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Abstract  

 
The descending noradrenergic (NAergic) projection to the spinal cord forms part of an 

endogenous analgesic system. After nerve injury, a localised failure in this 

compensatory system has been implicated as a permissive factor in the development 

of neuropathic sensitisation. We investigated whether restoring descending NAergic 

tone with intrathecal reboxetine can oppose the development of the neuropathic pain 

phenotype after tibial nerve transection (TNT). Rats had a lumbar intrathecal catheter 

implanted at the time of nerve injury for administration of reboxetine (10 mg) in both 

acute and chronic dosing experiments. In acute dosing experiments, both intrathecal 

and systemic (30 mg/kg) reboxetine partially reversed mechanical allodynia. This 

antiallodynic effect of intrathecal reboxetine was blocked by prior administration of 

yohimbine (a2-adrenoceptor antagonist, 30 mg) but not by prazosin (a1-adrenoceptor 

antagonist, 30 mg) or propranolol (b-adrenoceptor antagonist, 100 mg). Chronic 

intrathecal reboxetine (10 mg, intrathecally, twice daily for 2 weeks) suppressed the 

development of cold and mechanical allodynia. Nerve-injured animals demonstrated 

a place preference for intrathecal reboxetine, suggesting that it also reduced 

spontaneous pain. In contrast, an equivalent antiallodynic dose of systemic reboxetine 

(30 mg/kg) was aversive in both naive and TNT rats. On cessation of chronic 

intrathecal reboxetine, there was a gradual development of allodynic sensitisation that 

was indistinguishable from control TNT animals by 7 days after the end of dosing. Our 

results suggest that pharmacological restoration of spinal NAergic tone with intrathecal 

reboxetine can suppress both allodynia and spontaneous pain in the TNT model.  



Introduction  

Neuropathic pain arising after a lesion of a peripheral nerve results in the development 

of increased sensitivity to applied stimuli and/or spontaneous ongoing pain. Treatment 

options for such neuropathic pain remain limited,15 but noradrenergic (NAergic) 

reuptake inhibitors are among the most clinically effective agents.4,41 However, their 

utility is often limited by troublesome side effects that follow systemic administration 

as a result of both on- and off target actions.41 Therefore, there has been considerable 

interest in dissecting the mechanism of action of the central NAergic system in pain 

control, particularly during the development of neuropathic sensitisation, with a view 

to identify better means of therapeutic intervention.32,38 

 

A population of pontine NAergic neurons with descending projections to the spinal 

cord is thought to regulate acute pain processing.22,23,26,49 After peripheral nerve injury, 

changes within this descending NAergic control system have been implicated in the 

development of neuropathic pain.19,25,39,46 Intriguingly, differences in the ability to 

engage this NAergic control system have been linked to the variable expression of 

neuropathic sensitisation in several nerve-injury models and across rat strains.9,50 The 

descending NAergic system acts to delay the appearance of neuropathic signs in the 

acute phase after nerve injury but then fails to prevent the onset of sensitisation 

because of a progressive loss of spinal NAergic tone,24 although it still acts to spatially 

limit the spread of sensitisation from the injured nerve territory.  

 

Strategies to augment NAergic tone through the use of reuptake inhibitors have been 

partially effective in alleviating neuropathic allodynia in experimental models when 

administered systemically5,6,14 and also when given intrathecally (i.t.).36 This latter 



approach is of particular interest because many of the troublesome side effects of the 

reuptake inhibitors (such as sedation, dizziness, and anxiety) are thought to be 

mediated at supratentorial sites, which could be minimised by intrathecal dosing. 

However, effectiveness of chronic intrathecal administration of a selective NAergic 

reuptake inhibitor on the development of neuropathic pain has yet to be explored.  

