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ABSTRACT 

In situ fluorometers are evaluated in their estimation of chlorophyll a. Calibrations 

from at-sea and laboratory data showed linear relationships between fluorescence 

and chlorophyll a, as measured by in situ fluorometers with r^ > 0.9. Examination of 

regression residuals showed an increasing error variance with the magnitude of 

chlorophyll on two of four cruises. The most likely source of this increasing error 

variance was in one case, a photoadaptation effect and in the other a population 

shift between the beginning and end of the cruise. Smaller variability was also 

found in the ratio fluorescence to chlorophyll a, traced to sample depth, and time of 

day, although this variability was not a consistent property of the data. Generally, 

there was excellent agreement between laboratory and at-sea calibrations for low 

levels of chlorophyll typical of oceanic environments. The laboratory calibration of 

these instruments was stable over time, suggesting that good estimates of 

chlorophyll a can be made from fluorometers placed on ocean moorings. 

INTRODUCTION 

In situ fluorometers are used more and more at sea (e.g., Aiken, 1981; Whitledge 

and Wirick, 1983; Weller et al., 1985; Marra et al. 1990) and in lakes (e.g., Heaney, 

1978; Abbott et al., 1982). However, worries have been reported regarding the ability 

of in vivo fluorescence to estimate accurately chlorophyll a. For example, Cullen 

(1982) doubts that fluorescence could be linearly related to chlorophyll a given the 

variability of chlorophyll absorption and the variability of the fluorescence yield, 

concluding that fluorescence profiles should be interpreted in their own right, 

separate from chlorophyll a. Falkowski and Kiefer (1985) state that the 
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interpretation of the fluorescence signal is not simple, nor is it a linear function of 

chlorophyll, and echo the sources of variability mentioned in Cullen (1982). 

Vandevelde et al. (1988) also urge caution, partly because of the variation in 

fluorescence yield per unit chlorophyll. 

That fluorescence could merely be an "indicator of chlorophyll" (Cullen et al., 1988) 

reflects much of these concerns. While no one questions that the source of the 

fluorescence signal is chlorophyll a, many believe that fluorescence is not a good 

estimator for it. These uncertainties stem from the imprecision of the conversion of 

the fluorescence signal to chlorophyll a, but also from the inability to discriminate 

the errors in the analysis of chlorophyll a from "noisiness" in the fluorescence 

signal. Errors of the former kind are variations in fluorescence per unit chlorophyll 

a which we shall designate R, following Cullen (1982), and has the units: volts (fig 

chlorophyll aH)"l). 

We review the calibration of in situ fluorometers for data taken during the research 

program Biowatt and Marine Light-Mixed Layers (ML-ML), by examining residuals 

and variability in R. We also include comparisons of calibrations done at-sea with 

those performed in the laboratory. The in situ fluorometers used in this study are all 

manufactured by SeaTech, Inc. (Corvallis, Oregon, 97339, U.S.A.) 

MATERIALS AND METHODS 

The data are from four cruises; three to the Sargasso Sea (as part of Biowatt, in 1987) 

and one to the Gulf of Maine. In addition, since we used these same fluorometers 

on the Biowatt mooring (see Dickey et al., 1990), we report on the stability of 

laboratory calibrations. Two types of calibrations are used here, at-sea and 

laboratory. At sea, the fluorometers were measured against natural populations, 

and measurements of chlorophyll a using a bench-top Turner fluorometer. The 

laboratory measurements used cultured populations whose chlorophyll was 

determined spectrophotometrically. Both types of calibration were ultimately 

referenced to a chlorophyll a standard. 

At-Sea Calibration. The in situ fluorometers were mounted on the frame which 

carried the CTD, rosette samplers (10 1 Niskin Go-Flo’s), and a 25 cm-pathlength 





beam transmissometer (Bartz et al. 1978). The sensor head on the fluorometer was 

about 0.5 m below the mid-point of the rosette sampler. The fluorometers had an 

excitation wavelength peak at 425 nm (200 nm FWHM) and an emission peak at 685 

nm (30 nm FWHM). The fluorescence signal in these units was smoothed with a 

filter having a 3.0 s time constant. There are three levels of sensitivity for these 

fluorometers, corresponding to approximate maximum chlorophyll concentrations 

of 3, 10 and 30 pg H, and we used the highest sensitivity setting. CTD casts were 

done usually every 4-6 h while on station, weather and other ship operations 

permitting. Samples for calibration of the in situ fluorometer were collected on 

each CTD cast at all depths sampled with the Go-Flo's. 

