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1. 

ABSTRACT 

The solutions of many problems in seismology may be 

obtained by means of ultrasonic pulses propagating in small scale 

models. Thin sheets, serving as two dimensional models, are par¬ 

ticularly advantageous because of their low cost, availability, ease 

of fabrication into various configurations, lower energy requirements 

and appropriate dilatational to shear velocity ratios. Four examples 

are presented: flexural waves in a sheet, Rayleigh waves in a low 

velocity layer overlying a semi-infinite high velocity layer, Rayleigh 

waves in a high velocity layer overlying a semi-infinite low velocity 

layer, and body and surface waves in a disk. 
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INTRODUCTION 

In recent years investigators in both the commercial and 

academic fields have attacked the problems of elastic wave propaga¬ 

tion by studying waves of ultrasonic frequencies traveling through 

small scale three dimensional models, and a few papers have been 

3,6,7 
published on the subject . Although promising results were ob¬ 

tained, widespread application of the method to significant problems 

has been slow, chiefly because of the difficulties in procuring suitable 

model materials and in the fabrication of desirable configurations. 

This paper describes the use of two dimensional models, which vir¬ 

tually eliminates these and other difficulties without detracting from 

the usefulness of the method in a great majority of cases. 

The models take the form of thin sheets and the propaga¬ 

tion takes place along directions lying in the plane of the sheet. In 

practice these sheets are generally 1/16" thick, and only wavelengths 

long compared to this thickness are employed. 



THEORY 

We wish to determine the propagation velocities of dilata- 

tional and shear waves in a thin plate and of Rayleigh waves on the 

edge of a thin plate. We restrict ourselves to waves in which the par¬ 

ticle motion is symmetrical about the median plane of the plate, thus 

excluding any type of wave motion which involves bending of the thin 

plafe. 

For a perfectly elastic isotropic material, the equations 

of motion, neglecting external forces, are in the notation of Bullen^. 

• ♦ the stress in the 

^ th direction on the face normal to the ju th axis, and Xj the co¬ 

ordinates. A summation convention is observed whereby if any suffix 

occurs twice in single term it is to be put equal to 1, 2 and 3 in turn 

and the results added. 

The stresses are given by 

where 

and where /\ 
/ 

are Lame’s constants and 
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where the M, $ are the displacements and 

Q- <'»,+*x.y.i--c33 ' 

We restrict ourselves to a plate which is thin compared to the wave¬ 

lengths which we will study. The 3 axis is taken perpendicular to the 

plane of the plate. The stresses then become 

(2b) = A© + V“-" 

(20 . A® «/«**- 

(2d) ^.,5 = * £/•■*!! 

(20 ^,1.* (^2/ * 

= o 

(21) • <f3l ~ (f')* f** 

from (2d) A<9 - A * -'WtA*s 

jj - 
_£<. <- 

/* 
ax ; 

<2g) $ r 2 ^ 

/•\+ ■L/4 

Substituting (2) into (1) 

where 
l . 2-M, _ J afc 

■ ~ il 9 . —* 
c) X^ 

- / <• X 

^ JtA 

Z)2--- c/ c 

^ \ *■ 57, 

' 
.n ^ u pU 

O A 

where 
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The corresponding equation for an infinite solid is 

/o iL il?/ A + /* v '4** 

Differentiate both sides of (3) with respect to X* (this 

% 

involves separate differentiations withX. =1 and 2 and adding the results), 

t o obtain the dilatational wave equation 

<4) /°^ r *M(A +A) rfp 
w .r 

Equation (4) checks the velocity given by Lamb for dilatational waves 

in a plate, i. e. 

Take the curl (two dimensional) of (3) and we get 

(6) /O M i) 7 <***) 

Thus the shear wave velocity is the same as in an infinite solid, 

'• 8 = (%r)'A 

We now consider a thin plate which occupies the 1, 2 plane from X*=0 

to X £ = . Let 

DV = ^ 
then 
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(8) Where (£) and ^ satisfy 

a , 1//o'? fee - 3'o'r 
Choose plane wave solutions of the form 

^ nf-t-Xi+*,-**) 

9 ) f - d<. * *• < ~s 

^ ^y 

(9b) where /* -- (~l)^ S • (~f) 
V ' 