 

Given that there is evidence for a loss of descending spinal NAergic tone after nerve 

injury, we aimed to test the efficacy of chronic dosing with spinal reboxetine (selective 

reuptake inhibitor) to see whether it could prevent or attenuate the development of 

neuropathic sensitisation. We show that intrathecal reboxetine acts to effectively 

suppress neuropathic sensitisation through an a2-mediated mechanism. Furthermore, 

we show that intrathecal reboxetine induces a place preference in nerve-injured (but 

not naive) animals, suggesting that it attenuates ongoing spontaneous pain,27 whereas 

an equivalently effective antiallodynic dose of systemic reboxetine produces aversion 

in both tibial nerve transection (TNT) and naive animals. 

 

2. Materials and methods  

 

2.1. Animals  

Experiments were performed on male Wistar rats (n = 55; Harlan, Bicester, United 

Kingdom). All procedures were licenced by the UK Home Office according to the 

2010/63 Directive of European Union and adhered to the guidelines of the Committee 

for Research and Ethical Issues of International Association for the Study of Pain. All 

experimental protocols were approved by the University of Bristol local Ethical Review 



Panel. Animals were single housed, with an enriched environment under a standard 

12-hour light–dark cycle, with ad libitum access to food and water.  

 

2.2. Tibial nerve transection model  

Peripheral neuropathy was induced using the TNT variant of the spared nerve-injury 

(SNI) model (n = 38).24,28 Under ketamine (50 mg/kg) and medetomidine (300 mg/kg) 

anaesthesia, the left hind limb was abducted and externally rotated to a lateral 

position, and a longitudinal incision was made at the mid-thigh level through the biceps 

femoris. The sciatic nerve was exposed and the sural, tibial, and common peroneal 

branches were carefully identified. The tibial nerve was tightly ligated with 5-0 silk and 

a 2-mm section was cut, taking care to avoid damage to the sural and common 

peroneal nerves.  

 

2.3. Chronic intrathecal cannulation  

A chronic intrathecal catheter was implanted at the L5-L6 interspace24,42,45 at the same 

time as TNT (n = 26, under continuous anaesthesia) and also in naive rats (n = 10). A 

sterilised 32-gauge intrathecal catheter (CR3212; ReCathCo; Allison park, PA) was 

threaded through a 25-gauge hypodermic needle inserted between L5-L6 vertebrae 

until a tail flick indicated penetration of the dura. The catheter was advanced cranially 

2 to 3 cm so the rostral tip reached the lumbar enlargement. The needle and catheter 

stylet were removed, and the catheter was joined to an 8-cm length of PE-10 tubing, 

which was sutured to the paraspinous muscle and tunnelled subcutaneously to the 

level of the scapulae. The catheter was externalised by attaching the PE-10 tubing to 

a 2-cm length of PE-50 tubing that was fixed to a back-mounted pedestal system with 

a screw cap (313-000BM10-SP with 6-mm side connector; Plastics One, Roanoke, 



VA). All intrathecal drug injections were made in a volume of 10 mL using a 50 mL 

Hamilton syringe at a rate of ;0.5 mL per second followed by a 17 mL dead space flush 

with saline. Correct cannula placement was confirmed by rapid and reversible hind 

limb paralysis after a 20 mL intrathecal lidocaine injection (10 mg/mL) at the end of 

the behavioural testing protocol. 

 

2.4. Nociceptive testing  

 

2.4.1. Mechanical allodynia  

The hind paw withdrawal thresholds to tactile stimuli were assessed using calibrated 

von Frey filaments ranging from 0.17 to 26.0 g (TouchTest, Linton Instrumentation, 

Diss, United Kingdom). Briefly, rats were placed in Perspex chambers with a metal 

mesh floor and were allowed to habituate for 15 minutes before behavioural testing. 

