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Interval velocity solutions from sonobuoy data reveal three major sedimentary sequences: 
(1) Unconsolidated sediments whose velocity increases with depth of burial and ranges from 
1.6 to 2.2 km/sec; (2) semiconsolidated sediments (layer A), which probably have some ve¬ 
locity discontinuities, whose velocity increases with depth of burial and ranges from 1.7 to 
2.9 km/sec; (3) consolidated sediments (layer j3), measured in a few places, whose velocity is 
apparently independent of overburden and ranges from 2.7 to 3.7 km/sec. In the shallower 
layers, low velocities seem to be related to the deposition of clay-sized particles by relatively 
swift bottom currents; high velocities, to quieter bottom conditions or the influx of much 
turbidite material. Except for the shallow layers, velocity-depth functions are quite similar for 
the Gulf of Mexico and the Atlantic Ocean. All the curves show an increase of velocity with 
depth without significant velocity reversals. 

Introduction 

Sonobuoys (the SSQ-28 and SSQ-41 models) 

were first tested as geophysical instruments at 

Lamont in the summer of 1963. These early tests 

were promising but did not yield good data. The 

technique was greatly improved by using direc¬ 

tional receiving antennas aboard ship (to pick 

up the telemetered hydrophone output from the 

buoy), which increased the range to about 40 

km. The use of a pneumatic sound source (air 

gun) every 12 to 15 seconds provided excellent 

data density. By the beginning of 1966 sono¬ 

buoys were placed aboard Lamont research 

vessels and were used routinely to determine 

sediment velocities. In the meantime a com¬ 

puter program was developed to obtain accu¬ 

rate interval velocities. Details of the collec¬ 

tion of data on shipboard and the computing 

procedures are explained in the companion 

paper. The reduction and correction of the sono¬ 

buoy data are based on the records of vertical 

reflection profiles recorded during the sonobuoy 

run. As a result, the solutions are unique even 

though the sonobuoy runs are not reversed. 

The sonobuoys are self-scuttling after about two 

hours in the water, and no attempet is made to 

retrieve them. Use of the sonobuoy station 

therefore involves no more than putting the 

1 Lamont Geological Observatory Contribution 
1167. 

2 Now at CNEXO, 39 Av. de Iena, Paris, 17, 
France. 

buoy in the water and recording the buoy’s 

signal while the ship is underway. 
Sonobuoy records frequently show sub-bottom 

penetration that exceeds the depth recorded in 

the vertical profiler data by a factor of 3 or 

more. Refracted arrivals from consolidated sedi¬ 

ments and the shallower crustal layers may also 

be recorded. Interval velocities, reflection times, 

refraction velocities, location, and other rele¬ 

vant information from each sonobuoy station 

are punched on IBM cards and stored for 

future reference. To date there are 220 cards in 

our files (one for each layer). 
The accumulation of sedimentary velocities 

on a worldwide basis enables us to recognize 

trends in sediment velocities and to make some 

inferences about the geological history of the 

deep-ocean sediments. This paper attempts to 

describe the deep-sea sediments on the basis of 

their velocity characteristics and to make limited 

geological deductions. 

Discussion of Sonobuoy Results 

The locations of sonobuoy measurements dis¬ 

cussed in this paper appear in Figures 1 through 

3. Table 1 lists all the sonobuoy data. 

The standard deviation is based on the fit of 

a straight line to reduced T*/X3 data and is 

only strictly meaningful as a comparative stand¬ 

ard of accuracy. A more detailed discussion of 

the observed deviations between adjacent pro¬ 

files appears in the preceding paper [Le Pichon 

et al., 1968], which shows that the computed 
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Fig. 1. Locations of sonobuoy stations in the North Atlantic with an inset of the Norwegian- 
Greenland Sea. 

lig. 2. Locations of sonobuoy stations in the South Atlantic with an inset of the Cape basin. 
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Fig. 3. Locations of sonobuoy stations in the 
eastern equatorial Pacific. 

standard deviation is about 40% greater than 

the actual probable errors. The identification 

of horizons A and J3 is based on previous studies 

whenever possible. Elsewhere, the identification 

of these horizons is based on tentative correla¬ 

tions and is not final. There is no assurance that 

these reflection events are the same age through¬ 

out the Atlantic. Horizon A is a prominent 

reflector [Ewing et al., 1966] that has been 

identified as Upper Cretaceous from a major 

outcrop in the North Atlantic. It extends over 

much of the Atlantic but is not recognized 

throughout the mid-Atlantic ridge system and 

is lost as a discrete reflector on the upper con¬ 

tinental rise. Horizon J3 is a deeper prominent 

reflector dated as Lower Cretaceous (T. Saito, 

personal communication) from cored outcrops 

in the Atlantic. Horizon /? is more difficult to 

correlate, and it is inferred to be more wide¬ 

spread in the North Atlantic than in the South 

Atlantic. Apparently, horizon /3 does not extend 

to the flanks of the mid-Atlantic ridge, so that 

its areal extent is less than that of horizon A. 

Horizons A and J3 have been indicated in the 

figures that follow. The sonobuoy solutions ap¬ 

pear in the line drawings below the photo 

copies of the original vertical profiler sections. 

Basement reflectors are hachured in the sono¬ 

buoy sections, and refraction velocities are 

shown by asterisks. Refraction velocities from 

unreversed sonobuoy stations are not always 

accurate due to the effects of slope and topog¬ 
raphy. 

