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ABSTRACT 

The characteristic equation for the propagation of 

elastic waves in a floating ice sheet is derived and discussed, 

with special emphasis on the evaluation of phase velocity for 

very large and very small wavelengths. The solutions cannot be 

reduced to symmetric and anti-symmetric modes as in the case of a 

plate in a vacuum or a liquid. Among the waves discussed are com- 

pressional waves, shear waves, longitudinal waves, flexural waves, 

Rayleigh waves, Stoneley waves, and Love waves. 

INTRODUCTION 

This paper was undertaken as a result of current inter¬ 

est in the utilization of elastic waves transmitted through a 

floating ice sheet for determining the thickness and mechanical 

strength of the ice, for position fixing and long range signalling. 

The ice sheet is treated as a two dimensional wave guide and the 

characteristic equation giving the functional dependence between 

phase velocity and period is derived. From an examination of this 

equation one can identify the possible waves and determine whether 

or not they are attenuated. In the derivations which follow the 

atmosphere is replaced by a vacuum. Air coupling of flexural 

waves in floating ice has been treated in other papers by Press, 

Crary, Oliver, and Katz (1950) and by Press and Ewing (1950). 

INFINITE PLATE IN A VACUUM AND LIQUID 

The analogous problems of wave propagation in an infinite 

elastic plate were solved by Lamb (1917) for a plate in a vacuum 

and by Osborne and Hart (1945) for a plate in a liquid having in¬ 

finite extent and considerably smaller sound velocity than that for 

compressional or shear waves in the plate. These writers did not 
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include SH waves (shear waves polarized horizontally) in their 

solutions, but fully discussed all other elastic wave types. 

In the solutions of Lamb, and Osborne and Hart the period 

equations take the form of fourth and sixth order determinants 

respectively. These reduce respectively to two second and third 

order determinants representing motions of the plate which are 

symmetrical and antisymmetrical about the median plane. For 

wavelengths small compared to the thickness of the plate the sym¬ 

metric and antisymmetric solutions reduce to Rayleigh waves trans¬ 

mitted along the surfaces. These surface waves are attenuated 

for the case of a plate in a liquid because of losses by acoustic 

radiation. For short wavelengths there is also a Stoneley type 

wave travelling along the plate-liquid interfaces with a velocity 

close to but less than the velocity of sound in the liquid. 

For wavelengths large compared to the thickness of the 

plate the antisymmetric solution reduces to flexural waves and the 

symmetric solution becomes longitudinal waves of an elastic plate. 

The effect of the liquid on the propagation of the longitudinal 

waves is to add a small attenuation which increases as the fre¬ 

quency, The flexural waves, travelling with a velocity less than 

the speed of sound in the liquid, remain unattenuated in the pres¬ 

ence of the liquid, although the dispersion is somewhat changed. 

For long wavelengths the presence of the liquid introduces an ad¬ 

ditional solution for the symmetric case in which the waves are 

propagated without attenuation with a velocity very close to that 

of sound in the liquid. 

For intermediate wavelengths solutions exist for the 

plate in a liquid which are closely related to the corresponding 



solutions for a plate in a vacuum. The effect of the liquid is 

to introduce attenuation caused by radiation loss for those 

branches in which phase velocity exceeds the speed of sound in 

the liquid. The presence of a liquid introduces two additional 

branches representing unattenuated propagation at velocities less 

than the speed of sound in the liquid. 

FLOATING ICE SHEET 

The theory of elastic waves in a floating ice sheet 

will now be discussed in greater detail. The procedure will fol¬ 

low that of Lamb and Osborne and Hart whose solutions were used 

as a basis for solving the present problem. 

