, P. 

subfraudulenta 

 P. multiseries, P. fraudulenta, P. 

pungens 

83VJ5 454 4506 Sp05E 

N/A  P. fraudulenta, P. 

multiseries, Environmental 2 

N/A 

77VJ7 454 5116 Sp05NE None P. fraudulenta N/A 

21VJ41 454 3720 Au02C 

P. cuspidata, P. turgidula, 

P. heimii 

P. fraudulenta N/A 

132VJ17 454 2872 Sp08C 

P. turgidula P. galaxiae II, III, IV/P. 

sabit, P. galaxiae I/P. sabit, 

N/A 
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P. subfraudulenta, P. seriata, 

P. multiseries, P. hasleana/ 

kodamae, P. fraudulenta, P.  

delicatissima/P. arenysensis 

(2), Environmental groups 1, 

3. 

146VJ37 454, CL 2613 Au08C 

P. turgidula, P. inflatula, 

P. fraudulenta 

P. multiseries, P. galaxiae II, 

III, IV/.sabit, P. fraudulenta 

P. fraudulenta 

83VJ41 454, CL 6459 Sp05C 

P. australis P. multiseries, P. pungens, P. 

galaxiae II, III, IV/P.sabit  

P. fraudulenta 

21VJ45 CL  Au02C(2) 

P. cuspidata, P. turgidula, 

P. australis 

N/A P. fraudulenta, P. multiseries 

 976 

 977 

Table 5: List of Pseudo-nitzschia species identified by SEM in from 2014. Sample ID relates to the CPR sample, locations shown in Fig.1. 978 
Samples are listed following their longitudinal position. 979 

Sample_id Environment Sample latitude Sample longitude month year Pseudo-nitzschia species found by SEM 

272VJ-1 
Eastern, 
Coastal 48.348 -124.135 8 2014 P. fraudulenta, P. pungens, P. seriata, P. multiseries 

272VJ-5 
Eastern, 
Coastal 48.517 -125.077 8 2014 P. fraudulenta, P. pungens, P. seriata, P. multiseries 

272VJ-9 
Eastern, 
coastal 48.73 -126.02 1 2014 P. fraudulenta, P. pungens, P. seriata, P. multiseries 
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273VJ-3 Central, Open 51.393 -136.688 2 2014 P. inflatula, P. pseudodelicatissima, P. turgidula 

273VJ-11 Central, Open 51.848 -138.707 3 2014 P. inflatula, P. pseudodelicatissima, P. turgidula 

272VJ-45 Central, Open 50.962 -134.648 9 2014 P. inflatula, P. pseudodelicatissima, P. turgidula 

273VJ-39 Central, Open 53.067 -145.865 4 2014 P. inflatula, P. pseudodelicatissima, P. turgidula 

273VJ-43 Central, Open 53.187 -146.96 4 2014 P. inflatula, P. pseudodelicatissima, P. turgidula 
 980 

 981 

 982 

 983 

 984 

 985 

 986 

 987 

 988 

 989 

 990 

 991 

 992 

 993 
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 994 

Supplementary Material 995 

Table A1: General and Pseudo-nitzschia primers used in this study with references indicated in parentheses. Those highlighted in bold were 996 

used to obtain the sequences presented in this study 997 

 998 

Table A2: Identified HTS and clone-library derived environmental sequences. Acc no=Accession number. 999 

 1000 

Table A3: Alignment of Environmental sequences against publically available reference sequences. 1001 

 1002 

Fig. A1: Maximum likelihood Phylogenetic analysis of CLS from a 430bp alignment of partial LSU fragment derived from D1-186F-D1-548R 1003 

PCR amplification with- publically available LSU reference set of Pseudo-nitzschia sequences along with other diatom sequences as an 1004 

outgroup. Grey boxes indicate clades that correspond to Fig. 2B. Asterix indicates sequences recovered together in Fig, 2C. 1005 

 1006 

Fig. A2: Histogram of intraspecific and interspecific pairwise distances from publically available Pseudo-nitzschia species. Dark and light grey 1007 

bars show intra- and inter-specific diversity respectively. Interspecific diversity overlaps with intraspecific diversity indicating a lack of 1008 

boundary that could be useful to delineate species by genetic distances. 1009 

 1010 

Fig. A3: LSU Maximum Likelihood (ML) phylogeny of Fig. 2, shown with genetic distances from a 439bp alignment of partial LSU fragment 1011 

from public reference sequences and environmental Pseudo-nitzschia sequences. Clades without environmental sequences are collapsed for 1012 

clarity.  1013 
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Fig. A4. Time series of SST standardized anomalies for grid cells A-G in Fig. 4 that encompass the locations of CPR samples used in the 1014 

molecular analyses. A = Au02C; B = Au02C(2) and Sp05C; C = Au08C; D = Sp08C; E = Sp05NE; F = Sp05E and Au08E; G = Au02E, 1015 

Au02E(2) and Su08E. See Table 1 for details of sample locations. On each panel, asterisks indicate when the CPR samples were taken. 1016 

 1017 

 1018 