C is the velocity of propagation of constant phase in the X/ direction, 

and A, is the wave number. Thus the wavelength in the X/ direction, 

£ is given bv if J and the period by 7** 
* 

(10) At the free edge > &**■* =° 

using (2c, (2g), (7), (9) and (10) we get 

(11) l_ Vf(!4tU)-X(2XjA + 2.(S\6 ~o 

from (2e), (7), (9) and (10) we get 

(12) 4 (f-!>*■) 8 - J 

Eliminating A and B from (11) and (12) and using (9b) 

This is identical with the equation for Rayleigh waves on the surface 

SCHV» 
of a A infinite solid with the exception that the plate dilatational velocity 

replaces the infinite solid dilatational velocity. It is clear that no 

difficulties will arise in more complicated cases. Thus most of the 

problems on propagation of plane waves in a stratified earth may be 
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related to the two dimensional models by simply replac ing«d by 

EQUIPMENT AND TECHNIQUES 

The principal features of the apparatus and procedure are 

described here briefly. The transmitting and receiving equipment is 

adapted from similar equipment in use in several laboratories, but 

the use of thin plates for construction of the models is apparently 

novel. 

A block diagram of the equipment is shown in Fig. 1. 

Electrical pulses of approximately 15 microsecond duration are applied 

to the transmitter, a small piezoelectric element in contact with the 

model. This transducer delivers an acoustical pulse, shown as traced 

from the seismogram in Fig. 2, to the model. The resulting acoustical 

energy arriving at various points on the model is detected by a similar 

transducer, amplified, and then displayed on the cathode ray oscillo¬ 

scope. The pulse repetition rate is adjustable from 2 to 100 pulses 

per second. The oscilloscope sweep is triggered at a fixed time inter¬ 

val ahead of the pulse so that a standing wave pattern, including the 

time break, is observed. The basic timing unit which initiates the 

trigger pulses for both the oscilloscope and the pulse also supplies 

timing markers at convenient intervals. The resulting pattern on the 

oscilloscope is then photographed by a Polaroid Land camera and the 

miniature seismogram is obtained immediately. 
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The transmitting transducer is a barium titanate cylinder 

1/10" thick, 1/4" diameter. To prevent internal reflections in the 

source mount, the transducer is backed by a long aluminum rod of 

the same diameter. The part of the pulse energy that enters the back¬ 

ing and then reflects from the end of the rod back toward the source is 

too late and too greatly attenuated to confuse the seismogram. Diffi¬ 

culties due to free oscillations or "ringing" of the source are avoided 

by utilizing a frequency range that is below the ringing frequency of 

the transducer. The receiving transducer is also of barium titanate 

1/25" thick and 3/32" diameter and is mounted in a similar but less 

elaborate manner. The smaller thickness further improves the re¬ 

duction of ringing. 

The electronic equipment is currently under improvement 

and will be thoroughly described in a later report. The present unit 

delivers a pulse of about 1000-2000 volts to the source crystal. The 

voltage amplification of the receiving unit is less than 100,000. 

The two dimensional models are usually built in the form 

of disks. These are particularly advantageous for the study of surface 

waves on the edge of the disk since there are no reflections of the sur¬ 

face waves and since a very long path may be obtained by using the 

multiple trips around a relatively small disk. The curvature of the 

disk may be made small compared to a wavelength so that the usual 

surface wave equations for flat-lying strata will be applicable, 
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with the slight modification of the dilatational wave velocity, or it may 

be made larger for studying the effect of sphericity of the earth upon 

long period surface waves. The body phases of earthquake seismology 

may be studied in the usual manner very conveniently. Any degree of 

complexity in the layering may be obtained by means of concentric 

rings of various materials glued together in the desired relation. The 

diameters of the disks used in this study are about 20". The thickness 

is at present standardized at 1/16". This is small compared to all 

the wavelengths involved so that there is no dispersion due to finite 

disk thickness. For some types of problems shapes other than the cir¬ 

cular might be desirable, e. g. refraction and reflection problems of 

seismic prospecting may be studied by constructing a cross section of 

the configuration in question. Table 1 lists the materials that have 

been sampled to date with the compressional, shear and Rayleigh velo¬ 

cities. 

The disks are held in position by three rubber-covered 

supports which touch the disks at three points on the periphery 

(Plate 1), Experiments show that for a disk of this thickness the sup¬ 

ports do not affect the surface wave propagation appreciably. The 

disk is mounted concentric with a graduated ring on which the receiver 

travels, allowing accurate measurement of all arc distances. The 

transmitting transducer is set at an arbitrary zero which may be de¬ 

termined accurately by running profiles from the transducer in both 

directions. A plot of the dilatational wave travel times vs. distance 
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immediately gives the zero of the transmitted pulse in both time and 

distance. 