The chlorophyll analysis procedure followed that described in Smith et al. (1981). 

Briefly, 100-500 ml of sample was filtered through a Millipore HA (pore size 0.45 

pm) or Whatman GF/F filter. The filtered material was extracted for 24 h in 90% 

acetone and the extract's fluorescence (before and after acidification) was measured 

on a Turner 111 fluorometer calibrated using pure chlorophyll a. 

Laboratory Calibration. For the phytoplankton culture, we used Thalassiosira 

pseudonana, a small centric diatom, in exponential phase of growth. Chlorophyll a 

levels in the culture were in the range of 100-300 pg 1"1. We filtered a known 

amount of seawater using Millipore HA filters. This seawater was placed in a black 

container, and the fluorometer immersed in this bath for the calibration. 

Immediately before beginning the calibration, an aliquot of the culture was filtered 

and the filter analyzed for chlorophyll a using the spectrophotometric method 

(Parsons et al., 1984). As a check against background fluorescence, an aliquot of the 

filtered seawater bath was taken and analyzed on a Turner Model 10 laboratory 

fluorometer using the standard chlorophyll filter set. For the calibration, known 

amounts of culture (i.e., known amounts of chlorophyll a, in vivo), were added to 

the bath, taking readings of fluorometer output after each addition. 

RESULTS 

Table 1 lists the duration and average euphotic zone depth for three Biowatt II 

cruises in 1987, and the Marine Light-Mixed Layers (ML-ML) cruise in 1990. The 

chlorophyll a data used for the field calibrations in Biowatt can be found in 

published data reports (Baker and Smith 1987a, 1987b, 1989). 





OC2, OC3 and El all showed a subsurface fluorescence maximum and a stratified 

water column (Fig. 1). For OC4, there was a deep mixed layer and homogenous 

fluorescence throughout (Fig. lc), although the euphotic zone was estimated to be 

no more than 100 m. Earlier on this cruise, there was evidence of slight near-surface 

stratification and increases in fluorescence, and this accounts for the wider range of 

chlorophyll values in the regression calibrations than indicated in the profile. Only 

on OC3 was there a lack of any particle maximum (as indicated by the beam 

attenuation coefficient (b.a.c.)) at the depth of the fluorescence maximum. The 

changes in b.a.c. are slight, since the beam transmissometer has about an order of 

magnitude less dynamic range than the in situ fluorometer. 

Calibrations from the four cruises. Since we use fluorescence as an estimator for 

chlorophyll a, fluorescence is plotted on the x-axis and chlorophyll is plotted as the 

dependent variable in the calibrations from the four cruises (Fig. 2). In all cases, the 

regression coefficients were significant, and the r^ > 0.9. (Table 2). We tested the 

regression for the inclusion of pheopigments, however this resulted in a lower r^ 

for the regression line. Siegel and Dickey (1987), found that inclusion of 

pheopigments improved their regression, however, they used a different 

fluorometer (SeaMarTec) with different excitation and sensing characteristics. 

For cruises OC2 and OC3, we obtained very good at-sea calibrations, and ones which 

agreed closely with the laboratory calibration (Fig. 2b,c). The fluorometer on OC2 

exhibited negative voltages for low values of chlorophyll in the laboratory and at- 

sea (which explains the negative values for R described below). For OC3, the noise 

about the regression line shows a depth dependence, thus there is likely a depth 

dependence to R. All the samples above the regression line are from samples 

shallower than 100 m, while all the samples below the line are from deeper than 100 

m. The laboratory calibration (and regression line, of course) bisects this sample 

distribution. 

For OC4 there are both differences in offset and slope between the at-sea and 

laboratory calibrations (Fig. 2c). The high intercept on the x-axis compared to the 

laboratory calibration suggests that part of the fluorescence may have come either 

from a filterable form of particulate chlorophyll, or from a dissolved constituent 

exhibiting similar fluorescence properties. (See below). Cruise El also used the 





same fluorometer as OC4, and differed between laboratory and field calibrations. 

This becomes especially noticeable at high values of chlorophyll, where there 

appears to be more fluorescent quenching in the laboratory as opposed to the field 

measurements. 

Residual analysis. We computed the standardized residual, z (Kleinbaum and 

Kupper, 1978), for each sample (i), from the sample variance (S^) and the residual (e) 

from the linear regression, as 

zi = ei/S. (1) 

The distribution of z{ with respect to the predicted chlorophyll a (Fig. 3.) can reveal 

whether or not a linear model is appropriate, or if there are any inhomogeneities in 

the variance. Only on OC2 (Fig.3a) do the residuals appear random. However if we 

ignore samples from below the eupohotic zone (i.e. <0.1 pg Chi H), then El (Fig. 3d) 

also shows a random distribution of residuals. In contrast, OC3 and OC4 (Figs. 3b,c) 

the residuals increase with the magnitude of chlorophyll. 