Testing started with the 2.0 g von Frey filament, applied perpendicular to the plantar 

surface of the hind paw for 3 seconds. Withdrawal thresholds were assessed and 

quantified using the Dixon up-and-down method.7  

 

2.4.2. Cold allodynia  

Hind paw withdrawal responses to cooling stimuli were assessed using the acetone 

test.8 After habituation to the chamber, a 1 mL syringe was used to apply a drop of 

acetone through the mesh floor to the plantar surface of the hind paw, and a hindlimb 

withdrawal was scored as a positive response. Acetone testing was repeated 5 times 

per paw with a 2-minute interval between tests, and data are represented as 

percentage paw withdrawal frequency recorded in response to 5 acetone applications 

(PWF).  



 

2.5. Experimental protocols  

 

2.5.1. Comparison of acute intrathecal and systemic reboxetine on mechanical 

allodynia  

TNT rats developed mechanical allodynia over a 10-day period. On day 10, nerve-

injured (n = 5) and naive (n = 5) rats received a single intrathecal dose of reboxetine 

(10 mg)37 or saline (observer blinded), and the effects on mechanical allodynia were 

recorded at 5, 10, 30, 60, 180, 300, 360 minutes and 24 hours after dosing. For 

comparison, in an additional group of TNT rats (n = 5), the effects of systemic 

reboxetine on mechanical allodynia were assayed at the same time points by 

intraperitoneal (i.p.) administration on day 10 (1 mg/kg), 12 (10 mg/kg), and 14 (30 

mg/kg) each in a volume of 0.1 mL/100 g.29 In each case, the degree of sensitisation 

returned to its previous levels 24 hours after either intrathecal or systemic dosing.  

 

2.5.2. Chronic intrathecal reboxetine administration in tibial nerve transection rats  

Two groups of animals (n = 5 per group) had TNT surgery and implantation of chronic 

intrathecal catheters. Reboxetine (10 mg, i.t.) or saline was given (observer blinded) 

at the time of nerve injury and then every day at 9 AM and 4 PM until day 15 after 

TNT. Mechanical and cold nociceptive testing was performed every 3 days beginning 

at 2 PM until day 25 after TNT. 

 

2.5.3. Role of spinal adrenoceptors in mediating the action of intrathecal reboxetine  

TNT rats (n = 6) received an intrathecal dose of a selective adrenoceptor antagonist 

5 minutes before reboxetine (10 mg, i.t.). The testing schedule was performed over a 



6-day period with reboxetine given alone on day 8 and then with intrathecal 

yohimbine9,24,43 (a2-AR antagonist, 30 mg in 10 mL 20% DMSO; Tocris, United 

Kingdom) coadministration on day 10, prazosin (a1-AR antagonist, 30 mg in 10 mL 

30% DMSO; Tocris24,43) on day 12, propranolol (b-AR antagonist, 100 mg in 10 mL 

saline11) on day 14, and vehicle (30% DMSO) on day 16 after TNT. 

 

2.5.4. Place preference conditioning: intrathecal vs systemic reboxetine in tibial nerve 

transection and naive rats  

We sought to gauge the effects of intrathecal and systemic reboxetine on “on-going” 

neuropathic pain using a conditioned place preference (CPP) paradigm27,44 between 

days 21 to 25 post-TNT. Comparisons were made between TNT and naive rats 

receiving reboxetine either i.t. (through implanted catheters) or i.p. For testing, rats 

had a 2 day habituation period in which they were allowed to explore all 3 chambers 

(2 conditioning chambers and a neutral connecting chamber) of the CPP environment 

for 15 minutes. On day 3 (pre-conditioning), the animals were allowed to free roam 

and the time spent in each chamber was assessed. On day 4 (conditioning), all rats 

received an injection of saline and were immediately placed in one of the pairing 

chambers (isolated from the other chambers) for 30 minutes (i.t.) or 45 minutes (i.p.). 

Four hours later, rats received an injection of reboxetine (i.t., 10 mg or i.p., 30 mg/kg) 

and were immediately placed in the opposite chamber for either 30 (i.t.) or 45 (i.p.) 

minutes. On day 5 (post-conditioning), rats were placed in the CPP box with freedom 

to roam between the chambers and the amount of time spent in the saline- and 

reboxetine-paired chambers was recorded over a 15-minute period. 