The uppermost layers are usually unconsoli¬ 

dated and are layered to varying degrees. Just 

below horizon A the sediments are usually 

densely stratified in the North Atlantic. There is 

a thick sequence of homogeneous sediments be¬ 

low this zone. Horizon (3 usually marks the begin¬ 

ning of weakly stratified and more opaque sedi¬ 

ments that rest directly on basement. To sim¬ 

plify discussion, layer A is defined as the layer 

between horizons A and /?; layer (3 is defined 

as the layer between horizon [3 and basement. 

North Atlantic. Profiler data and sonobuoy 

solutions from four areas in the Atlantic are 

shown in Figures 4 through 7. Stations V23-49 

and 50 (Figure 4) from the continental rise in 

the Canary Island-West Africa region illustrate 

a fairly complete stratigraphic sequence with 

velocities typically observed in the Atlantic. 

There is no assurance that our identification of 

layers A and J3 at stations V23-49 and 50 are 

correct, but the acoustic properties support the 

identification. The deepest reflector in both pro¬ 

files corresponds well (i.e., at the same reflection 

time below the sea surface) with identifiable 

basement reflections somewhat farther seaward. 

Note that the vertical reflection profile did not 

penetrate below horizon A, whereas two deeper 

reflectors were recorded in the sonobuoy data. 

Stations V23-10, 11, 12, and 13 (Figure 5) 

from the Sohm abyssal plain (at the foot of 

Grand Banks) reveal a more complex velocity 

structure. The velocities in the first layer are 

somewhat higher than usual, and these layers 

appear to be very densely stratified in the pro¬ 

filer records. As a consequence, there is no pro¬ 

nounced increase in velocity at horizon A, al¬ 

though the lower third of layer A has a velocity 

that significantly exceeds the velocity of the 

Tertiary sediments, which rarely exceed 2.2 

km/sec. The basement surface is ordinarily too 

rough to obtain velocities in layer (3 unless the 

vertical profiler data penetrate to basement, 

allowing approximate topographic corrections to 

be made. Penetration to basement was achieved 

with the sonobuoy but not with the profiler in 

much of the Sohm plain area. 

Sonobuoy stations C10-13A and 13B in Fig¬ 

ure 6 are reversed over an area where horizon 

A outcrops in the southwestern part of the 

North Atlantic. Station V22-1 (not shown) was 
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Fig. 4. Profiler and sonobuoy data near the Canary Islands. 

Fig. 5. Profiler and sonobuoy data near the Grand Banks. 



2626 HOUTZ, EWING, AND LE PICHON 

4 - 

o 
UJ 

Fig. 6. Profiler and sonobuoy data from the out¬ 
crop area in the southwestern North Atlantic. 

also shot in this area and gives a solution that 

agrees very well with the CIO stations (Table 

1). 
The very low velocities obtained from layer 

A strongly suggest that there never has been 

an appreciable Tertiary overburden. If the over¬ 

burden once existed and was later removed, we 

would expect to record higher velocities re¬ 

sulting from compaction. We can probably dis¬ 

count later tectonic activity, which could reduce 

the velocity by introducing fractures, because 

the velocity in layer (3 is consistent with the 

values found elsewhere. The velocity in layer (3 

seems to be independent of the depth of burial, 

because velocities of 3.0 to 4.0 km /sec have been 

observed in this layer under overburdens rang¬ 

ing from a few hundred meters to several kilo¬ 

meters. Cores from horizon A [<Safto et al., 

1966] reveal unconsolidated calcareous lutites 

and red clays, whereas cores from horizon {3 

reveal very hard deposits of dark mudstone, 

apparently consistent with a relatively high 

seismic velocity. Layer A has been sampled 

throughout most of its thickness down to hori¬ 

zon /? and in this area is consistently composed 

of unconsolidated material. 

Stations V24-1 and 2 (Figure 7) were shot in 

the Blake-Bahama outer ridge area, 430 km 

north of stations 13A and 13B. The velocity in 

layer A is 2.17 km/sec at station 2. The Ter¬ 

tiary sediments at station 1 are much thicker, 

and velocities were obtained in two layers above 

horizon A. The high velocity (2.91 km/sec) in 

layer A at station 1 might be the mean velocity 

of layers A and /?, which have not been re¬ 

solved separately here. A refraction (or wide- 

angle reflection) velocity of 3.60 km/sec was ob¬ 

tained at station 1. This line appears to be very 

nearly tangent to the same reflection curve as 

the 5.51-km/sec refraction line, suggesting that 

the 3.60-km/sec material is quite thin. It is more 

likely that there is a real increase in the velocity 

of layer A caused by the great difference in the 

Fig. 7. Profiler and sonobuoy data near the Blake-Bahama outer ridge. 
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thickness of the Tertiary overburden. The exist¬ 

ence of high-speed sedimentary layers in the 

Blake-Bahama area has been demonstrated by 
Savit et al., [1964], Houtz and Ewing [1964], 

Northrop and Ransone [1962], and Bunce and 

Fahlquist [1962], These authors observed re¬ 

fraction and interval velocities ranging from 

3.0 to 4.2 km/sec. 

The existence of critical refractions from 

horizon /? is crucial because it indicates a com¬ 

paratively profound change in velocity. Only 

two other sonobuoy stations in the North At¬ 

lantic reveal possible critical refractions from 

the region of horizon J3 (V23-18 and 49, see 

Table 1). Layer /3 is ordinarily quite thin, so 

that the interpretation of the point of tangency 

is doubtful. Houtz and Ewing [1964], reporting 

data in the North Atlantic from two-ship ex¬ 

periments, noted that with source and detector 

near the sea surface (in deep water) refracted 

waves from sedimentary layers are not ob¬ 

served unless the velocity is greater than about 

2.8 km/sec. This value agrees well with the 

lower limit of velocities we find in the present 

work for horizon /?. It is also possible that the 

3.60-km/sec line at station V24-1 represents a 

critically refracted shear wave from basement. 