Variation of R . A further way to examine the calibrations is to normalize the 

fluorescence to chlorophyll a (R) to consider other sources of variation, such as the 

time of day, the date on which the calibration samples were collected, or sample 

depth. We limit ourselves to the euphotic zone for this analysis since as 

chlorophyll a tends to zero, R can become artificially large and skew the statistics. 

Also, if chlorophyll a is uniformly distributed within the euphotic zone and goes to 

very low values deeper, sample depth may be spuriously identified as an important 

variable in the statistical analysis. 

The small standard errors about the regressions (Fig. 2) and the strength of the 

coefficient of determination (Table 2) suggest that these will be secondary sources of 

variation in the calibration. Multiple regression of R on these variables indicate 

that, for the most part, day and time of day are not significant (Table 3). The 

exception is OC2, where both of these appear to be a source of variability. Sample 

depth is important to OC2 and OC3. The sources of variation found to be highly 

significant to R (see Table 3) are shown in Fig. 4. The depth variation in R for OC3 

shows greater scatter at shallow depths. This may be a diurnal (time of day) effect 





that is manifested only at shallow depths (< 20 m), and thus does not contribute to 

an overall depth variability. 

Stability of the laboratory calibration. Use of the in situ fluorometers as part of the 

sensor suite in the Biowatt Mooring Experiment (Dickey et al., 1990) meant a series 

of calibrations before and after each deployment. Fig. 5 shows an example of two 

units for which we have the most complete calibration histories. The stability of the 

calibrations is excellent, especially at low values of chlorophyll a, typical of the open 

ocean. At high values (> lpg 1"1), the fluorometer apparently introduces noise into 

the calibration. 

DISCUSSION 

The sources of variability in calibrating an in situ fluorescence signal to chlorophyll 

a can be summarized as follows. 

(1) The chlorophyll a analysis. These are procedural errors to the analysis of 

chlorophyll a. They include handling errors in the preparation of the acetone 

extract, and errors in the calibration of the at-sea fluorometer to the 

spectrophotometer, interferences from other chlorophylls or degradation products, 

and errors caused by imperfect retention by the filters of chlorophyll-containing 

particulates. 

(2) Mismatches in sampled water volume. This is caused by the depth and time 

mismatches between the water volume sensed by the fluorometer (0.5 ml) and that 

sampled by the water-sampling bottle (liters). For practical reasons, the depth of the 

sensor head of the fluorometer is never at the same depth as the water-sampling 

bottle. Given the rapidity with which the fluorometer samples the water column 

for fluorescence, the time of capture of the sample in the water bottle can only be 

related to some averaged value of the fluorescence signal. 

(3) Interpretation of the fluorescence signal. R may not be constant. 

For example, photoinhibition of fluorescence is sometimes observed near the ocean 

surface, and may be caused by a low fluorescence yield. Alternatively, there may be 





no strong change in R (and the fluorescence signal therefore interpretable in terms 

of chlorophyll a). 

Another factor that should be considered is the distribution of values of chlorophyll 

a at sea. If the range of values is narrow, then the prediction of chlorophyll from 

fluorescence will be weakened. But establishing a wide range of values through 

time or over a wider spatial area, may also alter R. 

(4) Interference by other chemical species. This refers to the presence of non¬ 

chlorophyll dissolved constituents which may have the same or similar 

fluorescence characteristics as chlorophyll a. 

(5) Characteristics of the fluorometer. Variability here derives from variations in 

strobe output (which excites the fluorescence), the wavelength band of strobe 

excitation or emission spectrum, or from the intensity of the flash (Cullen et al., 

1988). Also, there can be increasing variability in the signal with increasing 

amounts of chlorophyll. 

Given the high value of r^ in the linear regressions (Table 2), the above sources of 

variability are minor and do not compromise the estimate of chlorophyll from in 

situ fluorometry. Since there are errors in both the fluorescence and chlorophyll a 

values, a model II type regression (Ricker, 1973) might be required instead of the 

model I type used here. However, when the correlation between the two variables 

is high, as it is here, there is little difference between the two models (Laws and 

Archie, 1981). 