COMPARISON OF TWO AND THREE DIMENSIONAL MODELS 

Two dimensional models (2-D) have the following advant¬ 

ages over three dimensional (3-D) models. 

1. The materials are far less expensive. 3-D models 

are usually constructed of some material which can be poured, e. g. 

wax, concrete, tars, or various chemical setting cements, or of 

some material which can be purchased in large slabs, e. g. limestone, 

marble, etc. All of these are expensive and become increasingly 

difficult to handle when layered media are desired. It is particularly 

difficult to pour materials in large blocks and maintain homogeneity 

throughout. The 2-D models, on the other hand, may be constructed 

of any material which can be bought in 1/16" sheets. This includes 

most metals and alloys and many types of plastics, fibers, etc. They 

are not prohibitively expensive and are generally far more homogen¬ 

eous than poured materials. 

2. The fabrication is greatly simplified. Layered con¬ 

figurations may be built up from concentric rings, easily cut to ac¬ 

curate specifications on a large lathe. Almost any sort of hard glue 

may be used as a binding agent. 

3. Storage is simplified, a drawer of a map case may 

be used for storage of a large number of 2-D models. 3-D models 
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frequently require about 50 sq. feet of floor space for each model. 

4. The energy requirements are greatly diminished in 

the 2-D model. For body waves the intensity varies as as opposed 

to in the 3-D case. Surface waves undergo no geometrical attenu¬ 

ation instead of the variation in the 3-D case. This is a tremen- 
* 

dous advantage as it allows the use of pulses of 1000 volts or less as 

opposed to 5000-10,000 volts in the 3-D case. Similarly lower gains 

may be used in the amplifying system which permits use of a simple 

receiving circuit. 

5. Most materials commercially available do not make 

good models of rock because Poisson's ratio is too large, usually about 

. 33 as opposed to about . 25 for rocks. In the 2tD model the dilatational 

wave velocity is altered (see theory) so that a pseudo-Poisson's ratio 

(the same relation of the dilatational and shear velocities as for 

Poisson's ratio) now falls in the range appropriate to rocks (see Table 1). 

6. Multiple trips around the disk by the surface waves may 

be used to give large path distances. The present paper includes waves 

that have made 2 1/2 trips (about 13 feet) but waves have been observed 

that have made 7 1/2 complete circuits (about 40 feet). Although a 

similar scheme might be followed three-dimensionally by using a 

sphere, the construction of spheres, particularly with concentric layers, 

is very difficult. 
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The multiple paths also provide a means of measuring 

attenuation that is free of instrument calibration and differences in 

coupling of the model to the transducer. This approach is identical 

to that used in the measurement of the absorption coefficient of the 

2 
mantle by means of long Rayleigh waves . 

At present 3-D models are necessary only when one or 

more layers of a stratified configuration is a liquid or when it is de¬ 

sirable to model three dimensional effects such as reflections not in 

the vertical plane of the shot and detector, as might be encountered 

in seismic prospecting. 

EXAMPLES 

Flexural Waves. The experimental model for studying the propagation of 

flexural waves in a plate, as worked out by Lafnb, was a ring cut from 

24 ST Aluminum sheet, 1/16" thick. The outside diameter 2R£ of the 

ring was 19. 112 inches and the inside diameter 2Rj, 1/2" less. Rad¬ 

ial motions of the ring were investigated as the 2-D analog of ordinary 

flexural waves. Figure 4 is a tracing of the oscillogram obtained with 

the receiver at the antipodes of the source. At this point there is con¬ 

structive interference between the waves arriving from opposite direc¬ 

tions. The first arrival following the time break corresponds to a di- 

latational wave through the ring. The first dispersive train of flexural 

waves corresponds to Rj and R£, the second to R^ and R^ etc. , where 
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the R's with subscripts are used in the same sense as in earthquake 

seismology. The values obtained from the experimental data are 

plotted as the small circles of Fig. 4. 

The theoretical equations for wave motion in an 

4 
elastic plate in a vacuum were presented by Lamb . The dispersion 

of flexural waves is determined by his period equation for asymmet¬ 

rical motion. In our notation this equation takes the form 

±r('-£)y" _ f~0_ 
±£0-4./' ’ t('-4/‘('-£)K 

where is the layer thickness. 