If Poisson’s ratio is 0.25, the shear wave would 

have a velocity of 3.2 km/sec, a value that is 

* 3.60 

X 5.51 

probably within the limits of accuracy of re¬ 

fraction velocities at station V24-1. 

A more detailed discussion of critical shear 

wave refractions (including some new data that 

bear on sonobuoy solutions) appears in Appen¬ 

dix 1 along with the discussion of refractions 

from thin layers. 

South Atlantic. The profiler data and the 

sonobuoy solutions from the Argentine basin 

and from the continental rise west of South 

Africa (Cape basin) appear in Figures 8 and 9. 

Stations V22-3, V22-4, and Cl 1-1 (not shown) 

were shot in the Argentine basin. In each case 

horizon A is associated with a velocity discon¬ 

tinuity, and layer J3 is not identifiable. Le 

Pichon et al. [1968] in the companion paper 

discuss station V22-3 in some detail and show 

that the velocity discontinuity at horizon A is 

required to account for the behavior of the 

wide-angle data; i.e., the data cannot be recon¬ 
ciled with a gradual increase in velocity above 

horizon A (to the value measured for layer A) 

with little or no velocity discontinuity across 

the boundary. 

The Cll stations (Figure 9) were shot end 

to end in a region where the sedimentary cover 

on basement gradually thickens toward the 

continent to the northeast. The results suggest 

an increase of interval velocity as the layer 

Fig. 8. Profiler and sonobuoy data from the Argentine basin. 
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thickens, confirming the existence of positive 

velocity gradients. The sediment velocities in 

these profiles are significantly higher than the 

velocities observed elsewhere in the Atlantic. 

Sediment cores and bottom photographs reveal 
a hard atypical sea floor. Station 9 shows a 

3.08-km/sec sediment layer lying directly on 

rough basement. We interpret this layer to be 

layer ft and the very shallow reflector to be 

horizon A. If this interpretation is correct, these 

sediments are largely pre-Tertiary, which pro¬ 

vides a partial explanation of their unusually 

high velocities. The solutions in layer (3 at 

Cll-9 should be accepted with caution because 

the layer is only a few wavelengths thick. 

Station V22-6 (not shown), which is about 

50 km north of Cl 1-11, has been discussed in the 

companion paper. The sonobuoy record shows a 

prominent reflector that does not appear in the 

profiler record, even though a strong basement 

reflection appeared below the horizon in the 

profiler data. This effect was attributed to a 

velocity transition zone that is small in com¬ 

parison to wavelengths in the sonobuoy data 

(150 meters) but is large in comparison to 

wavelengths in the profiler data (15 meters). 
Judging by the sonobuoy data of station V22-6, 

a transition zone (at the top of a 2.58-km/see 

layer) may correspond to reflector ft. 

King [1962], among others, has suggested 

that parts of the North Atlantic are older than 

the South Atlantic. The concepts of sea-floor 

spreading and continental drift require that 

layer ft occurs at about equal distances from 

the continents bordering both oceans, if the 

conditions of origin and deposition were similar, 

and the basins are the same age. Our data at 

this writing suggest that layer ft, which is 

widely observed in the North Atlantic, is either 

missing or occurs locally near the continents 

in the South Atlantic. If layer ft is present over 

wide areas in the South Atlantic, it is not a good 

reflector, does not propagate detectable critical 

refractions as it apparently does in the North 

Atlantic, and does not yield interval velocities 

as high as those observed in the North Atlantic 

(3.0 to 4.0 km/sec). Sediment origin may be 

quite different in the two oceans, however; cer¬ 

tainly there is no counterpart of the Appa¬ 

lachian system on the coast of Argentina. Large 

parts of the Argentine abyssal plains are diffi¬ 

cult to penetrate by the profiler technique, but 

a prominent reflector has been recorded in the 

Argentine rise below horizon A [Eioing et al., 

1964]. The work of Ewing et al. reveals no 

sediment velocities greater than 2.4 km/sec. 

Gulf of Mexico. Stations V24-6, V24-7, and 

V24-9 through 14 appear in Figures 10 and 11. 
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The data of CIO-12 are shown to the north of 

V24-14 for comparison. A well-defined reflector 

occurs in these profiles and is shown with a 

dashed line in the sections. This reflector clearly 

marks a sedimentary event with the velocities 

below it ranging from 2.71 to 3.00 km/sec. The 

knoll-like structure in Figure 10 is illusory be¬ 

cause it occurs at a major course change along 

the profiler track. The deepest detectable layer 

in these profiles shows a refraction velocity of 

3.90 km/sec at V24-6. Similar velocities are not 

recorded again until the sea floor changes char¬ 

acter beyond station V24-14. Refraction veloci¬ 

ties of 3.85 and 3.96 km/sec and an interval 

velocity of 3.51 km/sec were recorded to the 

south in the Bay of Campeche. Here the high¬ 

speed layer has risen to shallower depths, as 

shown by the profiler sections. The results of 

the present work show an excellent agreement 

with the work of Ewing et al. [1960, 1962] and 

Antoine and Ewing [1963]. Much of this earlier 

work was based on refraction data in the cen¬ 

tral abyssal plain and the Bay of Campeche, 

where the present data were obtained. 

Fig. 11. Profiler and sonobuoy data from the Gulf of Mexico. 
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Pacific. The thin sediments encountered on 

cruise V24 in the eastern equatorial Pacific 

limited the velocity study to single-layer solu¬ 

tions. The velocities in the sediments are higher 

than those typically observed in the Atlantic 

at comparable depths of burial. Well-recorded 

refractions from basement and the oceanic layer 

are characteristic of the area. 