Let us consider the propagation of elastic waves in 

an infinite, floating ice sheet of thickness 2H, density , 

in which the velocities of compressional and distortional waves 

are respectively o<( and • The underlying liquid having 

density pz and compressional wave velocity v2 is taken to be 

infinitely deep. A| , yU, are Lame*s constants for the ice 

and \z is the incompressibility of the liquid related to the 

elastic wave velocities as follows: 

°C = ) jf,’ , v£ = ha./A (x) 

The cartesian coordinate system is chosen with the x-axis in the 

median plane of the ice sheet parallel to the direction of propa¬ 

gation and the z-axis vertically downward. The subscripts 1 and 

2 refer to the ice and liquid respectively. We introduce the 

functions ^ (x,z,t) and ijj (x,z,t) defined by the equations 
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U, = d V?/^X-+ JV./Jz. 

W] = d^fjdz - J'/'./o'x 

aA= diPa./J* 
(2) 

where u and w are the horizontal and vertical particle displace¬ 

ments. SH waves are not included in this discussion and will be 

treated more simply in a later section. The vertical stress pzz 

and the tangential stress p^ can be expressed in terms of Cf} {jj 

and the elastic constants as follows: 

Hz-A 4 A//( Cflp/fr'- - d'P/J*dz) 

■fax - //(d^/dz- - d^tp/dX2- + 5. d2(f/dxdz) 
(3) 

It is required that the functions and Vj/ satisfy the 

wave equations 

in the ice 

in the ice (4) 

in the liquid 

and the boundary conditions 

(PZZ>1 : 0 

(Pjx)l = 0 

at z = -H 

at z i -H 

(Pzz)l • ^zz^2 

(Pzx)l = 0 

at z : H (5) 
at z = H 

W1 = w2 at z : H 



It can readily be verified that solutions of (4) are of the form: 

-b £3 CoH'ty ($zj~\ X-ul^)J 

V, - [C \L (><*-<*> t)J (6) 

where 

?= k' (/ - cxMr) 

>>l= *Y/- cY/3/1) 

j’Y * (l-zx/vc) 
(7) 

and c = uJ/k. In equation (6) , and make up 

a system of waves progressing in the x direction with a phase 

velocity c and wavelength L related to the wave number k by k - 

27//L. The frequency f is given by f z U)/27/ = ck/277. is 

taken to decrease exponentially with depth in the liquid since we 

are particularly interested in the case where no energy is lost 

by refraction into the liquid. 

If equations (6) are substituted in the boundary condi¬ 

tions (5), using (2) and (3), five independent homogeneous equa¬ 

tions in the unknown amplitude coefficients A, B, C, D, E, are 

obtained. Any four of the unknowns can be found in terms of the 

fifth. For a solution of all five to exist, however, the fifth 

order determinant of their coefficients must vanish. The charac¬ 

teristic equation is the condition for the determinant to vanish. 

Poisson's assumption is made at this point to simplify our 

equations. Thus we take Poisson's constant <T : 0.25 for ice, so 

that X, - M< • Although observed values of/for lake ice run 
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higher, the simplification involved justifies this assumption 

since we are interested primarily in identifying the possible 

waves and only order of magnitude calculations are made. The per¬ 

iod equation can then be written as follows: 

P [Q + <5 QxJ!(fH)c44£(yH)] + Q{P+- 

= O 

where 

P=(f+xfcM bH) - H) 

(9) 

If these equations are compared to the characteristic equations 

given by Lamb it will be seen that P = 0 and Q : 0 represent 

respectively the symmetric and antisymmetric solutions for a plate 

in a vacuum. Osborne and Hart obtained for the case of a plate in 

a liquid P-4- cT ) AWtJrfy H) — O and £^4 cf H] — O 

which represent respectively the symmetric and antisymmetric solu¬ 

tions. It is evident that unlike these cases, the motion in a 

floating ice sheet cannot be reduced to purely symmetric and anti¬ 

symmetric modes. It can also be seen that f is a correction 

tenn introduced by the presence of the liquid, and vanishes as 

the density of the liquid approaches zero. 