We now examine the calibration regressions in more detail using the results from 

the residual analysis and the variations in R. For OC3 and OC4, the residuals clearly 

increase with the value of chlorophyll. This implies an increasing error variance 

with the magnitude of chlorophyll a (heteroscedasticity), and violates one of the 

assumptions of the least squares technique (that variance will be constant). We see 

three possible causes of the heteroscedasticity, mentioned in the above list: 

instrument noise (error (5) above), sampling mis-matches (error (2)) and biological 

variability (error (3)). 





Instrument noise. An increasing error variance can be seen in the laboratory 

calibrations, but this occurs mostly at larger values of chlorophyll a than typically 

measured at sea. However, this may have caused some of the large residuals seen 

for El where chlorophyll values were in this range and much higher than on the 

other three cruises. 

Sampling mis-matches. For the field data, variability will occur if the in situ 

fluorometer does not sample exactly the same depth as the Go-Flo water sampler, 

and this type of error would increase with the quantity of chlorophyll a, if the 

chlorophyll was not uniformly distributed with depth, but occurred in layers. It is 

possible that chlorophyll may have a high degree of variability on a depth scale of a 

meter or less (Derenbach et al., 1979), which because of the time constant of the 

sensor and lowering speed of the profiler, the fluorometer would average over, but 

the Go-Flo could sample. These layers might have occurred on all cruises but OC4. 

Since the residuals are well-behaved on OC2 and probably also on El, this cannot be 

an explanation for the increasing error variance. 

Biological Variability. All cruises except for OC4 exhibit some degree of changes in 

fluorescence relative to the beam attenuation coefficient, indicative of 

photoadaptation of the phytoplankton populations (Fig. 1). The data from OC3 are 

perhaps clearest in showing a pure fluorescence maximum, when comparing the 

transmissometer with the fluorescence signal. This was a likely source of the 

heteroscedasticity in the regression for this cruise (Fig. 3b) and suggests a non¬ 

linearity in the data in Fig. 2b. But we do not feel that recourse to a different data 

normalization scheme or to a weighted least-squares method is appropriate for 

improving the estimates. Similarly, the use of two non-linear equations to describe 

the shallow and deep data, for this cruise, would not improve the chlorophyll 

estimates much (since the r^ accounts for >90% of the variance in the estimates) and 

would be complicated to apply in practice. 

OC4 (Fig. lc, 3c) provides an interesting case because there is little if any depth 

variability to the fluorescence, but there are large residuals at the higher chlorophyll 

values. This may because of the highly significant time variability seen on this 

cruise (Fig. 4d, Table 3). OC4 had few profiles and which were widely spaced in time. 

Obtaining enough data points produced variations in R and larger residuals. 





The more interesting changes in R are with depth, shown for OC2 and OC3 (Fig. 

4a,c) where it was found to be a highly significant source of variation (Table 3). 

There is near-surface variability in both, and OC3 shows a distinct minimum in the 

upper part of the broad chlorophyll maximum (see Fig. lb). This secondary 

variability in R may contain useful information about photosynthesis, 

photoadaptation and, perhaps, species composition (see Cullen, 1982). However, the 

variability in R between cruises makes interpretation of that parameter difficult. 

Nevertheless, this deserves further study. 

The at-sea and laboratory calibrations for OC4 show different offsets at zero 

chlorophyll a (Fig. 2d). Linear regressions on both laboratory and at-sea samples 

have regression coefficients which are not significantly different from one another 

(P<0.05). By adding the difference in the x-axis intercepts to the fluorescence values 

(filled triangles in Fig. 2d), much of the difference in the laboratory and field 

calibrations disappears. This means that the fluorometer was measuring a 

fluorescence missed by our filtration method. Therefore, the offset between the at- 

sea and laboratory calibrations on OC4 may be explained by particulate chlorophyll 

able to pass the GF/F filter, or else from a dissolved substance with similar 

fluorescence characteristics. Parker (1981) has found that fluorescence from 

dissolved organic matter is a small fraction of the particulate fluorescence, which 

suggests that the differences we see between laboratory and at-sea calibrations is 

more likely due to a filterable organism. Taguchi and Laws (1988) observed a 

population of microparticles which pass GF/F filters. Phinney and Yentsch (1985) 

observed a similar phenomenon. Although Taguchi and Laws' (1988) site differs 

from ours, the quantity of chlorophyll passing the filters (about 30%) and the 

seasonal distribution of these microparticles (maximum in fall or winter) are 

similar. Chisholm et al. (1988) have also documented organisms containing a 

chlorophyll that may be sensitive to the fluorescence excitation, however, these 

should have been retained by the GF/F filter (Chisholm et al., 1988). If this 

fluorescence is from filterable particles at this time of year, they have similar R 

values as on the other cruises, as indicated by the regression coefficients in Table 2 