Short profiler sections are shown in Figure 

12, which includes stations V24-25 and 29. The 

thin layer that appears around station 29 was 

not recorded elsewhere on this crossing. Its ve¬ 

locity was not resolved separately (owing to 

large dips and rough topography), but it has no 

obvious effect on the velocity solution down to 

basement. 

The reflection data from the basement inter¬ 

face yield velocities ranging from 4.56 to 6.11 

km/sec, and the velocities from the oceanic 

interface range from 6.11 to 7.39 km/sec. The 

variability of these solutions is probably due to 

dip, as evidenced by the occurrence of high (or 

low) velocities from both layers at the same 

station. The data have not been corrected for 

basement topography. 

Analysis of Sediment Velocities 

Interval velocities from 102 sonobuoy solu¬ 

tions appear in Figure 13. These velocities are 

based on all the solutions obtained to date. The 

interval velocities are plotted against one-way 

vertical travel time to the midpoint (in time) 

of the layer. Solutions from layer A and layer 

ft and velocities that combine two types of 

layer are identified separately in the plot. 

These identifications apply only to the Atlantic 

data and are subject to interpretation. The 

vertical line through the data points is equal 

to twice the computed standard deviation, 

which is somewhat less than the 90% con¬ 

fidence limits (see preceding paper). The stand¬ 

ard deviation of the computed velocity that 

results from the scatter in the data at any one 

station has a nearly constant relation to ob¬ 

served deviations between adjacent stations. The 

computed standard deviation is about 40% 

higher than the actual errors. Consequently, the 

tabulated standard deviations in Table 1 have 

a real significance, which means that conclu¬ 

sions to be drawn from the data can be done 

within prescribed limits of confidence. For ex¬ 

ample, the average computed standard devia¬ 

tion of all the solutions is 126 m/sec, which 

gives significance to the observation that ve¬ 

locity reversals have never been recorded at 

any of the stations. 

We can see in Figure 13 that the greatest 

deviations are produced by solutions from layer 

J3. This is understandable because layer /3 is 

relatively thin, occurs at variable depths below 

the sea floor, and has uniformly high velocities, 

apparently independent of the overburden. We 

o 
UJ 
CO 

(A 

8- 

Fig. 12. Profiler and sonobuoy data from the eastern equatorial Pacific. 
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might also expect to reduce the scatter by re¬ 

moving solutions from layer A, solutions that 

combine two types of layer, and by investigat¬ 

ing geographical regions individually. The ef¬ 

fects of these and other factors will be discussed 

below. 

All the velocity plots in the following dis¬ 

cussion are based on velocity versus one-way 

vertical travel time. The major advantages of 

this method in comparison to plots of velocity 

versus computed depth are: 

1. Greater accuracy in the plot because 

propagated errors in the depth computation do 

not appear. 

2. Mean velocity plots lead directly to depth 

as a function of one-way travel time. 

3. The differential-type operation that leads 

to instantaneous velocity from the mean veloc¬ 

ity yields a simple and exact solution (if poly¬ 

nomial expressions are used). 

In each case the curves shown are third-order 

polynomials fitted by least squares. Instanta¬ 

neous velocity curves will be used to compare 

different sets of velocity data, because these 

curves are more sensitive to velocity variations 

with depth. Instantaneous velocity curves may 

be obtained approximately by plotting interval 

velocities against one-way travel time to the 

midpoint (in time) of the layer (as in Figure 

13) from which the velocity is obtained. A poly¬ 

nomial is then fitted by least squares to the 

interval velocities. The expression obtained can 

be used to calculate the small errors introduced 

by the nonlinearity of the velocity-depth varia¬ 

tion and to obtain 'corrected' interval velocities 

more nearly equal to the instantaneous veloci- 
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ties at the same depths in time. The instan¬ 

taneous velocity-depth curve is found by fit to 

the 'corrected’ interval velocities. The values of 

instantaneous velocities found in this way are 

inherently superior to the values found by 

differentiating the mean velocity curve. That 

is to say, the distortions amplified by differ¬ 

entiating the mean velocity curve yield an in¬ 

stantaneous velocity curve that is systemati¬ 

cally below the observed interval velocities at 

the greater depths. A more detailed discussion 

of the velocity curves appears in Appendix 2. 

Each point in the plots is weighted as an 

inverse function of its standard deviation before 

the fit is made. The weight is 0.5 -f .05/s.d., 

i.e., a weight of 1.00 for a standard deviation of 

0.10 km/sec. The velocity at the water-sedi¬ 

ment interface (T = 0 sec) has been accurately 

determined in the Atlantic with in situ measure¬ 

ments involving the observation of phase 

changes in reflections at grazing incidence 

[Houtz and Ewing, 1964] and with velocimetric 

measurements in fresh piston cores [Schreiber, 

1966]. The velocity at this point 1.52 km/sec, 

has been greatly weighted to constrain the fit 

to pass through this point. The same value has 

been assumed for the data for the Gulf of Mex¬ 

ico. 

Fig. 14. {Up-par curve) Instantaneous velocity curve derived from corrected interval veloc¬ 
ities from the Gulf of Mexico. Interval velocities to which data were fitted are also plotted. 
Vertical bars represent twice the standard deviations. {Lower curves) Mean velocity curve 
and instantaneous velocity curve derived from it. Mean velocities to which the curve is fitted 
were derived from the same data as in the upper part of the figure. 
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A useful check on the T*/X2 solutions is 

occasionally provided by wide-angle reflection 

data. The slopes of these reflection curves gen¬ 

erally give an estimate of the mean velocity 

within a layer (at horizontal distances that are 

large in comparison to layer thickness). The 

procedure is to measure the slope of the reflec¬ 

tion curve at the greatest distance from the 

origin and to convert the slope to an apparent 

mean velocity. The method provides approxi¬ 

mations that are evidently randomly in error 

by about 200 m/sec. Table 1 enables us to com¬ 

pare the apparent layer velocities determined 

in this way with the apparent layer velocities 

determined from T"/X2 solutions. 