The period equation (8) defines an implicit relation 

between the phase velocity c and the wave number k. The dependence 

of c on cd can be obtained by substituting k = &)/c in (8). Real 

values of c and k which satisfy (8) correspond to propagation 

without attenuation* Complex values of c or k for real u) cor¬ 

respond to propagation with attenuation, the degree of attenuation 

increasing with the magnitude of the imaginary component* The 

energy loss associated with damped propagation is due to radiation 

from the ice sheet into the liquid* 

From equation (8) it is seen that c z o<, and c Z /3f 

are solutions which satisfy the characteristic equation for all 

frequencies• 

EVALUATION OF PHASE VELOCITY FOR VERY SMALL WAVELENGTHS 

For wavelengths small compared to the thickness of the 

ice sheet (kH large) P = Q and equation (8) reduces to 

+ ° (10) 

and 

(yf+ >+$TpK^ + ^ = 0 (ii) 

Equation (10) is the same expression derived by Lamb for a plate 

in a vacuum and corresponds to Rayleigh waves propagated along 

the free surface of a semi-infinite solid medium. The algebraic 

solution of (10) for c gives the well known result for Rayleigh 

waves cR - *9194/?, • Equation (11) is identical to the expression 

derived by Osborne and Hart for a plate in a liquid and corresponds 

to Rayleigh waves propagated along the interface between a semi- 
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infinite liquid and solid medium. Following Osborne and Hart the 

phase velocity can be deduced approximately from (11) by substi¬ 

tuting c r c^ (1 + £ ), (6 <l)in (11). If f is small we may 

write approximately 

Using f? = .917 /£,/?,= 6300 ft/sec, v2 = 4800 ft/sec, 

~\)3/9i > we obtain approximately £ z .25 i. 

The reduction of the period equation (8) into the al¬ 

gebraic expressions (10) and (11) for wavelengths small compared 

to the plate thickness is simply interpreted. For these wave¬ 

lengths the ice sheet is effectively infinitely thick and the 

propagation reduces to Rayleigh waves propagated without attenua¬ 

tion at the free surface and attenuated Rayleigh waves trans¬ 

mitted along the bottom surface, continuously radiating energy to 

the liquid. 

Equation (11) can also be satisfied by c real and less 

than v2. This can be seen by rewriting (11) in the following form; 

The first and seco nd terms of (13) are of opposite sign, so that 



c less than v^ is a possible solution. For the 

constants listed above we obtain c = ,87 V2 as a root of (13)* 

This is the speed of a boundary wave travelling along the ice- 

water interface, with an amplitude which decreases with distance 

from the ice-water interface. Stoneley (1924) described an analo¬ 

gous boundary wave which can be transmitted under certain condi¬ 

tions along the interface between two semi-infinite solids. 

EVALUATION OF PHASE VELOCITY FOR VERY LARGE WAVELENGTHS 

For wavelengths which are long compared to the thickness 

of the ice sheet (kH small), equation (8) can be reduced to the 

following forms: 

O 
(15) 

(16) 

Equations (15) and (16) will give respectively the velocities of 

longitudinal waves and flexural waves in a floating ice sheet over 

deep water. The factor is neglected in 

equation (16) and carried in (15) in order to keep the high order 

imaginary term giving the attenuation of longitudinal waves. Re¬ 

placing the hyperbolic functi ons of (15) by linear terms or 

unity we can derive the approximate expression: 
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If (17) is compared with the solution C//Z, - &( ^ for 

a plate in a vacuum it is seen that the presence of the liquid 

hardly affects the real part of the phase velocity, but adds a 

small attenuation, which for large wavelengths increases as the 

inverse cube of wavelength. This is in agreement with the experi¬ 

mental work of Ewing, Crary, and Thorne (1934) whose determination 

of the velocity of longitudinal waves in floating lake ice checks 

the velocity given by the real part of (17). 

For long wavelengths (16) gives for the velocity of 

flexural waves: 

&-<- (i.) 
/*/ / 

In obtaining (18) third order terms must be included in the ex¬ 

pansion of the hyperbolic functions. For a plate in a vacuum the 

corresponding solution is cfa?= (V/3)f H) (l-/%, fa?) , it is 

interesting to note that (18) can be reduced to the corresponding 

expression for a plate in a liquid simply by replacing by 

2 fa • 

The steady state plane wave theory of long flexural 

waves in an ice sheet on water of either finite or infinite depth 

was given by Ewing and Crary (1934). The results for the latter 

case were extended by Press and Ewing (1951) for waves originating 

in an impulsive point source. The observed dispersion and ampli¬ 

tude of explosion generated flexural waves on lake ice are shown 

to be in reasonable agreement with theory in these papers. At cer¬ 

tain frequencies flexural waves in ice are strongly coupled to the 

atmosphere. This phenomenon has been discussed by Press, Crary, 

Oliver, and Katz (1951) and Press and Ewing (1951). 