To adapt this to our 2-D models we need only replace 

by and by Group velocity is ob¬ 

tained from the well known formula 

(j * c +■ ££- 

A family of theoretical curves of group velocity vs. period computed 

with the constants for 24 ST Aluminum alloy is shown in Fig. 4. Thick¬ 

ness is the parameter and very close agreement with the observed points 

is evident. Thus we have a good check on both the theory and the ex¬ 

perimental method. 

Slight complications have arisen due to the shape of the 

source pulse, in particular the later origin times of the longer periods. 

This difficulty may be completely circumvented by measuring arrival 

times of each period on successive trips around the ring and calculat- 
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ing the group velocity over the interval. The points of Fig. 4 were 

obtained by this method. If the initial rise of the source is used as a 

time break, a maximum error of 2% in the velocity might result. This 

effect is interesting and will be the subject of future study but it does 

not affect the present results. 

Rayleigh Waves - Low Velocity over High Velocity. The most common 

configuration in nature which produces dispersion in Rayleigh waves 

is comprised of a low velocity layer over a high velocity semi-infinite 

5 
layer. Lee presented the theoretical equations for this case. His 

period equation is 

?y - 5 7 
where 
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and the other symbols have the same meaning as before. Again we 

replace the by Vp and the theoretical curves are shown in Fig. 5. 

The computed points are tabulated in Table 2. The constants were 

chosen to fit the case of Plexiglass overlying Panelyte. (See Table 1) 

The disk was 19. 522 inches in diameter with outside dia¬ 

meter of the outer ring 1/2" greater. Figure 6 is a record taken at 

^ =180°. Because of the small contrast between these two materials 

and the high attenuation in the plastic, more precision was obtained 

by using seismograms at several different ' s rather than the one 

from the antipodes alone. As before, this eliminates the difficulty 

with the origin time of various periods in the pulse by making the velo¬ 

city determination independent of pulse time. Fig. 5 shows the ex¬ 

perimental results in good agreement with the theory. 

The Panelyte is anisotropic having a velocity about 1 1/2% 

higher in one direction than in the perpendicular direction. This was 

not taken into account in the calculations and is a source of error in 
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the comparison with the theoretical curves. The points for the two 

longest periods both fall high. These long periods can only be dis¬ 

tinguished in the dispersive train after a considerable length of path 

has been traversed. At that time the amplitudes are low and, in fact, 

the relative amplitudes of such periods are always low due to the 

pulse shape. Thus the accuracy of velocity measurement is reduced 

for these waves. Furthermore, it is possible that these waves may 

be long enough to be affected by the curvature of the disk. The dis¬ 

crepancy is in the proper direction, but this effect has not yet been 

studied. At most, however, the error is 2%. 

Experiments in higher mode Rayleigh waves (shear modes) 

and on Stoneley waves are planned. 

Rayleigh Waves ~- High Velocity over Low Velocity. The previous ex¬ 

amples have shown a comparison of experimental data with theoretical 

curves. In both cases the theoretical calculations were relatively 

simple and within the range of an ordinary desk calculator. In the 

case of a high velocity layer over a semi-infinite low velocity stratum 

the computations increase greatly in complexity. On the other hand, 

there is no difficulty in modelling this case. Fig. 7 is a plot of the 

Rayleigh wave dispersion for the case of a ring of aluminum alloy 

overlying a disk of Plexiglass. Fig. 8 is a tracing of the seismogram 

at the antipodes. The ring of aluminum is the same as that used for 

the flexural waves. This configuration corresponds to a layer of rock 
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with elastic constants cC* =18,300 ft/sec and & =10,400 ft/sec 

overlying a semi-infinite layer with oL, =7,750 ft/sec $ =4,500 ft/sec. 

/*. - 2 77 
The ratio of the densities is . This is a fair approxima- 

/.XT- 

tion to the case of Palisades diabase overlying Triassic sandstones 

and shales along the west bank of the Hudson River. It is also similar 

to structure in the permafrost areas in the Arctic. 

Because of the limited spectrum of the pulse only a portion 

of the complete dispersion curve is obtained. Other segments may 

be studied by varying the thickness of the layer. 