 

 



3. Statistical analysis  

 

The presence of sensitisation was indicated by reduction in the evoked response 

threshold when compared with pre-TNT or pre drug baseline values, respectively, 

using a repeated-measures 1-way analysis of variance (ANOVA) with Dunnett multiple 

comparison post hoc test. Differences between treatment groups over time were 

determined by 2-way ANOVA with Bonferroni multiple comparison post-tests. For CPP 

testing, the preference for drug was calculated from the time spent in the reboxetine 

paired chamber during test—preconditioning. The preference or aversion was 

assessed using a single sample t test (against the null hypothesis of no change in 

preference). Statistical analysis was performed with Prism software (GraphPad 

Software Inc, La Jolla, CA) and levels of significance were indicated as *P < 0.05, **P 

< 0.01, and ***P < 0.001, NS, not significant. Power calculations to estimate 

experimental group sizes based on initial pilot data were calculated using G*power 

with alpha = 0.05 and beta > 0.8.  

 

4. Results  

 

4.1. Intrathecal reboxetine attenuates neuropathic sensitisation  

After TNT, rats developed mechanical hyperalgesia (Fig. 1) and cold allodynia by day 

7 to 10, which is consistent with previous reports.21,24 Single-shot intrathecal 

administration of reboxetine (10 mg) produced a significant antiallodynic effect in 

nerve-injured rats tested 10 days after surgery (mechanical withdrawal threshold 

increased from 1.2 ± 0.3 g to 5.9 ± 1.2 g at 10 minutes after drug administration; n = 

5, P < 0.05; Fig. 1A) lasting 60 minutes. By comparison, systemic reboxetine (1 mg/kg 



or 10 mg/kg, i.p.) had no significant effect on TNT sensitisation, however, a dose of 

30 mg/kg produced antiallodynic effects comparable with that seen with intrathecal 

reboxetine (mechanical withdrawal threshold increased from 0.9 ± 0.3 g to 4.7 ± 0.9 g 

at 30 minutes after drug; n = 5, P < 0.05; Fig. 1B). 

 

4.2. Chronic intrathecal reboxetine suppresses neuropathic sensitisation  

Having noted that acute intrathecal reboxetine administration produced a reduction in 

allodynia that was equivalent to a substantial systemic dose (Fig. 1), we tested 

whether repeated chronic dosing could produce a maintained suppression of 

sensitisation. Chronic intrathecal reboxetine administered twice daily from the time of 

TNT prevented the development of mechanical allodynia (withdrawal threshold for the 

reboxetine group: 13.1 ± 1.1 g vs saline: 0.8 ± 0.5 g, n = 5; P < 0.001; Fig. 2A at day 

10) and cold allodynia (withdrawals for the reboxetine group 32.0% ± 8.0% vs saline 

84.0% ± 7.5%, n = 5; P < 0.001; Fig. 2B at day 10). These antiallodynic actions were 

maintained during the whole 2-week dosing schedule. 

 

4.3. Reboxetine reduces neuropathic sensitisation through spinal a2-adrenoceptors 

The identity of the receptor mediating the antiallodynic effects of intrathecal reboxetine 

was investigated by spinally co administering adrenoceptor antagonists. As previously 

noted, reboxetine alone significantly increased the mechanical withdrawal threshold 

in TNT animals (pre drug: 0.5 ± 0.1 g vs reboxetine: 6.3 ± 1.5 g; n = 6, P < 0.001; Fig. 

3). However, this effect was significantly attenuated by prior administration of 

yohimbine (0.8 ± 0.5 g; n = 6, P < 0.001 compared with reboxetine alone; Fig. 3), but 

not by prazosin (30 mg), propranolol (100 mg), or vehicle (30% DMSO) administered 



to the same animals, indicating involvement of spinal a2-adrenoceptors in the action 

of reboxetine. 