Regional velocity curves. The corrected ve¬ 

locity curve for the sediments in the Gulf of 

Mexico appears in the upper curve in Figure 14. 

The overburden on the high-speed refracting 

sediments in the gulf is constant in the region 

where our measurements were made. It is 

therefore possible to plot all the velocities with¬ 

out introducing the scatter observed in the At¬ 

lantic, where the high-speed layers occur at 

variable depths below the sea floor. This com¬ 

parison leads to a generalized velocity curve 

that is surprisingly linear. V24-17 was the only 

station providing interval velocities from the 

Bay of Campeche, where the faster layers crop 

out. The third-layer solution at V24-17 is the 

anomalously high point (3.51 km/sec) at about 

1.0 sec in Figure 14. A more meaningful anal¬ 

ysis of the velocity data of the Gulf of Mexico 

awaits the identification of prominent reflectors 

from core data. Only three interval velocities 

are available from the high-speed refracting 

sediments. They include V24-17 (already dis¬ 

cussed) and the two deepest solutions, which 

do not depart significantly from the generalized 

curve. 

The corrected interval velocity curve for the 

Atlantic data is shown in the upper curve of 

Figure 15. Layer J3 solutions and combinations 

of two layers have been eliminated from this 

plot. Station V23-17 from the Newfoundland 

ridge has been eliminated because the layers 

crop out on the ridge and cannot be identified. 

Y22-2 from the Rio Grande rise occurs in 

shallow-water calcareous sediments, which can¬ 

not be classified with the other deep-water 

solutions, and has been eliminated. The At¬ 

lantic curve shows the same general features 

Fig. 15. (Upper curve) Instantaneous velocity 
curve derived from corrected interval velocities 
from the Atlantic. (Lower curves) Mean velocity 
curve and corresponding instantaneous velocity 
curve from the same data. 

that the gulf curve does, except that the ve¬ 

locity gradient increases with depth at depths 

greater than about 0.5 sec because of lower 

velocities in the sediment layer above horizon 

A. This gradient is greater than the gradient 

observed at the water-sediment interface and 

seems unrealistic at a depth of about 2 km. 

The detailed velocity data now available show 

that the Grand Banks and Cape basin regions 

give relatively high velocities in the first layer. 

If these solutions are eliminated (see the upper 

curve of Figure 16), the scatter is reduced but 

the large gradient still occurs at depths. This 
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Fig. 16. (Upper curve) Instantaneous velocity 
curve derived from corrected interval velocities 
from the Atlantic (exclusive of Grand Banks and 
Cape basin solutions). (Lower curves) Mean ve¬ 
locity curve and corresponding instantaneous ve¬ 
locity curve from the same data. 

leads to the suggestion that a genuine velocity 

discontinuity exists in the region of layer A. 

Individual stations frequently reveal apparent 

velocity discontinuities at horizon A or at the 

next lower identifiable horizon within layer A 

(but still above horizon /?). Selected stations 

from the Atlantic are plotted in Figure 17 to 

show that a large positive gradient has to be 

assumed within layer A if the velocity discon¬ 

tinuities (or velocity transition zones) are 

eliminated at these stations. 

The effect of removing all layer A solutions 

from the data of Figure 16 is shown in the 

upper curve of Figure 18. We are now left with 

a curve that has no large gradients at depth. 

The velocity increase is nearly linear with ver¬ 

tical travel time, as suggested by the North 

Atlantic data of Houtz and Ewing [1963]. A 

comparison of Figure 14 with Figure 18 shows 

that there may be a significant difference be¬ 

tween the shallow-layer solutions of the Gulf 

of Mexico and the Atlantic Ocean. The differ¬ 

ence would become much greater if the gulf fit 

were based only on solutions that occur no 

deeper than those from the Atlantic. As it is, 

the gulf curve is depressed downward by the 

deeper solutions. 

This difference could be due to the effects of 

deposition in a semiclosed basin, which may 

give rise to higher velocities in the gulf. The 

concepts of continental drift and sea-floor 

spreading suggest that the sediments of layer 

A could also have been deposited in a semi¬ 

closed basin. A surprisingly close relationship 

between the interval velocities of Atlantic layer 

KM/SEC 
1-5 2 0 2.5 3.0 

Fig. 17. Selected sonobuoy solutions requiring 
a velocity discontinuity (or transition zone) above 
the deepest layer. Solid square indicates data from 
Y24-1; open square, V22-3; solid triangle, Cll-1; 
open triangles, V23-49. 
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Fig. 18. (Upper curve) Instantaneous velocity 
curve derived from corrected interval velocities 
from the Atlantic (exclusive of layer A, Grand 
Banks, and Cape basin solutions). (Lower curve) 
Mean velocity curve and corresponding computed 
instantaneous velocity from the same data. 

A and the interval velocities of the gulf are 

shown in Figure 19, where the two types of 

velocity are combined in an interval velocity 

plot (not corrected). A similar plot of layer A 

velocities on the Tertiary Atlantic velocities (ex¬ 

clusive of the Grand Banks solutions) reveals an 

average mismatch of about 200 m/sec, which is 

most pronounced at the greater depths. 

Although we have shown that the inclusion 

of layer A velocities introduces large velocity 

gradients at depth in the Atlantic, the effect is 

largely due to the four stations of Figure 17, 

which involve large thicknesses of sediment. 