Body and Surface Waves in Disks. The previous examples, all con¬ 

cerning surface waves, used wavelengths which were small enough 

compared to the curvature of the disks so that the waves were effect¬ 

ively traveling along flat surfaces. Disks were chosen merely as a 

convenient shape to work with because of the multiple paths and lack 

of surface wave reflections. However the disk as a two dimensional 

model of the earth also appears promising for the study of body waves. 

The seismograms of Fig. 9 were taken on a uniform plexiglass disk 

of diameter 10. 75". Fig. 10 is a plot of the experimental points read 

from the records,compared with theoretical travel time curves based 

on velocities determined from the P arrivals. Poisson’s ratio is taken 

as 1/4. Phases definitely identifiable are P, PP, S, PS and PPS, SS, 

and LR. At the larger ^ 's there is some difficulty in determining 

the exact arrival time and phase of the later arrivals due to overlap- 
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ping of other phases. The present picks for the later arrivals are 

nearly always late. Clearly, this can be avoided by the use of larger 

disks and future studies will be made on disks of at least twice this 

diameter. This should improve the resolution of phases and accuracy 

of the arrival times measurably. 

The polarity of the first break of the Rayleigh wave 

changes with distance. Such is not the case for Rayleigh waves prop¬ 

agating along the straight edge of a plate, which rules out the possi¬ 

bility of selective absorption of the high frequencies as the cause. The 

change of polarity is possibly the result of the generation of the waves 

by the curved P and S wave fronts at the surface. The phenomenon is 

not understood at present. 

Scaling to Related Problems. The dispersion curves of the preceding 

examples are presented in the dimensions as modeled. Scaling to 

other problems is a relatively simple matter, as can be seen from an 

inspection of the period equation for flexural waves or Rayleigh waves. 

Once a fixed relation is established between all the dilatational and 

cs cy 
shear velocities the equations may be solved for the ratio or 

oy us 
and similarly or . Thus velocities may be scaled to any 

other problem for which the elastic constants have the same ratios 

merely by multiplying the measured velocities by the appropriate 

/J* ccL 
ratio or . Similarly the period associated with a given phase 

and group velocity will vary directly with H, the layer fhickness. 
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TABLE 2 

Phase and group velocity vs KH for a layer with^» =7750 ft/sec. 

3 =4500 ft/sec. ^ =1. 219 gm/cc overlying a semi-infinite layer with 
=10,650 ft/sec. fS =6000 ft/sec. =1.436 

Computed values Values obtained g raphically 

C in ft/sec. KH KH U in ft/sec. C in f t / s e i 

5535 0 0 5535 5535 

5500 . 075 . 05 5488 5510 

5450 . 203 . 1 5449 5490 

5400 . 358 . 2 5379 5453 

5350 . 550 . 3 5323 5418 

5300 . 756 . 4 5276 5388 

5200 1. 152 . 5 5233 5362 

5100 1.450 . 75 5123 5302 

5000 1. 722 1. 00 4978 5241 

4900 1. 955 1. 25 4766 5168 

4800 2. 196 1. 50 4543 5083 

4700 2. 425 1. 75 4283 4977 

4600 2. 689 2. 00 4020 4838 

4400 3. 392 2. 25 3842 4973 

4300 3. 965 2. 50 3685 4672 

4200 5. 107 2. 90 3623 4528 

3. 0 3626 4498 

4. 0 3770 4296 

5. 0 3886 4207 
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DATA OF 2 NOV 53 

PULSE AT ORIGIN 

Figure 2. Pulse at Origin 

Figure 3. Seismogram - Flexural Waves 

Figure 4. Flexural Wave Dispersion 



6 

DATA OF 2 NOV 53 

DISPERSIVE RAYLEIGH WAVES 
/ THEORETICAL 

U in 10 ft./sec. 

T in^ sec. 

a = 7,750 
f3 = 4,500 H 
p'- 1.22 

'a = 10,650 
B = 6,000 
p = 1.44 

O EXPERIMENTAL 

0 10 20 30 40 50 60 

Figure 5. Rayleigh Wave Dispersion - Low Velocity/High Velocity 

Figure 6. Seismogram - Low Velocity/High Velocity 



Figure 7. Rayleigh Wave Dispersion - High Velocity/Low Velocity 

Figure 8. Seismogram - High Velocity/Low Velocity 



Figure 9. Seismogram - Plexiglass Disk 
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Figure 10. Travel Time Curves - Body & Surface Waves in a Disk 