4.4. Tibial nerve transection rats exhibit a preference for intrathecal reboxetine  

We used a place preference assay to test whether intrathecal reboxetine might be 

acting to suppress ongoing pain in TNT animals.27 A single dose of intrathecal 

reboxetine (10 mg) induced place preference in TNT rats with an increase in the time 

spent in the reboxetine-paired chamber after conditioning (117 ± 38 seconds, P < 0.05; 

Fig. 4). Importantly, reboxetine did not induce place preference in naive rats (29 ± 26 

seconds, NS; Fig. 4). These data indicate that intrathecal reboxetine alone is not 

sufficient to induce place preference in the absence of nerve injury consistent with the 

proposition that it is suppressing an ongoing neuropathic pain state in the TNT rats.  

 

4.5. Systemic reboxetine seems to be aversive in both tibial nerve transection and 

naive rats  

To compare the effect of systemic reboxetine, we used a similar CPP protocol with a 

dose that produced an equivalent degree of attenuation of evoked withdrawals (30 

mg/kg, i.p., Fig. 1B) as the intrathecal dose (10 mg). Systemic dosing produced the 

opposite effect in place preference testing to that seen with intrathecal administration. 

In TNT rats, there was a reduction in the amount of time spent in the reboxetine-paired 

chamber (272 ± 29 seconds, P < 0.05; Fig. 4). This aversive effect of systemic 

reboxetine was also seen in naive rats with a reduction in time spent in the reboxetine-

paired chamber during the test day compared with the preconditioning day (299 ± 24 

seconds; P < 0.01; Fig. 4). 

 



4.6. Neuropathic sensitisation develops after reboxetine discontinuation  

On discontinuation of the intrathecal reboxetine (after 2 weeks of twice daily dosing), 

both mechanical and cold sensitisation gradually developed in the ipsilateral limb over 

the next 7 days (Fig. 5). The mechanical allodynia was apparent from 5 days after 

cessation and was indistinguishable from that seen in the control group by day 8 after 

reboxetine withdrawal. 

 

5. Discussion  

We have investigated the effect of augmenting pontospinal NAergic tone, using 

intrathecal dosing of the selective noradrenaline reuptake inhibitor—reboxetine,16,37 

on the development of the neuropathic pain phenotype after nerve injury. Using a 

combination of acute and chronic dosing through implanted catheters, we have shown 

that intrathecal reboxetine can alleviate spontaneous and evoked pain behaviours 

through a spinal a2-AR mediated mechanism. These findings support the idea that 

after tibial nerve injury, there is a functional deficit in pontospinal NAergic tone, which 

can be reversed by chronic spinal noradrenaline (NA) reuptake inhibition.  

 

The variable expression of a neuropathic pain phenotype across individual animals 

after apparently identical nerve injury is thought to be dependent on the degree of 

engagement of the pontospinal NAergic system.50 Differences between rat strains in 

the function of this NAergic system has also been suggested to play an important role 

in determining whether allodynia develops after nerve injury.9 A progressive functional 

and anatomical deficit in the descending NAergic system has been found to 

accompany the development of allodynia after nerve injury.24 Inhibition of the 

descending NAergic system once neuropathic pain has developed is either ineffective 



(perhaps because of a floor effect)22,25 or amplifies the sensitisation.19,24 Therefore, we 

addressed the question of whether selective augmentation of spinal NAergic control 

could be a useful therapeutic strategy.  