The dominant pattern in the layer A velocities 

is that they are influenced by overburden pres¬ 

sure, as are the Tertiary sediment velocities. In 

the same way, the gulf velocities are mostly 

controlled by overburden pressure. The major 

difference is in the shallow layers, which are 

faster in the Gulf of Mexico than in the At¬ 

lantic Ocean. Faster velocities occur in the Gulf 

of Mexico in spite of the fact that sedimenta¬ 

tion rates in the gulf are at least an order of 

magnitude greater than they are in the Atlantic. 

The greater sedimentation rates should produce 

lower velocities in the gulf. The existence of 

Fig. 19. Interval velocities from Atlantic, layer A, and all Gulf of Mexico solutions. 
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high-speed shallow sediments in the gulf there¬ 

fore requires an explanation that is independent 

of the rate of sedimentation. 

Ewing et at. [1968] have shown that sedi¬ 

mentation in the South Atlantic is controlled by 

the massive movements of bottom currents that 

transport lutites (clay-sized particles) in sus¬ 

pension along the sea floor. The seawater near 

the floor carrying a relatively large amount of 

material in suspension is called the 'nepheloid 

layer.’ Ewing et al. show that sedimentation of 

this type began when horizon A was deposited 

and that it has continued to deposit in this 

manner to the present time. Nepheloid deposi¬ 

tion, under the influence of deep-sea currents, 

controls the distribution of Tertiary sediments 

in the North Atlantic, except in the areas in 

which turbidites make significant contributions, 

as they do in the Grand Banks area, where the 

velocities are high and the profiles show densely 

layered (turbidite) sediments. The massive cir¬ 

culation of lutites does not occur in the Gulf 

of Mexico, where the sedimentation is in a 

semiclosed basin. As a result, homogeneous 

low-velocity sediments are absent in the gulf 

and the sediment velocities are therefore greater 

than sediment velocities in the Atlantic. 

Mean velocity curves for the Gulf of Mexico 

and the Atlantic Ocean appear as the lower curves 

in Figures 14, 15, 16, and 18. The curves repre¬ 

sent polynomials of the type V = A + BT -f- 

CT2 + DT2, where T is the one-way vertical 

travel time within the sediments. The coefficients 

A, B, C, and D and the standard deviation of the 

fit are given in Table 2. Instantaneous velocity 

curves are plotted with the mean curves. They 

have been derived from the mean velocity 

equation by differentiating the expression for the 

sediment thickness, H = AT + BT2 + CT3 + 

DT4. That is, 

V = ~ = A + 2BT + 3 CT2 + 4 DT3 
dT 

It can be seen from the figures that curves 

found in this way depart significantly from the 

instantaneous velocity curves derived from ob¬ 

served interval velocities, especially at the 

greater depths. The difference is due to errors 

introduced by the indirect determination. 

Previous work on the distribution of deep- 

sea sediment velocities was not based strictly 

on the identification of stratigraphic horizons. 

This shortcoming has occasionally led to gen¬ 

eralized curves that take no account of the ve- 

TABLE 2. Velocity-Depth Functions 

Depth 
Gradients Range of 

Coefficients of Polynomials Std. Velocity at Ave. 
Dev., Ave., T = 0, Gradient, 

A B C D m/sec sec-1 sec-1 m 

Gulf of 
Mexico 

Atlantic 
1.5207* 1.7241* -0.4679* - -0.0002* 217 0.87 1.13 543 

(Fig. 15) 
Atlantic 

1.5202* 2.5092* -3.7478* 2.8531* 160 0.91 1.65 540 

(Fig. 16) 
Atlantic 

1.5201* 2.1785* -2.6577* 2.152S* 150 0.90 1.43 525 

(Fig. 18) 
Gulf of 

1.5199* 1.9628* -3.4692* 3.7864* 61 0.73 1.29 519 

Mexico 
Atlantic 

1.5202] 1.1072] -0.4906] 0.0983] 163 

(Fig. 15) 
Atlantic 

1.5200] 1.3001] -1.4287] 0.7902] 122 

(Fig. 16) 
Atlantic 

1.5201] 0.9180] —0.80S5] 0.5523] 81 

(Fig. 18) 1.5199] 0.8895] -0.8781] 0.6318] 60 

* Used to fit corrected interval velocity (instantaneous velocity), 
t Used to fit mean velocities. 
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locity discontinuities that occur within layer A 
and at horizon ft. Generalized curves cannot 
truly represent the complexity of the consolida¬ 
tion process. The velocity curve of Figure 18 
(unconsolidated sediments from the Atlantic) 
has been converted to a depth-dependent curve 
and is plotted with some of the previous work 
in Figure 20. The comparison shows a fair 
agreement with the curves of Houtz and Ewing 
[1963, 1964], whose plots were also constrained 
to pass through 1.52 km/sec at h — 0. Their 
work was based on an attempt to eliminate 
consolidated sediments by excluding layers that 
propagated critical refractions. The data of 
Nafe and Drake [1963] were based on ‘refrac¬ 
tion’ velocities before it was realized that the 
upper layers of deep-sea sediments ordinarily 
produce wide-angle reflections but not refrac¬ 
tions [Houtz and Ewing, 1963], According to 
our data, the Nafe and Drake curve is about 
0.2 km/sec too fast for the Atlantic, so that at 
most depths in the unconsolidated sediments the 
density based on our fit will be about 0.1 g/cm3 
less. Their curve, however, works quite well in 
the Gulf of Mexico. The Knox [1965] curve 
represents the velocity distribution of all the 
sediments at a specific, closely studied site. 