In conclusion, these data justify the use of in situ fluorometers for the estimation of 

chlorophyll a at sea; in vivo fluorescence is more than an 'indicator' of chlorophyll 

variability. Although we see evidence implicating photoadaptation and population 

shifts, these are minor and not consistent and do not compromise the estimate of 





chlorophyll in the environments we sampled. The agreement between laboratory 

and field calibrations means that laboratory calibrations can be used to estimate 

chlorophyll changes from sensors placed on moorings. Furthermore, for typical 

oceanic values of chlorophyll, these laboratory calibrations are stable. As long as 

there is biological variability, the fluorescence calibration in terms of chlorophyll 

will always be inexact. However, much of the variability appears to be secondary. 
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Fig. 1. Plots of temperature (T), fluorescence (fluor),and beam attenuation 
coefficient (b.a.c.) for three of the Biowatt II cruises (OC2, OC3, OC4) and the ML-ML 
cruise (El). OC2, OC3 and OC4 were to the North Sargasso Sea (34-N/70“W), and El 
was to the Gulf of Maine (43"N/69"W). For the OC cruises, salinity is invariant over 
depth, except for a slight (i.e., <0.3 psu) freshening in summer, thus temperature is 
an adequate estimator for the density changes with depth. For El, the large 
temperature range also makes it the largest contributor to density. 
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Fig. 2. Calibrations from the four cruises (OC2, OC3, OC4, El). At-sea samples 
are shown as dots, and laboratory data are shown as triangles. The regression lines 
(see Table 2) are for the at-sea data. For OC4, we have "corrected" the laboratory 
calibration data (filled symbols) for illustration purposes, as described in the text. 
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Fig. 3. Standardized residuals (equation (1) in text) from the four cruises 
plotted against chlorophyll a from the regression. 





0C
2 

IBnpisey 





0C
3 

f,3 H 
^Oeryn. 





0.
05

 
o O 

o 
o 

° o 
o 

o 

oo 5 

o o 
o 

o 
O o 

o 
o° o °o 

o 

o 

o 
o 

_____?^qc6__ __1—- 

o 

CD 
O 

m 
o 

o 

CO 
o 

o 

o 

o 
o 

? 

o 

IBnpjssy 





Fuj 3c) 

AAcuy^ 





Fig. 4. Plots of R against sources of variation found to be highly significant 
from the multiple regression analysis (see Table 3). 
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Fig. 5 An example of a series of laboratory calibrations of two fluorometers. 
Calibration dates are given in the legends. 
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Table 1. Cruise description and euphotic depths. Dates listed are 
periods over which data was collected. The mean euphotic depth 
(for PAR) for each cruise is given as the 1% light depth. 

Cruise Dates 1% E depth (m) 

OC2 9 - 21 May/87 100 
OC3 22 - 25 Aug.,'87 125 
OC4 20 Nov. - 1 Dec.,'87 80 
El 23 July -1 Aug.,'90 25 

Table 2. Regression equations of the relationship between in situ 
fluorescence (F) and chlorophyll a (chi), along with the standard 

error of the regression coefficient in the estimate of chi and 
the coefficient of determination (r2). 

Cruise Regression Equation SE r2 

OC2 chi = 1.33F+0.047 ± -0.028 0.92 

OC3 chi = 1.15F-0.083 0.030 0.90 

OC4 chi = 1.45F-0.270 0.046 0.92 

El chi = 1.43F-0.092 0.037 0.91 





Table 3. A multiple regression analysis of day of sample (within 
cruise), the time of day (hour) at which the sample was taken and 
the depth of the sample (m) against R . The 'F-statistic' is 
given as a measure of the significance of the source of 
variation, as well as the probability, P, that the the source of 
variation is caused by random variation alone. 

Cruise Source of Variation F P 

OC2 Day 4.32 0.04 * 

Time 13.35 0.00 * * * 

Depth 87.41 0.00 st- X- st- 

OC3 Day 1.20 0.27 ns 
Time 2.06 0.15 ns 
Depth 100.00 0.00 Sf- Sf- Sf- 

OC4 Day 126.76 0.00 st- sf- sf- 

Time 2.68 0.11 ns 
Depth 1.78 0.19 ns 

El Day 1.61 0.19 ns 
Time 3.99 0.05 st- 

Depth 0.14 0.71 ns 

ns P > 0.05 
* 0.01 < P < 0.05 
* * 0.001 < P < 0.01 
* * * P < 0.001 
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