 

Acute intrathecal administration of reboxetine alleviates evoked hypersensitivity (to an 

equivalent degree as a substantial systemic dose), which is in line with previous 

reports for acute intrathecal dosing of the conus peptide Xen2174 (selective NET 

inhibitor) in the chronic constriction injury model.36 The question of which spinal 

adrenoceptors are involved in the antiallodynic action of systemic monoamine 

reuptake inhibitors has previously been addressed with reports supporting a role for 

a2-AR35 and b2-AR.52 Here, we found that administration of an a2-AR antagonist given 

i.t. alongside reboxetine suppressed the mechanical antiallodynic effect (see also 

Refs. 36,37) and found no evidence for a role of either a1- or b-adrenoceptors. This a2-

AR antagonist reversal of reboxetine actions was also seen for cold allodynia in 

preliminary experiments (data not shown). Furthermore, the effect of intrathecal a2-

AR antagonists to block the effect of reboxetine suggests that it is acting to increase 

spinal levels of noradrenaline to exert its therapeutic benefit as has been 

demonstrated by spinal microdialysis for systemic administration of both selective 

(maprotiline) and nonselective noradrenaline reuptake inhibitors in a nerve-injury 

model.35  

 

Clinically, patients commonly describe the presence of spontaneous pain after nerve 

injury3 ; however most preclinical assays have focussed on evoked pain measures.33 

Although the occurrence of ongoing pain has been suggested to originate from 

spontaneous activity in peripheral nociceptors,10 there is evidence that descending 



facilitatory pathways play a role in the long-term maintenance of spontaneous pain.47 

Here, we have used CPP testing, which has been extensively used to investigate the 

rewarding or aversive properties of drugs44 to investigate whether intrathecal 

reboxetine attenuates spontaneous pain in the TNT model using a methodology 

similar to that of King et al.27 Acute intrathecal reboxetine administration induced CPP 

in TNT rats but importantly not in naive animals, indicating that reboxetine is not 

rewarding in of itself when administered spinally. Therefore, this likely indicates the 

presence of a tonic ongoing level of pain after tibial nerve injury that can be alleviated 

by restoring pontospinal NAergic inhibition—consistent with the proposition that loss 

of descending NAergic control plays a role in the maintenance of spontaneous 

neuropathic pain. This is in line with a recent finding that intrathecal a2-AR agonism 

with clonidine can also produce place preference in nerve-injured animals.48 Our 

findings suggest that a deficit in descending NAergic tone plays an important role in 

the expression of the neuropathic phenotype in terms of both tonic ongoing and 

evoked neuropathic pain, and there is consequently an imbalance between the 

descending inhibition and facilitation that permits the behavioural expression of 

sensitisation.  

 

In the same assay, systemic reboxetine was aversive (at a dose that produced an 

equivalent degree of alleviation of mechanical allodynia) in both TNT and naive rats. 

This may be because systemic dosing of the reuptake inhibitor acts to enhance both 

pro- and antinociceptive actions of the central NAergic system (see Ref.20) and 

therefore is relatively less effective against ongoing pain than the intrathecal route. 

Alternatively, this aversive action may indicate that the systemic side effects of this 

dose outweigh any beneficial antiallodynic action. We also noted during this testing 



that both of the higher doses of systemic reboxetine seemed to be associated with 

behaviour change suggestive of increased stress with more frequent urination and 

defecation. These findings chime with clinical practice where systemic dosing of 

NAergic reuptake inhibitors can be modestly effective but is often compromised by 

side effects that result in noncompliance with treatment.41  

 

Given that the onset of ipsilateral sensitisation/allodynia after tibial nerve injury 

coincides with a gradual reduction in descending NAergic tone,24 we investigated the 

effect of chronically dosing reboxetine on the development of allodynia. The use of 

chronic systemic monoamine reuptake inhibitors has been shown to be more effective 

than acute in alleviating sensitisation after nerve injury,10,13,31 and experience with 

tricyclic antidepressants (TCAs) indicates that a period of 4 to 6 weeks’ dosing is 

usually necessary before beneficial effects are seen.41 In this study, we found that 

chronic intrathecal dosing of reboxetine given at the time of nerve injury and then twice 

daily until day 15 after injury completely suppressed the development of sensitisation 

after tibial nerve injury. The magnitude of the beneficial effect was substantially greater 

than that seen with single-shot dosing of reboxetine, suggesting a summating 

therapeutic action (comparable to the effect of a maximal intrathecal dose of the 

conopeptide Xen217436). Further investigation will be required to determine whether 

this simply represents accumulation of the drug in the intrathecal compartment 

(analogous to that reported for systemic dosing2) or alternatively represents a form of 