Velocity gradients. Velocity gradients are 
usually measured in units of sec'1, which are not 
directly measurable from polynomial equations 
in time. To express the gradient in the usual 
manner, we see that if 

V = ^ = A + BT + CT2 + DT3 (1) 

Gradient (sec-1) 

_ dV __ B + 2CT + 3DT2 
dh ~ A + BT + CT2 + DT3 ^ 

which expresses the instantaneous gradient. The 
work of Houtz and Ewing [1964] suggested 
that the gradient at the water-sediment inter¬ 
face, based on an E, - Hi analysis of curved 
ray arrivals [Ewing and Nafe, 1963], was be¬ 
tween 1.5 and 2.0 sec'1. By means of equation 2 
we see that, at T = 0, the gradient is simply 
B/A. The present work yields water-sediment 
interface gradients ranging from 1.1 to 1.7 sec'1, 
a surprisingly close agreement when the lack of 
precision is considered. 

Houtz and Ewing determined an average 
gradient of 1.0 sec'1 down to depths of about 

Fig. 20. Comparison of published velocity 
curves with the present work (from the data of 
Figure 18). Curve A from Knox [19651; B, Nafe 
and Drake [1961]; C, Houtz and Ewing [19631; 
D, Houtz and Ewing [1964]; E, present work. 

500 meters. Hamilton [1965] measured veloci¬ 
ties at depth in deep-sea sediments from the 
cores at the experimental Mohole site, Guade- 
lupe Island. His results yielded a gradient of 
about 1.0 sec"1 in the unconsolidated sediments. 

The average gradient (dv/dh) can be found by 
integration over a given depth range using 

(dv/dh) = (v — v0 )/h (3) 

and depends only on the initial and terminal 
velocities. The average gradients to a depth of 
about 500 meters in the present study range 
from 0.73 to 0.91 sec"1. The average gradients to 
a depth of about 500 meters and the gradients 
at the water-sediment interface are tabulated 
in Table 2. The small differences between the 
average and the interface gradients suggest that 
little curvature has been introduced by con¬ 
straining the fit to pass through 1.52 km/sec 
at T = 0. 

Summary 

Velocity solutions from sonobuoy data have 
been correlated with the reflecting horizons ob- 
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served in the vertical profiler data. Three major 

sequences have been identified in the Atlantic 

sediments: 

1. Unconsolidated Tertiary sediments, lay¬ 

ered to varying degrees, whose velocity in¬ 

creases rather uniformly with depth. Their 

velocities range from about 1.6 to 2.2 km/sec. 

2. Semiconsolidated Upper Cretaceous sedi¬ 

ments whose velocity increases somewhat dis- 

continuously with depth (with local variations). 

The main body of sediments is homogeneous 

but is capped by a thin zone of densely layered 

material. Their velocities range from 1.7 to 2.9 

km/sec. 

3. Consolidated sediments of Lower Creta¬ 

ceous age (and perhaps older) whose velocity 

is relatively constant and independent of over¬ 

burden thickness. The sequence is weakly lay¬ 

ered, and interval velocities range from 2.7 to 

3.7 km/sec. 

Sonobuoy and other data show that layer /? 

(except for local occurrences), as far as we 

know, is missing in the South Atlantic. This 

suggests that parts of the North Atlantic, 

where this layer is widely observed, are older. 

Sediment origin in the two oceans is quite dis¬ 

similar, however, and the acoustic differences 

may not imply age differences. 

Gulf of Mexico sediment velocities cannot be 

analyzed on the basis of dated reflectors, owing 
to a lack of outcrops. A velocity structure exists 

in the gulf that is essentially controlled by over¬ 

burden, and the increase of velocity with over¬ 

burden is similar to the increases in the Atlantic. 

Some velocity variability (200 to 300 m/sec) 

occurs in the upper layers of sediment. The 

slower velocities in this range seem to be asso¬ 

ciated with lutites deposited by the nepheloid 

layer under the influence of relatively swift 

deep-sea currents, e.g., in the western South 

Atlantic and throughout most of the North At¬ 

lantic abyssal plains and rise. The faster sedi¬ 

ment velocities occur in regions of weaker bot¬ 

tom water currents (Gulf of Mexico) or in 

regions where thick turbidites occur (Grand 

Banks area). The sediments of layer A may 

have been deposited when the Atlantic basins 

were not as open to circulation as they now are 

and when there was not strong deep water 

circulation. 

Velocity analysis also shows that a relatively 

profound change occurred after layer was 

deposited. This observation applies only to four 

good determinations, however, all of which are 

in the relatively small area between the Bahama 

Islands and the Blake-Bahama outer ridge. The 

complete lack of significant velocity reversals 

points up the remarkably uniform properties of 

consolidation, which in spite of regional differ¬ 

ences in sediment types, conditions of deposi¬ 

tion, provenance, and water depth yields quite 

similar velocity-depth curves. 

Appendix 1 

The basic ray theory of seismic reflection and 

refraction requires that a refraction line rep¬ 

resents the velocity at the upper interface of a 

horizontal layer. The refraction line is tangent 

to the reflection hyperbola for this interface at 

the critical distance. At large distances from the 

source, however, reflections from the lower in¬ 

terface of the refracting layer will become in¬ 

distinguishable from the refracted waves. This 

follows from the geometry of rays in thin layers 

with a constant velocity, because the travel-time 

difference along the upper interface and the 

single internal reflection is very small. As a 

typical example, the difference in travel times in 

a layer 200 meters thick of 3.0-km/sec material 

will be about 0.004 sec at a distance of 2 km 

from the critical distance. The sonobuoy re¬ 

fraction data are based on waves with a period 

of 0.05 sec, an order of magnitude greater than 

the time difference we would like to resolve in 

our typical example. 