EVALUATION OF PHASE VELOCITY FOR INTERMEDIATE WAVELENGTHS 

Unlike the results for a plate in a vacuum or a liquid, 

the characteristic equation does not reduce to symmetric and anti¬ 

symmetric modes* We are left with a complicated expression 

(equation (8)) which makes the evaluation of phase velocity as a 

function of wavelength or frequency an exceedingly difficult task 

for intermediate wavelengths. Such calculations would indicate 

how the high and low frequency values of phase velocity discussed 

above connect up. In general for c > v„ the phase velocity has 

an imaginary component, indicating attenuation due to radiation 

from the sheet into water. Both real and imaginary components of 

phase velocity are frequency dependent, the waves being dispersive 

as well as selectively attenuated. For c < v, no energy losses 

due to radiation into the water occur and the waves are propa¬ 

gated as a dispersive, unattenuated train. 

LOVE WAVES IN A FLOATING ICE SHEET 

The theory of Love waves in a floating ice sheet can be 

derived by finding a solution of the wave equation for SH waves 

which satisfies appropriate boundary conditions. It is convenient 

and instructive, however, to derive the characteristic equation 

geometrically, for this method offers a clear physical picture 

of its origin. 

SH waves incident on a free surface or a liquid inter¬ 

face are completely reflected without a change of phase (see for 

example Jeffreys (1926)). Consequently a floating ice sheet be¬ 

haves essentially as a wave guide for the propagation of SH waves. 
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In Figure 1, ABCE represents the ray-path of a plane SH wave of 

length 1 (measured along the ray-path) undergoing multiple reflec¬ 

tions from the boundaries at an angle of incidence 0 . As the 

wave front (shown by the dashed line) moves a distance ED I (i( t 

in t seconds, a point on the wave front moves a distance ct in the 

horizontal direction where the phase velocity C - 

After many reflections the amplitude will be greatest for those 

waves for which constructive interference occurs between the mul¬ 

tiply reflected rays* The characteristic equation is simply the 

mathematical statement of this condition. Referring to Figure 1 

again, it is seen that if the wave front at AE is to interfere 

constructively with the coincident wavefront which has traversed 

the additional path ABCE, it is required that 

(19) 

The integers n determine the normal modes of propagation. For 

each value of n, there is a fixed relationship between 1 and O 

(or c) for which constructive interference occurs. The propaga¬ 

tion of constructively interfering SH waves is dispersive, the 

dependence of phase velocity on wavelength being given by (19) and 

. A consequence of dispersion is that the en¬ 

ergy associated with each frequency is propagated with the group 

velocity U given by the well known formula 

C + K ^c/c1&)(0g/c1k) 

w here is the wave number. Carrying out 



the indicated differentiation one obtains 

U- - 4l/c (20) 

U/A and c//3, are plotted for the first and second modes as 

functions of the dimensionless parameter \\jjl-: H-f/vj in 

Figure 2. The higher modes of Love waves are simply higher har¬ 

monics of the first or fundamental mode. 

The sequence of waves arriving at a given point from a 

distant disturbance can be described with the aid of the group 

velocity curve of Figure 2, The first arrivals are high frequency 

waves which travel with the velocity • As time progresses the 

frequency of the arrivals decreases. This corresponds to moving 

down the group velocity curve. The wave train is infinitely long, 

the last wave having the lowest frequency given by 
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Figure 1. Ray path diagram of SH waves in an ice sheet on water. 

Figure 2. Phase and group velocity curves of SH waves in an ice 
sheet on water. 
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