NAergic (or downstream) neuroplasticity in sensory circuits as has been suggested 

from chronic systemic dosing studies with TCAs,1 perhaps involving nerve growth 

factors such as BDNF.18  



However, once reboxetine dosing ceased, allodynic sensitisation returned within a 

week to the same level as that seen in control animals, suggesting that chronic 

reboxetine masks but does not prevent the development of a neuropathic phenotype. 

This slow development of sensitisation takes longer than would be expected given the 

known pharmacokinetics of reboxetine—again suggesting that there may be some 

longer-lasting plastic changes in the sensory pathways. However, the 2-week time 

course of dosing fails to prevent the subsequent induction of sensitisation possibly 

because of underlying pathological processes in other peripheral or central 

nociceptive pathways. In particular, the intrathecal reuptake inhibition approach would 

not be expected to influence peripherally generated afferent activity from 

nociceptors,10 which has been shown to be present for several weeks after nerve injury 

and may play a role in re-establishing central sensitisation.34,40 Similar findings have 

been reported with systemic dosing of TCAs where mechanical allodynia persisted 

after the cessation of dosing although other measures of evoked sensitisation were 

attenuated.1 It is conceivable that continuation of intrathecal dosing beyond the period 

of altered peripheral afferent input could prevent the subsequent development of 

sensitisation although this may also require that aberrant afferent barrages from the 

periphery have ceased in the meanwhile.34,40  

 

The use of systemic monoamine reuptake inhibitors is established as a therapeutic 

strategy for chronic pain in general and neuropathic pain in particular.4,41 Animal 

studies have shown that such systemic dosing increases NA levels in the spinal cord.35 

This raises the possibility that chronic intrathecal dosing of a reuptake inhibitor could 

have therapeutic advantages with an improved side effect profile. This must be set 

against the substantial cost and logistical challenges of chronic intrathecal delivery of 



drug in humans. This strategy has been implemented for clonidine infusions for 

neuropathic and cancer pain17 albeit complicated by postural hypotension, sedation, 

and bradycardia. Such side effects might be minimised by substitution of a reuptake 

inhibitor to augment the profile of physiologically released noradrenaline at a spinal 

level. Few of the selective reuptake inhibitors have had any spinal toxicity testing,12 

and it is relevant to note that toxicity concerns have been raised after intrathecal 

administration of amitriptyline—possibly because of its off-target actions at the NMDA 

receptor.51 However, the Xen2174 conus compound has been reported as being safe 

for intrathecal administration in humans.30 There may be a role for such strategies in 

the treatment of severe neuropathic pain.  

 

In summary, this study has shown a beneficial effect of spinal NA-uptake inhibition on 

the development of the neuropathic phenotype after peripheral nerve injury. 

Intrathecal reboxetine alleviated both evoked and ongoing neuropathic pain, whereas 

systemic administration caused an aversive response in both naive and nerve-injured 

rats, indicating that selective spinal administration may confer therapeutic benefits by 

restoring the balance of descending pain modulation. 
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Figure legends 

Figure 1. Intrathecal reboxetine attenuates mechanical allodynia. After tibial 

nerve transection (TNT), animals developed robust mechanical allodynia by day 10. 