Owing to interference effects of thin layers, 

the refracted arrivals are often shingled, so 

that at greater distances the initial part of the 

wave disappears. We cannot claim accuracy in 

the tangent points determined from our data 

beyond one cycle (0.05 sec or 125 meters of 

5-km/sec material). These remarks seem to rule 

out any meaningful statements on refractions 

from thin sedimentary layers. A further dis¬ 

turbing effect is caused by critically refracted 

shear waves from the upper interface of base¬ 

ment. These arrivals will be tangent to the base¬ 

ment reflection curve and will show a velocity 

of about 3.0 km/sec, which is in the range of 

velocities atrributed to layer J3. 

Reflections often show an abrupt diminution 

of amplitude when critical reflection is reached 

at some shallower interface [Hautz and Ewing, 
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1963]. Cut-off of this kind is best observed on 

oscillograms, which were not made for the sono- 

buoy data described here. 

Although not closely related to the present 

work, the behavior of critically refracted shear 

waves may be explained on the basis of the 

sonobuoy results. These results show where 

high-speed sediments exist in the deep sea. 

Without knowledge of the extent of these high¬ 

speed sediments, the amplitudes and frequency 

of occurrence of shear waves are perplexing if 

relatively uniform sediments are assumed to 

exist down to the basement interface. 

Houtz [1965] studied shear wave amplitudes 

of critical refractions (PSP type) from deep-sea 

crustal layers. Unpublished parts of the Houtz 

work showed that shear waves from the oceanic 

layer were not recorded where a thick sedi- 

mentray cover occurred. This was thought to 

be due to higher sediment velocities at the sedi¬ 

ment-basement interface, where the conversion 

from P to 57 occurs. The resulting increase in 

the sediment-basement velocity ratio would de¬ 

crease the shear wave amplitude. Hence, the 

shear wave energy available to propagate along 

the oceanic interface is reduced. The data of 

that study appear in Figure 21, which is a his¬ 

togram showing that shear waves are not ob¬ 

served when the sediment-basement velocity 

ratio reaches the region of 0.42. For a typical 

basement this value corresponds to a sediment 

velocity of about 2.1 km/sec. 

It may be significant that the highest veloci¬ 

ties recorded in the unconsolidated sediments of 

the Atlantic Ocean do not exceed about 2.2 

km/sec. (See Figure 18.) This suggests that 

shear waves are not recorded where the high¬ 

speed sediments, which occur below layer A, 

are present. The amplitude of PSP from the 

oceanic layer diminishes to nearly one-sixth its 

original value if a 3.0-km/sec layer is introduced 

between a 2.0- and 5.0-km/sec interface. This 

seems to be an adequate explanation for the 

observed behavior. 

The existence of high-speed sediments in the 

deep sea also explains the scarcity of critically 

refracted S waves from the basement layer, 

compared with those from the oceanic layer. 

If Poisson’s ratio is 0.25 in the basement layer, 

the shear wave velocity will range from 2.6 

to 3.2 km/sec, corresponding to basement P- 

wave velocities of 4.5 to 5.5 km/sec. Clearly, no 

basement shear wave can occur (or can occur 

only at great distances from the source) where 

sediment velocities are about 3.0 km/sec. 

Appendix 2 

If T is the one-way reflection time below the 
surface of the sediments, 7ar is the interval 

velocity from T to T + AT, and 7 is the in¬ 

stantaneous velocity, then 

1 »r+4r 

r‘'~ZfJr vm'iT 

This interval velocity is assigned to time T -f- 

(A.T/2) where the real instantaneous velocity 

is Vit + (ar/2>3, thus leading to an error of 

e = 7a t ~ 7[r+(Ar/2)i 

If V = A + BT + CT\ then 

AT2 
VAT = CT2 + CT AT + C — 

o 

+ A + B(r + f) 

v,/v2 {SEDIMENT / BASEMENT VELOC. RATIO) 

Fig. 21. Frequency of occurrence of shear waves in the North Atlantic as a function of the 
ratio of the sediment-basement interface velocities. 
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V[t+(at/2)i + A + B (t + ~j = CT2 

AT2 
+ CT AT + C—~ 

4 

Thus, the error made in this assumption is 

e = Vat Vit+(AT/2)] = C AT /12 

The error is entirely due to the curvature term 

and in this case is independent of the depth (in 

time) within the sediments. 

Similarly, it can be shown that for any poly¬ 

nomial expression of V, the errors introduced in 

the term of order n (AT"*) are 

A 2 n\ Tn~k+1 ATk~l/(n + 1 — k)! (k — l)! 
/c = 1 

•(1/A: - 1/2*"1) 

In particular, for the third-order polynomial 

used in this report 

V = A + BT + CT* + DT3 

e = thC AT2 + iV(3D-T-AT2) + |(D-AT3) 

Using the coefficients for the polynomials given 

in this report, we can show that the error made 

by assigning the interval velocity to time T + 

(AT/2) rarely exceed 50 m/sec and generally is 

much less. This error is not critical, as it is 

generally less than the error in measurement, 

and it is easy to take it into account by the 

iterative procedure described in the report. In 

view of the small magnitude of the error in¬ 

volved in this approximation, it is much better 

to fit the velocity curve directly to the interval 

velocities rather than to the average velocities. 

The derivation of the instantaneous velocity 

curve from the average velocity curve will gen¬ 

erally involve larger errors than the errors due 

to the interval velocity approximation. 

Although our conclusion could have been 

reached intuitively, apparently it was not real¬ 

ized by Knox [1965] in his criticism of our use 

of such an approach. 
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