(A), Intrathecal reboxetine (10 mg) significantly increased mechanical paw withdrawal 

thresholds 10 minutes after drug administration in TNT rats but was without effect in 

naive rats. (B), Systemic reboxetine (30 mg/kg, i.p.) significantly increased thresholds 

30 minutes after drug administration to a level similar to that seen with the intrathecal 

dose (lower doses were without a significant effect). Data are expressed as mean ± 

SEM, n = 5 per group. Comparisons between pre- and post-reboxetine mechanical 

withdrawal thresholds were made using a repeated measures 1-way analysis of 

variance with Dunnett multiple comparison test (NS, not significant, *P < 0.05, **P < 

0.01). 

 

Figure 2. Prophylactic intrathecal reboxetine suppresses the development of 

neuropathic sensitisation. Tibial nerve transection rats received intrathecal 

reboxetine (10 mg) or vehicle (saline) at the time of injury and then twice daily (9 AM 

and 4 PM) until day 15 after injury. In vehicle treated rats, mechanical (A) and cold (B) 

allodynia developed by day 7 which was not seen in the chronic reboxetine group. 

Data are expressed as mean ± SEM, n = 5 per group. Comparisons between 

reboxetine- and saline-treated rats using 2-way analysis of variance (ANOVA) with the 

Bonferroni post-test (***P < 0.001). The presence of allodynia in either the reboxetine- 

or saline-treated groups was determined by comparisons with pre–tibial nerve 

transection baseline thresholds or withdrawals using a repeated measures 1-way 

ANOVA with the Dunnett multiple comparison test (NS, not significant, ### P < 0.001). 

 



Figure 3. Intrathecal reboxetine acts through an a2-AR mediated mechanism. 

Intrathecal reboxetine (10 mg) significantly increased mechanical withdrawal 

thresholds in tibial nerve transection (TNT) rats. However, prior administration of 

yohimbine (a2-AR antagonist, 30 mg) significantly attenuated this response. Prior 

administration of prazosin (a1-AR antagonist, 30 mg), propranolol (b-AR antagonist, 

100 mg), and vehicle (30% DMSO) were without an effect. Data are expressed as 

mean ± SEM, n = 6 per group. The mechanical sensitivity of TNT rats before and after 

reboxetine administration and in combination with intrathecal antagonists was 

compared using 2-way analysis of variance with the Bonferroni post-test (NS, not 

significant, ***P < 0.001). 

 

Figure 4. Nerve-injured animals exhibit a preference for intrathecal but not 

systemic reboxetine. In a conditioned place preference testing paradigm, the tibial 

nerve transection (TNT) rats (unlike naive control rats) showed a significant increase 

in the amount of time spent in the intrathecal reboxetine (10 mg) paired chamber after 

conditioning. However, both TNT and naive rats showed a significant aversion to 

systemic reboxetine (30 mg/kg, i.p.) in the CPP paradigm with a significant reduction 

in the amount of time spent in the reboxetine-paired chamber after conditioning. 

Preference data shown as time spent in reboxetine-paired chamber on test day—

preconditioning day. Data expressed as mean ± SEM, n = 7 per group (NS, not 

significant, *P < 0.05, **P < 0.01; single sample, 2-tailed t tests).  

 

Figure 5. Chronic intrathecal reboxetine does not prevent the development of 

neuropathic sensitisation after discontinuation. After 2 weeks of twice daily 

intrathecal reboxetine (10 mg) after tibial nerve transection (TNT), cessation of 



reboxetine dosing caused sensitisation to return over the following week, with 

significant mechanical sensitisation evident after 5 days (i.e. by day 19). Data are 

expressed as mean ± SEM, n = 5 per group. Comparisons between reboxetine- and 

control saline-treated TNT rats over time were made using 2-way analysis of variance 

(ANOVA) with the Bonferroni post-test (***P < 0.001). The presence of allodynia in 

either the reboxetine- or saline-treated groups was determined over time by 

comparisons with pre-TNT baseline thresholds or withdrawals using a repeated 

measures 1-way ANOVA with the Dunnett multiple comparison test (## P < 0.01, ### 

P < 0.001). 
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